[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / ARM / ARMISelDAGToDAG.cpp
bloba3c7999f20fba718ac197b52ae1bf81e4f8c7dbe
1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the ARM target.
11 //===----------------------------------------------------------------------===//
13 #include "ARM.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMTargetMachine.h"
16 #include "MCTargetDesc/ARMAddressingModes.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
39 #define DEBUG_TYPE "arm-isel"
41 static cl::opt<bool>
42 DisableShifterOp("disable-shifter-op", cl::Hidden,
43 cl::desc("Disable isel of shifter-op"),
44 cl::init(false));
46 //===--------------------------------------------------------------------===//
47 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
48 /// instructions for SelectionDAG operations.
49 ///
50 namespace {
52 class ARMDAGToDAGISel : public SelectionDAGISel {
53 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
54 /// make the right decision when generating code for different targets.
55 const ARMSubtarget *Subtarget;
57 public:
58 explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
59 : SelectionDAGISel(tm, OptLevel) {}
61 bool runOnMachineFunction(MachineFunction &MF) override {
62 // Reset the subtarget each time through.
63 Subtarget = &MF.getSubtarget<ARMSubtarget>();
64 SelectionDAGISel::runOnMachineFunction(MF);
65 return true;
68 StringRef getPassName() const override { return "ARM Instruction Selection"; }
70 void PreprocessISelDAG() override;
72 /// getI32Imm - Return a target constant of type i32 with the specified
73 /// value.
74 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
75 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
78 void Select(SDNode *N) override;
80 bool hasNoVMLxHazardUse(SDNode *N) const;
81 bool isShifterOpProfitable(const SDValue &Shift,
82 ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
83 bool SelectRegShifterOperand(SDValue N, SDValue &A,
84 SDValue &B, SDValue &C,
85 bool CheckProfitability = true);
86 bool SelectImmShifterOperand(SDValue N, SDValue &A,
87 SDValue &B, bool CheckProfitability = true);
88 bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
89 SDValue &B, SDValue &C) {
90 // Don't apply the profitability check
91 return SelectRegShifterOperand(N, A, B, C, false);
93 bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
94 SDValue &B) {
95 // Don't apply the profitability check
96 return SelectImmShifterOperand(N, A, B, false);
99 bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out);
101 bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
102 bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
104 bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
105 const ConstantSDNode *CN = cast<ConstantSDNode>(N);
106 Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
107 Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
108 return true;
111 bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
112 SDValue &Offset, SDValue &Opc);
113 bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
114 SDValue &Offset, SDValue &Opc);
115 bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
116 SDValue &Offset, SDValue &Opc);
117 bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
118 bool SelectAddrMode3(SDValue N, SDValue &Base,
119 SDValue &Offset, SDValue &Opc);
120 bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
121 SDValue &Offset, SDValue &Opc);
122 bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, bool FP16);
123 bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset);
124 bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset);
125 bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
126 bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
128 bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
130 // Thumb Addressing Modes:
131 bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
132 bool SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, SDValue &Offset);
133 bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
134 SDValue &OffImm);
135 bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
136 SDValue &OffImm);
137 bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
138 SDValue &OffImm);
139 bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
140 SDValue &OffImm);
141 bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
143 // Thumb 2 Addressing Modes:
144 bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
145 bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
146 SDValue &OffImm);
147 bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
148 SDValue &OffImm);
149 template <unsigned Shift>
150 bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm);
151 bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm,
152 unsigned Shift);
153 template <unsigned Shift>
154 bool SelectT2AddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
155 bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
156 SDValue &OffReg, SDValue &ShImm);
157 bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
159 inline bool is_so_imm(unsigned Imm) const {
160 return ARM_AM::getSOImmVal(Imm) != -1;
163 inline bool is_so_imm_not(unsigned Imm) const {
164 return ARM_AM::getSOImmVal(~Imm) != -1;
167 inline bool is_t2_so_imm(unsigned Imm) const {
168 return ARM_AM::getT2SOImmVal(Imm) != -1;
171 inline bool is_t2_so_imm_not(unsigned Imm) const {
172 return ARM_AM::getT2SOImmVal(~Imm) != -1;
175 // Include the pieces autogenerated from the target description.
176 #include "ARMGenDAGISel.inc"
178 private:
179 void transferMemOperands(SDNode *Src, SDNode *Dst);
181 /// Indexed (pre/post inc/dec) load matching code for ARM.
182 bool tryARMIndexedLoad(SDNode *N);
183 bool tryT1IndexedLoad(SDNode *N);
184 bool tryT2IndexedLoad(SDNode *N);
185 bool tryMVEIndexedLoad(SDNode *N);
187 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
188 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
189 /// loads of D registers and even subregs and odd subregs of Q registers.
190 /// For NumVecs <= 2, QOpcodes1 is not used.
191 void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
192 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
193 const uint16_t *QOpcodes1);
195 /// SelectVST - Select NEON store intrinsics. NumVecs should
196 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
197 /// stores of D registers and even subregs and odd subregs of Q registers.
198 /// For NumVecs <= 2, QOpcodes1 is not used.
199 void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
200 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
201 const uint16_t *QOpcodes1);
203 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
204 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
205 /// load/store of D registers and Q registers.
206 void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
207 unsigned NumVecs, const uint16_t *DOpcodes,
208 const uint16_t *QOpcodes);
210 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
211 /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used
212 /// for loading D registers.
213 void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating,
214 unsigned NumVecs, const uint16_t *DOpcodes,
215 const uint16_t *QOpcodes0 = nullptr,
216 const uint16_t *QOpcodes1 = nullptr);
218 /// Try to select SBFX/UBFX instructions for ARM.
219 bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
221 // Select special operations if node forms integer ABS pattern
222 bool tryABSOp(SDNode *N);
224 bool tryReadRegister(SDNode *N);
225 bool tryWriteRegister(SDNode *N);
227 bool tryInlineAsm(SDNode *N);
229 void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI);
231 void SelectCMP_SWAP(SDNode *N);
233 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
234 /// inline asm expressions.
235 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
236 std::vector<SDValue> &OutOps) override;
238 // Form pairs of consecutive R, S, D, or Q registers.
239 SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
240 SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
241 SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
242 SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
244 // Form sequences of 4 consecutive S, D, or Q registers.
245 SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
246 SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
247 SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
249 // Get the alignment operand for a NEON VLD or VST instruction.
250 SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
251 bool is64BitVector);
253 /// Returns the number of instructions required to materialize the given
254 /// constant in a register, or 3 if a literal pool load is needed.
255 unsigned ConstantMaterializationCost(unsigned Val) const;
257 /// Checks if N is a multiplication by a constant where we can extract out a
258 /// power of two from the constant so that it can be used in a shift, but only
259 /// if it simplifies the materialization of the constant. Returns true if it
260 /// is, and assigns to PowerOfTwo the power of two that should be extracted
261 /// out and to NewMulConst the new constant to be multiplied by.
262 bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
263 unsigned &PowerOfTwo, SDValue &NewMulConst) const;
265 /// Replace N with M in CurDAG, in a way that also ensures that M gets
266 /// selected when N would have been selected.
267 void replaceDAGValue(const SDValue &N, SDValue M);
271 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
272 /// operand. If so Imm will receive the 32-bit value.
273 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
274 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
275 Imm = cast<ConstantSDNode>(N)->getZExtValue();
276 return true;
278 return false;
281 // isInt32Immediate - This method tests to see if a constant operand.
282 // If so Imm will receive the 32 bit value.
283 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
284 return isInt32Immediate(N.getNode(), Imm);
287 // isOpcWithIntImmediate - This method tests to see if the node is a specific
288 // opcode and that it has a immediate integer right operand.
289 // If so Imm will receive the 32 bit value.
290 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
291 return N->getOpcode() == Opc &&
292 isInt32Immediate(N->getOperand(1).getNode(), Imm);
295 /// Check whether a particular node is a constant value representable as
296 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
298 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
299 static bool isScaledConstantInRange(SDValue Node, int Scale,
300 int RangeMin, int RangeMax,
301 int &ScaledConstant) {
302 assert(Scale > 0 && "Invalid scale!");
304 // Check that this is a constant.
305 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
306 if (!C)
307 return false;
309 ScaledConstant = (int) C->getZExtValue();
310 if ((ScaledConstant % Scale) != 0)
311 return false;
313 ScaledConstant /= Scale;
314 return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
317 void ARMDAGToDAGISel::PreprocessISelDAG() {
318 if (!Subtarget->hasV6T2Ops())
319 return;
321 bool isThumb2 = Subtarget->isThumb();
322 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
323 E = CurDAG->allnodes_end(); I != E; ) {
324 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
326 if (N->getOpcode() != ISD::ADD)
327 continue;
329 // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
330 // leading zeros, followed by consecutive set bits, followed by 1 or 2
331 // trailing zeros, e.g. 1020.
332 // Transform the expression to
333 // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
334 // of trailing zeros of c2. The left shift would be folded as an shifter
335 // operand of 'add' and the 'and' and 'srl' would become a bits extraction
336 // node (UBFX).
338 SDValue N0 = N->getOperand(0);
339 SDValue N1 = N->getOperand(1);
340 unsigned And_imm = 0;
341 if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
342 if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
343 std::swap(N0, N1);
345 if (!And_imm)
346 continue;
348 // Check if the AND mask is an immediate of the form: 000.....1111111100
349 unsigned TZ = countTrailingZeros(And_imm);
350 if (TZ != 1 && TZ != 2)
351 // Be conservative here. Shifter operands aren't always free. e.g. On
352 // Swift, left shifter operand of 1 / 2 for free but others are not.
353 // e.g.
354 // ubfx r3, r1, #16, #8
355 // ldr.w r3, [r0, r3, lsl #2]
356 // vs.
357 // mov.w r9, #1020
358 // and.w r2, r9, r1, lsr #14
359 // ldr r2, [r0, r2]
360 continue;
361 And_imm >>= TZ;
362 if (And_imm & (And_imm + 1))
363 continue;
365 // Look for (and (srl X, c1), c2).
366 SDValue Srl = N1.getOperand(0);
367 unsigned Srl_imm = 0;
368 if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
369 (Srl_imm <= 2))
370 continue;
372 // Make sure first operand is not a shifter operand which would prevent
373 // folding of the left shift.
374 SDValue CPTmp0;
375 SDValue CPTmp1;
376 SDValue CPTmp2;
377 if (isThumb2) {
378 if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
379 continue;
380 } else {
381 if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
382 SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
383 continue;
386 // Now make the transformation.
387 Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
388 Srl.getOperand(0),
389 CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
390 MVT::i32));
391 N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
392 Srl,
393 CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
394 N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
395 N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
396 CurDAG->UpdateNodeOperands(N, N0, N1);
400 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
401 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
402 /// least on current ARM implementations) which should be avoidded.
403 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
404 if (OptLevel == CodeGenOpt::None)
405 return true;
407 if (!Subtarget->hasVMLxHazards())
408 return true;
410 if (!N->hasOneUse())
411 return false;
413 SDNode *Use = *N->use_begin();
414 if (Use->getOpcode() == ISD::CopyToReg)
415 return true;
416 if (Use->isMachineOpcode()) {
417 const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
418 CurDAG->getSubtarget().getInstrInfo());
420 const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
421 if (MCID.mayStore())
422 return true;
423 unsigned Opcode = MCID.getOpcode();
424 if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
425 return true;
426 // vmlx feeding into another vmlx. We actually want to unfold
427 // the use later in the MLxExpansion pass. e.g.
428 // vmla
429 // vmla (stall 8 cycles)
431 // vmul (5 cycles)
432 // vadd (5 cycles)
433 // vmla
434 // This adds up to about 18 - 19 cycles.
436 // vmla
437 // vmul (stall 4 cycles)
438 // vadd adds up to about 14 cycles.
439 return TII->isFpMLxInstruction(Opcode);
442 return false;
445 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
446 ARM_AM::ShiftOpc ShOpcVal,
447 unsigned ShAmt) {
448 if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
449 return true;
450 if (Shift.hasOneUse())
451 return true;
452 // R << 2 is free.
453 return ShOpcVal == ARM_AM::lsl &&
454 (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
457 unsigned ARMDAGToDAGISel::ConstantMaterializationCost(unsigned Val) const {
458 if (Subtarget->isThumb()) {
459 if (Val <= 255) return 1; // MOV
460 if (Subtarget->hasV6T2Ops() &&
461 (Val <= 0xffff || // MOV
462 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
463 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
464 return 1;
465 if (Val <= 510) return 2; // MOV + ADDi8
466 if (~Val <= 255) return 2; // MOV + MVN
467 if (ARM_AM::isThumbImmShiftedVal(Val)) return 2; // MOV + LSL
468 } else {
469 if (ARM_AM::getSOImmVal(Val) != -1) return 1; // MOV
470 if (ARM_AM::getSOImmVal(~Val) != -1) return 1; // MVN
471 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) return 1; // MOVW
472 if (ARM_AM::isSOImmTwoPartVal(Val)) return 2; // two instrs
474 if (Subtarget->useMovt()) return 2; // MOVW + MOVT
475 return 3; // Literal pool load
478 bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
479 unsigned MaxShift,
480 unsigned &PowerOfTwo,
481 SDValue &NewMulConst) const {
482 assert(N.getOpcode() == ISD::MUL);
483 assert(MaxShift > 0);
485 // If the multiply is used in more than one place then changing the constant
486 // will make other uses incorrect, so don't.
487 if (!N.hasOneUse()) return false;
488 // Check if the multiply is by a constant
489 ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
490 if (!MulConst) return false;
491 // If the constant is used in more than one place then modifying it will mean
492 // we need to materialize two constants instead of one, which is a bad idea.
493 if (!MulConst->hasOneUse()) return false;
494 unsigned MulConstVal = MulConst->getZExtValue();
495 if (MulConstVal == 0) return false;
497 // Find the largest power of 2 that MulConstVal is a multiple of
498 PowerOfTwo = MaxShift;
499 while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
500 --PowerOfTwo;
501 if (PowerOfTwo == 0) return false;
504 // Only optimise if the new cost is better
505 unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
506 NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
507 unsigned OldCost = ConstantMaterializationCost(MulConstVal);
508 unsigned NewCost = ConstantMaterializationCost(NewMulConstVal);
509 return NewCost < OldCost;
512 void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
513 CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
514 ReplaceUses(N, M);
517 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
518 SDValue &BaseReg,
519 SDValue &Opc,
520 bool CheckProfitability) {
521 if (DisableShifterOp)
522 return false;
524 // If N is a multiply-by-constant and it's profitable to extract a shift and
525 // use it in a shifted operand do so.
526 if (N.getOpcode() == ISD::MUL) {
527 unsigned PowerOfTwo = 0;
528 SDValue NewMulConst;
529 if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
530 HandleSDNode Handle(N);
531 SDLoc Loc(N);
532 replaceDAGValue(N.getOperand(1), NewMulConst);
533 BaseReg = Handle.getValue();
534 Opc = CurDAG->getTargetConstant(
535 ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32);
536 return true;
540 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
542 // Don't match base register only case. That is matched to a separate
543 // lower complexity pattern with explicit register operand.
544 if (ShOpcVal == ARM_AM::no_shift) return false;
546 BaseReg = N.getOperand(0);
547 unsigned ShImmVal = 0;
548 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
549 if (!RHS) return false;
550 ShImmVal = RHS->getZExtValue() & 31;
551 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
552 SDLoc(N), MVT::i32);
553 return true;
556 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
557 SDValue &BaseReg,
558 SDValue &ShReg,
559 SDValue &Opc,
560 bool CheckProfitability) {
561 if (DisableShifterOp)
562 return false;
564 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
566 // Don't match base register only case. That is matched to a separate
567 // lower complexity pattern with explicit register operand.
568 if (ShOpcVal == ARM_AM::no_shift) return false;
570 BaseReg = N.getOperand(0);
571 unsigned ShImmVal = 0;
572 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
573 if (RHS) return false;
575 ShReg = N.getOperand(1);
576 if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
577 return false;
578 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
579 SDLoc(N), MVT::i32);
580 return true;
583 // Determine whether an ISD::OR's operands are suitable to turn the operation
584 // into an addition, which often has more compact encodings.
585 bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) {
586 assert(Parent->getOpcode() == ISD::OR && "unexpected parent");
587 Out = N;
588 return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1));
592 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
593 SDValue &Base,
594 SDValue &OffImm) {
595 // Match simple R + imm12 operands.
597 // Base only.
598 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
599 !CurDAG->isBaseWithConstantOffset(N)) {
600 if (N.getOpcode() == ISD::FrameIndex) {
601 // Match frame index.
602 int FI = cast<FrameIndexSDNode>(N)->getIndex();
603 Base = CurDAG->getTargetFrameIndex(
604 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
605 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
606 return true;
609 if (N.getOpcode() == ARMISD::Wrapper &&
610 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
611 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
612 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
613 Base = N.getOperand(0);
614 } else
615 Base = N;
616 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
617 return true;
620 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
621 int RHSC = (int)RHS->getSExtValue();
622 if (N.getOpcode() == ISD::SUB)
623 RHSC = -RHSC;
625 if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
626 Base = N.getOperand(0);
627 if (Base.getOpcode() == ISD::FrameIndex) {
628 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
629 Base = CurDAG->getTargetFrameIndex(
630 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
632 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
633 return true;
637 // Base only.
