[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / Hexagon / HexagonISelLowering.cpp
bloba443a29e061ef301b1cd9d6bb1808890564daa16
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <limits>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "hexagon-lowering"
67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
68 cl::init(true), cl::Hidden,
69 cl::desc("Control jump table emission on Hexagon target"));
71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
72 cl::Hidden, cl::ZeroOrMore, cl::init(false),
73 cl::desc("Enable Hexagon SDNode scheduling"));
75 static cl::opt<bool> EnableFastMath("ffast-math",
76 cl::Hidden, cl::ZeroOrMore, cl::init(false),
77 cl::desc("Enable Fast Math processing"));
79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
80 cl::Hidden, cl::ZeroOrMore, cl::init(5),
81 cl::desc("Set minimum jump tables"));
83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
84 cl::Hidden, cl::ZeroOrMore, cl::init(6),
85 cl::desc("Max #stores to inline memcpy"));
87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
88 cl::Hidden, cl::ZeroOrMore, cl::init(4),
89 cl::desc("Max #stores to inline memcpy"));
91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
92 cl::Hidden, cl::ZeroOrMore, cl::init(6),
93 cl::desc("Max #stores to inline memmove"));
95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
96 cl::Hidden, cl::ZeroOrMore, cl::init(4),
97 cl::desc("Max #stores to inline memmove"));
99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
100 cl::Hidden, cl::ZeroOrMore, cl::init(8),
101 cl::desc("Max #stores to inline memset"));
103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
104 cl::Hidden, cl::ZeroOrMore, cl::init(4),
105 cl::desc("Max #stores to inline memset"));
107 static cl::opt<bool> AlignLoads("hexagon-align-loads",
108 cl::Hidden, cl::init(false),
109 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
112 namespace {
114 class HexagonCCState : public CCState {
115 unsigned NumNamedVarArgParams = 0;
117 public:
118 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
119 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
120 unsigned NumNamedArgs)
121 : CCState(CC, IsVarArg, MF, locs, C),
122 NumNamedVarArgParams(NumNamedArgs) {}
123 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
126 } // end anonymous namespace
129 // Implement calling convention for Hexagon.
131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
132 CCValAssign::LocInfo &LocInfo,
133 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
134 static const MCPhysReg ArgRegs[] = {
135 Hexagon::R0, Hexagon::R1, Hexagon::R2,
136 Hexagon::R3, Hexagon::R4, Hexagon::R5
138 const unsigned NumArgRegs = array_lengthof(ArgRegs);
139 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
141 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
142 if (RegNum != NumArgRegs && RegNum % 2 == 1)
143 State.AllocateReg(ArgRegs[RegNum]);
145 // Always return false here, as this function only makes sure that the first
146 // unallocated register has an even register number and does not actually
147 // allocate a register for the current argument.
148 return false;
151 #include "HexagonGenCallingConv.inc"
154 SDValue
155 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
156 const {
157 return SDValue();
160 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
161 /// by "Src" to address "Dst" of size "Size". Alignment information is
162 /// specified by the specific parameter attribute. The copy will be passed as
163 /// a byval function parameter. Sometimes what we are copying is the end of a
164 /// larger object, the part that does not fit in registers.
165 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
166 SDValue Chain, ISD::ArgFlagsTy Flags,
167 SelectionDAG &DAG, const SDLoc &dl) {
168 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
169 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
170 /*isVolatile=*/false, /*AlwaysInline=*/false,
171 /*isTailCall=*/false,
172 MachinePointerInfo(), MachinePointerInfo());
175 bool
176 HexagonTargetLowering::CanLowerReturn(
177 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
178 const SmallVectorImpl<ISD::OutputArg> &Outs,
179 LLVMContext &Context) const {
180 SmallVector<CCValAssign, 16> RVLocs;
181 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
183 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
184 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
185 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
188 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
189 // passed by value, the function prototype is modified to return void and
190 // the value is stored in memory pointed by a pointer passed by caller.
191 SDValue
192 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
193 bool IsVarArg,
194 const SmallVectorImpl<ISD::OutputArg> &Outs,
195 const SmallVectorImpl<SDValue> &OutVals,
196 const SDLoc &dl, SelectionDAG &DAG) const {
197 // CCValAssign - represent the assignment of the return value to locations.
198 SmallVector<CCValAssign, 16> RVLocs;
200 // CCState - Info about the registers and stack slot.
201 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
202 *DAG.getContext());
204 // Analyze return values of ISD::RET
205 if (Subtarget.useHVXOps())
206 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
207 else
208 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
210 SDValue Flag;
211 SmallVector<SDValue, 4> RetOps(1, Chain);
213 // Copy the result values into the output registers.
