[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / ARM / ARMParallelDSP.cpp
blob5717a7102b692e20b42355936d62919f797a5069
1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/LoopAccessAnalysis.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/NoFolder.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/LoopUtils.h"
28 #include "llvm/Pass.h"
29 #include "llvm/PassRegistry.h"
30 #include "llvm/PassSupport.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "ARM.h"
35 #include "ARMSubtarget.h"
37 using namespace llvm;
38 using namespace PatternMatch;
40 #define DEBUG_TYPE "arm-parallel-dsp"
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46 cl::desc("Disable the ARM Parallel DSP pass"));
48 namespace {
49 struct MulCandidate;
50 class Reduction;
52 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
53 using MemInstList = SmallVectorImpl<LoadInst*>;
54 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
56 // 'MulCandidate' holds the multiplication instructions that are candidates
57 // for parallel execution.
58 struct MulCandidate {
59 Instruction *Root;
60 Value* LHS;
61 Value* RHS;
62 bool Exchange = false;
63 bool ReadOnly = true;
64 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen.
66 MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
67 Root(I), LHS(lhs), RHS(rhs) { }
69 bool HasTwoLoadInputs() const {
70 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
73 LoadInst *getBaseLoad() const {
74 return cast<LoadInst>(LHS);
78 /// Represent a sequence of multiply-accumulate operations with the aim to
79 /// perform the multiplications in parallel.
80 class Reduction {
81 Instruction *Root = nullptr;
82 Value *Acc = nullptr;
83 MulCandList Muls;
84 MulPairList MulPairs;
85 SmallPtrSet<Instruction*, 4> Adds;
87 public:
88 Reduction() = delete;
90 Reduction (Instruction *Add) : Root(Add) { }
92 /// Record an Add instruction that is a part of the this reduction.
93 void InsertAdd(Instruction *I) { Adds.insert(I); }
95 /// Record a MulCandidate, rooted at a Mul instruction, that is a part of
96 /// this reduction.
97 void InsertMul(Instruction *I, Value *LHS, Value *RHS) {
98 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
101 /// Add the incoming accumulator value, returns true if a value had not
102 /// already been added. Returning false signals to the user that this
103 /// reduction already has a value to initialise the accumulator.
104 bool InsertAcc(Value *V) {
105 if (Acc)
106 return false;
107 Acc = V;
108 return true;
111 /// Set two MulCandidates, rooted at muls, that can be executed as a single
112 /// parallel operation.
113 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1) {
114 MulPairs.push_back(std::make_pair(Mul0, Mul1));
117 /// Return true if enough mul operations are found that can be executed in
118 /// parallel.
119 bool CreateParallelPairs();
121 /// Return the add instruction which is the root of the reduction.
122 Instruction *getRoot() { return Root; }
124 bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
126 /// Return the incoming value to be accumulated. This maybe null.
127 Value *getAccumulator() { return Acc; }
129 /// Return the set of adds that comprise the reduction.
130 SmallPtrSetImpl<Instruction*> &getAdds() { return Adds; }
132 /// Return the MulCandidate, rooted at mul instruction, that comprise the
133 /// the reduction.
134 MulCandList &getMuls() { return Muls; }
136 /// Return the MulCandidate, rooted at mul instructions, that have been
137 /// paired for parallel execution.
138 MulPairList &getMulPairs() { return MulPairs; }
140 /// To finalise, replace the uses of the root with the intrinsic call.
141 void UpdateRoot(Instruction *SMLAD) {
142 Root->replaceAllUsesWith(SMLAD);
146 class WidenedLoad {
147 LoadInst *NewLd = nullptr;
148 SmallVector<LoadInst*, 4> Loads;
150 public:
151 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
152 : NewLd(Wide) {
153 for (auto *I : Lds)
154 Loads.push_back(I);
156 LoadInst *getLoad() {
157 return NewLd;
161 class ARMParallelDSP : public LoopPass {
162 ScalarEvolution *SE;
163 AliasAnalysis *AA;
164 TargetLibraryInfo *TLI;
165 DominatorTree *DT;
166 LoopInfo *LI;
167 Loop *L;
168 const DataLayout *DL;
169 Module *M;
170 std::map<LoadInst*, LoadInst*> LoadPairs;
171 SmallPtrSet<LoadInst*, 4> OffsetLoads;
172 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
174 template<unsigned>
175 bool IsNarrowSequence(Value *V, Value *&Src);
177 bool RecordMemoryOps(BasicBlock *BB);
178 void InsertParallelMACs(Reduction &Reduction);
179 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
180 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
181 bool CreateParallelPairs(Reduction &R);
183 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
184 /// Dual performs two signed 16x16-bit multiplications. It adds the
185 /// products to a 32-bit accumulate operand. Optionally, the instruction can
186 /// exchange the halfwords of the second operand before performing the
187 /// arithmetic.
