1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/LoopAccessAnalysis.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/NoFolder.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/LoopUtils.h"
28 #include "llvm/Pass.h"
29 #include "llvm/PassRegistry.h"
30 #include "llvm/PassSupport.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "ARMSubtarget.h"
38 using namespace PatternMatch
;
40 #define DEBUG_TYPE "arm-parallel-dsp"
42 STATISTIC(NumSMLAD
, "Number of smlad instructions generated");
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden
, cl::init(false),
46 cl::desc("Disable the ARM Parallel DSP pass"));
52 using MulCandList
= SmallVector
<std::unique_ptr
<MulCandidate
>, 8>;
53 using MemInstList
= SmallVectorImpl
<LoadInst
*>;
54 using MulPairList
= SmallVector
<std::pair
<MulCandidate
*, MulCandidate
*>, 8>;
56 // 'MulCandidate' holds the multiplication instructions that are candidates
57 // for parallel execution.
62 bool Exchange
= false;
64 SmallVector
<LoadInst
*, 2> VecLd
; // Container for loads to widen.
66 MulCandidate(Instruction
*I
, Value
*lhs
, Value
*rhs
) :
67 Root(I
), LHS(lhs
), RHS(rhs
) { }
69 bool HasTwoLoadInputs() const {
70 return isa
<LoadInst
>(LHS
) && isa
<LoadInst
>(RHS
);
73 LoadInst
*getBaseLoad() const {
74 return cast
<LoadInst
>(LHS
);
78 /// Represent a sequence of multiply-accumulate operations with the aim to
79 /// perform the multiplications in parallel.
81 Instruction
*Root
= nullptr;
85 SmallPtrSet
<Instruction
*, 4> Adds
;
90 Reduction (Instruction
*Add
) : Root(Add
) { }
92 /// Record an Add instruction that is a part of the this reduction.
93 void InsertAdd(Instruction
*I
) { Adds
.insert(I
); }
95 /// Record a MulCandidate, rooted at a Mul instruction, that is a part of
97 void InsertMul(Instruction
*I
, Value
*LHS
, Value
*RHS
) {
98 Muls
.push_back(std::make_unique
<MulCandidate
>(I
, LHS
, RHS
));
101 /// Add the incoming accumulator value, returns true if a value had not
102 /// already been added. Returning false signals to the user that this
103 /// reduction already has a value to initialise the accumulator.
104 bool InsertAcc(Value
*V
) {
111 /// Set two MulCandidates, rooted at muls, that can be executed as a single
112 /// parallel operation.
113 void AddMulPair(MulCandidate
*Mul0
, MulCandidate
*Mul1
) {
114 MulPairs
.push_back(std::make_pair(Mul0
, Mul1
));
117 /// Return true if enough mul operations are found that can be executed in
119 bool CreateParallelPairs();
121 /// Return the add instruction which is the root of the reduction.
122 Instruction
*getRoot() { return Root
; }
124 bool is64Bit() const { return Root
->getType()->isIntegerTy(64); }
126 /// Return the incoming value to be accumulated. This maybe null.
127 Value
*getAccumulator() { return Acc
; }
129 /// Return the set of adds that comprise the reduction.
130 SmallPtrSetImpl
<Instruction
*> &getAdds() { return Adds
; }
132 /// Return the MulCandidate, rooted at mul instruction, that comprise the
134 MulCandList
&getMuls() { return Muls
; }
136 /// Return the MulCandidate, rooted at mul instructions, that have been
137 /// paired for parallel execution.
138 MulPairList
&getMulPairs() { return MulPairs
; }
140 /// To finalise, replace the uses of the root with the intrinsic call.