214 for (unsigned i = 0; i != RVLocs.size(); ++i) {
215 CCValAssign &VA = RVLocs[i];
217 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
219 // Guarantee that all emitted copies are stuck together with flags.
220 Flag = Chain.getValue(1);
221 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
224 RetOps[0] = Chain; // Update chain.
226 // Add the flag if we have it.
227 if (Flag.getNode())
228 RetOps.push_back(Flag);
230 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
233 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
234 // If either no tail call or told not to tail call at all, don't.
235 auto Attr =
236 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
237 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
238 return false;
240 return true;
243 unsigned HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT,
244 SelectionDAG &DAG) const {
245 // Just support r19, the linux kernel uses it.
246 unsigned Reg = StringSwitch<unsigned>(RegName)
247 .Case("r19", Hexagon::R19)
248 .Default(0);
249 if (Reg)
250 return Reg;
252 report_fatal_error("Invalid register name global variable");
255 /// LowerCallResult - Lower the result values of an ISD::CALL into the
256 /// appropriate copies out of appropriate physical registers. This assumes that
257 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
258 /// being lowered. Returns a SDNode with the same number of values as the
259 /// ISD::CALL.
260 SDValue HexagonTargetLowering::LowerCallResult(
261 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
264 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
265 // Assign locations to each value returned by this call.
266 SmallVector<CCValAssign, 16> RVLocs;
268 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
269 *DAG.getContext());
271 if (Subtarget.useHVXOps())
272 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
273 else
274 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
276 // Copy all of the result registers out of their specified physreg.
277 for (unsigned i = 0; i != RVLocs.size(); ++i) {
278 SDValue RetVal;
279 if (RVLocs[i].getValVT() == MVT::i1) {
280 // Return values of type MVT::i1 require special handling. The reason
281 // is that MVT::i1 is associated with the PredRegs register class, but
282 // values of that type are still returned in R0. Generate an explicit
283 // copy into a predicate register from R0, and treat the value of the
284 // predicate register as the call result.
285 auto &MRI = DAG.getMachineFunction().getRegInfo();
286 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
287 MVT::i32, Glue);
288 // FR0 = (Value, Chain, Glue)
289 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
290 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
291 FR0.getValue(0), FR0.getValue(2));
292 // TPR = (Chain, Glue)
293 // Don't glue this CopyFromReg, because it copies from a virtual
294 // register. If it is glued to the call, InstrEmitter will add it
295 // as an implicit def to the call (EmitMachineNode).
296 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
297 Glue = TPR.getValue(1);
298 Chain = TPR.getValue(0);
299 } else {
300 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
301 RVLocs[i].getValVT(), Glue);
302 Glue = RetVal.getValue(2);
303 Chain = RetVal.getValue(1);
305 InVals.push_back(RetVal.getValue(0));
308 return Chain;
311 /// LowerCall - Functions arguments are copied from virtual regs to
312 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
313 SDValue
314 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
315 SmallVectorImpl<SDValue> &InVals) const {
316 SelectionDAG &DAG = CLI.DAG;
317 SDLoc &dl = CLI.DL;
318 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
319 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
320 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
321 SDValue Chain = CLI.Chain;
322 SDValue Callee = CLI.Callee;
323 CallingConv::ID CallConv = CLI.CallConv;
324 bool IsVarArg = CLI.IsVarArg;
325 bool DoesNotReturn = CLI.DoesNotReturn;
327 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
328 MachineFunction &MF = DAG.getMachineFunction();
329 MachineFrameInfo &MFI = MF.getFrameInfo();
330 auto PtrVT = getPointerTy(MF.getDataLayout());
332 unsigned NumParams = CLI.CS.getInstruction()
333 ? CLI.CS.getFunctionType()->getNumParams()
334 : 0;
335 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
336 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
338 // Analyze operands of the call, assigning locations to each operand.
339 SmallVector<CCValAssign, 16> ArgLocs;
340 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
341 NumParams);
343 if (Subtarget.useHVXOps())
344 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
345 else
346 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
348 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
349 if (Attr.getValueAsString() == "true")
350 CLI.IsTailCall = false;
352 if (CLI.IsTailCall) {
353 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
354 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
355 IsVarArg, IsStructRet, StructAttrFlag, Outs,
356 OutVals, Ins, DAG);
357 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
358 CCValAssign &VA = ArgLocs[i];
359 if (VA.isMemLoc()) {
360 CLI.IsTailCall = false;
361 break;
364 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
365 : "Argument must be passed on stack. "
366 "Not eligible for Tail Call\n"));
368 // Get a count of how many bytes are to be pushed on the stack.