188 bool MatchSMLAD(Loop *L);
190 public:
191 static char ID;
193 ARMParallelDSP() : LoopPass(ID) { }
195 bool doInitialization(Loop *L, LPPassManager &LPM) override {
196 LoadPairs.clear();
197 WideLoads.clear();
198 return true;
201 void getAnalysisUsage(AnalysisUsage &AU) const override {
202 LoopPass::getAnalysisUsage(AU);
203 AU.addRequired<AssumptionCacheTracker>();
204 AU.addRequired<ScalarEvolutionWrapperPass>();
205 AU.addRequired<AAResultsWrapperPass>();
206 AU.addRequired<TargetLibraryInfoWrapperPass>();
207 AU.addRequired<LoopInfoWrapperPass>();
208 AU.addRequired<DominatorTreeWrapperPass>();
209 AU.addRequired<TargetPassConfig>();
210 AU.addPreserved<LoopInfoWrapperPass>();
211 AU.setPreservesCFG();
214 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
215 if (DisableParallelDSP)
216 return false;
217 if (skipLoop(TheLoop))
218 return false;
220 L = TheLoop;
221 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
222 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
223 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
224 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
225 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
226 auto &TPC = getAnalysis<TargetPassConfig>();
228 BasicBlock *Header = TheLoop->getHeader();
229 if (!Header)
230 return false;
232 // TODO: We assume the loop header and latch to be the same block.
233 // This is not a fundamental restriction, but lifting this would just
234 // require more work to do the transformation and then patch up the CFG.
235 if (Header != TheLoop->getLoopLatch()) {
236 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
237 "running pass ARMParallelDSP\n");
238 return false;
241 if (!TheLoop->getLoopPreheader())
242 InsertPreheaderForLoop(L, DT, LI, nullptr, true);
244 Function &F = *Header->getParent();
245 M = F.getParent();
246 DL = &M->getDataLayout();
248 auto &TM = TPC.getTM<TargetMachine>();
249 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
251 if (!ST->allowsUnalignedMem()) {
252 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
253 "running pass ARMParallelDSP\n");
254 return false;
257 if (!ST->hasDSP()) {
258 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
259 "ARMParallelDSP\n");
260 return false;
263 if (!ST->isLittle()) {
264 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
265 << "ARMParallelDSP\n");
266 return false;
269 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
271 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
272 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
274 if (!RecordMemoryOps(Header)) {
275 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
276 return false;
279 bool Changes = MatchSMLAD(L);
280 return Changes;
285 template<typename MemInst>
286 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
287 const DataLayout &DL, ScalarEvolution &SE) {
288 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
289 return true;
290 return false;
293 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
294 MemInstList &VecMem) {
295 if (!Ld0 || !Ld1)
296 return false;
298 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
299 return false;
301 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
302 dbgs() << "Ld0:"; Ld0->dump();
303 dbgs() << "Ld1:"; Ld1->dump();
306 VecMem.clear();
307 VecMem.push_back(Ld0);
308 VecMem.push_back(Ld1);
309 return true;
312 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
313 // instructions, which is set to 16. So here we should collect all i8 and i16
314 // narrow operations.
315 // TODO: we currently only collect i16, and will support i8 later, so that's
316 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
317 template<unsigned MaxBitWidth>
318 bool ARMParallelDSP::IsNarrowSequence(Value *V, Value *&Src) {
319 if (auto *SExt = dyn_cast<SExtInst>(V)) {
320 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
321 return false;
323 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
324 // Check that these load could be paired.
