[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / ARM / ARMTargetMachine.cpp
bloba8b324cd0832eb42e8a85b1c88b7594073c92a08
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMMacroFusion.h"
15 #include "ARMSubtarget.h"
16 #include "ARMTargetObjectFile.h"
17 #include "ARMTargetTransformInfo.h"
18 #include "MCTargetDesc/ARMMCTargetDesc.h"
19 #include "TargetInfo/ARMTargetInfo.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetParser.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include <cassert>
51 #include <memory>
52 #include <string>
54 using namespace llvm;
56 static cl::opt<bool>
57 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
58 cl::desc("Inhibit optimization of S->D register accesses on A15"),
59 cl::init(false));
61 static cl::opt<bool>
62 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
63 cl::desc("Run SimplifyCFG after expanding atomic operations"
64 " to make use of cmpxchg flow-based information"),
65 cl::init(true));
67 static cl::opt<bool>
68 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
69 cl::desc("Enable ARM load/store optimization pass"),
70 cl::init(true));
72 // FIXME: Unify control over GlobalMerge.
73 static cl::opt<cl::boolOrDefault>
74 EnableGlobalMerge("arm-global-merge", cl::Hidden,
75 cl::desc("Enable the global merge pass"));
77 namespace llvm {
78 void initializeARMExecutionDomainFixPass(PassRegistry&);
81 extern "C" void LLVMInitializeARMTarget() {
82 // Register the target.
83 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
84 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
85 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
86 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
88 PassRegistry &Registry = *PassRegistry::getPassRegistry();
89 initializeGlobalISel(Registry);
90 initializeARMLoadStoreOptPass(Registry);
91 initializeARMPreAllocLoadStoreOptPass(Registry);
92 initializeARMParallelDSPPass(Registry);
93 initializeARMCodeGenPreparePass(Registry);
94 initializeARMConstantIslandsPass(Registry);
95 initializeARMExecutionDomainFixPass(Registry);
96 initializeARMExpandPseudoPass(Registry);
97 initializeThumb2SizeReducePass(Registry);
98 initializeMVEVPTBlockPass(Registry);
99 initializeARMLowOverheadLoopsPass(Registry);
102 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
103 if (TT.isOSBinFormatMachO())
104 return std::make_unique<TargetLoweringObjectFileMachO>();
105 if (TT.isOSWindows())
106 return std::make_unique<TargetLoweringObjectFileCOFF>();
107 return std::make_unique<ARMElfTargetObjectFile>();
110 static ARMBaseTargetMachine::ARMABI
111 computeTargetABI(const Triple &TT, StringRef CPU,
112 const TargetOptions &Options) {
113 StringRef ABIName = Options.MCOptions.getABIName();
115 if (ABIName.empty())
116 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
118 if (ABIName == "aapcs16")
119 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
120 else if (ABIName.startswith("aapcs"))
121 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
122 else if (ABIName.startswith("apcs"))
123 return ARMBaseTargetMachine::ARM_ABI_APCS;
125 llvm_unreachable("Unhandled/unknown ABI Name!");
126 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
129 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
130 const TargetOptions &Options,
131 bool isLittle) {
132 auto ABI = computeTargetABI(TT, CPU, Options);
133 std::string Ret;
135 if (isLittle)
136 // Little endian.
137 Ret += "e";
138 else
139 // Big endian.
140 Ret += "E";
142 Ret += DataLayout::getManglingComponent(TT);
144 // Pointers are 32 bits and aligned to 32 bits.
145 Ret += "-p:32:32";
147 // Function pointers are aligned to 8 bits (because the LSB stores the
148 // ARM/Thumb state).
149 Ret += "-Fi8";
151 // ABIs other than APCS have 64 bit integers with natural alignment.
152 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
153 Ret += "-i64:64";
155 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
156 // bits, others to 64 bits. We always try to align to 64 bits.
157 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
158 Ret += "-f64:32:64";
160 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
161 // to 64. We always ty to give them natural alignment.
162 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
163 Ret += "-v64:32:64-v128:32:128";
164 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
165 Ret += "-v128:64:128";
167 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
168 // particular hardware support on 32-bit ARM).
169 Ret += "-a:0:32";
171 // Integer registers are 32 bits.
172 Ret += "-n32";
174 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
175 // aligned everywhere else.
176 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
177 Ret += "-S128";
178 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
179 Ret += "-S64";
180 else
181 Ret += "-S32";
183 return Ret;
186 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
187 Optional<Reloc::Model> RM) {
188 if (!RM.hasValue())
189 // Default relocation model on Darwin is PIC.
190 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
192 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
193 assert(TT.isOSBinFormatELF() &&
194 "ROPI/RWPI currently only supported for ELF");
196 // DynamicNoPIC is only used on darwin.
197 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
198 return Reloc::Static;
200 return *RM;
203 /// Create an ARM architecture model.