369 unsigned NumBytes = CCInfo.getNextStackOffset();
370 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
371 SmallVector<SDValue, 8> MemOpChains;
373 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
374 SDValue StackPtr =
375 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
377 bool NeedsArgAlign = false;
378 unsigned LargestAlignSeen = 0;
379 // Walk the register/memloc assignments, inserting copies/loads.
380 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
381 CCValAssign &VA = ArgLocs[i];
382 SDValue Arg = OutVals[i];
383 ISD::ArgFlagsTy Flags = Outs[i].Flags;
384 // Record if we need > 8 byte alignment on an argument.
385 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
386 NeedsArgAlign |= ArgAlign;
388 // Promote the value if needed.
389 switch (VA.getLocInfo()) {
390 default:
391 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
392 llvm_unreachable("Unknown loc info!");
393 case CCValAssign::Full:
394 break;
395 case CCValAssign::BCvt:
396 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
397 break;
398 case CCValAssign::SExt:
399 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
400 break;
401 case CCValAssign::ZExt:
402 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
403 break;
404 case CCValAssign::AExt:
405 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
406 break;
409 if (VA.isMemLoc()) {
410 unsigned LocMemOffset = VA.getLocMemOffset();
411 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
412 StackPtr.getValueType());
413 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
414 if (ArgAlign)
415 LargestAlignSeen = std::max(LargestAlignSeen,
416 VA.getLocVT().getStoreSizeInBits() >> 3);
417 if (Flags.isByVal()) {
418 // The argument is a struct passed by value. According to LLVM, "Arg"
419 // is a pointer.
420 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
421 Flags, DAG, dl));
422 } else {
423 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
424 DAG.getMachineFunction(), LocMemOffset);
425 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
426 MemOpChains.push_back(S);
428 continue;
431 // Arguments that can be passed on register must be kept at RegsToPass
432 // vector.
433 if (VA.isRegLoc())
434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
437 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
438 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
439 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
440 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
441 MFI.ensureMaxAlignment(LargestAlignSeen);
443 // Transform all store nodes into one single node because all store
444 // nodes are independent of each other.
445 if (!MemOpChains.empty())
446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
448 SDValue Glue;
449 if (!CLI.IsTailCall) {
450 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
451 Glue = Chain.getValue(1);
454 // Build a sequence of copy-to-reg nodes chained together with token
455 // chain and flag operands which copy the outgoing args into registers.
456 // The Glue is necessary since all emitted instructions must be
457 // stuck together.
458 if (!CLI.IsTailCall) {
459 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
460 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
461 RegsToPass[i].second, Glue);
462 Glue = Chain.getValue(1);
464 } else {
465 // For tail calls lower the arguments to the 'real' stack slot.
467 // Force all the incoming stack arguments to be loaded from the stack
468 // before any new outgoing arguments are stored to the stack, because the
469 // outgoing stack slots may alias the incoming argument stack slots, and
470 // the alias isn't otherwise explicit. This is slightly more conservative
471 // than necessary, because it means that each store effectively depends
472 // on every argument instead of just those arguments it would clobber.
474 // Do not flag preceding copytoreg stuff together with the following stuff.
475 Glue = SDValue();
476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
477 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
478 RegsToPass[i].second, Glue);
479 Glue = Chain.getValue(1);
481 Glue = SDValue();
484 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
485 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
487 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
488 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
489 // node so that legalize doesn't hack it.
490 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
491 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
492 } else if (ExternalSymbolSDNode *S =
493 dyn_cast<ExternalSymbolSDNode>(Callee)) {
494 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
497 // Returns a chain & a flag for retval copy to use.
498 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
499 SmallVector<SDValue, 8> Ops;
500 Ops.push_back(Chain);
501 Ops.push_back(Callee);
503 // Add argument registers to the end of the list so that they are
504 // known live into the call.
505 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
506 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
507 RegsToPass[i].second.getValueType()));
510 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
511 assert(Mask && "Missing call preserved mask for calling convention");
512 Ops.push_back(DAG.getRegisterMask(Mask));
514 if (Glue.getNode())
515 Ops.push_back(Glue);
517 if (CLI.IsTailCall) {
518 MFI.setHasTailCall();
519 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
522 // Set this here because we need to know this for "hasFP" in frame lowering.
523 // The target-independent code calls getFrameRegister before setting it, and
524 // getFrameRegister uses hasFP to determine whether the function has FP.
525 MFI.setHasCalls(true);
527 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
528 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
529 Glue = Chain.getValue(1);
531 // Create the CALLSEQ_END node.