325 if (!LoadPairs.count(Ld) && !OffsetLoads.count(Ld))
326 return false;
328 Src = Ld;
329 return true;
332 return false;
335 /// Iterate through the block and record base, offset pairs of loads which can
336 /// be widened into a single load.
337 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
338 SmallVector<LoadInst*, 8> Loads;
339 SmallVector<Instruction*, 8> Writes;
341 // Collect loads and instruction that may write to memory. For now we only
342 // record loads which are simple, sign-extended and have a single user.
343 // TODO: Allow zero-extended loads.
344 for (auto &I : *BB) {
345 if (I.mayWriteToMemory())
346 Writes.push_back(&I);
347 auto *Ld = dyn_cast<LoadInst>(&I);
348 if (!Ld || !Ld->isSimple() ||
349 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
350 continue;
351 Loads.push_back(Ld);
354 using InstSet = std::set<Instruction*>;
355 using DepMap = std::map<Instruction*, InstSet>;
356 DepMap RAWDeps;
358 // Record any writes that may alias a load.
359 const auto Size = LocationSize::unknown();
360 for (auto Read : Loads) {
361 for (auto Write : Writes) {
362 MemoryLocation ReadLoc =
363 MemoryLocation(Read->getPointerOperand(), Size);
365 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
366 ModRefInfo::ModRef)))
367 continue;
368 if (DT->dominates(Write, Read))
369 RAWDeps[Read].insert(Write);
373 // Check whether there's not a write between the two loads which would
374 // prevent them from being safely merged.
375 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
376 LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset;
377 LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base;
379 if (RAWDeps.count(Dominated)) {
380 InstSet &WritesBefore = RAWDeps[Dominated];
382 for (auto Before : WritesBefore) {
383 // We can't move the second load backward, past a write, to merge
384 // with the first load.
385 if (DT->dominates(Dominator, Before))
386 return false;
389 return true;
392 // Record base, offset load pairs.
393 for (auto *Base : Loads) {
394 for (auto *Offset : Loads) {
395 if (Base == Offset)
396 continue;
398 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
399 SafeToPair(Base, Offset)) {
400 LoadPairs[Base] = Offset;
401 OffsetLoads.insert(Offset);
402 break;
407 LLVM_DEBUG(if (!LoadPairs.empty()) {
408 dbgs() << "Consecutive load pairs:\n";
409 for (auto &MapIt : LoadPairs) {
410 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
411 << *MapIt.second << "\n");
414 return LoadPairs.size() > 1;
417 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
418 // multiplications.
419 // To use SMLAD:
420 // 1) we first need to find integer add then look for this pattern:
422 // acc0 = ...
423 // ld0 = load i16
424 // sext0 = sext i16 %ld0 to i32
425 // ld1 = load i16
426 // sext1 = sext i16 %ld1 to i32
427 // mul0 = mul %sext0, %sext1
428 // ld2 = load i16
429 // sext2 = sext i16 %ld2 to i32
430 // ld3 = load i16
431 // sext3 = sext i16 %ld3 to i32
432 // mul1 = mul i32 %sext2, %sext3
433 // add0 = add i32 %mul0, %acc0
434 // acc1 = add i32 %add0, %mul1
436 // Which can be selected to:
438 // ldr r0
439 // ldr r1
440 // smlad r2, r0, r1, r2
442 // If constants are used instead of loads, these will need to be hoisted
443 // out and into a register.
445 // If loop invariants are used instead of loads, these need to be packed
446 // before the loop begins.
448 bool ARMParallelDSP::MatchSMLAD(Loop *L) {
449 // Search recursively back through the operands to find a tree of values that
450 // form a multiply-accumulate chain. The search records the Add and Mul
451 // instructions that form the reduction and allows us to find a single value
452 // to be used as the initial input to the accumlator.
453 std::function<bool(Value*, Reduction&)> Search = [&]
454 (Value *V, Reduction &R) -> bool {
456 // If we find a non-instruction, try to use it as the initial accumulator
457 // value. This may have already been found during the search in which case
458 // this function will return false, signaling a search fail.