141 void UpdateRoot(Instruction
*SMLAD
) {
142 Root
->replaceAllUsesWith(SMLAD
);
147 LoadInst
*NewLd
= nullptr;
148 SmallVector
<LoadInst
*, 4> Loads
;
151 WidenedLoad(SmallVectorImpl
<LoadInst
*> &Lds
, LoadInst
*Wide
)
156 LoadInst
*getLoad() {
161 class ARMParallelDSP
: public LoopPass
{
164 TargetLibraryInfo
*TLI
;
168 const DataLayout
*DL
;
170 std::map
<LoadInst
*, LoadInst
*> LoadPairs
;
171 SmallPtrSet
<LoadInst
*, 4> OffsetLoads
;
172 std::map
<LoadInst
*, std::unique_ptr
<WidenedLoad
>> WideLoads
;
175 bool IsNarrowSequence(Value
*V
, Value
*&Src
);
177 bool RecordMemoryOps(BasicBlock
*BB
);
178 void InsertParallelMACs(Reduction
&Reduction
);
179 bool AreSequentialLoads(LoadInst
*Ld0
, LoadInst
*Ld1
, MemInstList
&VecMem
);
180 LoadInst
* CreateWideLoad(MemInstList
&Loads
, IntegerType
*LoadTy
);
181 bool CreateParallelPairs(Reduction
&R
);
183 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
184 /// Dual performs two signed 16x16-bit multiplications. It adds the
185 /// products to a 32-bit accumulate operand. Optionally, the instruction can
186 /// exchange the halfwords of the second operand before performing the
188 bool MatchSMLAD(Loop
*L
);
193 ARMParallelDSP() : LoopPass(ID
) { }
195 bool doInitialization(Loop
*L
, LPPassManager
&LPM
) override
{
201 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
202 LoopPass::getAnalysisUsage(AU
);
203 AU
.addRequired
<AssumptionCacheTracker
>();
204 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
205 AU
.addRequired
<AAResultsWrapperPass
>();
206 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
207 AU
.addRequired
<LoopInfoWrapperPass
>();
208 AU
.addRequired
<DominatorTreeWrapperPass
>();
209 AU
.addRequired
<TargetPassConfig
>();
210 AU
.addPreserved
<LoopInfoWrapperPass
>();
211 AU
.setPreservesCFG();
214 bool runOnLoop(Loop
*TheLoop
, LPPassManager
&) override
{
215 if (DisableParallelDSP
)
217 if (skipLoop(TheLoop
))
221 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
222 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
223 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
224 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
225 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
226 auto &TPC
= getAnalysis
<TargetPassConfig
>();
228 BasicBlock
*Header
= TheLoop
->getHeader();
232 // TODO: We assume the loop header and latch to be the same block.
233 // This is not a fundamental restriction, but lifting this would just
234 // require more work to do the transformation and then patch up the CFG.
235 if (Header
!= TheLoop
->getLoopLatch()) {
236 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
237 "running pass ARMParallelDSP\n");
241 if (!TheLoop
->getLoopPreheader())
242 InsertPreheaderForLoop(L
, DT
, LI
, nullptr, true);
244 Function
&F
= *Header
->getParent();
246 DL
= &M
->getDataLayout();
248 auto &TM
= TPC
.getTM
<TargetMachine
>();
249 auto *ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
251 if (!ST
->allowsUnalignedMem()) {
252 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
253 "running pass ARMParallelDSP\n");
258 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
263 if (!ST
->isLittle()) {
264 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
265 << "ARMParallelDSP\n");
269 LoopAccessInfo
LAI(L
, SE
, TLI
, AA
, DT
, LI
);
271 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
272 LLVM_DEBUG(dbgs() << " - " << F
.getName() << "\n\n");
274 if (!RecordMemoryOps(Header
)) {
275 LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
279 bool Changes
= MatchSMLAD(L
);
285 template<typename MemInst
>
286 static bool AreSequentialAccesses(MemInst
*MemOp0
, MemInst
*MemOp1
,
287 const DataLayout
&DL
, ScalarEvolution
&SE
) {
288 if (isConsecutiveAccess(MemOp0
, MemOp1
, DL
, SE
))
293 bool ARMParallelDSP::AreSequentialLoads(LoadInst
*Ld0
, LoadInst
*Ld1
,
294 MemInstList
&VecMem
) {
298 if (!LoadPairs
.count(Ld0
) || LoadPairs
[Ld0
] != Ld1
)
301 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
302 dbgs() << "Ld0:"; Ld0
->dump();
303 dbgs() << "Ld1:"; Ld1
->dump();
307 VecMem
.push_back(Ld0
);
308 VecMem
.push_back(Ld1
);
312 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
313 // instructions, which is set to 16. So here we should collect all i8 and i16
314 // narrow operations.