532 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
533 DAG.getIntPtrConstant(0, dl, true), Glue, dl);
534 Glue = Chain.getValue(1);
536 // Handle result values, copying them out of physregs into vregs that we
537 // return.
538 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
539 InVals, OutVals, Callee);
542 /// Returns true by value, base pointer and offset pointer and addressing
543 /// mode by reference if this node can be combined with a load / store to
544 /// form a post-indexed load / store.
545 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
546 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
547 SelectionDAG &DAG) const {
548 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
549 if (!LSN)
550 return false;
551 EVT VT = LSN->getMemoryVT();
552 if (!VT.isSimple())
553 return false;
554 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
555 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
556 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
557 VT == MVT::v4i16 || VT == MVT::v8i8 ||
558 Subtarget.isHVXVectorType(VT.getSimpleVT());
559 if (!IsLegalType)
560 return false;
562 if (Op->getOpcode() != ISD::ADD)
563 return false;
564 Base = Op->getOperand(0);
565 Offset = Op->getOperand(1);
566 if (!isa<ConstantSDNode>(Offset.getNode()))
567 return false;
568 AM = ISD::POST_INC;
570 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
571 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
574 SDValue
575 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
576 MachineFunction &MF = DAG.getMachineFunction();
577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
578 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
579 unsigned LR = HRI.getRARegister();
581 if ((Op.getOpcode() != ISD::INLINEASM &&
582 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
583 return Op;
585 unsigned NumOps = Op.getNumOperands();
586 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
587 --NumOps; // Ignore the flag operand.
589 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
590 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
591 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
592 ++i; // Skip the ID value.
594 switch (InlineAsm::getKind(Flags)) {
595 default:
596 llvm_unreachable("Bad flags!");
597 case InlineAsm::Kind_RegUse:
598 case InlineAsm::Kind_Imm:
599 case InlineAsm::Kind_Mem:
600 i += NumVals;
601 break;
602 case InlineAsm::Kind_Clobber:
603 case InlineAsm::Kind_RegDef:
604 case InlineAsm::Kind_RegDefEarlyClobber: {
605 for (; NumVals; --NumVals, ++i) {
606 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
607 if (Reg != LR)
608 continue;
609 HMFI.setHasClobberLR(true);
610 return Op;
612 break;
617 return Op;
620 // Need to transform ISD::PREFETCH into something that doesn't inherit
621 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
622 // SDNPMayStore.
623 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
624 SelectionDAG &DAG) const {
625 SDValue Chain = Op.getOperand(0);
626 SDValue Addr = Op.getOperand(1);
627 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
628 // if the "reg" is fed by an "add".
629 SDLoc DL(Op);
630 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
631 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
634 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
635 // is marked as having side-effects, while the register read on Hexagon does
636 // not have any. TableGen refuses to accept the direct pattern from that node
637 // to the A4_tfrcpp.
638 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
639 SelectionDAG &DAG) const {
640 SDValue Chain = Op.getOperand(0);
641 SDLoc dl(Op);
642 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
643 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
646 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
647 SelectionDAG &DAG) const {
648 SDValue Chain = Op.getOperand(0);
649 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
650 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
651 if (IntNo == Intrinsic::hexagon_prefetch) {
652 SDValue Addr = Op.getOperand(2);
653 SDLoc DL(Op);
654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
655 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
657 return SDValue();
660 SDValue
661 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
662 SelectionDAG &DAG) const {
663 SDValue Chain = Op.getOperand(0);
664 SDValue Size = Op.getOperand(1);
665 SDValue Align = Op.getOperand(2);
666 SDLoc dl(Op);
668 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
669 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
671 unsigned A = AlignConst->getSExtValue();
672 auto &HFI = *Subtarget.getFrameLowering();
673 // "Zero" means natural stack alignment.
674 if (A == 0)
675 A = HFI.getStackAlignment();
677 LLVM_DEBUG({
678 dbgs () << __func__ << " Align: " << A << " Size: ";
679 Size.getNode()->dump(&DAG);
680 dbgs() << "\n";
683 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
684 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
685 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
687 DAG.ReplaceAllUsesOfValueWith(Op, AA);
688 return AA;
691 SDValue HexagonTargetLowering::LowerFormalArguments(
692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
695 MachineFunction &MF = DAG.getMachineFunction();
696 MachineFrameInfo &MFI = MF.getFrameInfo();
697 MachineRegisterInfo &MRI = MF.getRegInfo();
699 // Assign locations to all of the incoming arguments.