638 Base = N;
639 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
640 return true;
645 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
646 SDValue &Opc) {
647 if (N.getOpcode() == ISD::MUL &&
648 ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
649 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
650 // X * [3,5,9] -> X + X * [2,4,8] etc.
651 int RHSC = (int)RHS->getZExtValue();
652 if (RHSC & 1) {
653 RHSC = RHSC & ~1;
654 ARM_AM::AddrOpc AddSub = ARM_AM::add;
655 if (RHSC < 0) {
656 AddSub = ARM_AM::sub;
657 RHSC = - RHSC;
659 if (isPowerOf2_32(RHSC)) {
660 unsigned ShAmt = Log2_32(RHSC);
661 Base = Offset = N.getOperand(0);
662 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
663 ARM_AM::lsl),
664 SDLoc(N), MVT::i32);
665 return true;
671 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
672 // ISD::OR that is equivalent to an ISD::ADD.
673 !CurDAG->isBaseWithConstantOffset(N))
674 return false;
676 // Leave simple R +/- imm12 operands for LDRi12
677 if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
678 int RHSC;
679 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
680 -0x1000+1, 0x1000, RHSC)) // 12 bits.
681 return false;
684 // Otherwise this is R +/- [possibly shifted] R.
685 ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
686 ARM_AM::ShiftOpc ShOpcVal =
687 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
688 unsigned ShAmt = 0;
690 Base = N.getOperand(0);
691 Offset = N.getOperand(1);
693 if (ShOpcVal != ARM_AM::no_shift) {
694 // Check to see if the RHS of the shift is a constant, if not, we can't fold
695 // it.
696 if (ConstantSDNode *Sh =
697 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
698 ShAmt = Sh->getZExtValue();
699 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
700 Offset = N.getOperand(1).getOperand(0);
701 else {
702 ShAmt = 0;
703 ShOpcVal = ARM_AM::no_shift;
705 } else {
706 ShOpcVal = ARM_AM::no_shift;
710 // Try matching (R shl C) + (R).
711 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
712 !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
713 N.getOperand(0).hasOneUse())) {
714 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
715 if (ShOpcVal != ARM_AM::no_shift) {
716 // Check to see if the RHS of the shift is a constant, if not, we can't
717 // fold it.
718 if (ConstantSDNode *Sh =
719 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
720 ShAmt = Sh->getZExtValue();
721 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
722 Offset = N.getOperand(0).getOperand(0);
723 Base = N.getOperand(1);
724 } else {
725 ShAmt = 0;
726 ShOpcVal = ARM_AM::no_shift;
728 } else {
729 ShOpcVal = ARM_AM::no_shift;
734 // If Offset is a multiply-by-constant and it's profitable to extract a shift
735 // and use it in a shifted operand do so.
736 if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
737 unsigned PowerOfTwo = 0;
738 SDValue NewMulConst;
739 if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
740 HandleSDNode Handle(Offset);
741 replaceDAGValue(Offset.getOperand(1), NewMulConst);
742 Offset = Handle.getValue();
743 ShAmt = PowerOfTwo;
744 ShOpcVal = ARM_AM::lsl;
748 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
749 SDLoc(N), MVT::i32);
750 return true;
753 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
754 SDValue &Offset, SDValue &Opc) {
755 unsigned Opcode = Op->getOpcode();
756 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
757 ? cast<LoadSDNode>(Op)->getAddressingMode()
758 : cast<StoreSDNode>(Op)->getAddressingMode();
759 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
760 ? ARM_AM::add : ARM_AM::sub;
761 int Val;
762 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
763 return false;
765 Offset = N;
766 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
767 unsigned ShAmt = 0;
768 if (ShOpcVal != ARM_AM::no_shift) {
769 // Check to see if the RHS of the shift is a constant, if not, we can't fold
770 // it.
771 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
772 ShAmt = Sh->getZExtValue();
773 if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
774 Offset = N.getOperand(0);
775 else {
776 ShAmt = 0;
777 ShOpcVal = ARM_AM::no_shift;
779 } else {
780 ShOpcVal = ARM_AM::no_shift;
784 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
785 SDLoc(N), MVT::i32);
786 return true;
789 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
790 SDValue &Offset, SDValue &Opc) {
791 unsigned Opcode = Op->getOpcode();
792 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
793 ? cast<LoadSDNode>(Op)->getAddressingMode()
794 : cast<StoreSDNode>(Op)->getAddressingMode();
795 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
796 ? ARM_AM::add : ARM_AM::sub;
797 int Val;
798 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
799 if (AddSub == ARM_AM::sub) Val *= -1;
800 Offset = CurDAG->getRegister(0, MVT::i32);
801 Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
802 return true;
805 return false;
809 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
810 SDValue &Offset, SDValue &Opc) {
811 unsigned Opcode = Op->getOpcode();
812 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
813 ? cast<LoadSDNode>(Op)->getAddressingMode()
814 : cast<StoreSDNode>(Op)->getAddressingMode();
815 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
816 ? ARM_AM::add : ARM_AM::sub;
817 int Val;
818 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
819 Offset = CurDAG->getRegister(0, MVT::i32);
820 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
821 ARM_AM::no_shift),
822 SDLoc(Op), MVT::i32);
823 return true;
826 return false;
829 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
830 Base = N;
831 return true;
834 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
835 SDValue &Base, SDValue &Offset,
836 SDValue &Opc) {
837 if (N.getOpcode() == ISD::SUB) {
838 // X - C is canonicalize to X + -C, no need to handle it here.
839 Base = N.getOperand(0);
840 Offset = N.getOperand(1);
841 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
842 MVT::i32);
843 return true;
846 if (!CurDAG->isBaseWithConstantOffset(N)) {
847 Base = N;
848 if (N.getOpcode() == ISD::FrameIndex) {
849 int FI = cast<FrameIndexSDNode>(N)->getIndex();
850 Base = CurDAG->getTargetFrameIndex(
851 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
853 Offset = CurDAG->getRegister(0, MVT::i32);
854 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
855 MVT::i32);
856 return true;
859 // If the RHS is +/- imm8, fold into addr mode.
860 int RHSC;
861 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
862 -256 + 1, 256, RHSC)) { // 8 bits.
863 Base = N.getOperand(0);
864 if (Base.getOpcode() == ISD::FrameIndex) {
865 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
866 Base = CurDAG->getTargetFrameIndex(
867 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
869 Offset = CurDAG->getRegister(0, MVT::i32);
871 ARM_AM::AddrOpc AddSub = ARM_AM::add;
872 if (RHSC < 0) {
873 AddSub = ARM_AM::sub;
874 RHSC = -RHSC;
876 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
877 MVT::i32);
878 return true;
881 Base = N.getOperand(0);
882 Offset = N.getOperand(1);
883 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
884 MVT::i32);
885 return true;
888 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
889 SDValue &Offset, SDValue &Opc) {
890 unsigned Opcode = Op->getOpcode();
891 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
892 ? cast<LoadSDNode>(Op)->getAddressingMode()
893 : cast<StoreSDNode>(Op)->getAddressingMode();
894 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
895 ? ARM_AM::add : ARM_AM::sub;
896 int Val;
897 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
898 Offset = CurDAG->getRegister(0, MVT::i32);
899 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
900 MVT::i32);
901 return true;
904 Offset = N;
905 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
906 MVT::i32);
907 return true;
910 bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
911 bool FP16) {
912 if (!CurDAG->isBaseWithConstantOffset(N)) {
913 Base = N;
914 if (N.getOpcode() == ISD::FrameIndex) {
915 int FI = cast<FrameIndexSDNode>(N)->getIndex();
916 Base = CurDAG->getTargetFrameIndex(
917 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
918 } else if (N.getOpcode() == ARMISD::Wrapper &&
919 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
920 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
921 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
922 Base = N.getOperand(0);
924 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
925 SDLoc(N), MVT::i32);
926 return true;
929 // If the RHS is +/- imm8, fold into addr mode.
930 int RHSC;
931 const int Scale = FP16 ? 2 : 4;
933 if (isScaledConstantInRange(N.getOperand(1), Scale, -255, 256, RHSC)) {
934 Base = N.getOperand(0);
935 if (Base.getOpcode() == ISD::FrameIndex) {
936 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
937 Base = CurDAG->getTargetFrameIndex(
938 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
941 ARM_AM::AddrOpc AddSub = ARM_AM::add;
942 if (RHSC < 0) {
943 AddSub = ARM_AM::sub;
944 RHSC = -RHSC;
947 if (FP16)
948 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC),
949 SDLoc(N), MVT::i32);
950 else
951 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
952 SDLoc(N), MVT::i32);
954 return true;
957 Base = N;
959 if (FP16)
960 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0),
961 SDLoc(N), MVT::i32);
962 else
963 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
964 SDLoc(N), MVT::i32);
966 return true;
969 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
970 SDValue &Base, SDValue &Offset) {
971 return IsAddressingMode5(N, Base, Offset, /*FP16=*/ false);
974 bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N,
975 SDValue &Base, SDValue &Offset) {
976 return IsAddressingMode5(N, Base, Offset, /*FP16=*/ true);
979 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
980 SDValue &Align) {
981 Addr = N;
983 unsigned Alignment = 0;
985 MemSDNode *MemN = cast<MemSDNode>(Parent);
987 if (isa<LSBaseSDNode>(MemN) ||
988 ((MemN->getOpcode() == ARMISD::VST1_UPD ||
989 MemN->getOpcode() == ARMISD::VLD1_UPD) &&
990 MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
991 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
992 // The maximum alignment is equal to the memory size being referenced.
993 unsigned MMOAlign = MemN->getAlignment();
994 unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
995 if (MMOAlign >= MemSize && MemSize > 1)
996 Alignment = MemSize;
997 } else {
998 // All other uses of addrmode6 are for intrinsics. For now just record
999 // the raw alignment value; it will be refined later based on the legal
1000 // alignment operands for the intrinsic.
1001 Alignment = MemN->getAlignment();
1004 Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
1005 return true;
1008 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1009 SDValue &Offset) {
1010 LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1011 ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1012 if (AM != ISD::POST_INC)
1013 return false;
1014 Offset = N;
1015 if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1016 if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1017 Offset = CurDAG->getRegister(0, MVT::i32);
1019 return true;
1022 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1023 SDValue &Offset, SDValue &Label) {
1024 if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1025 Offset = N.getOperand(0);
1026 SDValue N1 = N.getOperand(1);
1027 Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1028 SDLoc(N), MVT::i32);
1029 return true;
1032 return false;
1036 //===----------------------------------------------------------------------===//
1037 // Thumb Addressing Modes
1038 //===----------------------------------------------------------------------===//
1040 static bool shouldUseZeroOffsetLdSt(SDValue N) {
1041 // Negative numbers are difficult to materialise in thumb1. If we are
1042 // selecting the add of a negative, instead try to select ri with a zero
1043 // offset, so create the add node directly which will become a sub.
1044 if (N.getOpcode() != ISD::ADD)
1045 return false;
1047 // Look for an imm which is not legal for ld/st, but is legal for sub.
1048 if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1)))
1049 return C->getSExtValue() < 0 && C->getSExtValue() >= -255;
1051 return false;
1054 bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N, SDValue &Base,
1055 SDValue &Offset) {
1056 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1057 ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1058 if (!NC || !NC->isNullValue())
1059 return false;
1061 Base = Offset = N;
1062 return true;
1065 Base = N.getOperand(0);
1066 Offset = N.getOperand(1);
1067 return true;
1070 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, SDValue &Base,
1071 SDValue &Offset) {
1072 if (shouldUseZeroOffsetLdSt(N))
1073 return false; // Select ri instead
1074 return SelectThumbAddrModeRRSext(N, Base, Offset);
1077 bool
1078 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1079 SDValue &Base, SDValue &OffImm) {
1080 if (shouldUseZeroOffsetLdSt(N)) {
1081 Base = N;
1082 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1083 return true;
1086 if (!CurDAG->isBaseWithConstantOffset(N)) {
1087 if (N.getOpcode() == ISD::ADD) {
1088 return false; // We want to select register offset instead
1089 } else if (N.getOpcode() == ARMISD::Wrapper &&
1090 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1091 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1092 N.getOperand(0).getOpcode() != ISD::TargetConstantPool &&
1093 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1094 Base = N.getOperand(0);
1095 } else {
1096 Base = N;
1099 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1100 return true;
1103 // If the RHS is + imm5 * scale, fold into addr mode.
1104 int RHSC;
1105 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1106 Base = N.getOperand(0);
1107 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1108 return true;
1111 // Offset is too large, so use register offset instead.
1112 return false;
1115 bool
1116 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1117 SDValue &OffImm) {
1118 return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1121 bool
1122 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1123 SDValue &OffImm) {
1124 return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1127 bool
1128 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1129 SDValue &OffImm) {
1130 return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1133 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1134 SDValue &Base, SDValue &OffImm) {
1135 if (N.getOpcode() == ISD::FrameIndex) {
1136 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1137 // Only multiples of 4 are allowed for the offset, so the frame object
1138 // alignment must be at least 4.
1139 MachineFrameInfo &MFI = MF->getFrameInfo();
1140 if (MFI.getObjectAlignment(FI) < 4)
1141 MFI.setObjectAlignment(FI, 4);
1142 Base = CurDAG->getTargetFrameIndex(
1143 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1144 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1145 return true;
1148 if (!CurDAG->isBaseWithConstantOffset(N))
1149 return false;
1151 if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
1152 // If the RHS is + imm8 * scale, fold into addr mode.
1153 int RHSC;
1154 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1155 Base = N.getOperand(0);
1156 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1157 // Make sure the offset is inside the object, or we might fail to
1158 // allocate an emergency spill slot. (An out-of-range access is UB, but
1159 // it could show up anyway.)
1160 MachineFrameInfo &MFI = MF->getFrameInfo();
1161 if (RHSC * 4 < MFI.getObjectSize(FI)) {
1162 // For LHS+RHS to result in an offset that's a multiple of 4 the object
1163 // indexed by the LHS must be 4-byte aligned.
1164 if (!MFI.isFixedObjectIndex(FI) && MFI.getObjectAlignment(FI) < 4)
1165 MFI.setObjectAlignment(FI, 4);
1166 if (MFI.getObjectAlignment(FI) >= 4) {
1167 Base = CurDAG->getTargetFrameIndex(
1168 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1169 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1170 return true;
1176 return false;
1180 //===----------------------------------------------------------------------===//
1181 // Thumb 2 Addressing Modes
1182 //===----------------------------------------------------------------------===//
1185 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1186 SDValue &Base, SDValue &OffImm) {
1187 // Match simple R + imm12 operands.
1189 // Base only.
1190 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1191 !CurDAG->isBaseWithConstantOffset(N)) {
1192 if (N.getOpcode() == ISD::FrameIndex) {
1193 // Match frame index.
1194 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1195 Base = CurDAG->getTargetFrameIndex(
1196 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1197 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1198 return true;
1201 if (N.getOpcode() == ARMISD::Wrapper &&
1202 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1203 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1204 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1205 Base = N.getOperand(0);
1206 if (Base.getOpcode() == ISD::TargetConstantPool)
1207 return false; // We want to select t2LDRpci instead.
1208 } else
1209 Base = N;
1210 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1211 return true;
1214 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1215 if (SelectT2AddrModeImm8(N, Base, OffImm))
1216 // Let t2LDRi8 handle (R - imm8).
1217 return false;
1219 int RHSC = (int)RHS->getZExtValue();
1220 if (N.getOpcode() == ISD::SUB)
1221 RHSC = -RHSC;
1223 if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1224 Base = N.getOperand(0);
1225 if (Base.getOpcode() == ISD::FrameIndex) {
1226 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1227 Base = CurDAG->getTargetFrameIndex(
1228 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1230 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1231 return true;
1235 // Base only.
1236 Base = N;
1237 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1238 return true;
1241 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1242 SDValue &Base, SDValue &OffImm) {
1243 // Match simple R - imm8 operands.
1244 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1245 !CurDAG->isBaseWithConstantOffset(N))
1246 return false;
1248 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1249 int RHSC = (int)RHS->getSExtValue();
1250 if (N.getOpcode() == ISD::SUB)
1251 RHSC = -RHSC;
1253 if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1254 Base = N.getOperand(0);
1255 if (Base.getOpcode() == ISD::FrameIndex) {
1256 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1257 Base = CurDAG->getTargetFrameIndex(
1258 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1260 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1261 return true;
1265 return false;
1268 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1269 SDValue &OffImm){
1270 unsigned Opcode = Op->getOpcode();
1271 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1272 ? cast<LoadSDNode>(Op)->getAddressingMode()
1273 : cast<StoreSDNode>(Op)->getAddressingMode();
1274 int RHSC;
1275 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1276 OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1277 ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
1278 : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
1279 return true;
1282 return false;
1285 template<unsigned Shift>
1286 bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N,
1287 SDValue &Base, SDValue &OffImm) {
1288 if (N.getOpcode() == ISD::SUB ||
1289 CurDAG->isBaseWithConstantOffset(N)) {
1290 if (auto RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1291 int RHSC = (int)RHS->getZExtValue();
1292 if (N.getOpcode() == ISD::SUB)
1293 RHSC = -RHSC;
1295 if (isShiftedInt<7, Shift>(RHSC)) {
1296 Base = N.getOperand(0);
1297 if (Base.getOpcode() == ISD::FrameIndex) {
1298 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1299 Base = CurDAG->getTargetFrameIndex(
1300 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1302 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1303 return true;
1308 // Base only.