315 // TODO: we currently only collect i16, and will support i8 later, so that's
316 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
317 template<unsigned MaxBitWidth
>
318 bool ARMParallelDSP::IsNarrowSequence(Value
*V
, Value
*&Src
) {
319 if (auto *SExt
= dyn_cast
<SExtInst
>(V
)) {
320 if (SExt
->getSrcTy()->getIntegerBitWidth() != MaxBitWidth
)
323 if (auto *Ld
= dyn_cast
<LoadInst
>(SExt
->getOperand(0))) {
324 // Check that these load could be paired.
325 if (!LoadPairs
.count(Ld
) && !OffsetLoads
.count(Ld
))
335 /// Iterate through the block and record base, offset pairs of loads which can
336 /// be widened into a single load.
337 bool ARMParallelDSP::RecordMemoryOps(BasicBlock
*BB
) {
338 SmallVector
<LoadInst
*, 8> Loads
;
339 SmallVector
<Instruction
*, 8> Writes
;
341 // Collect loads and instruction that may write to memory. For now we only
342 // record loads which are simple, sign-extended and have a single user.
343 // TODO: Allow zero-extended loads.
344 for (auto &I
: *BB
) {
345 if (I
.mayWriteToMemory())
346 Writes
.push_back(&I
);
347 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
348 if (!Ld
|| !Ld
->isSimple() ||
349 !Ld
->hasOneUse() || !isa
<SExtInst
>(Ld
->user_back()))
354 using InstSet
= std::set
<Instruction
*>;
355 using DepMap
= std::map
<Instruction
*, InstSet
>;
358 // Record any writes that may alias a load.
359 const auto Size
= LocationSize::unknown();
360 for (auto Read
: Loads
) {
361 for (auto Write
: Writes
) {
362 MemoryLocation ReadLoc
=
363 MemoryLocation(Read
->getPointerOperand(), Size
);
365 if (!isModOrRefSet(intersectModRef(AA
->getModRefInfo(Write
, ReadLoc
),
366 ModRefInfo::ModRef
)))
368 if (DT
->dominates(Write
, Read
))
369 RAWDeps
[Read
].insert(Write
);
373 // Check whether there's not a write between the two loads which would
374 // prevent them from being safely merged.
375 auto SafeToPair
= [&](LoadInst
*Base
, LoadInst
*Offset
) {
376 LoadInst
*Dominator
= DT
->dominates(Base
, Offset
) ? Base
: Offset
;
377 LoadInst
*Dominated
= DT
->dominates(Base
, Offset
) ? Offset
: Base
;
379 if (RAWDeps
.count(Dominated
)) {
380 InstSet
&WritesBefore
= RAWDeps
[Dominated
];
382 for (auto Before
: WritesBefore
) {
383 // We can't move the second load backward, past a write, to merge
384 // with the first load.
385 if (DT
->dominates(Dominator
, Before
))
392 // Record base, offset load pairs.
393 for (auto *Base
: Loads
) {
394 for (auto *Offset
: Loads
) {
398 if (AreSequentialAccesses
<LoadInst
>(Base
, Offset
, *DL
, *SE
) &&
399 SafeToPair(Base
, Offset
)) {
400 LoadPairs
[Base
] = Offset
;
401 OffsetLoads
.insert(Offset
);
407 LLVM_DEBUG(if (!LoadPairs
.empty()) {
408 dbgs() << "Consecutive load pairs:\n";
409 for (auto &MapIt
: LoadPairs
) {
410 LLVM_DEBUG(dbgs() << *MapIt
.first
<< ", "
411 << *MapIt
.second
<< "\n");
414 return LoadPairs
.size() > 1;
417 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
420 // 1) we first need to find integer add then look for this pattern:
424 // sext0 = sext i16 %ld0 to i32
426 // sext1 = sext i16 %ld1 to i32
427 // mul0 = mul %sext0, %sext1
429 // sext2 = sext i16 %ld2 to i32
431 // sext3 = sext i16 %ld3 to i32
432 // mul1 = mul i32 %sext2, %sext3
433 // add0 = add i32 %mul0, %acc0
434 // acc1 = add i32 %add0, %mul1
436 // Which can be selected to:
440 // smlad r2, r0, r1, r2
442 // If constants are used instead of loads, these will need to be hoisted
443 // out and into a register.