700 SmallVector<CCValAssign, 16> ArgLocs;
701 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
702 MF.getFunction().getFunctionType()->getNumParams());
704 if (Subtarget.useHVXOps())
705 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
706 else
707 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
709 // For LLVM, in the case when returning a struct by value (>8byte),
710 // the first argument is a pointer that points to the location on caller's
711 // stack where the return value will be stored. For Hexagon, the location on
712 // caller's stack is passed only when the struct size is smaller than (and
713 // equal to) 8 bytes. If not, no address will be passed into callee and
714 // callee return the result direclty through R0/R1.
716 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
718 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
719 CCValAssign &VA = ArgLocs[i];
720 ISD::ArgFlagsTy Flags = Ins[i].Flags;
721 bool ByVal = Flags.isByVal();
723 // Arguments passed in registers:
724 // 1. 32- and 64-bit values and HVX vectors are passed directly,
725 // 2. Large structs are passed via an address, and the address is
726 // passed in a register.
727 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
728 llvm_unreachable("ByValSize must be bigger than 8 bytes");
730 bool InReg = VA.isRegLoc() &&
731 (!ByVal || (ByVal && Flags.getByValSize() > 8));
733 if (InReg) {
734 MVT RegVT = VA.getLocVT();
735 if (VA.getLocInfo() == CCValAssign::BCvt)
736 RegVT = VA.getValVT();
738 const TargetRegisterClass *RC = getRegClassFor(RegVT);
739 Register VReg = MRI.createVirtualRegister(RC);
740 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
742 // Treat values of type MVT::i1 specially: they are passed in
743 // registers of type i32, but they need to remain as values of
744 // type i1 for consistency of the argument lowering.
745 if (VA.getValVT() == MVT::i1) {
746 assert(RegVT.getSizeInBits() <= 32);
747 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
748 Copy, DAG.getConstant(1, dl, RegVT));
749 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
750 ISD::SETNE);
751 } else {
752 #ifndef NDEBUG
753 unsigned RegSize = RegVT.getSizeInBits();
754 assert(RegSize == 32 || RegSize == 64 ||
755 Subtarget.isHVXVectorType(RegVT));
756 #endif
758 InVals.push_back(Copy);
759 MRI.addLiveIn(VA.getLocReg(), VReg);
760 } else {
761 assert(VA.isMemLoc() && "Argument should be passed in memory");
763 // If it's a byval parameter, then we need to compute the
764 // "real" size, not the size of the pointer.
765 unsigned ObjSize = Flags.isByVal()
766 ? Flags.getByValSize()
767 : VA.getLocVT().getStoreSizeInBits() / 8;
769 // Create the frame index object for this incoming parameter.
770 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
771 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
772 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
774 if (Flags.isByVal()) {
775 // If it's a pass-by-value aggregate, then do not dereference the stack
776 // location. Instead, we should generate a reference to the stack
777 // location.
778 InVals.push_back(FIN);
779 } else {
780 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
781 MachinePointerInfo::getFixedStack(MF, FI, 0));
782 InVals.push_back(L);
788 if (IsVarArg) {
789 // This will point to the next argument passed via stack.
790 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
791 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
792 HMFI.setVarArgsFrameIndex(FI);
795 return Chain;
798 SDValue
799 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
800 // VASTART stores the address of the VarArgsFrameIndex slot into the
801 // memory location argument.
802 MachineFunction &MF = DAG.getMachineFunction();
803 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
804 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
805 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
806 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
807 MachinePointerInfo(SV));
810 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
811 const SDLoc &dl(Op);
812 SDValue LHS = Op.getOperand(0);
813 SDValue RHS = Op.getOperand(1);
814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815 MVT ResTy = ty(Op);
816 MVT OpTy = ty(LHS);
818 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
819 MVT ElemTy = OpTy.getVectorElementType();
820 assert(ElemTy.isScalarInteger());
821 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
822 OpTy.getVectorNumElements());
823 return DAG.getSetCC(dl, ResTy,
824 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
825 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
828 // Treat all other vector types as legal.
829 if (ResTy.isVector())
830 return Op;
832 // Comparisons of short integers should use sign-extend, not zero-extend,
833 // since we can represent small negative values in the compare instructions.
834 // The LLVM default is to use zero-extend arbitrarily in these cases.
835 auto isSExtFree = [this](SDValue N) {
836 switch (N.getOpcode()) {
837 case ISD::TRUNCATE: {
838 // A sign-extend of a truncate of a sign-extend is free.
839 SDValue Op = N.getOperand(0);
840 if (Op.getOpcode() != ISD::AssertSext)
841 return false;
842 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
843 unsigned ThisBW = ty(N).getSizeInBits();
844 unsigned OrigBW = OrigTy.getSizeInBits();
845 // The type that was sign-extended to get the AssertSext must be
846 // narrower than the type of N (so that N has still the same value
847 // as the original).