1309 Base = N;
1310 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1311 return true;
1314 template <unsigned Shift>
1315 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1316 SDValue &OffImm) {
1317 return SelectT2AddrModeImm7Offset(Op, N, OffImm, Shift);
1320 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1321 SDValue &OffImm,
1322 unsigned Shift) {
1323 unsigned Opcode = Op->getOpcode();
1324 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1325 ? cast<LoadSDNode>(Op)->getAddressingMode()
1326 : cast<StoreSDNode>(Op)->getAddressingMode();
1327 int RHSC;
1328 if (isScaledConstantInRange(N, 1 << Shift, 0, 0x80, RHSC)) { // 7 bits.
1329 OffImm =
1330 ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1331 ? CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32)
1332 : CurDAG->getTargetConstant(-RHSC * (1 << Shift), SDLoc(N),
1333 MVT::i32);
1334 return true;
1336 return false;
1339 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1340 SDValue &Base,
1341 SDValue &OffReg, SDValue &ShImm) {
1342 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1343 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1344 return false;
1346 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1347 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1348 int RHSC = (int)RHS->getZExtValue();
1349 if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1350 return false;
1351 else if (RHSC < 0 && RHSC >= -255) // 8 bits
1352 return false;
1355 // Look for (R + R) or (R + (R << [1,2,3])).
1356 unsigned ShAmt = 0;
1357 Base = N.getOperand(0);
1358 OffReg = N.getOperand(1);
1360 // Swap if it is ((R << c) + R).
1361 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1362 if (ShOpcVal != ARM_AM::lsl) {
1363 ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1364 if (ShOpcVal == ARM_AM::lsl)
1365 std::swap(Base, OffReg);
1368 if (ShOpcVal == ARM_AM::lsl) {
1369 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1370 // it.
1371 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1372 ShAmt = Sh->getZExtValue();
1373 if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1374 OffReg = OffReg.getOperand(0);
1375 else {
1376 ShAmt = 0;
1381 // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1382 // and use it in a shifted operand do so.
1383 if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
1384 unsigned PowerOfTwo = 0;
1385 SDValue NewMulConst;
1386 if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
1387 HandleSDNode Handle(OffReg);
1388 replaceDAGValue(OffReg.getOperand(1), NewMulConst);
1389 OffReg = Handle.getValue();
1390 ShAmt = PowerOfTwo;
1394 ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
1396 return true;
1399 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1400 SDValue &OffImm) {
1401 // This *must* succeed since it's used for the irreplaceable ldrex and strex
1402 // instructions.
1403 Base = N;
1404 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1406 if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1407 return true;
1409 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1410 if (!RHS)
1411 return true;
1413 uint32_t RHSC = (int)RHS->getZExtValue();
1414 if (RHSC > 1020 || RHSC % 4 != 0)
1415 return true;
1417 Base = N.getOperand(0);
1418 if (Base.getOpcode() == ISD::FrameIndex) {
1419 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1420 Base = CurDAG->getTargetFrameIndex(
1421 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1424 OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
1425 return true;
1428 //===--------------------------------------------------------------------===//
1430 /// getAL - Returns a ARMCC::AL immediate node.
1431 static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
1432 return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
1435 void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
1436 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1437 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
1440 bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
1441 LoadSDNode *LD = cast<LoadSDNode>(N);
1442 ISD::MemIndexedMode AM = LD->getAddressingMode();
1443 if (AM == ISD::UNINDEXED)
1444 return false;
1446 EVT LoadedVT = LD->getMemoryVT();
1447 SDValue Offset, AMOpc;
1448 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1449 unsigned Opcode = 0;
1450 bool Match = false;
1451 if (LoadedVT == MVT::i32 && isPre &&
1452 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1453 Opcode = ARM::LDR_PRE_IMM;
1454 Match = true;
1455 } else if (LoadedVT == MVT::i32 && !isPre &&
1456 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1457 Opcode = ARM::LDR_POST_IMM;
1458 Match = true;
1459 } else if (LoadedVT == MVT::i32 &&
1460 SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1461 Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1462 Match = true;
1464 } else if (LoadedVT == MVT::i16 &&
1465 SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1466 Match = true;
1467 Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1468 ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1469 : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1470 } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1471 if (LD->getExtensionType() == ISD::SEXTLOAD) {
1472 if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1473 Match = true;
1474 Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1476 } else {
1477 if (isPre &&
1478 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1479 Match = true;
1480 Opcode = ARM::LDRB_PRE_IMM;
1481 } else if (!isPre &&
1482 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1483 Match = true;
1484 Opcode = ARM::LDRB_POST_IMM;
1485 } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1486 Match = true;
1487 Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1492 if (Match) {
1493 if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1494 SDValue Chain = LD->getChain();
1495 SDValue Base = LD->getBasePtr();
1496 SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
1497 CurDAG->getRegister(0, MVT::i32), Chain };
1498 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1499 MVT::Other, Ops);
1500 transferMemOperands(N, New);
1501 ReplaceNode(N, New);
1502 return true;
1503 } else {
1504 SDValue Chain = LD->getChain();
1505 SDValue Base = LD->getBasePtr();
1506 SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
1507 CurDAG->getRegister(0, MVT::i32), Chain };
1508 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1509 MVT::Other, Ops);
1510 transferMemOperands(N, New);
1511 ReplaceNode(N, New);
1512 return true;
1516 return false;
1519 bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
1520 LoadSDNode *LD = cast<LoadSDNode>(N);
1521 EVT LoadedVT = LD->getMemoryVT();
1522 ISD::MemIndexedMode AM = LD->getAddressingMode();
1523 if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD ||
1524 LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
1525 return false;
1527 auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
1528 if (!COffs || COffs->getZExtValue() != 4)
1529 return false;
1531 // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1532 // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1533 // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1534 // ISel.
1535 SDValue Chain = LD->getChain();
1536 SDValue Base = LD->getBasePtr();
1537 SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
1538 CurDAG->getRegister(0, MVT::i32), Chain };
1539 SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32,
1540 MVT::i32, MVT::Other, Ops);
1541 transferMemOperands(N, New);
1542 ReplaceNode(N, New);
1543 return true;
1546 bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
1547 LoadSDNode *LD = cast<LoadSDNode>(N);
1548 ISD::MemIndexedMode AM = LD->getAddressingMode();
1549 if (AM == ISD::UNINDEXED)
1550 return false;
1552 EVT LoadedVT = LD->getMemoryVT();
1553 bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1554 SDValue Offset;
1555 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1556 unsigned Opcode = 0;
1557 bool Match = false;
1558 if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1559 switch (LoadedVT.getSimpleVT().SimpleTy) {
1560 case MVT::i32:
1561 Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1562 break;
1563 case MVT::i16:
1564 if (isSExtLd)
1565 Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1566 else
1567 Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1568 break;
1569 case MVT::i8:
1570 case MVT::i1:
1571 if (isSExtLd)
1572 Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1573 else
1574 Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1575 break;
1576 default:
1577 return false;
1579 Match = true;
1582 if (Match) {
1583 SDValue Chain = LD->getChain();
1584 SDValue Base = LD->getBasePtr();
1585 SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
1586 CurDAG->getRegister(0, MVT::i32), Chain };
1587 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1588 MVT::Other, Ops);
1589 transferMemOperands(N, New);
1590 ReplaceNode(N, New);
1591 return true;
1594 return false;
1597 bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode *N) {
1598 LoadSDNode *LD = cast<LoadSDNode>(N);
1599 ISD::MemIndexedMode AM = LD->getAddressingMode();
1600 if (AM == ISD::UNINDEXED)
1601 return false;
1602 EVT LoadedVT = LD->getMemoryVT();
1603 if (!LoadedVT.isVector())
1604 return false;
1605 bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1606 SDValue Offset;
1607 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1608 unsigned Opcode = 0;
1609 unsigned Align = LD->getAlignment();
1610 bool IsLE = Subtarget->isLittle();
1612 if (Align >= 2 && LoadedVT == MVT::v4i16 &&
1613 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 1)) {
1614 if (isSExtLd)
1615 Opcode = isPre ? ARM::MVE_VLDRHS32_pre : ARM::MVE_VLDRHS32_post;
1616 else
1617 Opcode = isPre ? ARM::MVE_VLDRHU32_pre : ARM::MVE_VLDRHU32_post;
1618 } else if (LoadedVT == MVT::v8i8 &&
1619 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 0)) {
1620 if (isSExtLd)
1621 Opcode = isPre ? ARM::MVE_VLDRBS16_pre : ARM::MVE_VLDRBS16_post;
1622 else
1623 Opcode = isPre ? ARM::MVE_VLDRBU16_pre : ARM::MVE_VLDRBU16_post;
1624 } else if (LoadedVT == MVT::v4i8 &&
1625 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 0)) {
1626 if (isSExtLd)
1627 Opcode = isPre ? ARM::MVE_VLDRBS32_pre : ARM::MVE_VLDRBS32_post;
1628 else
1629 Opcode = isPre ? ARM::MVE_VLDRBU32_pre : ARM::MVE_VLDRBU32_post;
1630 } else if (Align >= 4 &&
1631 (IsLE || LoadedVT == MVT::v4i32 || LoadedVT == MVT::v4f32) &&
1632 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 2))
1633 Opcode = isPre ? ARM::MVE_VLDRWU32_pre : ARM::MVE_VLDRWU32_post;
1634 else if (Align >= 2 &&
1635 (IsLE || LoadedVT == MVT::v8i16 || LoadedVT == MVT::v8f16) &&
1636 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 1))
1637 Opcode = isPre ? ARM::MVE_VLDRHU16_pre : ARM::MVE_VLDRHU16_post;
1638 else if ((IsLE || LoadedVT == MVT::v16i8) &&
1639 SelectT2AddrModeImm7Offset(N, LD->getOffset(), Offset, 0))
1640 Opcode = isPre ? ARM::MVE_VLDRBU8_pre : ARM::MVE_VLDRBU8_post;
1641 else
1642 return false;
1644 SDValue Chain = LD->getChain();
1645 SDValue Base = LD->getBasePtr();
1646 SDValue Ops[] = {Base, Offset,
1647 CurDAG->getTargetConstant(ARMVCC::None, SDLoc(N), MVT::i32),
1648 CurDAG->getRegister(0, MVT::i32), Chain};
1649 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), LD->getValueType(0),
1650 MVT::i32, MVT::Other, Ops);
1651 transferMemOperands(N, New);
1652 ReplaceUses(SDValue(N, 0), SDValue(New, 1));
1653 ReplaceUses(SDValue(N, 1), SDValue(New, 0));
1654 ReplaceUses(SDValue(N, 2), SDValue(New, 2));
1655 CurDAG->RemoveDeadNode(N);
1656 return true;
1659 /// Form a GPRPair pseudo register from a pair of GPR regs.
1660 SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1661 SDLoc dl(V0.getNode());
1662 SDValue RegClass =
1663 CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
1664 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
1665 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
1666 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1667 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1670 /// Form a D register from a pair of S registers.
1671 SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1672 SDLoc dl(V0.getNode());
1673 SDValue RegClass =
1674 CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
1675 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1676 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1677 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1678 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1681 /// Form a quad register from a pair of D registers.
1682 SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1683 SDLoc dl(V0.getNode());
1684 SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
1685 MVT::i32);
1686 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1687 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1688 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1689 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1692 /// Form 4 consecutive D registers from a pair of Q registers.
1693 SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1694 SDLoc dl(V0.getNode());
1695 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1696 MVT::i32);
1697 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1698 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1699 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1700 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1703 /// Form 4 consecutive S registers.
1704 SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1705 SDValue V2, SDValue V3) {
1706 SDLoc dl(V0.getNode());
1707 SDValue RegClass =
1708 CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
1709 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1710 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1711 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
1712 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
1713 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1714 V2, SubReg2, V3, SubReg3 };
1715 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1718 /// Form 4 consecutive D registers.
1719 SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1720 SDValue V2, SDValue V3) {
1721 SDLoc dl(V0.getNode());
1722 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1723 MVT::i32);
1724 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1725 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1726 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
1727 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
1728 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1729 V2, SubReg2, V3, SubReg3 };
1730 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1733 /// Form 4 consecutive Q registers.
1734 SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1735 SDValue V2, SDValue V3) {
1736 SDLoc dl(V0.getNode());
1737 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
1738 MVT::i32);
1739 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1740 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1741 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
1742 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
1743 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1744 V2, SubReg2, V3, SubReg3 };
1745 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1748 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1749 /// of a NEON VLD or VST instruction. The supported values depend on the
1750 /// number of registers being loaded.
1751 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
1752 unsigned NumVecs, bool is64BitVector) {
1753 unsigned NumRegs = NumVecs;
1754 if (!is64BitVector && NumVecs < 3)
1755 NumRegs *= 2;
1757 unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1758 if (Alignment >= 32 && NumRegs == 4)
1759 Alignment = 32;
1760 else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1761 Alignment = 16;
1762 else if (Alignment >= 8)
1763 Alignment = 8;
1764 else
1765 Alignment = 0;
1767 return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
1770 static bool isVLDfixed(unsigned Opc)
1772 switch (Opc) {
1773 default: return false;
1774 case ARM::VLD1d8wb_fixed : return true;
1775 case ARM::VLD1d16wb_fixed : return true;
1776 case ARM::VLD1d64Qwb_fixed : return true;
1777 case ARM::VLD1d32wb_fixed : return true;
1778 case ARM::VLD1d64wb_fixed : return true;
1779 case ARM::VLD1d64TPseudoWB_fixed : return true;
1780 case ARM::VLD1d64QPseudoWB_fixed : return true;
1781 case ARM::VLD1q8wb_fixed : return true;
1782 case ARM::VLD1q16wb_fixed : return true;
1783 case ARM::VLD1q32wb_fixed : return true;
1784 case ARM::VLD1q64wb_fixed : return true;
1785 case ARM::VLD1DUPd8wb_fixed : return true;
1786 case ARM::VLD1DUPd16wb_fixed : return true;
1787 case ARM::VLD1DUPd32wb_fixed : return true;
1788 case ARM::VLD1DUPq8wb_fixed : return true;
1789 case ARM::VLD1DUPq16wb_fixed : return true;
1790 case ARM::VLD1DUPq32wb_fixed : return true;
1791 case ARM::VLD2d8wb_fixed : return true;
1792 case ARM::VLD2d16wb_fixed : return true;
1793 case ARM::VLD2d32wb_fixed : return true;
1794 case ARM::VLD2q8PseudoWB_fixed : return true;
1795 case ARM::VLD2q16PseudoWB_fixed : return true;
1796 case ARM::VLD2q32PseudoWB_fixed : return true;
1797 case ARM::VLD2DUPd8wb_fixed : return true;
1798 case ARM::VLD2DUPd16wb_fixed : return true;
1799 case ARM::VLD2DUPd32wb_fixed : return true;
1803 static bool isVSTfixed(unsigned Opc)
1805 switch (Opc) {
1806 default: return false;
1807 case ARM::VST1d8wb_fixed : return true;
1808 case ARM::VST1d16wb_fixed : return true;
1809 case ARM::VST1d32wb_fixed : return true;
1810 case ARM::VST1d64wb_fixed : return true;
1811 case ARM::VST1q8wb_fixed : return true;
1812 case ARM::VST1q16wb_fixed : return true;
1813 case ARM::VST1q32wb_fixed : return true;
1814 case ARM::VST1q64wb_fixed : return true;
1815 case ARM::VST1d64TPseudoWB_fixed : return true;
1816 case ARM::VST1d64QPseudoWB_fixed : return true;
1817 case ARM::VST2d8wb_fixed : return true;
1818 case ARM::VST2d16wb_fixed : return true;
1819 case ARM::VST2d32wb_fixed : return true;
1820 case ARM::VST2q8PseudoWB_fixed : return true;
1821 case ARM::VST2q16PseudoWB_fixed : return true;
1822 case ARM::VST2q32PseudoWB_fixed : return true;
1826 // Get the register stride update opcode of a VLD/VST instruction that
1827 // is otherwise equivalent to the given fixed stride updating instruction.