205 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
206 StringRef CPU, StringRef FS,
207 const TargetOptions &Options,
208 Optional<Reloc::Model> RM,
209 Optional<CodeModel::Model> CM,
210 CodeGenOpt::Level OL, bool isLittle)
211 : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
212 CPU, FS, Options, getEffectiveRelocModel(TT, RM),
213 getEffectiveCodeModel(CM, CodeModel::Small), OL),
214 TargetABI(computeTargetABI(TT, CPU, Options)),
215 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
217 // Default to triple-appropriate float ABI
218 if (Options.FloatABIType == FloatABI::Default) {
219 if (isTargetHardFloat())
220 this->Options.FloatABIType = FloatABI::Hard;
221 else
222 this->Options.FloatABIType = FloatABI::Soft;
225 // Default to triple-appropriate EABI
226 if (Options.EABIVersion == EABI::Default ||
227 Options.EABIVersion == EABI::Unknown) {
228 // musl is compatible with glibc with regard to EABI version
229 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
230 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
231 TargetTriple.getEnvironment() == Triple::MuslEABI ||
232 TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
233 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
234 this->Options.EABIVersion = EABI::GNU;
235 else
236 this->Options.EABIVersion = EABI::EABI5;
239 if (TT.isOSBinFormatMachO()) {
240 this->Options.TrapUnreachable = true;
241 this->Options.NoTrapAfterNoreturn = true;
244 initAsmInfo();
247 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
249 const ARMSubtarget *
250 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
251 Attribute CPUAttr = F.getFnAttribute("target-cpu");
252 Attribute FSAttr = F.getFnAttribute("target-features");
254 std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
255 ? CPUAttr.getValueAsString().str()
256 : TargetCPU;
257 std::string FS = !FSAttr.hasAttribute(Attribute::None)
258 ? FSAttr.getValueAsString().str()
259 : TargetFS;
261 // FIXME: This is related to the code below to reset the target options,
262 // we need to know whether or not the soft float flag is set on the
263 // function before we can generate a subtarget. We also need to use
264 // it as a key for the subtarget since that can be the only difference
265 // between two functions.
266 bool SoftFloat =
267 F.getFnAttribute("use-soft-float").getValueAsString() == "true";
268 // If the soft float attribute is set on the function turn on the soft float
269 // subtarget feature.
270 if (SoftFloat)
271 FS += FS.empty() ? "+soft-float" : ",+soft-float";
273 // Use the optminsize to identify the subtarget, but don't use it in the
274 // feature string.
275 std::string Key = CPU + FS;
276 if (F.hasMinSize())
277 Key += "+minsize";
279 auto &I = SubtargetMap[Key];
280 if (!I) {
281 // This needs to be done before we create a new subtarget since any
282 // creation will depend on the TM and the code generation flags on the
283 // function that reside in TargetOptions.
284 resetTargetOptions(F);
285 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
286 F.hasMinSize());
288 if (!I->isThumb() && !I->hasARMOps())
289 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
290 "instructions, but the target does not support ARM mode execution.");
293 return I.get();
296 TargetTransformInfo
297 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
298 return TargetTransformInfo(ARMTTIImpl(this, F));
301 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
302 StringRef CPU, StringRef FS,
303 const TargetOptions &Options,
304 Optional<Reloc::Model> RM,
305 Optional<CodeModel::Model> CM,
306 CodeGenOpt::Level OL, bool JIT)
307 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
309 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
310 StringRef CPU, StringRef FS,
311 const TargetOptions &Options,
312 Optional<Reloc::Model> RM,
313 Optional<CodeModel::Model> CM,
314 CodeGenOpt::Level OL, bool JIT)
315 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
317 namespace {
319 /// ARM Code Generator Pass Configuration Options.
320 class ARMPassConfig : public TargetPassConfig {
321 public:
322 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
323 : TargetPassConfig(TM, PM) {
324 if (TM.getOptLevel() != CodeGenOpt::None) {
325 ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
326 TM.getTargetFeatureString());
327 if (STI.hasFeature(ARM::FeatureUseMISched))
328 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
332 ARMBaseTargetMachine &getARMTargetMachine() const {
333 return getTM<ARMBaseTargetMachine>();
336 ScheduleDAGInstrs *
337 createMachineScheduler(MachineSchedContext *C) const override {
338 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
339 // add DAG Mutations here.
340 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
341 if (ST.hasFusion())
342 DAG->addMutation(createARMMacroFusionDAGMutation());
343 return DAG;
346 ScheduleDAGInstrs *
347 createPostMachineScheduler(MachineSchedContext *C) const override {
348 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
349 // add DAG Mutations here.