445 // If loop invariants are used instead of loads, these need to be packed
446 // before the loop begins.
448 bool ARMParallelDSP::MatchSMLAD(Loop
*L
) {
449 // Search recursively back through the operands to find a tree of values that
450 // form a multiply-accumulate chain. The search records the Add and Mul
451 // instructions that form the reduction and allows us to find a single value
452 // to be used as the initial input to the accumlator.
453 std::function
<bool(Value
*, Reduction
&)> Search
= [&]
454 (Value
*V
, Reduction
&R
) -> bool {
456 // If we find a non-instruction, try to use it as the initial accumulator
457 // value. This may have already been found during the search in which case
458 // this function will return false, signaling a search fail.
459 auto *I
= dyn_cast
<Instruction
>(V
);
461 return R
.InsertAcc(V
);
463 switch (I
->getOpcode()) {
466 case Instruction::PHI
:
467 // Could be the accumulator value.
468 return R
.InsertAcc(V
);
469 case Instruction::Add
: {
470 // Adds should be adding together two muls, or another add and a mul to
471 // be within the mac chain. One of the operands may also be the
472 // accumulator value at which point we should stop searching.
473 bool ValidLHS
= Search(I
->getOperand(0), R
);
474 bool ValidRHS
= Search(I
->getOperand(1), R
);
475 if (!ValidLHS
&& !ValidLHS
)
477 else if (ValidLHS
&& ValidRHS
) {
482 return R
.InsertAcc(I
);
485 case Instruction::Mul
: {
486 Value
*MulOp0
= I
->getOperand(0);
487 Value
*MulOp1
= I
->getOperand(1);
488 if (isa
<SExtInst
>(MulOp0
) && isa
<SExtInst
>(MulOp1
)) {
489 Value
*LHS
= nullptr;
490 Value
*RHS
= nullptr;
491 if (IsNarrowSequence
<16>(MulOp0
, LHS
) &&
492 IsNarrowSequence
<16>(MulOp1
, RHS
)) {
493 R
.InsertMul(I
, LHS
, RHS
);
499 case Instruction::SExt
:
500 return Search(I
->getOperand(0), R
);
505 bool Changed
= false;
506 SmallPtrSet
<Instruction
*, 4> AllAdds
;
507 BasicBlock
*Latch
= L
->getLoopLatch();
509 for (Instruction
&I
: reverse(*Latch
)) {
510 if (I
.getOpcode() != Instruction::Add
)
513 if (AllAdds
.count(&I
))
516 const auto *Ty
= I
.getType();
517 if (!Ty
->isIntegerTy(32) && !Ty
->isIntegerTy(64))
524 if (!CreateParallelPairs(R
))
527 InsertParallelMACs(R
);
529 AllAdds
.insert(R
.getAdds().begin(), R
.getAdds().end());
535 bool ARMParallelDSP::CreateParallelPairs(Reduction
&R
) {
537 // Not enough mul operations to make a pair.
538 if (R
.getMuls().size() < 2)
541 // Check that the muls operate directly upon sign extended loads.
542 for (auto &MulCand
: R
.getMuls()) {
543 if (!MulCand
->HasTwoLoadInputs())
547 auto CanPair
= [&](Reduction
&R
, MulCandidate
*PMul0
, MulCandidate
*PMul1
) {
548 // The first elements of each vector should be loads with sexts. If we
549 // find that its two pairs of consecutive loads, then these can be
550 // transformed into two wider loads and the users can be replaced with
552 auto Ld0
= static_cast<LoadInst
*>(PMul0
->LHS
);
553 auto Ld1
= static_cast<LoadInst
*>(PMul1
->LHS
);
554 auto Ld2
= static_cast<LoadInst
*>(PMul0
->RHS
);
555 auto Ld3
= static_cast<LoadInst
*>(PMul1
->RHS
);
557 LLVM_DEBUG(dbgs() << "Loads:\n"
558 << " - " << *Ld0
<< "\n"
559 << " - " << *Ld1
<< "\n"
560 << " - " << *Ld2
<< "\n"
561 << " - " << *Ld3
<< "\n");
563 if (AreSequentialLoads(Ld0
, Ld1
, PMul0
->VecLd
)) {
564 if (AreSequentialLoads(Ld2
, Ld3
, PMul1
->VecLd
)) {
565 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
566 R
.AddMulPair(PMul0
, PMul1
);
568 } else if (AreSequentialLoads(Ld3
, Ld2
, PMul1
->VecLd
)) {
569 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
570 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
571 PMul1
->Exchange
= true;
572 R
.AddMulPair(PMul0
, PMul1
);
575 } else if (AreSequentialLoads(Ld1
, Ld0
, PMul0
->VecLd
) &&
576 AreSequentialLoads(Ld2
, Ld3
, PMul1
->VecLd
)) {
577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
578 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
579 LLVM_DEBUG(dbgs() << " and swapping muls\n");
580 PMul0
->Exchange
= true;
581 // Only the second operand can be exchanged, so swap the muls.