1828 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
1829 assert((isVLDfixed(Opc) || isVSTfixed(Opc))
1830 && "Incorrect fixed stride updating instruction.");
1831 switch (Opc) {
1832 default: break;
1833 case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
1834 case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
1835 case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
1836 case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
1837 case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
1838 case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
1839 case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
1840 case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
1841 case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
1842 case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
1843 case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
1844 case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
1845 case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register;
1846 case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register;
1847 case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register;
1848 case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register;
1849 case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register;
1850 case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register;
1852 case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
1853 case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
1854 case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
1855 case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
1856 case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
1857 case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
1858 case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
1859 case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
1860 case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
1861 case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
1863 case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
1864 case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
1865 case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
1866 case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
1867 case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
1868 case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
1870 case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
1871 case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
1872 case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
1873 case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
1874 case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
1875 case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
1877 case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
1878 case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
1879 case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
1881 return Opc; // If not one we handle, return it unchanged.
1884 /// Returns true if the given increment is a Constant known to be equal to the
1885 /// access size performed by a NEON load/store. This means the "[rN]!" form can
1886 /// be used.
1887 static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) {
1888 auto C = dyn_cast<ConstantSDNode>(Inc);
1889 return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs;
1892 void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1893 const uint16_t *DOpcodes,
1894 const uint16_t *QOpcodes0,
1895 const uint16_t *QOpcodes1) {
1896 assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1897 SDLoc dl(N);
1899 SDValue MemAddr, Align;
1900 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
1901 // nodes are not intrinsics.
1902 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
1903 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1904 return;
1906 SDValue Chain = N->getOperand(0);
1907 EVT VT = N->getValueType(0);
1908 bool is64BitVector = VT.is64BitVector();
1909 Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
1911 unsigned OpcodeIndex;
1912 switch (VT.getSimpleVT().SimpleTy) {
1913 default: llvm_unreachable("unhandled vld type");
1914 // Double-register operations:
1915 case MVT::v8i8: OpcodeIndex = 0; break;
1916 case MVT::v4f16:
1917 case MVT::v4i16: OpcodeIndex = 1; break;
1918 case MVT::v2f32:
1919 case MVT::v2i32: OpcodeIndex = 2; break;
1920 case MVT::v1i64: OpcodeIndex = 3; break;
1921 // Quad-register operations:
1922 case MVT::v16i8: OpcodeIndex = 0; break;
1923 case MVT::v8f16:
1924 case MVT::v8i16: OpcodeIndex = 1; break;
1925 case MVT::v4f32:
1926 case MVT::v4i32: OpcodeIndex = 2; break;
1927 case MVT::v2f64:
1928 case MVT::v2i64: OpcodeIndex = 3; break;
1931 EVT ResTy;
1932 if (NumVecs == 1)
1933 ResTy = VT;
1934 else {
1935 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1936 if (!is64BitVector)
1937 ResTyElts *= 2;
1938 ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1940 std::vector<EVT> ResTys;
1941 ResTys.push_back(ResTy);
1942 if (isUpdating)
1943 ResTys.push_back(MVT::i32);
1944 ResTys.push_back(MVT::Other);
1946 SDValue Pred = getAL(CurDAG, dl);
1947 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1948 SDNode *VLd;
1949 SmallVector<SDValue, 7> Ops;
1951 // Double registers and VLD1/VLD2 quad registers are directly supported.
1952 if (is64BitVector || NumVecs <= 2) {
1953 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1954 QOpcodes0[OpcodeIndex]);
1955 Ops.push_back(MemAddr);
1956 Ops.push_back(Align);
1957 if (isUpdating) {
1958 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1959 bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
1960 if (!IsImmUpdate) {
1961 // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1962 // check for the opcode rather than the number of vector elements.
1963 if (isVLDfixed(Opc))
1964 Opc = getVLDSTRegisterUpdateOpcode(Opc);
1965 Ops.push_back(Inc);
1966 // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
1967 // the operands if not such an opcode.
1968 } else if (!isVLDfixed(Opc))
1969 Ops.push_back(Reg0);
1971 Ops.push_back(Pred);
1972 Ops.push_back(Reg0);
1973 Ops.push_back(Chain);
1974 VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1976 } else {
1977 // Otherwise, quad registers are loaded with two separate instructions,
1978 // where one loads the even registers and the other loads the odd registers.
1979 EVT AddrTy = MemAddr.getValueType();
1981 // Load the even subregs. This is always an updating load, so that it
1982 // provides the address to the second load for the odd subregs.
1983 SDValue ImplDef =
1984 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1985 const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1986 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1987 ResTy, AddrTy, MVT::Other, OpsA);
1988 Chain = SDValue(VLdA, 2);
1990 // Load the odd subregs.
1991 Ops.push_back(SDValue(VLdA, 1));
1992 Ops.push_back(Align);
1993 if (isUpdating) {
1994 SDValue Inc = N->getOperand(AddrOpIdx + 1);
1995 assert(isa<ConstantSDNode>(Inc.getNode()) &&
1996 "only constant post-increment update allowed for VLD3/4");
1997 (void)Inc;
1998 Ops.push_back(Reg0);
2000 Ops.push_back(SDValue(VLdA, 0));
2001 Ops.push_back(Pred);
2002 Ops.push_back(Reg0);
2003 Ops.push_back(Chain);
2004 VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
2007 // Transfer memoperands.
2008 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2009 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLd), {MemOp});
2011 if (NumVecs == 1) {
2012 ReplaceNode(N, VLd);
2013 return;
2016 // Extract out the subregisters.
2017 SDValue SuperReg = SDValue(VLd, 0);
2018 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2019 ARM::qsub_3 == ARM::qsub_0 + 3,
2020 "Unexpected subreg numbering");
2021 unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
2022 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2023 ReplaceUses(SDValue(N, Vec),
2024 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2025 ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
2026 if (isUpdating)
2027 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
2028 CurDAG->RemoveDeadNode(N);
2031 void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
2032 const uint16_t *DOpcodes,
2033 const uint16_t *QOpcodes0,
2034 const uint16_t *QOpcodes1) {
2035 assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
2036 SDLoc dl(N);
2038 SDValue MemAddr, Align;
2039 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
2040 // nodes are not intrinsics.
2041 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2042 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2043 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2044 return;
2046 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2048 SDValue Chain = N->getOperand(0);
2049 EVT VT = N->getOperand(Vec0Idx).getValueType();
2050 bool is64BitVector = VT.is64BitVector();
2051 Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
2053 unsigned OpcodeIndex;
2054 switch (VT.getSimpleVT().SimpleTy) {
2055 default: llvm_unreachable("unhandled vst type");
2056 // Double-register operations:
2057 case MVT::v8i8: OpcodeIndex = 0; break;
2058 case MVT::v4f16:
2059 case MVT::v4i16: OpcodeIndex = 1; break;
2060 case MVT::v2f32:
2061 case MVT::v2i32: OpcodeIndex = 2; break;
2062 case MVT::v1i64: OpcodeIndex = 3; break;
2063 // Quad-register operations:
2064 case MVT::v16i8: OpcodeIndex = 0; break;
2065 case MVT::v8f16:
2066 case MVT::v8i16: OpcodeIndex = 1; break;
2067 case MVT::v4f32:
2068 case MVT::v4i32: OpcodeIndex = 2; break;
2069 case MVT::v2f64:
2070 case MVT::v2i64: OpcodeIndex = 3; break;
2073 std::vector<EVT> ResTys;
2074 if (isUpdating)
2075 ResTys.push_back(MVT::i32);
2076 ResTys.push_back(MVT::Other);
2078 SDValue Pred = getAL(CurDAG, dl);
2079 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2080 SmallVector<SDValue, 7> Ops;
2082 // Double registers and VST1/VST2 quad registers are directly supported.
2083 if (is64BitVector || NumVecs <= 2) {
2084 SDValue SrcReg;
2085 if (NumVecs == 1) {
2086 SrcReg = N->getOperand(Vec0Idx);
2087 } else if (is64BitVector) {
2088 // Form a REG_SEQUENCE to force register allocation.
2089 SDValue V0 = N->getOperand(Vec0Idx + 0);
2090 SDValue V1 = N->getOperand(Vec0Idx + 1);
2091 if (NumVecs == 2)
2092 SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2093 else {
2094 SDValue V2 = N->getOperand(Vec0Idx + 2);
2095 // If it's a vst3, form a quad D-register and leave the last part as
2096 // an undef.
2097 SDValue V3 = (NumVecs == 3)
2098 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
2099 : N->getOperand(Vec0Idx + 3);
2100 SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2102 } else {
2103 // Form a QQ register.
2104 SDValue Q0 = N->getOperand(Vec0Idx);
2105 SDValue Q1 = N->getOperand(Vec0Idx + 1);
2106 SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
2109 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2110 QOpcodes0[OpcodeIndex]);
2111 Ops.push_back(MemAddr);
2112 Ops.push_back(Align);
2113 if (isUpdating) {
2114 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2115 bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
2116 if (!IsImmUpdate) {
2117 // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
2118 // check for the opcode rather than the number of vector elements.
2119 if (isVSTfixed(Opc))
2120 Opc = getVLDSTRegisterUpdateOpcode(Opc);
2121 Ops.push_back(Inc);
2123 // VST1/VST2 fixed increment does not need Reg0 so only include it in
2124 // the operands if not such an opcode.
2125 else if (!isVSTfixed(Opc))
2126 Ops.push_back(Reg0);
2128 Ops.push_back(SrcReg);
2129 Ops.push_back(Pred);
2130 Ops.push_back(Reg0);
2131 Ops.push_back(Chain);
2132 SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2134 // Transfer memoperands.
2135 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VSt), {MemOp});
2137 ReplaceNode(N, VSt);
2138 return;
2141 // Otherwise, quad registers are stored with two separate instructions,
2142 // where one stores the even registers and the other stores the odd registers.
2144 // Form the QQQQ REG_SEQUENCE.
2145 SDValue V0 = N->getOperand(Vec0Idx + 0);
2146 SDValue V1 = N->getOperand(Vec0Idx + 1);
2147 SDValue V2 = N->getOperand(Vec0Idx + 2);
2148 SDValue V3 = (NumVecs == 3)
2149 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2150 : N->getOperand(Vec0Idx + 3);
2151 SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2153 // Store the even D registers. This is always an updating store, so that it
2154 // provides the address to the second store for the odd subregs.
2155 const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2156 SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2157 MemAddr.getValueType(),
2158 MVT::Other, OpsA);
2159 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStA), {MemOp});
2160 Chain = SDValue(VStA, 1);
2162 // Store the odd D registers.
2163 Ops.push_back(SDValue(VStA, 0));
2164 Ops.push_back(Align);
2165 if (isUpdating) {
2166 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2167 assert(isa<ConstantSDNode>(Inc.getNode()) &&
2168 "only constant post-increment update allowed for VST3/4");
2169 (void)Inc;
2170 Ops.push_back(Reg0);
2172 Ops.push_back(RegSeq);
2173 Ops.push_back(Pred);
2174 Ops.push_back(Reg0);
2175 Ops.push_back(Chain);
2176 SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
2177 Ops);
2178 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStB), {MemOp});
2179 ReplaceNode(N, VStB);
2182 void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
2183 unsigned NumVecs,
2184 const uint16_t *DOpcodes,
2185 const uint16_t *QOpcodes) {
2186 assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
2187 SDLoc dl(N);
2189 SDValue MemAddr, Align;
2190 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
2191 // nodes are not intrinsics.
2192 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2193 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2194 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2195 return;
2197 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2199 SDValue Chain = N->getOperand(0);
2200 unsigned Lane =
2201 cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2202 EVT VT = N->getOperand(Vec0Idx).getValueType();
2203 bool is64BitVector = VT.is64BitVector();
2205 unsigned Alignment = 0;
2206 if (NumVecs != 3) {
2207 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2208 unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2209 if (Alignment > NumBytes)
2210 Alignment = NumBytes;
2211 if (Alignment < 8 && Alignment < NumBytes)
2212 Alignment = 0;
2213 // Alignment must be a power of two; make sure of that.
2214 Alignment = (Alignment & -Alignment);
2215 if (Alignment == 1)
2216 Alignment = 0;
2218 Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2220 unsigned OpcodeIndex;
2221 switch (VT.getSimpleVT().SimpleTy) {
2222 default: llvm_unreachable("unhandled vld/vst lane type");
2223 // Double-register operations:
2224 case MVT::v8i8: OpcodeIndex = 0; break;
2225 case MVT::v4f16:
2226 case MVT::v4i16: OpcodeIndex = 1; break;
2227 case MVT::v2f32:
2228 case MVT::v2i32: OpcodeIndex = 2; break;
2229 // Quad-register operations:
2230 case MVT::v8f16:
2231 case MVT::v8i16: OpcodeIndex = 0; break;
2232 case MVT::v4f32:
2233 case MVT::v4i32: OpcodeIndex = 1; break;
2236 std::vector<EVT> ResTys;
2237 if (IsLoad) {
2238 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2239 if (!is64BitVector)
2240 ResTyElts *= 2;
2241 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2242 MVT::i64, ResTyElts));
2244 if (isUpdating)
2245 ResTys.push_back(MVT::i32);
2246 ResTys.push_back(MVT::Other);
2248 SDValue Pred = getAL(CurDAG, dl);
2249 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2251 SmallVector<SDValue, 8> Ops;
2252 Ops.push_back(MemAddr);
2253 Ops.push_back(Align);
2254 if (isUpdating) {
2255 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2256 bool IsImmUpdate =
2257 isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2258 Ops.push_back(IsImmUpdate ? Reg0 : Inc);
2261 SDValue SuperReg;
2262 SDValue V0 = N->getOperand(Vec0Idx + 0);
2263 SDValue V1 = N->getOperand(Vec0Idx + 1);
2264 if (NumVecs == 2) {
2265 if (is64BitVector)
2266 SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2267 else
2268 SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2269 } else {
2270 SDValue V2 = N->getOperand(Vec0Idx + 2);
2271 SDValue V3 = (NumVecs == 3)
2272 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2273 : N->getOperand(Vec0Idx + 3);
2274 if (is64BitVector)
2275 SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2276 else
2277 SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2279 Ops.push_back(SuperReg);
2280 Ops.push_back(getI32Imm(Lane, dl));
2281 Ops.push_back(Pred);
2282 Ops.push_back(Reg0);
2283 Ops.push_back(Chain);
2285 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2286 QOpcodes[OpcodeIndex]);
2287 SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2288 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdLn), {MemOp});
2289 if (!IsLoad) {
2290 ReplaceNode(N, VLdLn);
2291 return;
2294 // Extract the subregisters.
2295 SuperReg = SDValue(VLdLn, 0);
2296 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2297 ARM::qsub_3 == ARM::qsub_0 + 3,
2298 "Unexpected subreg numbering");
2299 unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2300 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2301 ReplaceUses(SDValue(N, Vec),
2302 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2303 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2304 if (isUpdating)
2305 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2306 CurDAG->RemoveDeadNode(N);
2309 void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic,
2310 bool isUpdating, unsigned NumVecs,
2311 const uint16_t *DOpcodes,
2312 const uint16_t *QOpcodes0,
2313 const uint16_t *QOpcodes1) {
2314 assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2315 SDLoc dl(N);
2317 SDValue MemAddr, Align;
2318 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2319 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2320 return;
2322 SDValue Chain = N->getOperand(0);
2323 EVT VT = N->getValueType(0);
2324 bool is64BitVector = VT.is64BitVector();
2326 unsigned Alignment = 0;
2327 if (NumVecs != 3) {
2328 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2329 unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2330 if (Alignment > NumBytes)
2331 Alignment = NumBytes;
2332 if (Alignment < 8 && Alignment < NumBytes)
2333 Alignment = 0;
2334 // Alignment must be a power of two; make sure of that.
2335 Alignment = (Alignment & -Alignment);
2336 if (Alignment == 1)
2337 Alignment = 0;
2339 Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2341 unsigned OpcodeIndex;
2342 switch (VT.getSimpleVT().SimpleTy) {
2343 default: llvm_unreachable("unhandled vld-dup type");
2344 case MVT::v8i8:
2345 case MVT::v16i8: OpcodeIndex = 0; break;
2346 case MVT::v4i16:
2347 case MVT::v8i16:
2348 case MVT::v4f16:
2349 case MVT::v8f16:
2350 OpcodeIndex = 1; break;
2351 case MVT::v2f32:
2352 case MVT::v2i32:
2353 case MVT::v4f32:
2354 case MVT::v4i32: OpcodeIndex = 2; break;
2355 case MVT::v1f64:
2356 case MVT::v1i64: OpcodeIndex = 3; break;
2359 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2360 if (!is64BitVector)
2361 ResTyElts *= 2;
2362 EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
2364 std::vector<EVT> ResTys;
2365 ResTys.push_back(ResTy);
2366 if (isUpdating)
2367 ResTys.push_back(MVT::i32);
2368 ResTys.push_back(MVT::Other);
2370 SDValue Pred = getAL(CurDAG, dl);
2371 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2373 SDNode *VLdDup;
2374 if (is64BitVector || NumVecs == 1) {
2375 SmallVector<SDValue, 6> Ops;
2376 Ops.push_back(MemAddr);
2377 Ops.push_back(Align);
2378 unsigned Opc = is64BitVector ? DOpcodes[OpcodeIndex] :
2379 QOpcodes0[OpcodeIndex];
2380 if (isUpdating) {
2381 // fixed-stride update instructions don't have an explicit writeback
2382 // operand. It's implicit in the opcode itself.