459 auto *I = dyn_cast<Instruction>(V);
460 if (!I)
461 return R.InsertAcc(V);
463 switch (I->getOpcode()) {
464 default:
465 break;
466 case Instruction::PHI:
467 // Could be the accumulator value.
468 return R.InsertAcc(V);
469 case Instruction::Add: {
470 // Adds should be adding together two muls, or another add and a mul to
471 // be within the mac chain. One of the operands may also be the
472 // accumulator value at which point we should stop searching.
473 bool ValidLHS = Search(I->getOperand(0), R);
474 bool ValidRHS = Search(I->getOperand(1), R);
475 if (!ValidLHS && !ValidLHS)
476 return false;
477 else if (ValidLHS && ValidRHS) {
478 R.InsertAdd(I);
479 return true;
480 } else {
481 R.InsertAdd(I);
482 return R.InsertAcc(I);
485 case Instruction::Mul: {
486 Value *MulOp0 = I->getOperand(0);
487 Value *MulOp1 = I->getOperand(1);
488 if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1)) {
489 Value *LHS = nullptr;
490 Value *RHS = nullptr;
491 if (IsNarrowSequence<16>(MulOp0, LHS) &&
492 IsNarrowSequence<16>(MulOp1, RHS)) {
493 R.InsertMul(I, LHS, RHS);
494 return true;
497 return false;
499 case Instruction::SExt:
500 return Search(I->getOperand(0), R);
502 return false;
505 bool Changed = false;
506 SmallPtrSet<Instruction*, 4> AllAdds;
507 BasicBlock *Latch = L->getLoopLatch();
509 for (Instruction &I : reverse(*Latch)) {
510 if (I.getOpcode() != Instruction::Add)
511 continue;
513 if (AllAdds.count(&I))
514 continue;
516 const auto *Ty = I.getType();
517 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
518 continue;
520 Reduction R(&I);
521 if (!Search(&I, R))
522 continue;
524 if (!CreateParallelPairs(R))
525 continue;
527 InsertParallelMACs(R);
528 Changed = true;
529 AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
532 return Changed;
535 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
537 // Not enough mul operations to make a pair.
538 if (R.getMuls().size() < 2)
539 return false;
541 // Check that the muls operate directly upon sign extended loads.
542 for (auto &MulCand : R.getMuls()) {
543 if (!MulCand->HasTwoLoadInputs())
544 return false;
547 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
548 // The first elements of each vector should be loads with sexts. If we
549 // find that its two pairs of consecutive loads, then these can be
550 // transformed into two wider loads and the users can be replaced with
551 // DSP intrinsics.
552 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
553 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
554 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
555 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
557 LLVM_DEBUG(dbgs() << "Loads:\n"
558 << " - " << *Ld0 << "\n"
559 << " - " << *Ld1 << "\n"
560 << " - " << *Ld2 << "\n"
561 << " - " << *Ld3 << "\n");
563 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
564 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
565 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
566 R.AddMulPair(PMul0, PMul1);
567 return true;
568 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
569 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
570 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
571 PMul1->Exchange = true;
572 R.AddMulPair(PMul0, PMul1);
573 return true;
575 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
576 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
578 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
579 LLVM_DEBUG(dbgs() << " and swapping muls\n");
580 PMul0->Exchange = true;
581 // Only the second operand can be exchanged, so swap the muls.
582 R.AddMulPair(PMul1, PMul0);
583 return true;
585 return false;
588 MulCandList &Muls = R.getMuls();
589 const unsigned Elems = Muls.size();
590 SmallPtrSet<const Instruction*, 4> Paired;
591 for (unsigned i = 0; i < Elems; ++i) {
592 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
593 if (Paired.count(PMul0->Root))
594 continue;
596 for (unsigned j = 0; j < Elems; ++j) {
597 if (i == j)
598 continue;
600 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
601 if (Paired.count(PMul1->Root))
602 continue;
604 const Instruction *Mul0 = PMul0->Root;
605 const Instruction *Mul1 = PMul1->Root;
606 if (Mul0 == Mul1)
607 continue;
609 assert(PMul0 != PMul1 && "expected different chains");
611 if (CanPair(R, PMul0, PMul1)) {
612 Paired.insert(Mul0);
613 Paired.insert(Mul1);
614 break;
618 return !R.getMulPairs().empty();
622 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
624 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
625 Value *Acc, bool Exchange,
626 Instruction *InsertAfter) {
627 // Replace the reduction chain with an intrinsic call
629 Value* Args[] = { WideLd0, WideLd1, Acc };
630 Function *SMLAD = nullptr;
631 if (Exchange)