582 R
.AddMulPair(PMul1
, PMul0
);
588 MulCandList
&Muls
= R
.getMuls();
589 const unsigned Elems
= Muls
.size();
590 SmallPtrSet
<const Instruction
*, 4> Paired
;
591 for (unsigned i
= 0; i
< Elems
; ++i
) {
592 MulCandidate
*PMul0
= static_cast<MulCandidate
*>(Muls
[i
].get());
593 if (Paired
.count(PMul0
->Root
))
596 for (unsigned j
= 0; j
< Elems
; ++j
) {
600 MulCandidate
*PMul1
= static_cast<MulCandidate
*>(Muls
[j
].get());
601 if (Paired
.count(PMul1
->Root
))
604 const Instruction
*Mul0
= PMul0
->Root
;
605 const Instruction
*Mul1
= PMul1
->Root
;
609 assert(PMul0
!= PMul1
&& "expected different chains");
611 if (CanPair(R
, PMul0
, PMul1
)) {
618 return !R
.getMulPairs().empty();
622 void ARMParallelDSP::InsertParallelMACs(Reduction
&R
) {
624 auto CreateSMLAD
= [&](LoadInst
* WideLd0
, LoadInst
*WideLd1
,
625 Value
*Acc
, bool Exchange
,
626 Instruction
*InsertAfter
) {
627 // Replace the reduction chain with an intrinsic call
629 Value
* Args
[] = { WideLd0
, WideLd1
, Acc
};
630 Function
*SMLAD
= nullptr;
632 SMLAD
= Acc
->getType()->isIntegerTy(32) ?
633 Intrinsic::getDeclaration(M
, Intrinsic::arm_smladx
) :
634 Intrinsic::getDeclaration(M
, Intrinsic::arm_smlaldx
);
636 SMLAD
= Acc
->getType()->isIntegerTy(32) ?
637 Intrinsic::getDeclaration(M
, Intrinsic::arm_smlad
) :
638 Intrinsic::getDeclaration(M
, Intrinsic::arm_smlald
);
640 IRBuilder
<NoFolder
> Builder(InsertAfter
->getParent(),
641 ++BasicBlock::iterator(InsertAfter
));
642 Instruction
*Call
= Builder
.CreateCall(SMLAD
, Args
);
647 Instruction
*InsertAfter
= R
.getRoot();
648 Value
*Acc
= R
.getAccumulator();
650 Acc
= ConstantInt::get(IntegerType::get(M
->getContext(), 32), 0);
652 IntegerType
*Ty
= IntegerType::get(M
->getContext(), 32);
653 LLVM_DEBUG(dbgs() << "Root: " << *InsertAfter
<< "\n"
654 << "Acc: " << *Acc
<< "\n");
655 for (auto &Pair
: R
.getMulPairs()) {
656 MulCandidate
*LHSMul
= Pair
.first
;
657 MulCandidate
*RHSMul
= Pair
.second
;
658 LLVM_DEBUG(dbgs() << "Muls:\n"
659 << "- " << *LHSMul
->Root
<< "\n"
660 << "- " << *RHSMul
->Root
<< "\n");
661 LoadInst
*BaseLHS
= LHSMul
->getBaseLoad();
662 LoadInst
*BaseRHS
= RHSMul
->getBaseLoad();
663 LoadInst
*WideLHS
= WideLoads
.count(BaseLHS
) ?
664 WideLoads
[BaseLHS
]->getLoad() : CreateWideLoad(LHSMul
->VecLd
, Ty
);
665 LoadInst
*WideRHS
= WideLoads
.count(BaseRHS
) ?