2383 SDValue Inc = N->getOperand(2);
2384 bool IsImmUpdate =
2385 isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2386 if (NumVecs <= 2 && !IsImmUpdate)
2387 Opc = getVLDSTRegisterUpdateOpcode(Opc);
2388 if (!IsImmUpdate)
2389 Ops.push_back(Inc);
2390 // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2391 else if (NumVecs > 2)
2392 Ops.push_back(Reg0);
2394 Ops.push_back(Pred);
2395 Ops.push_back(Reg0);
2396 Ops.push_back(Chain);
2397 VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2398 } else if (NumVecs == 2) {
2399 const SDValue OpsA[] = { MemAddr, Align, Pred, Reg0, Chain };
2400 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex],
2401 dl, ResTys, OpsA);
2403 Chain = SDValue(VLdA, 1);
2404 const SDValue OpsB[] = { MemAddr, Align, Pred, Reg0, Chain };
2405 VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB);
2406 } else {
2407 SDValue ImplDef =
2408 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
2409 const SDValue OpsA[] = { MemAddr, Align, ImplDef, Pred, Reg0, Chain };
2410 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex],
2411 dl, ResTys, OpsA);
2413 SDValue SuperReg = SDValue(VLdA, 0);
2414 Chain = SDValue(VLdA, 1);
2415 const SDValue OpsB[] = { MemAddr, Align, SuperReg, Pred, Reg0, Chain };
2416 VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB);
2419 // Transfer memoperands.
2420 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2421 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdDup), {MemOp});
2423 // Extract the subregisters.
2424 if (NumVecs == 1) {
2425 ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0));
2426 } else {
2427 SDValue SuperReg = SDValue(VLdDup, 0);
2428 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
2429 unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2430 for (unsigned Vec = 0; Vec != NumVecs; ++Vec) {
2431 ReplaceUses(SDValue(N, Vec),
2432 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2435 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2436 if (isUpdating)
2437 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2438 CurDAG->RemoveDeadNode(N);
2441 bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
2442 if (!Subtarget->hasV6T2Ops())
2443 return false;
2445 unsigned Opc = isSigned
2446 ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2447 : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2448 SDLoc dl(N);
2450 // For unsigned extracts, check for a shift right and mask
2451 unsigned And_imm = 0;
2452 if (N->getOpcode() == ISD::AND) {
2453 if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2455 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2456 if (And_imm & (And_imm + 1))
2457 return false;
2459 unsigned Srl_imm = 0;
2460 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2461 Srl_imm)) {
2462 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2464 // Mask off the unnecessary bits of the AND immediate; normally
2465 // DAGCombine will do this, but that might not happen if
2466 // targetShrinkDemandedConstant chooses a different immediate.
2467 And_imm &= -1U >> Srl_imm;
2469 // Note: The width operand is encoded as width-1.
2470 unsigned Width = countTrailingOnes(And_imm) - 1;
2471 unsigned LSB = Srl_imm;
2473 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2475 if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
2476 // It's cheaper to use a right shift to extract the top bits.
2477 if (Subtarget->isThumb()) {
2478 Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
2479 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2480 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2481 getAL(CurDAG, dl), Reg0, Reg0 };
2482 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2483 return true;
2486 // ARM models shift instructions as MOVsi with shifter operand.
2487 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
2488 SDValue ShOpc =
2489 CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
2490 MVT::i32);
2491 SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
2492 getAL(CurDAG, dl), Reg0, Reg0 };
2493 CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
2494 return true;
2497 assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2498 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2499 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2500 CurDAG->getTargetConstant(Width, dl, MVT::i32),
2501 getAL(CurDAG, dl), Reg0 };
2502 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2503 return true;
2506 return false;
2509 // Otherwise, we're looking for a shift of a shift
2510 unsigned Shl_imm = 0;
2511 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2512 assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2513 unsigned Srl_imm = 0;
2514 if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2515 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2516 // Note: The width operand is encoded as width-1.
2517 unsigned Width = 32 - Srl_imm - 1;
2518 int LSB = Srl_imm - Shl_imm;
2519 if (LSB < 0)
2520 return false;
2521 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2522 assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2523 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2524 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2525 CurDAG->getTargetConstant(Width, dl, MVT::i32),
2526 getAL(CurDAG, dl), Reg0 };
2527 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2528 return true;
2532 // Or we are looking for a shift of an and, with a mask operand
2533 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
2534 isShiftedMask_32(And_imm)) {
2535 unsigned Srl_imm = 0;
2536 unsigned LSB = countTrailingZeros(And_imm);
2537 // Shift must be the same as the ands lsb
2538 if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
2539 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2540 unsigned MSB = 31 - countLeadingZeros(And_imm);
2541 // Note: The width operand is encoded as width-1.
2542 unsigned Width = MSB - LSB;
2543 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2544 assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
2545 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2546 CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
2547 CurDAG->getTargetConstant(Width, dl, MVT::i32),
2548 getAL(CurDAG, dl), Reg0 };
2549 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2550 return true;
2554 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
2555 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2556 unsigned LSB = 0;
2557 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
2558 !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
2559 return false;
2561 if (LSB + Width > 32)
2562 return false;
2564 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2565 assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx");
2566 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2567 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
2568 CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
2569 getAL(CurDAG, dl), Reg0 };
2570 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2571 return true;
2574 return false;
2577 /// Target-specific DAG combining for ISD::XOR.
2578 /// Target-independent combining lowers SELECT_CC nodes of the form
2579 /// select_cc setg[ge] X, 0, X, -X
2580 /// select_cc setgt X, -1, X, -X
2581 /// select_cc setl[te] X, 0, -X, X
2582 /// select_cc setlt X, 1, -X, X
2583 /// which represent Integer ABS into:
2584 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2585 /// ARM instruction selection detects the latter and matches it to
2586 /// ARM::ABS or ARM::t2ABS machine node.
2587 bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
2588 SDValue XORSrc0 = N->getOperand(0);
2589 SDValue XORSrc1 = N->getOperand(1);
2590 EVT VT = N->getValueType(0);
2592 if (Subtarget->isThumb1Only())
2593 return false;
2595 if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
2596 return false;
2598 SDValue ADDSrc0 = XORSrc0.getOperand(0);
2599 SDValue ADDSrc1 = XORSrc0.getOperand(1);
2600 SDValue SRASrc0 = XORSrc1.getOperand(0);
2601 SDValue SRASrc1 = XORSrc1.getOperand(1);
2602 ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
2603 EVT XType = SRASrc0.getValueType();
2604 unsigned Size = XType.getSizeInBits() - 1;
2606 if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
2607 XType.isInteger() && SRAConstant != nullptr &&
2608 Size == SRAConstant->getZExtValue()) {
2609 unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
2610 CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2611 return true;
2614 return false;
2617 /// We've got special pseudo-instructions for these
2618 void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
2619 unsigned Opcode;
2620 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
2621 if (MemTy == MVT::i8)
2622 Opcode = ARM::CMP_SWAP_8;
2623 else if (MemTy == MVT::i16)
2624 Opcode = ARM::CMP_SWAP_16;
2625 else if (MemTy == MVT::i32)
2626 Opcode = ARM::CMP_SWAP_32;
2627 else
2628 llvm_unreachable("Unknown AtomicCmpSwap type");
2630 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
2631 N->getOperand(0)};
2632 SDNode *CmpSwap = CurDAG->getMachineNode(
2633 Opcode, SDLoc(N),
2634 CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
2636 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
2637 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
2639 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
2640 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
2641 CurDAG->RemoveDeadNode(N);
2644 static Optional<std::pair<unsigned, unsigned>>
2645 getContiguousRangeOfSetBits(const APInt &A) {
2646 unsigned FirstOne = A.getBitWidth() - A.countLeadingZeros() - 1;
2647 unsigned LastOne = A.countTrailingZeros();
2648 if (A.countPopulation() != (FirstOne - LastOne + 1))
2649 return Optional<std::pair<unsigned,unsigned>>();
2650 return std::make_pair(FirstOne, LastOne);
2653 void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) {
2654 assert(N->getOpcode() == ARMISD::CMPZ);
2655 SwitchEQNEToPLMI = false;
2657 if (!Subtarget->isThumb())
2658 // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
2659 // LSR don't exist as standalone instructions - they need the barrel shifter.
2660 return;
2662 // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
2663 SDValue And = N->getOperand(0);
2664 if (!And->hasOneUse())
2665 return;
2667 SDValue Zero = N->getOperand(1);
2668 if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isNullValue() ||
2669 And->getOpcode() != ISD::AND)
2670 return;
2671 SDValue X = And.getOperand(0);
2672 auto C = dyn_cast<ConstantSDNode>(And.getOperand(1));
2674 if (!C)
2675 return;
2676 auto Range = getContiguousRangeOfSetBits(C->getAPIntValue());
2677 if (!Range)
2678 return;
2680 // There are several ways to lower this:
2681 SDNode *NewN;
2682 SDLoc dl(N);
2684 auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* {
2685 if (Subtarget->isThumb2()) {
2686 Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri;
2687 SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32),
2688 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
2689 CurDAG->getRegister(0, MVT::i32) };
2690 return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
2691 } else {
2692 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src,
2693 CurDAG->getTargetConstant(Imm, dl, MVT::i32),
2694 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
2695 return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
2699 if (Range->second == 0) {
2700 // 1. Mask includes the LSB -> Simply shift the top N bits off
2701 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2702 ReplaceNode(And.getNode(), NewN);
2703 } else if (Range->first == 31) {
2704 // 2. Mask includes the MSB -> Simply shift the bottom N bits off
2705 NewN = EmitShift(ARM::tLSRri, X, Range->second);
2706 ReplaceNode(And.getNode(), NewN);
2707 } else if (Range->first == Range->second) {
2708 // 3. Only one bit is set. We can shift this into the sign bit and use a
2709 // PL/MI comparison.
2710 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2711 ReplaceNode(And.getNode(), NewN);
2713 SwitchEQNEToPLMI = true;
2714 } else if (!Subtarget->hasV6T2Ops()) {
2715 // 4. Do a double shift to clear bottom and top bits, but only in
2716 // thumb-1 mode as in thumb-2 we can use UBFX.
2717 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
2718 NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0),
2719 Range->second + (31 - Range->first));
2720 ReplaceNode(And.getNode(), NewN);
2725 void ARMDAGToDAGISel::Select(SDNode *N) {
2726 SDLoc dl(N);
2728 if (N->isMachineOpcode()) {
2729 N->setNodeId(-1);
2730 return; // Already selected.
2733 switch (N->getOpcode()) {
2734 default: break;
2735 case ISD::STORE: {
2736 // For Thumb1, match an sp-relative store in C++. This is a little
2737 // unfortunate, but I don't think I can make the chain check work
2738 // otherwise. (The chain of the store has to be the same as the chain
2739 // of the CopyFromReg, or else we can't replace the CopyFromReg with
2740 // a direct reference to "SP".)
2742 // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
2743 // a different addressing mode from other four-byte stores.
2745 // This pattern usually comes up with call arguments.
2746 StoreSDNode *ST = cast<StoreSDNode>(N);
2747 SDValue Ptr = ST->getBasePtr();
2748 if (Subtarget->isThumb1Only() && ST->isUnindexed()) {
2749 int RHSC = 0;
2750 if (Ptr.getOpcode() == ISD::ADD &&
2751 isScaledConstantInRange(Ptr.getOperand(1), /*Scale=*/4, 0, 256, RHSC))
2752 Ptr = Ptr.getOperand(0);
2754 if (Ptr.getOpcode() == ISD::CopyFromReg &&
2755 cast<RegisterSDNode>(Ptr.getOperand(1))->getReg() == ARM::SP &&
2756 Ptr.getOperand(0) == ST->getChain()) {
2757 SDValue Ops[] = {ST->getValue(),
2758 CurDAG->getRegister(ARM::SP, MVT::i32),
2759 CurDAG->getTargetConstant(RHSC, dl, MVT::i32),
2760 getAL(CurDAG, dl),
2761 CurDAG->getRegister(0, MVT::i32),
2762 ST->getChain()};
2763 MachineSDNode *ResNode =
2764 CurDAG->getMachineNode(ARM::tSTRspi, dl, MVT::Other, Ops);
2765 MachineMemOperand *MemOp = ST->getMemOperand();
2766 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
2767 ReplaceNode(N, ResNode);
2768 return;
2771 break;
2773 case ISD::WRITE_REGISTER:
2774 if (tryWriteRegister(N))
2775 return;
2776 break;
2777 case ISD::READ_REGISTER:
2778 if (tryReadRegister(N))
2779 return;
2780 break;
2781 case ISD::INLINEASM:
2782 case ISD::INLINEASM_BR:
2783 if (tryInlineAsm(N))
2784 return;
2785 break;
2786 case ISD::XOR:
2787 // Select special operations if XOR node forms integer ABS pattern
2788 if (tryABSOp(N))
2789 return;
2790 // Other cases are autogenerated.
2791 break;
2792 case ISD::Constant: {
2793 unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2794 // If we can't materialize the constant we need to use a literal pool
2795 if (ConstantMaterializationCost(Val) > 2) {
2796 SDValue CPIdx = CurDAG->getTargetConstantPool(
2797 ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
2798 TLI->getPointerTy(CurDAG->getDataLayout()));
2800 SDNode *ResNode;
2801 if (Subtarget->isThumb()) {
2802 SDValue Ops[] = {
2803 CPIdx,
2804 getAL(CurDAG, dl),
2805 CurDAG->getRegister(0, MVT::i32),
2806 CurDAG->getEntryNode()
2808 ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2809 Ops);
2810 } else {
2811 SDValue Ops[] = {
2812 CPIdx,
2813 CurDAG->getTargetConstant(0, dl, MVT::i32),
2814 getAL(CurDAG, dl),
2815 CurDAG->getRegister(0, MVT::i32),
2816 CurDAG->getEntryNode()
2818 ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2819 Ops);
2821 // Annotate the Node with memory operand information so that MachineInstr
2822 // queries work properly. This e.g. gives the register allocation the
2823 // required information for rematerialization.
2824 MachineFunction& MF = CurDAG->getMachineFunction();
2825 MachineMemOperand *MemOp =
2826 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
2827 MachineMemOperand::MOLoad, 4, 4);
2829 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
2831 ReplaceNode(N, ResNode);
2832 return;
2835 // Other cases are autogenerated.
2836 break;
2838 case ISD::FrameIndex: {
2839 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2840 int FI = cast<FrameIndexSDNode>(N)->getIndex();
2841 SDValue TFI = CurDAG->getTargetFrameIndex(
2842 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
2843 if (Subtarget->isThumb1Only()) {
2844 // Set the alignment of the frame object to 4, to avoid having to generate
2845 // more than one ADD
2846 MachineFrameInfo &MFI = MF->getFrameInfo();
2847 if (MFI.getObjectAlignment(FI) < 4)
2848 MFI.setObjectAlignment(FI, 4);
2849 CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
2850 CurDAG->getTargetConstant(0, dl, MVT::i32));
2851 return;
2852 } else {
2853 unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2854 ARM::t2ADDri : ARM::ADDri);
2855 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
2856 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
2857 CurDAG->getRegister(0, MVT::i32) };
2858 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
2859 return;
2862 case ISD::SRL:
2863 if (tryV6T2BitfieldExtractOp(N, false))
2864 return;
2865 break;
2866 case ISD::SIGN_EXTEND_INREG:
2867 case ISD::SRA:
2868 if (tryV6T2BitfieldExtractOp(N, true))
2869 return;
2870 break;
2871 case ISD::MUL:
2872 if (Subtarget->isThumb1Only())
2873 break;
2874 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2875 unsigned RHSV = C->getZExtValue();
2876 if (!RHSV) break;
2877 if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
2878 unsigned ShImm = Log2_32(RHSV-1);
2879 if (ShImm >= 32)
2880 break;
2881 SDValue V = N->getOperand(0);
2882 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2883 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
2884 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2885 if (Subtarget->isThumb()) {
2886 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
2887 CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
2888 return;
2889 } else {
2890 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
2891 Reg0 };
2892 CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
2893 return;
2896 if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
2897 unsigned ShImm = Log2_32(RHSV+1);
2898 if (ShImm >= 32)
2899 break;
2900 SDValue V = N->getOperand(0);
2901 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2902 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
2903 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2904 if (Subtarget->isThumb()) {
2905 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
2906 CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
2907 return;
2908 } else {
2909 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
2910 Reg0 };
2911 CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
2912 return;
2916 break;
2917 case ISD::AND: {
2918 // Check for unsigned bitfield extract
2919 if (tryV6T2BitfieldExtractOp(N, false))
2920 return;
2922 // If an immediate is used in an AND node, it is possible that the immediate
2923 // can be more optimally materialized when negated. If this is the case we
2924 // can negate the immediate and use a BIC instead.
2925 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2926 if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
2927 uint32_t Imm = (uint32_t) N1C->getZExtValue();
2929 // In Thumb2 mode, an AND can take a 12-bit immediate. If this
2930 // immediate can be negated and fit in the immediate operand of
2931 // a t2BIC, don't do any manual transform here as this can be
2932 // handled by the generic ISel machinery.