848 return ThisBW >= OrigBW;
850 case ISD::LOAD:
851 // We have sign-extended loads.
852 return true;
854 return false;
857 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
858 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
859 bool IsNegative = C && C->getAPIntValue().isNegative();
860 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
861 return DAG.getSetCC(dl, ResTy,
862 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
863 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
866 return SDValue();
869 SDValue
870 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
871 SDValue PredOp = Op.getOperand(0);
872 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
873 MVT OpTy = ty(Op1);
874 const SDLoc &dl(Op);
876 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
877 MVT ElemTy = OpTy.getVectorElementType();
878 assert(ElemTy.isScalarInteger());
879 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
880 OpTy.getVectorNumElements());
881 // Generate (trunc (select (_, sext, sext))).
882 return DAG.getSExtOrTrunc(
883 DAG.getSelect(dl, WideTy, PredOp,
884 DAG.getSExtOrTrunc(Op1, dl, WideTy),
885 DAG.getSExtOrTrunc(Op2, dl, WideTy)),
886 dl, OpTy);
889 return SDValue();
892 static Constant *convert_i1_to_i8(const Constant *ConstVal) {
893 SmallVector<Constant *, 128> NewConst;
894 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
895 if (!CV)
896 return nullptr;
898 LLVMContext &Ctx = ConstVal->getContext();
899 IRBuilder<> IRB(Ctx);
900 unsigned NumVectorElements = CV->getNumOperands();
901 assert(isPowerOf2_32(NumVectorElements) &&
902 "conversion only supported for pow2 VectorSize!");
904 for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
905 uint8_t x = 0;
906 for (unsigned j = 0; j < 8; ++j) {
907 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
908 x |= y << (7 - j);
910 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
911 NewConst.push_back(IRB.getInt8(x));
913 return ConstantVector::get(NewConst);
916 SDValue
917 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
918 EVT ValTy = Op.getValueType();
919 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
920 Constant *CVal = nullptr;
921 bool isVTi1Type = false;
922 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
923 Type *CValTy = ConstVal->getType();
924 if (CValTy->isVectorTy() &&
925 CValTy->getVectorElementType()->isIntegerTy(1)) {
926 CVal = convert_i1_to_i8(ConstVal);
927 isVTi1Type = (CVal != nullptr);
930 unsigned Align = CPN->getAlignment();
931 bool IsPositionIndependent = isPositionIndependent();
932 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
934 unsigned Offset = 0;
935 SDValue T;
936 if (CPN->isMachineConstantPoolEntry())
937 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
938 TF);
939 else if (isVTi1Type)
940 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
941 else
942 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
944 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
945 "Inconsistent target flag encountered");
947 if (IsPositionIndependent)
948 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
949 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
952 SDValue
953 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
954 EVT VT = Op.getValueType();
955 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
956 if (isPositionIndependent()) {
957 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
958 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
961 SDValue T = DAG.getTargetJumpTable(Idx, VT);
962 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
965 SDValue
966 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
967 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
968 MachineFunction &MF = DAG.getMachineFunction();
969 MachineFrameInfo &MFI = MF.getFrameInfo();
970 MFI.setReturnAddressIsTaken(true);
972 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
973 return SDValue();
975 EVT VT = Op.getValueType();
976 SDLoc dl(Op);
977 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
978 if (Depth) {
979 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
980 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
981 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
982 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
983 MachinePointerInfo());
986 // Return LR, which contains the return address. Mark it an implicit live-in.
987 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
988 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
991 SDValue
992 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
993 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
994 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
995 MFI.setFrameAddressIsTaken(true);
997 EVT VT = Op.getValueType();
998 SDLoc dl(Op);
999 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1000 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1001 HRI.getFrameRegister(), VT);
1002 while (Depth--)
1003 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1004 MachinePointerInfo());
1005 return FrameAddr;
1008 SDValue
1009 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1010 SDLoc dl(Op);
1011 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1014 SDValue
1015 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1016 SDLoc dl(Op);
1017 auto *GAN = cast<GlobalAddressSDNode>(Op);
1018 auto PtrVT = getPointerTy(DAG.getDataLayout());
1019 auto *GV = GAN->getGlobal();
1020 int64_t Offset = GAN->getOffset();
1022 auto &HLOF = *HTM.getObjFileLowering();
1023 Reloc::Model RM = HTM.getRelocationModel();
1025 if (RM == Reloc::Static) {
1026 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1027 const GlobalObject *GO = GV->getBaseObject();
1028 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1029 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1030 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1033 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1034 if (UsePCRel) {
1035 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1036 HexagonII::MO_PCREL);
1037 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1040 // Use GOT index.