350 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
351 if (ST.hasFusion())
352 DAG->addMutation(createARMMacroFusionDAGMutation());
353 return DAG;
356 void addIRPasses() override;
357 void addCodeGenPrepare() override;
358 bool addPreISel() override;
359 bool addInstSelector() override;
360 bool addIRTranslator() override;
361 bool addLegalizeMachineIR() override;
362 bool addRegBankSelect() override;
363 bool addGlobalInstructionSelect() override;
364 void addPreRegAlloc() override;
365 void addPreSched2() override;
366 void addPreEmitPass() override;
368 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
371 class ARMExecutionDomainFix : public ExecutionDomainFix {
372 public:
373 static char ID;
374 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
375 StringRef getPassName() const override {
376 return "ARM Execution Domain Fix";
379 char ARMExecutionDomainFix::ID;
381 } // end anonymous namespace
383 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
384 "ARM Execution Domain Fix", false, false)
385 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
386 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
387 "ARM Execution Domain Fix", false, false)
389 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
390 return new ARMPassConfig(*this, PM);
393 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
394 return getStandardCSEConfigForOpt(TM->getOptLevel());
397 void ARMPassConfig::addIRPasses() {
398 if (TM->Options.ThreadModel == ThreadModel::Single)
399 addPass(createLowerAtomicPass());
400 else
401 addPass(createAtomicExpandPass());
403 // Cmpxchg instructions are often used with a subsequent comparison to
404 // determine whether it succeeded. We can exploit existing control-flow in
405 // ldrex/strex loops to simplify this, but it needs tidying up.
406 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
407 addPass(createCFGSimplificationPass(
408 1, false, false, true, true, [this](const Function &F) {
409 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
410 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
411 }));
413 TargetPassConfig::addIRPasses();
415 // Run the parallel DSP pass.
416 if (getOptLevel() == CodeGenOpt::Aggressive)
417 addPass(createARMParallelDSPPass());
419 // Match interleaved memory accesses to ldN/stN intrinsics.
420 if (TM->getOptLevel() != CodeGenOpt::None)
421 addPass(createInterleavedAccessPass());
424 void ARMPassConfig::addCodeGenPrepare() {
425 if (getOptLevel() != CodeGenOpt::None)
426 addPass(createARMCodeGenPreparePass());
427 TargetPassConfig::addCodeGenPrepare();
430 bool ARMPassConfig::addPreISel() {
431 if ((TM->getOptLevel() != CodeGenOpt::None &&
432 EnableGlobalMerge == cl::BOU_UNSET) ||
433 EnableGlobalMerge == cl::BOU_TRUE) {
434 // FIXME: This is using the thumb1 only constant value for
435 // maximal global offset for merging globals. We may want
436 // to look into using the old value for non-thumb1 code of
437 // 4095 based on the TargetMachine, but this starts to become
438 // tricky when doing code gen per function.
439 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
440 (EnableGlobalMerge == cl::BOU_UNSET);
441 // Merging of extern globals is enabled by default on non-Mach-O as we
442 // expect it to be generally either beneficial or harmless. On Mach-O it
443 // is disabled as we emit the .subsections_via_symbols directive which
444 // means that merging extern globals is not safe.
445 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
446 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
447 MergeExternalByDefault));
450 if (TM->getOptLevel() != CodeGenOpt::None)
451 addPass(createHardwareLoopsPass());
453 return false;
456 bool ARMPassConfig::addInstSelector() {
457 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
458 return false;
461 bool ARMPassConfig::addIRTranslator() {
462 addPass(new IRTranslator());
463 return false;
466 bool ARMPassConfig::addLegalizeMachineIR() {
467 addPass(new Legalizer());
468 return false;
471 bool ARMPassConfig::addRegBankSelect() {
472 addPass(new RegBankSelect());
473 return false;
476 bool ARMPassConfig::addGlobalInstructionSelect() {
477 addPass(new InstructionSelect());
478 return false;
481 void ARMPassConfig::addPreRegAlloc() {
482 if (getOptLevel() != CodeGenOpt::None) {
483 addPass(createMLxExpansionPass());
485 if (EnableARMLoadStoreOpt)
486 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
488 if (!DisableA15SDOptimization)
489 addPass(createA15SDOptimizerPass());
493 void ARMPassConfig::addPreSched2() {
494 if (getOptLevel() != CodeGenOpt::None) {
495 if (EnableARMLoadStoreOpt)
496 addPass(createARMLoadStoreOptimizationPass());
498 addPass(new ARMExecutionDomainFix());
499 addPass(createBreakFalseDeps());
502 // Expand some pseudo instructions into multiple instructions to allow
503 // proper scheduling.
504 addPass(createARMExpandPseudoPass());
506 if (getOptLevel() != CodeGenOpt::None) {
507 // in v8, IfConversion depends on Thumb instruction widths
508 addPass(createThumb2SizeReductionPass([this](const Function &F) {
509 return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
510 }));
512 addPass(createIfConverter([](const MachineFunction &MF) {
513 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
514 }));
516 addPass(createMVEVPTBlockPass());
517 addPass(createThumb2ITBlockPass());
520 void ARMPassConfig::addPreEmitPass() {
521 addPass(createThumb2SizeReductionPass());
523 // Constant island pass work on unbundled instructions.
524 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
525 return MF.getSubtarget<ARMSubtarget>().isThumb2();
526 }));
528 // Don't optimize barriers at -O0.
529 if (getOptLevel() != CodeGenOpt::None)
530 addPass(createARMOptimizeBarriersPass());
532 addPass(createARMConstantIslandPass());
533 addPass(createARMLowOverheadLoopsPass());