2933 bool PreferImmediateEncoding =
2934 Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
2935 if (!PreferImmediateEncoding &&
2936 ConstantMaterializationCost(Imm) >
2937 ConstantMaterializationCost(~Imm)) {
2938 // The current immediate costs more to materialize than a negated
2939 // immediate, so negate the immediate and use a BIC.
2940 SDValue NewImm =
2941 CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
2942 // If the new constant didn't exist before, reposition it in the topological
2943 // ordering so it is just before N. Otherwise, don't touch its location.
2944 if (NewImm->getNodeId() == -1)
2945 CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
2947 if (!Subtarget->hasThumb2()) {
2948 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
2949 N->getOperand(0), NewImm, getAL(CurDAG, dl),
2950 CurDAG->getRegister(0, MVT::i32)};
2951 ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
2952 return;
2953 } else {
2954 SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
2955 CurDAG->getRegister(0, MVT::i32),
2956 CurDAG->getRegister(0, MVT::i32)};
2957 ReplaceNode(N,
2958 CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
2959 return;
2964 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2965 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2966 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2967 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2968 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2969 EVT VT = N->getValueType(0);
2970 if (VT != MVT::i32)
2971 break;
2972 unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2973 ? ARM::t2MOVTi16
2974 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2975 if (!Opc)
2976 break;
2977 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2978 N1C = dyn_cast<ConstantSDNode>(N1);
2979 if (!N1C)
2980 break;
2981 if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2982 SDValue N2 = N0.getOperand(1);
2983 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2984 if (!N2C)
2985 break;
2986 unsigned N1CVal = N1C->getZExtValue();
2987 unsigned N2CVal = N2C->getZExtValue();
2988 if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2989 (N1CVal & 0xffffU) == 0xffffU &&
2990 (N2CVal & 0xffffU) == 0x0U) {
2991 SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2992 dl, MVT::i32);
2993 SDValue Ops[] = { N0.getOperand(0), Imm16,
2994 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
2995 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
2996 return;
3000 break;
3002 case ARMISD::UMAAL: {
3003 unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
3004 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
3005 N->getOperand(2), N->getOperand(3),
3006 getAL(CurDAG, dl),
3007 CurDAG->getRegister(0, MVT::i32) };
3008 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
3009 return;
3011 case ARMISD::UMLAL:{
3012 if (Subtarget->isThumb()) {
3013 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3014 N->getOperand(3), getAL(CurDAG, dl),
3015 CurDAG->getRegister(0, MVT::i32)};
3016 ReplaceNode(
3017 N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
3018 return;
3019 }else{
3020 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3021 N->getOperand(3), getAL(CurDAG, dl),
3022 CurDAG->getRegister(0, MVT::i32),
3023 CurDAG->getRegister(0, MVT::i32) };
3024 ReplaceNode(N, CurDAG->getMachineNode(
3025 Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
3026 MVT::i32, MVT::i32, Ops));
3027 return;
3030 case ARMISD::SMLAL:{
3031 if (Subtarget->isThumb()) {
3032 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3033 N->getOperand(3), getAL(CurDAG, dl),
3034 CurDAG->getRegister(0, MVT::i32)};
3035 ReplaceNode(
3036 N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
3037 return;
3038 }else{
3039 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3040 N->getOperand(3), getAL(CurDAG, dl),
3041 CurDAG->getRegister(0, MVT::i32),
3042 CurDAG->getRegister(0, MVT::i32) };
3043 ReplaceNode(N, CurDAG->getMachineNode(
3044 Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
3045 MVT::i32, MVT::i32, Ops));
3046 return;
3049 case ARMISD::SUBE: {
3050 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
3051 break;
3052 // Look for a pattern to match SMMLS
3053 // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
3054 if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
3055 N->getOperand(2).getOpcode() != ARMISD::SUBC ||
3056 !SDValue(N, 1).use_empty())
3057 break;
3059 if (Subtarget->isThumb())
3060 assert(Subtarget->hasThumb2() &&
3061 "This pattern should not be generated for Thumb");
3063 SDValue SmulLoHi = N->getOperand(1);
3064 SDValue Subc = N->getOperand(2);
3065 auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0));
3067 if (!Zero || Zero->getZExtValue() != 0 ||
3068 Subc.getOperand(1) != SmulLoHi.getValue(0) ||
3069 N->getOperand(1) != SmulLoHi.getValue(1) ||
3070 N->getOperand(2) != Subc.getValue(1))
3071 break;
3073 unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
3074 SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
3075 N->getOperand(0), getAL(CurDAG, dl),
3076 CurDAG->getRegister(0, MVT::i32) };
3077 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
3078 return;
3080 case ISD::LOAD: {
3081 if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
3082 return;
3083 if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
3084 if (tryT2IndexedLoad(N))
3085 return;
3086 } else if (Subtarget->isThumb()) {
3087 if (tryT1IndexedLoad(N))
3088 return;
3089 } else if (tryARMIndexedLoad(N))
3090 return;
3091 // Other cases are autogenerated.
3092 break;
3094 case ARMISD::WLS:
3095 case ARMISD::LE: {
3096 SDValue Ops[] = { N->getOperand(1),
3097 N->getOperand(2),
3098 N->getOperand(0) };
3099 unsigned Opc = N->getOpcode() == ARMISD::WLS ?
3100 ARM::t2WhileLoopStart : ARM::t2LoopEnd;
3101 SDNode *New = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
3102 ReplaceUses(N, New);
3103 CurDAG->RemoveDeadNode(N);
3104 return;
3106 case ARMISD::LOOP_DEC: {
3107 SDValue Ops[] = { N->getOperand(1),
3108 N->getOperand(2),
3109 N->getOperand(0) };
3110 SDNode *Dec =
3111 CurDAG->getMachineNode(ARM::t2LoopDec, dl,
3112 CurDAG->getVTList(MVT::i32, MVT::Other), Ops);
3113 ReplaceUses(N, Dec);
3114 CurDAG->RemoveDeadNode(N);
3115 return;
3117 case ARMISD::BRCOND: {
3118 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3119 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3120 // Pattern complexity = 6 cost = 1 size = 0
3122 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3123 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
3124 // Pattern complexity = 6 cost = 1 size = 0
3126 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3127 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3128 // Pattern complexity = 6 cost = 1 size = 0
3130 unsigned Opc = Subtarget->isThumb() ?
3131 ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
3132 SDValue Chain = N->getOperand(0);
3133 SDValue N1 = N->getOperand(1);
3134 SDValue N2 = N->getOperand(2);
3135 SDValue N3 = N->getOperand(3);
3136 SDValue InFlag = N->getOperand(4);
3137 assert(N1.getOpcode() == ISD::BasicBlock);
3138 assert(N2.getOpcode() == ISD::Constant);
3139 assert(N3.getOpcode() == ISD::Register);
3141 unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue();
3143 if (InFlag.getOpcode() == ARMISD::CMPZ) {
3144 if (InFlag.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN) {
3145 SDValue Int = InFlag.getOperand(0);
3146 uint64_t ID = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
3148 // Handle low-overhead loops.
3149 if (ID == Intrinsic::loop_decrement_reg) {
3150 SDValue Elements = Int.getOperand(2);
3151 SDValue Size = CurDAG->getTargetConstant(
3152 cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl,
3153 MVT::i32);
3155 SDValue Args[] = { Elements, Size, Int.getOperand(0) };
3156 SDNode *LoopDec =
3157 CurDAG->getMachineNode(ARM::t2LoopDec, dl,
3158 CurDAG->getVTList(MVT::i32, MVT::Other),
3159 Args);
3160 ReplaceUses(Int.getNode(), LoopDec);
3162 SDValue EndArgs[] = { SDValue(LoopDec, 0), N1, Chain };
3163 SDNode *LoopEnd =
3164 CurDAG->getMachineNode(ARM::t2LoopEnd, dl, MVT::Other, EndArgs);
3166 ReplaceUses(N, LoopEnd);
3167 CurDAG->RemoveDeadNode(N);
3168 CurDAG->RemoveDeadNode(InFlag.getNode());
3169 CurDAG->RemoveDeadNode(Int.getNode());
3170 return;
3174 bool SwitchEQNEToPLMI;
3175 SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
3176 InFlag = N->getOperand(4);
3178 if (SwitchEQNEToPLMI) {
3179 switch ((ARMCC::CondCodes)CC) {
3180 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3181 case ARMCC::NE:
3182 CC = (unsigned)ARMCC::MI;
3183 break;
3184 case ARMCC::EQ:
3185 CC = (unsigned)ARMCC::PL;
3186 break;
3191 SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32);
3192 SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
3193 SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
3194 MVT::Glue, Ops);
3195 Chain = SDValue(ResNode, 0);
3196 if (N->getNumValues() == 2) {
3197 InFlag = SDValue(ResNode, 1);
3198 ReplaceUses(SDValue(N, 1), InFlag);
3200 ReplaceUses(SDValue(N, 0),
3201 SDValue(Chain.getNode(), Chain.getResNo()));
3202 CurDAG->RemoveDeadNode(N);
3203 return;
3206 case ARMISD::CMPZ: {
3207 // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
3208 // This allows us to avoid materializing the expensive negative constant.
3209 // The CMPZ #0 is useless and will be peepholed away but we need to keep it
3210 // for its glue output.
3211 SDValue X = N->getOperand(0);
3212 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
3213 if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) {
3214 int64_t Addend = -C->getSExtValue();
3216 SDNode *Add = nullptr;
3217 // ADDS can be better than CMN if the immediate fits in a
3218 // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
3219 // Outside that range we can just use a CMN which is 32-bit but has a
3220 // 12-bit immediate range.
3221 if (Addend < 1<<8) {
3222 if (Subtarget->isThumb2()) {
3223 SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32),
3224 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
3225 CurDAG->getRegister(0, MVT::i32) };
3226 Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops);
3227 } else {
3228 unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8;
3229 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X,
3230 CurDAG->getTargetConstant(Addend, dl, MVT::i32),
3231 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
3232 Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
3235 if (Add) {
3236 SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)};
3237 CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2);
3240 // Other cases are autogenerated.
3241 break;
3244 case ARMISD::CMOV: {
3245 SDValue InFlag = N->getOperand(4);
3247 if (InFlag.getOpcode() == ARMISD::CMPZ) {
3248 bool SwitchEQNEToPLMI;
3249 SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
3251 if (SwitchEQNEToPLMI) {
3252 SDValue ARMcc = N->getOperand(2);
3253 ARMCC::CondCodes CC =
3254 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
3256 switch (CC) {
3257 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3258 case ARMCC::NE:
3259 CC = ARMCC::MI;
3260 break;
3261 case ARMCC::EQ:
3262 CC = ARMCC::PL;
3263 break;
3265 SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32);
3266 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc,
3267 N->getOperand(3), N->getOperand(4)};
3268 CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops);
3272 // Other cases are autogenerated.
3273 break;
3276 case ARMISD::VZIP: {
3277 unsigned Opc = 0;
3278 EVT VT = N->getValueType(0);
3279 switch (VT.getSimpleVT().SimpleTy) {
3280 default: return;
3281 case MVT::v8i8: Opc = ARM::VZIPd8; break;
3282 case MVT::v4f16:
3283 case MVT::v4i16: Opc = ARM::VZIPd16; break;
3284 case MVT::v2f32:
3285 // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3286 case MVT::v2i32: Opc = ARM::VTRNd32; break;
3287 case MVT::v16i8: Opc = ARM::VZIPq8; break;
3288 case MVT::v8f16:
3289 case MVT::v8i16: Opc = ARM::VZIPq16; break;
3290 case MVT::v4f32:
3291 case MVT::v4i32: Opc = ARM::VZIPq32; break;
3293 SDValue Pred = getAL(CurDAG, dl);
3294 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3295 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3296 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3297 return;
3299 case ARMISD::VUZP: {
3300 unsigned Opc = 0;
3301 EVT VT = N->getValueType(0);
3302 switch (VT.getSimpleVT().SimpleTy) {
3303 default: return;
3304 case MVT::v8i8: Opc = ARM::VUZPd8; break;
3305 case MVT::v4f16:
3306 case MVT::v4i16: Opc = ARM::VUZPd16; break;
3307 case MVT::v2f32:
3308 // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3309 case MVT::v2i32: Opc = ARM::VTRNd32; break;
3310 case MVT::v16i8: Opc = ARM::VUZPq8; break;
3311 case MVT::v8f16:
3312 case MVT::v8i16: Opc = ARM::VUZPq16; break;
3313 case MVT::v4f32:
3314 case MVT::v4i32: Opc = ARM::VUZPq32; break;
3316 SDValue Pred = getAL(CurDAG, dl);
3317 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3318 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3319 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3320 return;
3322 case ARMISD::VTRN: {
3323 unsigned Opc = 0;
3324 EVT VT = N->getValueType(0);
3325 switch (VT.getSimpleVT().SimpleTy) {
3326 default: return;
3327 case MVT::v8i8: Opc = ARM::VTRNd8; break;
3328 case MVT::v4f16:
3329 case MVT::v4i16: Opc = ARM::VTRNd16; break;
3330 case MVT::v2f32:
3331 case MVT::v2i32: Opc = ARM::VTRNd32; break;
3332 case MVT::v16i8: Opc = ARM::VTRNq8; break;
3333 case MVT::v8f16:
3334 case MVT::v8i16: Opc = ARM::VTRNq16; break;
3335 case MVT::v4f32:
3336 case MVT::v4i32: Opc = ARM::VTRNq32; break;
3338 SDValue Pred = getAL(CurDAG, dl);
3339 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
3340 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
3341 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
3342 return;
3344 case ARMISD::BUILD_VECTOR: {
3345 EVT VecVT = N->getValueType(0);
3346 EVT EltVT = VecVT.getVectorElementType();
3347 unsigned NumElts = VecVT.getVectorNumElements();
3348 if (EltVT == MVT::f64) {
3349 assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
3350 ReplaceNode(
3351 N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
3352 return;
3354 assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
3355 if (NumElts == 2) {
3356 ReplaceNode(
3357 N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
3358 return;
3360 assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
3361 ReplaceNode(N,
3362 createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
3363 N->getOperand(2), N->getOperand(3)));
3364 return;
3367 case ARMISD::VLD1DUP: {
3368 static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16,
3369 ARM::VLD1DUPd32 };
3370 static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16,
3371 ARM::VLD1DUPq32 };
3372 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes);
3373 return;
3376 case ARMISD::VLD2DUP: {
3377 static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
3378 ARM::VLD2DUPd32 };
3379 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes);
3380 return;
3383 case ARMISD::VLD3DUP: {
3384 static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
3385 ARM::VLD3DUPd16Pseudo,
3386 ARM::VLD3DUPd32Pseudo };
3387 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes);
3388 return;
3391 case ARMISD::VLD4DUP: {
3392 static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
3393 ARM::VLD4DUPd16Pseudo,
3394 ARM::VLD4DUPd32Pseudo };
3395 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes);
3396 return;
3399 case ARMISD::VLD1DUP_UPD: {
3400 static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed,
3401 ARM::VLD1DUPd16wb_fixed,
3402 ARM::VLD1DUPd32wb_fixed };
3403 static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed,
3404 ARM::VLD1DUPq16wb_fixed,
3405 ARM::VLD1DUPq32wb_fixed };
3406 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes);
3407 return;
3410 case ARMISD::VLD2DUP_UPD: {
3411 static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
3412 ARM::VLD2DUPd16wb_fixed,
3413 ARM::VLD2DUPd32wb_fixed };
3414 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, Opcodes);
3415 return;
3418 case ARMISD::VLD3DUP_UPD: {
3419 static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
3420 ARM::VLD3DUPd16Pseudo_UPD,
3421 ARM::VLD3DUPd32Pseudo_UPD };
3422 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, Opcodes);
3423 return;
3426 case ARMISD::VLD4DUP_UPD: {
3427 static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
3428 ARM::VLD4DUPd16Pseudo_UPD,
3429 ARM::VLD4DUPd32Pseudo_UPD };
3430 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, Opcodes);
3431 return;
3434 case ARMISD::VLD1_UPD: {
3435 static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
3436 ARM::VLD1d16wb_fixed,
3437 ARM::VLD1d32wb_fixed,
3438 ARM::VLD1d64wb_fixed };
3439 static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
3440 ARM::VLD1q16wb_fixed,
3441 ARM::VLD1q32wb_fixed,
3442 ARM::VLD1q64wb_fixed };
3443 SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
3444 return;
3447 case ARMISD::VLD2_UPD: {
3448 static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
3449 ARM::VLD2d16wb_fixed,
3450 ARM::VLD2d32wb_fixed,
3451 ARM::VLD1q64wb_fixed};
3452 static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
3453 ARM::VLD2q16PseudoWB_fixed,
3454 ARM::VLD2q32PseudoWB_fixed };
3455 SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
3456 return;
3459 case ARMISD::VLD3_UPD: {
3460 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
3461 ARM::VLD3d16Pseudo_UPD,
3462 ARM::VLD3d32Pseudo_UPD,
3463 ARM::VLD1d64TPseudoWB_fixed};
3464 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3465 ARM::VLD3q16Pseudo_UPD,
3466 ARM::VLD3q32Pseudo_UPD };
3467 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
3468 ARM::VLD3q16oddPseudo_UPD,
3469 ARM::VLD3q32oddPseudo_UPD };
3470 SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
3471 return;
3474 case ARMISD::VLD4_UPD: {
3475 static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
3476 ARM::VLD4d16Pseudo_UPD,
3477 ARM::VLD4d32Pseudo_UPD,
3478 ARM::VLD1d64QPseudoWB_fixed};
3479 static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3480 ARM::VLD4q16Pseudo_UPD,
3481 ARM::VLD4q32Pseudo_UPD };
3482 static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
3483 ARM::VLD4q16oddPseudo_UPD,
3484 ARM::VLD4q32oddPseudo_UPD };