632 SMLAD = Acc->getType()->isIntegerTy(32) ?
633 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
634 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
635 else
636 SMLAD = Acc->getType()->isIntegerTy(32) ?
637 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
640 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
641 ++BasicBlock::iterator(InsertAfter));
642 Instruction *Call = Builder.CreateCall(SMLAD, Args);
643 NumSMLAD++;
644 return Call;
647 Instruction *InsertAfter = R.getRoot();
648 Value *Acc = R.getAccumulator();
649 if (!Acc)
650 Acc = ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
652 IntegerType *Ty = IntegerType::get(M->getContext(), 32);
653 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter << "\n"
654 << "Acc: " << *Acc << "\n");
655 for (auto &Pair : R.getMulPairs()) {
656 MulCandidate *LHSMul = Pair.first;
657 MulCandidate *RHSMul = Pair.second;
658 LLVM_DEBUG(dbgs() << "Muls:\n"
659 << "- " << *LHSMul->Root << "\n"
660 << "- " << *RHSMul->Root << "\n");
661 LoadInst *BaseLHS = LHSMul->getBaseLoad();
662 LoadInst *BaseRHS = RHSMul->getBaseLoad();
663 LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
664 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
665 LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
666 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
668 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
669 InsertAfter = cast<Instruction>(Acc);
671 R.UpdateRoot(cast<Instruction>(Acc));
674 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
675 IntegerType *LoadTy) {
676 assert(Loads.size() == 2 && "currently only support widening two loads");
678 LoadInst *Base = Loads[0];
679 LoadInst *Offset = Loads[1];
681 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
682 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
684 assert((BaseSExt && OffsetSExt)
685 && "Loads should have a single, extending, user");
687 std::function<void(Value*, Value*)> MoveBefore =
688 [&](Value *A, Value *B) -> void {
689 if (!isa<Instruction>(A) || !isa<Instruction>(B))
690 return;
692 auto *Source = cast<Instruction>(A);
693 auto *Sink = cast<Instruction>(B);
695 if (DT->dominates(Source, Sink) ||
696 Source->getParent() != Sink->getParent() ||
697 isa<PHINode>(Source) || isa<PHINode>(Sink))
698 return;
700 Source->moveBefore(Sink);
701 for (auto &Op : Source->operands())
702 MoveBefore(Op, Source);
705 // Insert the load at the point of the original dominating load.
706 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
707 IRBuilder<NoFolder> IRB(DomLoad->getParent(),
708 ++BasicBlock::iterator(DomLoad));
710 // Bitcast the pointer to a wider type and create the wide load, while making
711 // sure to maintain the original alignment as this prevents ldrd from being
712 // generated when it could be illegal due to memory alignment.
713 const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
714 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
715 LoadTy->getPointerTo(AddrSpace));
716 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
717 Base->getAlignment());
719 // Make sure everything is in the correct order in the basic block.
720 MoveBefore(Base->getPointerOperand(), VecPtr);
721 MoveBefore(VecPtr, WideLoad);
723 // From the wide load, create two values that equal the original two loads.
724 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
725 // TODO: Support big-endian as well.
726 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
727 BaseSExt->setOperand(0, Bottom);
729 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
730 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
731 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
732 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
733 OffsetSExt->setOperand(0, Trunc);
735 WideLoads.emplace(std::make_pair(Base,
736 std::make_unique<WidenedLoad>(Loads, WideLoad)));
737 return WideLoad;
740 Pass *llvm::createARMParallelDSPPass() {
741 return new ARMParallelDSP();
744 char ARMParallelDSP::ID = 0;
746 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
747 "Transform loops to use DSP intrinsics", false, false)
748 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
749 "Transform loops to use DSP intrinsics", false, false)