1041 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1042 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1043 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1044 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1047 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1048 SDValue
1049 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1050 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1051 SDLoc dl(Op);
1052 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1054 Reloc::Model RM = HTM.getRelocationModel();
1055 if (RM == Reloc::Static) {
1056 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1057 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1060 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1061 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1064 SDValue
1065 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1066 const {
1067 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1068 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1069 HexagonII::MO_PCREL);
1070 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1073 SDValue
1074 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1075 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1076 unsigned char OperandFlags) const {
1077 MachineFunction &MF = DAG.getMachineFunction();
1078 MachineFrameInfo &MFI = MF.getFrameInfo();
1079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1080 SDLoc dl(GA);
1081 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1082 GA->getValueType(0),
1083 GA->getOffset(),
1084 OperandFlags);
1085 // Create Operands for the call.The Operands should have the following:
1086 // 1. Chain SDValue
1087 // 2. Callee which in this case is the Global address value.
1088 // 3. Registers live into the call.In this case its R0, as we
1089 // have just one argument to be passed.
1090 // 4. Glue.
1091 // Note: The order is important.
1093 const auto &HRI = *Subtarget.getRegisterInfo();
1094 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1095 assert(Mask && "Missing call preserved mask for calling convention");
1096 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1097 DAG.getRegisterMask(Mask), Glue };
1098 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1100 // Inform MFI that function has calls.
1101 MFI.setAdjustsStack(true);
1103 Glue = Chain.getValue(1);
1104 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1108 // Lower using the intial executable model for TLS addresses
1110 SDValue
1111 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1112 SelectionDAG &DAG) const {
1113 SDLoc dl(GA);
1114 int64_t Offset = GA->getOffset();
1115 auto PtrVT = getPointerTy(DAG.getDataLayout());
1117 // Get the thread pointer.
1118 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1120 bool IsPositionIndependent = isPositionIndependent();
1121 unsigned char TF =
1122 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1124 // First generate the TLS symbol address
1125 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1126 Offset, TF);
1128 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1130 if (IsPositionIndependent) {
1131 // Generate the GOT pointer in case of position independent code
1132 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1134 // Add the TLS Symbol address to GOT pointer.This gives
1135 // GOT relative relocation for the symbol.
1136 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1139 // Load the offset value for TLS symbol.This offset is relative to
1140 // thread pointer.
1141 SDValue LoadOffset =
1142 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1144 // Address of the thread local variable is the add of thread
1145 // pointer and the offset of the variable.
1146 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1150 // Lower using the local executable model for TLS addresses
1152 SDValue
1153 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1154 SelectionDAG &DAG) const {
1155 SDLoc dl(GA);
1156 int64_t Offset = GA->getOffset();
1157 auto PtrVT = getPointerTy(DAG.getDataLayout());
1159 // Get the thread pointer.
1160 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1161 // Generate the TLS symbol address
1162 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1163 HexagonII::MO_TPREL);
1164 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1166 // Address of the thread local variable is the add of thread
1167 // pointer and the offset of the variable.
1168 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1172 // Lower using the general dynamic model for TLS addresses
1174 SDValue
1175 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1176 SelectionDAG &DAG) const {
1177 SDLoc dl(GA);
1178 int64_t Offset = GA->getOffset();
1179 auto PtrVT = getPointerTy(DAG.getDataLayout());
1181 // First generate the TLS symbol address
1182 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1183 HexagonII::MO_GDGOT);
1185 // Then, generate the GOT pointer
1186 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1188 // Add the TLS symbol and the GOT pointer
1189 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1190 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1192 // Copy over the argument to R0
1193 SDValue InFlag;
1194 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1195 InFlag = Chain.getValue(1);
1197 unsigned Flags =
1198 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1199 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1200 : HexagonII::MO_GDPLT;
1202 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1203 Hexagon::R0, Flags);
1207 // Lower TLS addresses.
1209 // For now for dynamic models, we only support the general dynamic model.