3485 SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3486 return;
3489 case ARMISD::VLD2LN_UPD: {
3490 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
3491 ARM::VLD2LNd16Pseudo_UPD,
3492 ARM::VLD2LNd32Pseudo_UPD };
3493 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
3494 ARM::VLD2LNq32Pseudo_UPD };
3495 SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
3496 return;
3499 case ARMISD::VLD3LN_UPD: {
3500 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
3501 ARM::VLD3LNd16Pseudo_UPD,
3502 ARM::VLD3LNd32Pseudo_UPD };
3503 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
3504 ARM::VLD3LNq32Pseudo_UPD };
3505 SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
3506 return;
3509 case ARMISD::VLD4LN_UPD: {
3510 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
3511 ARM::VLD4LNd16Pseudo_UPD,
3512 ARM::VLD4LNd32Pseudo_UPD };
3513 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
3514 ARM::VLD4LNq32Pseudo_UPD };
3515 SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
3516 return;
3519 case ARMISD::VST1_UPD: {
3520 static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
3521 ARM::VST1d16wb_fixed,
3522 ARM::VST1d32wb_fixed,
3523 ARM::VST1d64wb_fixed };
3524 static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
3525 ARM::VST1q16wb_fixed,
3526 ARM::VST1q32wb_fixed,
3527 ARM::VST1q64wb_fixed };
3528 SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
3529 return;
3532 case ARMISD::VST2_UPD: {
3533 static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
3534 ARM::VST2d16wb_fixed,
3535 ARM::VST2d32wb_fixed,
3536 ARM::VST1q64wb_fixed};
3537 static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
3538 ARM::VST2q16PseudoWB_fixed,
3539 ARM::VST2q32PseudoWB_fixed };
3540 SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
3541 return;
3544 case ARMISD::VST3_UPD: {
3545 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
3546 ARM::VST3d16Pseudo_UPD,
3547 ARM::VST3d32Pseudo_UPD,
3548 ARM::VST1d64TPseudoWB_fixed};
3549 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3550 ARM::VST3q16Pseudo_UPD,
3551 ARM::VST3q32Pseudo_UPD };
3552 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
3553 ARM::VST3q16oddPseudo_UPD,
3554 ARM::VST3q32oddPseudo_UPD };
3555 SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
3556 return;
3559 case ARMISD::VST4_UPD: {
3560 static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
3561 ARM::VST4d16Pseudo_UPD,
3562 ARM::VST4d32Pseudo_UPD,
3563 ARM::VST1d64QPseudoWB_fixed};
3564 static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3565 ARM::VST4q16Pseudo_UPD,
3566 ARM::VST4q32Pseudo_UPD };
3567 static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
3568 ARM::VST4q16oddPseudo_UPD,
3569 ARM::VST4q32oddPseudo_UPD };
3570 SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3571 return;
3574 case ARMISD::VST2LN_UPD: {
3575 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
3576 ARM::VST2LNd16Pseudo_UPD,
3577 ARM::VST2LNd32Pseudo_UPD };
3578 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
3579 ARM::VST2LNq32Pseudo_UPD };
3580 SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
3581 return;
3584 case ARMISD::VST3LN_UPD: {
3585 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
3586 ARM::VST3LNd16Pseudo_UPD,
3587 ARM::VST3LNd32Pseudo_UPD };
3588 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
3589 ARM::VST3LNq32Pseudo_UPD };
3590 SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
3591 return;
3594 case ARMISD::VST4LN_UPD: {
3595 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
3596 ARM::VST4LNd16Pseudo_UPD,
3597 ARM::VST4LNd32Pseudo_UPD };
3598 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
3599 ARM::VST4LNq32Pseudo_UPD };
3600 SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
3601 return;
3604 case ISD::INTRINSIC_VOID:
3605 case ISD::INTRINSIC_W_CHAIN: {
3606 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3607 switch (IntNo) {
3608 default:
3609 break;
3611 case Intrinsic::arm_mrrc:
3612 case Intrinsic::arm_mrrc2: {
3613 SDLoc dl(N);
3614 SDValue Chain = N->getOperand(0);
3615 unsigned Opc;
3617 if (Subtarget->isThumb())
3618 Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
3619 else
3620 Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
3622 SmallVector<SDValue, 5> Ops;
3623 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
3624 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
3625 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
3627 // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
3628 // instruction will always be '1111' but it is possible in assembly language to specify
3629 // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
3630 if (Opc != ARM::MRRC2) {
3631 Ops.push_back(getAL(CurDAG, dl));
3632 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3635 Ops.push_back(Chain);
3637 // Writes to two registers.
3638 const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
3640 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
3641 return;
3643 case Intrinsic::arm_ldaexd:
3644 case Intrinsic::arm_ldrexd: {
3645 SDLoc dl(N);
3646 SDValue Chain = N->getOperand(0);
3647 SDValue MemAddr = N->getOperand(2);
3648 bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
3650 bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
3651 unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
3652 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
3654 // arm_ldrexd returns a i64 value in {i32, i32}
3655 std::vector<EVT> ResTys;
3656 if (isThumb) {
3657 ResTys.push_back(MVT::i32);
3658 ResTys.push_back(MVT::i32);
3659 } else
3660 ResTys.push_back(MVT::Untyped);
3661 ResTys.push_back(MVT::Other);
3663 // Place arguments in the right order.
3664 SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
3665 CurDAG->getRegister(0, MVT::i32), Chain};
3666 SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3667 // Transfer memoperands.
3668 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3669 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
3671 // Remap uses.
3672 SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
3673 if (!SDValue(N, 0).use_empty()) {
3674 SDValue Result;
3675 if (isThumb)
3676 Result = SDValue(Ld, 0);
3677 else {
3678 SDValue SubRegIdx =
3679 CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
3680 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3681 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3682 Result = SDValue(ResNode,0);
3684 ReplaceUses(SDValue(N, 0), Result);
3686 if (!SDValue(N, 1).use_empty()) {
3687 SDValue Result;
3688 if (isThumb)
3689 Result = SDValue(Ld, 1);
3690 else {
3691 SDValue SubRegIdx =
3692 CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
3693 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3694 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3695 Result = SDValue(ResNode,0);
3697 ReplaceUses(SDValue(N, 1), Result);
3699 ReplaceUses(SDValue(N, 2), OutChain);
3700 CurDAG->RemoveDeadNode(N);
3701 return;
3703 case Intrinsic::arm_stlexd:
3704 case Intrinsic::arm_strexd: {
3705 SDLoc dl(N);
3706 SDValue Chain = N->getOperand(0);
3707 SDValue Val0 = N->getOperand(2);
3708 SDValue Val1 = N->getOperand(3);
3709 SDValue MemAddr = N->getOperand(4);
3711 // Store exclusive double return a i32 value which is the return status
3712 // of the issued store.
3713 const EVT ResTys[] = {MVT::i32, MVT::Other};
3715 bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3716 // Place arguments in the right order.
3717 SmallVector<SDValue, 7> Ops;
3718 if (isThumb) {
3719 Ops.push_back(Val0);
3720 Ops.push_back(Val1);
3721 } else
3722 // arm_strexd uses GPRPair.
3723 Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
3724 Ops.push_back(MemAddr);
3725 Ops.push_back(getAL(CurDAG, dl));
3726 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3727 Ops.push_back(Chain);
3729 bool IsRelease = IntNo == Intrinsic::arm_stlexd;
3730 unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
3731 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
3733 SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
3734 // Transfer memoperands.
3735 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3736 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
3738 ReplaceNode(N, St);
3739 return;
3742 case Intrinsic::arm_neon_vld1: {
3743 static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
3744 ARM::VLD1d32, ARM::VLD1d64 };
3745 static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3746 ARM::VLD1q32, ARM::VLD1q64};
3747 SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
3748 return;
3751 case Intrinsic::arm_neon_vld1x2: {
3752 static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3753 ARM::VLD1q32, ARM::VLD1q64 };
3754 static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo,
3755 ARM::VLD1d16QPseudo,
3756 ARM::VLD1d32QPseudo,
3757 ARM::VLD1d64QPseudo };
3758 SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
3759 return;
3762 case Intrinsic::arm_neon_vld1x3: {
3763 static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo,
3764 ARM::VLD1d16TPseudo,
3765 ARM::VLD1d32TPseudo,
3766 ARM::VLD1d64TPseudo };
3767 static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD,
3768 ARM::VLD1q16LowTPseudo_UPD,
3769 ARM::VLD1q32LowTPseudo_UPD,
3770 ARM::VLD1q64LowTPseudo_UPD };
3771 static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo,
3772 ARM::VLD1q16HighTPseudo,
3773 ARM::VLD1q32HighTPseudo,
3774 ARM::VLD1q64HighTPseudo };
3775 SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3776 return;
3779 case Intrinsic::arm_neon_vld1x4: {
3780 static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo,
3781 ARM::VLD1d16QPseudo,
3782 ARM::VLD1d32QPseudo,
3783 ARM::VLD1d64QPseudo };
3784 static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD,
3785 ARM::VLD1q16LowQPseudo_UPD,
3786 ARM::VLD1q32LowQPseudo_UPD,
3787 ARM::VLD1q64LowQPseudo_UPD };
3788 static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo,
3789 ARM::VLD1q16HighQPseudo,
3790 ARM::VLD1q32HighQPseudo,
3791 ARM::VLD1q64HighQPseudo };
3792 SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3793 return;
3796 case Intrinsic::arm_neon_vld2: {
3797 static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
3798 ARM::VLD2d32, ARM::VLD1q64 };
3799 static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3800 ARM::VLD2q32Pseudo };
3801 SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
3802 return;
3805 case Intrinsic::arm_neon_vld3: {
3806 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
3807 ARM::VLD3d16Pseudo,
3808 ARM::VLD3d32Pseudo,
3809 ARM::VLD1d64TPseudo };
3810 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3811 ARM::VLD3q16Pseudo_UPD,
3812 ARM::VLD3q32Pseudo_UPD };
3813 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3814 ARM::VLD3q16oddPseudo,
3815 ARM::VLD3q32oddPseudo };
3816 SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3817 return;
3820 case Intrinsic::arm_neon_vld4: {
3821 static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
3822 ARM::VLD4d16Pseudo,
3823 ARM::VLD4d32Pseudo,
3824 ARM::VLD1d64QPseudo };
3825 static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3826 ARM::VLD4q16Pseudo_UPD,
3827 ARM::VLD4q32Pseudo_UPD };
3828 static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3829 ARM::VLD4q16oddPseudo,
3830 ARM::VLD4q32oddPseudo };
3831 SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3832 return;
3835 case Intrinsic::arm_neon_vld2dup: {
3836 static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
3837 ARM::VLD2DUPd32, ARM::VLD1q64 };
3838 static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
3839 ARM::VLD2DUPq16EvenPseudo,
3840 ARM::VLD2DUPq32EvenPseudo };
3841 static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo,
3842 ARM::VLD2DUPq16OddPseudo,
3843 ARM::VLD2DUPq32OddPseudo };
3844 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2,
3845 DOpcodes, QOpcodes0, QOpcodes1);
3846 return;
3849 case Intrinsic::arm_neon_vld3dup: {
3850 static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo,
3851 ARM::VLD3DUPd16Pseudo,
3852 ARM::VLD3DUPd32Pseudo,
3853 ARM::VLD1d64TPseudo };
3854 static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
3855 ARM::VLD3DUPq16EvenPseudo,
3856 ARM::VLD3DUPq32EvenPseudo };
3857 static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo,
3858 ARM::VLD3DUPq16OddPseudo,
3859 ARM::VLD3DUPq32OddPseudo };
3860 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3,
3861 DOpcodes, QOpcodes0, QOpcodes1);
3862 return;
3865 case Intrinsic::arm_neon_vld4dup: {
3866 static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo,
3867 ARM::VLD4DUPd16Pseudo,
3868 ARM::VLD4DUPd32Pseudo,
3869 ARM::VLD1d64QPseudo };
3870 static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
3871 ARM::VLD4DUPq16EvenPseudo,
3872 ARM::VLD4DUPq32EvenPseudo };
3873 static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo,
3874 ARM::VLD4DUPq16OddPseudo,
3875 ARM::VLD4DUPq32OddPseudo };
3876 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4,
3877 DOpcodes, QOpcodes0, QOpcodes1);
3878 return;
3881 case Intrinsic::arm_neon_vld2lane: {
3882 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
3883 ARM::VLD2LNd16Pseudo,
3884 ARM::VLD2LNd32Pseudo };
3885 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
3886 ARM::VLD2LNq32Pseudo };
3887 SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3888 return;
3891 case Intrinsic::arm_neon_vld3lane: {
3892 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
3893 ARM::VLD3LNd16Pseudo,
3894 ARM::VLD3LNd32Pseudo };
3895 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
3896 ARM::VLD3LNq32Pseudo };
3897 SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3898 return;
3901 case Intrinsic::arm_neon_vld4lane: {
3902 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
3903 ARM::VLD4LNd16Pseudo,
3904 ARM::VLD4LNd32Pseudo };
3905 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
3906 ARM::VLD4LNq32Pseudo };
3907 SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3908 return;
3911 case Intrinsic::arm_neon_vst1: {
3912 static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3913 ARM::VST1d32, ARM::VST1d64 };
3914 static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3915 ARM::VST1q32, ARM::VST1q64 };
3916 SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
3917 return;
3920 case Intrinsic::arm_neon_vst1x2: {
3921 static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3922 ARM::VST1q32, ARM::VST1q64 };
3923 static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo,
3924 ARM::VST1d16QPseudo,
3925 ARM::VST1d32QPseudo,
3926 ARM::VST1d64QPseudo };
3927 SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
3928 return;
3931 case Intrinsic::arm_neon_vst1x3: {
3932 static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo,
3933 ARM::VST1d16TPseudo,
3934 ARM::VST1d32TPseudo,
3935 ARM::VST1d64TPseudo };
3936 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
3937 ARM::VST1q16LowTPseudo_UPD,
3938 ARM::VST1q32LowTPseudo_UPD,
3939 ARM::VST1q64LowTPseudo_UPD };
3940 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo,
3941 ARM::VST1q16HighTPseudo,
3942 ARM::VST1q32HighTPseudo,
3943 ARM::VST1q64HighTPseudo };
3944 SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3945 return;
3948 case Intrinsic::arm_neon_vst1x4: {
3949 static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo,
3950 ARM::VST1d16QPseudo,
3951 ARM::VST1d32QPseudo,
3952 ARM::VST1d64QPseudo };
3953 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
3954 ARM::VST1q16LowQPseudo_UPD,
3955 ARM::VST1q32LowQPseudo_UPD,
3956 ARM::VST1q64LowQPseudo_UPD };
3957 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo,
3958 ARM::VST1q16HighQPseudo,
3959 ARM::VST1q32HighQPseudo,
3960 ARM::VST1q64HighQPseudo };
3961 SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3962 return;
3965 case Intrinsic::arm_neon_vst2: {
3966 static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
3967 ARM::VST2d32, ARM::VST1q64 };
3968 static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3969 ARM::VST2q32Pseudo };
3970 SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
3971 return;
3974 case Intrinsic::arm_neon_vst3: {
3975 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
3976 ARM::VST3d16Pseudo,
3977 ARM::VST3d32Pseudo,
3978 ARM::VST1d64TPseudo };
3979 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3980 ARM::VST3q16Pseudo_UPD,
3981 ARM::VST3q32Pseudo_UPD };
3982 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
3983 ARM::VST3q16oddPseudo,
3984 ARM::VST3q32oddPseudo };
3985 SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3986 return;
3989 case Intrinsic::arm_neon_vst4: {
3990 static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
3991 ARM::VST4d16Pseudo,
3992 ARM::VST4d32Pseudo,
3993 ARM::VST1d64QPseudo };
3994 static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3995 ARM::VST4q16Pseudo_UPD,
3996 ARM::VST4q32Pseudo_UPD };
3997 static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
3998 ARM::VST4q16oddPseudo,
3999 ARM::VST4q32oddPseudo };
4000 SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
4001 return;
4004 case Intrinsic::arm_neon_vst2lane: {
4005 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
4006 ARM::VST2LNd16Pseudo,
4007 ARM::VST2LNd32Pseudo };
4008 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
4009 ARM::VST2LNq32Pseudo };
4010 SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
4011 return;
4014 case Intrinsic::arm_neon_vst3lane: {
4015 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
4016 ARM::VST3LNd16Pseudo,
4017 ARM::VST3LNd32Pseudo };
4018 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
4019 ARM::VST3LNq32Pseudo };
4020 SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
4021 return;
4024 case Intrinsic::arm_neon_vst4lane: {
4025 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
4026 ARM::VST4LNd16Pseudo,
4027 ARM::VST4LNd32Pseudo };
4028 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
4029 ARM::VST4LNq32Pseudo };
4030 SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
4031 return;
4034 break;
4037 case ISD::ATOMIC_CMP_SWAP:
4038 SelectCMP_SWAP(N);
4039 return;
4042 SelectCode(N);
4045 // Inspect a register string of the form
4046 // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
4047 // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
4048 // and obtain the integer operands from them, adding these operands to the
4049 // provided vector.