666 WideLoads
[BaseRHS
]->getLoad() : CreateWideLoad(RHSMul
->VecLd
, Ty
);
668 Acc
= CreateSMLAD(WideLHS
, WideRHS
, Acc
, RHSMul
->Exchange
, InsertAfter
);
669 InsertAfter
= cast
<Instruction
>(Acc
);
671 R
.UpdateRoot(cast
<Instruction
>(Acc
));
674 LoadInst
* ARMParallelDSP::CreateWideLoad(MemInstList
&Loads
,
675 IntegerType
*LoadTy
) {
676 assert(Loads
.size() == 2 && "currently only support widening two loads");
678 LoadInst
*Base
= Loads
[0];
679 LoadInst
*Offset
= Loads
[1];
681 Instruction
*BaseSExt
= dyn_cast
<SExtInst
>(Base
->user_back());
682 Instruction
*OffsetSExt
= dyn_cast
<SExtInst
>(Offset
->user_back());
684 assert((BaseSExt
&& OffsetSExt
)
685 && "Loads should have a single, extending, user");
687 std::function
<void(Value
*, Value
*)> MoveBefore
=
688 [&](Value
*A
, Value
*B
) -> void {
689 if (!isa
<Instruction
>(A
) || !isa
<Instruction
>(B
))
692 auto *Source
= cast
<Instruction
>(A
);
693 auto *Sink
= cast
<Instruction
>(B
);
695 if (DT
->dominates(Source
, Sink
) ||
696 Source
->getParent() != Sink
->getParent() ||
697 isa
<PHINode
>(Source
) || isa
<PHINode
>(Sink
))
700 Source
->moveBefore(Sink
);
701 for (auto &Op
: Source
->operands())
702 MoveBefore(Op
, Source
);
705 // Insert the load at the point of the original dominating load.
706 LoadInst
*DomLoad
= DT
->dominates(Base
, Offset
) ? Base
: Offset
;
707 IRBuilder
<NoFolder
> IRB(DomLoad
->getParent(),
708 ++BasicBlock::iterator(DomLoad
));
710 // Bitcast the pointer to a wider type and create the wide load, while making
711 // sure to maintain the original alignment as this prevents ldrd from being
712 // generated when it could be illegal due to memory alignment.
713 const unsigned AddrSpace
= DomLoad
->getPointerAddressSpace();
714 Value
*VecPtr
= IRB
.CreateBitCast(Base
->getPointerOperand(),
715 LoadTy
->getPointerTo(AddrSpace
));
716 LoadInst
*WideLoad
= IRB
.CreateAlignedLoad(LoadTy
, VecPtr
,
717 Base
->getAlignment());
719 // Make sure everything is in the correct order in the basic block.
720 MoveBefore(Base
->getPointerOperand(), VecPtr
);
721 MoveBefore(VecPtr
, WideLoad
);
723 // From the wide load, create two values that equal the original two loads.
724 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
725 // TODO: Support big-endian as well.
726 Value
*Bottom
= IRB
.CreateTrunc(WideLoad
, Base
->getType());
727 BaseSExt
->setOperand(0, Bottom
);
729 IntegerType
*OffsetTy
= cast
<IntegerType
>(Offset
->getType());
730 Value
*ShiftVal
= ConstantInt::get(LoadTy
, OffsetTy
->getBitWidth());
731 Value
*Top
= IRB
.CreateLShr(WideLoad
, ShiftVal
);
732 Value
*Trunc
= IRB
.CreateTrunc(Top
, OffsetTy
);
733 OffsetSExt
->setOperand(0, Trunc
);
735 WideLoads
.emplace(std::make_pair(Base
,
736 std::make_unique
<WidenedLoad
>(Loads
, WideLoad
)));
740 Pass
*llvm::createARMParallelDSPPass() {
741 return new ARMParallelDSP();
744 char ARMParallelDSP::ID
= 0;
746 INITIALIZE_PASS_BEGIN(ARMParallelDSP
, "arm-parallel-dsp",
747 "Transform loops to use DSP intrinsics", false, false)
748 INITIALIZE_PASS_END(ARMParallelDSP
, "arm-parallel-dsp",
749 "Transform loops to use DSP intrinsics", false, false)