4050 static void getIntOperandsFromRegisterString(StringRef RegString,
4051 SelectionDAG *CurDAG,
4052 const SDLoc &DL,
4053 std::vector<SDValue> &Ops) {
4054 SmallVector<StringRef, 5> Fields;
4055 RegString.split(Fields, ':');
4057 if (Fields.size() > 1) {
4058 bool AllIntFields = true;
4060 for (StringRef Field : Fields) {
4061 // Need to trim out leading 'cp' characters and get the integer field.
4062 unsigned IntField;
4063 AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
4064 Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
4067 assert(AllIntFields &&
4068 "Unexpected non-integer value in special register string.");
4072 // Maps a Banked Register string to its mask value. The mask value returned is
4073 // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
4074 // mask operand, which expresses which register is to be used, e.g. r8, and in
4075 // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
4076 // was invalid.
4077 static inline int getBankedRegisterMask(StringRef RegString) {
4078 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower());
4079 if (!TheReg)
4080 return -1;
4081 return TheReg->Encoding;
4084 // The flags here are common to those allowed for apsr in the A class cores and
4085 // those allowed for the special registers in the M class cores. Returns a
4086 // value representing which flags were present, -1 if invalid.
4087 static inline int getMClassFlagsMask(StringRef Flags) {
4088 return StringSwitch<int>(Flags)
4089 .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
4090 // correct when flags are not permitted
4091 .Case("g", 0x1)
4092 .Case("nzcvq", 0x2)
4093 .Case("nzcvqg", 0x3)
4094 .Default(-1);
4097 // Maps MClass special registers string to its value for use in the
4098 // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
4099 // Returns -1 to signify that the string was invalid.
4100 static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) {
4101 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg);
4102 const FeatureBitset &FeatureBits = Subtarget->getFeatureBits();
4103 if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits))
4104 return -1;
4105 return (int)(TheReg->Encoding & 0xFFF); // SYSm value
4108 static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
4109 // The mask operand contains the special register (R Bit) in bit 4, whether
4110 // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
4111 // bits 3-0 contains the fields to be accessed in the special register, set by
4112 // the flags provided with the register.
4113 int Mask = 0;
4114 if (Reg == "apsr") {
4115 // The flags permitted for apsr are the same flags that are allowed in
4116 // M class registers. We get the flag value and then shift the flags into
4117 // the correct place to combine with the mask.
4118 Mask = getMClassFlagsMask(Flags);
4119 if (Mask == -1)
4120 return -1;
4121 return Mask << 2;
4124 if (Reg != "cpsr" && Reg != "spsr") {
4125 return -1;
4128 // This is the same as if the flags were "fc"
4129 if (Flags.empty() || Flags == "all")
4130 return Mask | 0x9;
4132 // Inspect the supplied flags string and set the bits in the mask for
4133 // the relevant and valid flags allowed for cpsr and spsr.
4134 for (char Flag : Flags) {
4135 int FlagVal;
4136 switch (Flag) {
4137 case 'c':
4138 FlagVal = 0x1;
4139 break;
4140 case 'x':
4141 FlagVal = 0x2;
4142 break;
4143 case 's':
4144 FlagVal = 0x4;
4145 break;
4146 case 'f':
4147 FlagVal = 0x8;
4148 break;
4149 default:
4150 FlagVal = 0;
4153 // This avoids allowing strings where the same flag bit appears twice.
4154 if (!FlagVal || (Mask & FlagVal))
4155 return -1;
4156 Mask |= FlagVal;
4159 // If the register is spsr then we need to set the R bit.
4160 if (Reg == "spsr")
4161 Mask |= 0x10;
4163 return Mask;
4166 // Lower the read_register intrinsic to ARM specific DAG nodes
4167 // using the supplied metadata string to select the instruction node to use
4168 // and the registers/masks to construct as operands for the node.
4169 bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
4170 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
4171 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
4172 bool IsThumb2 = Subtarget->isThumb2();
4173 SDLoc DL(N);
4175 std::vector<SDValue> Ops;
4176 getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
4178 if (!Ops.empty()) {
4179 // If the special register string was constructed of fields (as defined
4180 // in the ACLE) then need to lower to MRC node (32 bit) or
4181 // MRRC node(64 bit), we can make the distinction based on the number of
4182 // operands we have.
4183 unsigned Opcode;
4184 SmallVector<EVT, 3> ResTypes;
4185 if (Ops.size() == 5){
4186 Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
4187 ResTypes.append({ MVT::i32, MVT::Other });
4188 } else {
4189 assert(Ops.size() == 3 &&
4190 "Invalid number of fields in special register string.");
4191 Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
4192 ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
4195 Ops.push_back(getAL(CurDAG, DL));
4196 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4197 Ops.push_back(N->getOperand(0));
4198 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
4199 return true;
4202 std::string SpecialReg = RegString->getString().lower();
4204 int BankedReg = getBankedRegisterMask(SpecialReg);
4205 if (BankedReg != -1) {
4206 Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
4207 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4208 N->getOperand(0) };
4209 ReplaceNode(
4210 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
4211 DL, MVT::i32, MVT::Other, Ops));
4212 return true;
4215 // The VFP registers are read by creating SelectionDAG nodes with opcodes
4216 // corresponding to the register that is being read from. So we switch on the
4217 // string to find which opcode we need to use.
4218 unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
4219 .Case("fpscr", ARM::VMRS)
4220 .Case("fpexc", ARM::VMRS_FPEXC)
4221 .Case("fpsid", ARM::VMRS_FPSID)
4222 .Case("mvfr0", ARM::VMRS_MVFR0)
4223 .Case("mvfr1", ARM::VMRS_MVFR1)
4224 .Case("mvfr2", ARM::VMRS_MVFR2)
4225 .Case("fpinst", ARM::VMRS_FPINST)
4226 .Case("fpinst2", ARM::VMRS_FPINST2)
4227 .Default(0);
4229 // If an opcode was found then we can lower the read to a VFP instruction.
4230 if (Opcode) {
4231 if (!Subtarget->hasVFP2Base())
4232 return false;
4233 if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8Base())
4234 return false;
4236 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4237 N->getOperand(0) };
4238 ReplaceNode(N,
4239 CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
4240 return true;
4243 // If the target is M Class then need to validate that the register string
4244 // is an acceptable value, so check that a mask can be constructed from the
4245 // string.
4246 if (Subtarget->isMClass()) {
4247 int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
4248 if (SYSmValue == -1)
4249 return false;
4251 SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
4252 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4253 N->getOperand(0) };
4254 ReplaceNode(
4255 N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
4256 return true;
4259 // Here we know the target is not M Class so we need to check if it is one
4260 // of the remaining possible values which are apsr, cpsr or spsr.
4261 if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
4262 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4263 N->getOperand(0) };
4264 ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
4265 DL, MVT::i32, MVT::Other, Ops));
4266 return true;
4269 if (SpecialReg == "spsr") {
4270 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4271 N->getOperand(0) };
4272 ReplaceNode(
4273 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
4274 MVT::i32, MVT::Other, Ops));
4275 return true;
4278 return false;
4281 // Lower the write_register intrinsic to ARM specific DAG nodes
4282 // using the supplied metadata string to select the instruction node to use
4283 // and the registers/masks to use in the nodes
4284 bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
4285 const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
4286 const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
4287 bool IsThumb2 = Subtarget->isThumb2();
4288 SDLoc DL(N);
4290 std::vector<SDValue> Ops;
4291 getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
4293 if (!Ops.empty()) {
4294 // If the special register string was constructed of fields (as defined
4295 // in the ACLE) then need to lower to MCR node (32 bit) or
4296 // MCRR node(64 bit), we can make the distinction based on the number of
4297 // operands we have.
4298 unsigned Opcode;
4299 if (Ops.size() == 5) {
4300 Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
4301 Ops.insert(Ops.begin()+2, N->getOperand(2));
4302 } else {
4303 assert(Ops.size() == 3 &&
4304 "Invalid number of fields in special register string.");
4305 Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
4306 SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
4307 Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
4310 Ops.push_back(getAL(CurDAG, DL));
4311 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4312 Ops.push_back(N->getOperand(0));
4314 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
4315 return true;
4318 std::string SpecialReg = RegString->getString().lower();
4319 int BankedReg = getBankedRegisterMask(SpecialReg);
4320 if (BankedReg != -1) {
4321 Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
4322 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4323 N->getOperand(0) };
4324 ReplaceNode(
4325 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
4326 DL, MVT::Other, Ops));
4327 return true;
4330 // The VFP registers are written to by creating SelectionDAG nodes with
4331 // opcodes corresponding to the register that is being written. So we switch
4332 // on the string to find which opcode we need to use.
4333 unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
4334 .Case("fpscr", ARM::VMSR)
4335 .Case("fpexc", ARM::VMSR_FPEXC)
4336 .Case("fpsid", ARM::VMSR_FPSID)
4337 .Case("fpinst", ARM::VMSR_FPINST)
4338 .Case("fpinst2", ARM::VMSR_FPINST2)
4339 .Default(0);
4341 if (Opcode) {
4342 if (!Subtarget->hasVFP2Base())
4343 return false;
4344 Ops = { N->getOperand(2), getAL(CurDAG, DL),
4345 CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
4346 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
4347 return true;
4350 std::pair<StringRef, StringRef> Fields;
4351 Fields = StringRef(SpecialReg).rsplit('_');
4352 std::string Reg = Fields.first.str();
4353 StringRef Flags = Fields.second;
4355 // If the target was M Class then need to validate the special register value
4356 // and retrieve the mask for use in the instruction node.
4357 if (Subtarget->isMClass()) {
4358 int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
4359 if (SYSmValue == -1)
4360 return false;
4362 SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
4363 N->getOperand(2), getAL(CurDAG, DL),
4364 CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
4365 ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
4366 return true;
4369 // We then check to see if a valid mask can be constructed for one of the
4370 // register string values permitted for the A and R class cores. These values
4371 // are apsr, spsr and cpsr; these are also valid on older cores.
4372 int Mask = getARClassRegisterMask(Reg, Flags);
4373 if (Mask != -1) {
4374 Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
4375 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
4376 N->getOperand(0) };
4377 ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
4378 DL, MVT::Other, Ops));
4379 return true;
4382 return false;
4385 bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
4386 std::vector<SDValue> AsmNodeOperands;
4387 unsigned Flag, Kind;
4388 bool Changed = false;
4389 unsigned NumOps = N->getNumOperands();
4391 // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
4392 // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
4393 // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
4394 // respectively. Since there is no constraint to explicitly specify a
4395 // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
4396 // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
4397 // them into a GPRPair.
4399 SDLoc dl(N);
4400 SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
4401 : SDValue(nullptr,0);
4403 SmallVector<bool, 8> OpChanged;
4404 // Glue node will be appended late.
4405 for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
4406 SDValue op = N->getOperand(i);
4407 AsmNodeOperands.push_back(op);
4409 if (i < InlineAsm::Op_FirstOperand)
4410 continue;
4412 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
4413 Flag = C->getZExtValue();
4414 Kind = InlineAsm::getKind(Flag);
4416 else
4417 continue;
4419 // Immediate operands to inline asm in the SelectionDAG are modeled with
4420 // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
4421 // the second is a constant with the value of the immediate. If we get here
4422 // and we have a Kind_Imm, skip the next operand, and continue.
4423 if (Kind == InlineAsm::Kind_Imm) {
4424 SDValue op = N->getOperand(++i);
4425 AsmNodeOperands.push_back(op);
4426 continue;
4429 unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
4430 if (NumRegs)
4431 OpChanged.push_back(false);
4433 unsigned DefIdx = 0;
4434 bool IsTiedToChangedOp = false;
4435 // If it's a use that is tied with a previous def, it has no
4436 // reg class constraint.
4437 if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
4438 IsTiedToChangedOp = OpChanged[DefIdx];
4440 // Memory operands to inline asm in the SelectionDAG are modeled with two
4441 // operands: a constant of value InlineAsm::Kind_Mem followed by the input
4442 // operand. If we get here and we have a Kind_Mem, skip the next operand (so
4443 // it doesn't get misinterpreted), and continue. We do this here because
4444 // it's important to update the OpChanged array correctly before moving on.
4445 if (Kind == InlineAsm::Kind_Mem) {
4446 SDValue op = N->getOperand(++i);
4447 AsmNodeOperands.push_back(op);
4448 continue;
4451 if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
4452 && Kind != InlineAsm::Kind_RegDefEarlyClobber)
4453 continue;
4455 unsigned RC;
4456 bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
4457 if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
4458 || NumRegs != 2)
4459 continue;
4461 assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
4462 SDValue V0 = N->getOperand(i+1);
4463 SDValue V1 = N->getOperand(i+2);
4464 unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
4465 unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
4466 SDValue PairedReg;
4467 MachineRegisterInfo &MRI = MF->getRegInfo();
4469 if (Kind == InlineAsm::Kind_RegDef ||
4470 Kind == InlineAsm::Kind_RegDefEarlyClobber) {
4471 // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
4472 // the original GPRs.
4474 Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
4475 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
4476 SDValue Chain = SDValue(N,0);
4478 SDNode *GU = N->getGluedUser();
4479 SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
4480 Chain.getValue(1));
4482 // Extract values from a GPRPair reg and copy to the original GPR reg.
4483 SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
4484 RegCopy);
4485 SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
4486 RegCopy);
4487 SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
4488 RegCopy.getValue(1));
4489 SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
4491 // Update the original glue user.
4492 std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
4493 Ops.push_back(T1.getValue(1));
4494 CurDAG->UpdateNodeOperands(GU, Ops);
4496 else {
4497 // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
4498 // GPRPair and then pass the GPRPair to the inline asm.
4499 SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
4501 // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
4502 SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
4503 Chain.getValue(1));
4504 SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
4505 T0.getValue(1));
4506 SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
4508 // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
4509 // i32 VRs of inline asm with it.
4510 Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
4511 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
4512 Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
4514 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
4515 Glue = Chain.getValue(1);
4518 Changed = true;
4520 if(PairedReg.getNode()) {
4521 OpChanged[OpChanged.size() -1 ] = true;
4522 Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
4523 if (IsTiedToChangedOp)
4524 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
4525 else
4526 Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
4527 // Replace the current flag.
4528 AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
4529 Flag, dl, MVT::i32);
4530 // Add the new register node and skip the original two GPRs.
4531 AsmNodeOperands.push_back(PairedReg);
4532 // Skip the next two GPRs.
4533 i += 2;
4537 if (Glue.getNode())
4538 AsmNodeOperands.push_back(Glue);
4539 if (!Changed)
4540 return false;
4542 SDValue New = CurDAG->getNode(N->getOpcode(), SDLoc(N),
4543 CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
4544 New->setNodeId(-1);
4545 ReplaceNode(N, New.getNode());
4546 return true;
4550 bool ARMDAGToDAGISel::
4551 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
4552 std::vector<SDValue> &OutOps) {
4553 switch(ConstraintID) {
4554 default:
4555 llvm_unreachable("Unexpected asm memory constraint");
4556 case InlineAsm::Constraint_i:
4557 // FIXME: It seems strange that 'i' is needed here since it's supposed to
4558 // be an immediate and not a memory constraint.
4559 LLVM_FALLTHROUGH;
4560 case InlineAsm::Constraint_m:
4561 case InlineAsm::Constraint_o:
4562 case InlineAsm::Constraint_Q:
4563 case InlineAsm::Constraint_Um:
4564 case InlineAsm::Constraint_Un:
4565 case InlineAsm::Constraint_Uq:
4566 case InlineAsm::Constraint_Us:
4567 case InlineAsm::Constraint_Ut:
4568 case InlineAsm::Constraint_Uv:
4569 case InlineAsm::Constraint_Uy:
4570 // Require the address to be in a register. That is safe for all ARM
4571 // variants and it is hard to do anything much smarter without knowing
4572 // how the operand is used.
4573 OutOps.push_back(Op);
4574 return false;
4576 return true;
4579 /// createARMISelDag - This pass converts a legalized DAG into a
4580 /// ARM-specific DAG, ready for instruction scheduling.
4582 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
4583 CodeGenOpt::Level OptLevel) {
4584 return new ARMDAGToDAGISel(TM, OptLevel);