1211 SDValue
1212 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1213 SelectionDAG &DAG) const {
1214 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1216 switch (HTM.getTLSModel(GA->getGlobal())) {
1217 case TLSModel::GeneralDynamic:
1218 case TLSModel::LocalDynamic:
1219 return LowerToTLSGeneralDynamicModel(GA, DAG);
1220 case TLSModel::InitialExec:
1221 return LowerToTLSInitialExecModel(GA, DAG);
1222 case TLSModel::LocalExec:
1223 return LowerToTLSLocalExecModel(GA, DAG);
1225 llvm_unreachable("Bogus TLS model");
1228 //===----------------------------------------------------------------------===//
1229 // TargetLowering Implementation
1230 //===----------------------------------------------------------------------===//
1232 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1233 const HexagonSubtarget &ST)
1234 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1235 Subtarget(ST) {
1236 auto &HRI = *Subtarget.getRegisterInfo();
1238 setPrefLoopAlignment(4);
1239 setPrefFunctionAlignment(4);
1240 setMinFunctionAlignment(2);
1241 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1242 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1243 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1245 setMaxAtomicSizeInBitsSupported(64);
1246 setMinCmpXchgSizeInBits(32);
1248 if (EnableHexSDNodeSched)
1249 setSchedulingPreference(Sched::VLIW);
1250 else
1251 setSchedulingPreference(Sched::Source);
1253 // Limits for inline expansion of memcpy/memmove
1254 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1255 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1256 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1257 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1258 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1259 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1262 // Set up register classes.
1265 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1266 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1267 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1268 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1269 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1270 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1271 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1272 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1273 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1274 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1275 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1277 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1278 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1281 // Handling of scalar operations.
1283 // All operations default to "legal", except:
1284 // - indexed loads and stores (pre-/post-incremented),
1285 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1286 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1287 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1288 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1289 // which default to "expand" for at least one type.
1291 // Misc operations.
1292 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1293 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1294 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1295 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1296 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1297 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1298 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1299 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1300 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1301 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1302 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1303 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1304 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1305 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1306 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1307 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1309 // Custom legalize GlobalAddress nodes into CONST32.
1310 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1311 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1312 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1314 // Hexagon needs to optimize cases with negative constants.
1315 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1316 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1317 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1318 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1320 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1321 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1322 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1323 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1324 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1326 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1327 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1328 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1330 if (EmitJumpTables)
1331 setMinimumJumpTableEntries(MinimumJumpTables);
1332 else
1333 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1334 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1336 setOperationAction(ISD::ABS, MVT::i32, Legal);
1337 setOperationAction(ISD::ABS, MVT::i64, Legal);
1339 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1340 // but they only operate on i64.
1341 for (MVT VT : MVT::integer_valuetypes()) {
1342 setOperationAction(ISD::UADDO, VT, Custom);
1343 setOperationAction(ISD::USUBO, VT, Custom);
1344 setOperationAction(ISD::SADDO, VT, Expand);
1345 setOperationAction(ISD::SSUBO, VT, Expand);
1346 setOperationAction(ISD::ADDCARRY, VT, Expand);
1347 setOperationAction(ISD::SUBCARRY, VT, Expand);
1349 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1350 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1352 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1353 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1354 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1355 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1357 // Popcount can count # of 1s in i64 but returns i32.
1358 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1359 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1360 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1361 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1363 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1364 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1365 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1366 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1368 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1369 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1370 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1371 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1373 for (unsigned IntExpOp :
1374 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1375 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1376 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1377 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1378 for (MVT VT : MVT::integer_valuetypes())
1379 setOperationAction(IntExpOp, VT, Expand);
1382 for (unsigned FPExpOp :
1383 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1384 ISD::FPOW, ISD::FCOPYSIGN}) {
1385 for (MVT VT : MVT::fp_valuetypes())
1386 setOperationAction(FPExpOp, VT, Expand);
1389 // No extending loads from i32.
1390 for (MVT VT : MVT::integer_valuetypes()) {
1391 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1392 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1393 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1395 // Turn FP truncstore into trunc + store.
1396 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1397 // Turn FP extload into load/fpextend.
1398 for (MVT VT : MVT::fp_valuetypes())
1399 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1401 // Expand BR_CC and SELECT_CC for all integer and fp types.
1402 for (MVT VT : MVT::integer_valuetypes()) {
1403 setOperationAction(ISD::BR_CC, VT, Expand);
1404 setOperationAction(ISD::SELECT_CC, VT, Expand);
1406 for (MVT VT : MVT::fp_valuetypes()) {
1407 setOperationAction(ISD::BR_CC, VT, Expand);
1408 setOperationAction(ISD::SELECT_CC, VT, Expand);
1410 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1413 // Handling of vector operations.
1416 // Set the action for vector operations to "expand", then override it with
1417 // either "custom" or "legal" for specific cases.
1418 static const unsigned VectExpOps[] = {
1419 // Integer arithmetic:
1420 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1421 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1422 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1423 // Logical/bit:
1424 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1425 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1426 // Floating point arithmetic/math functions:
1427 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1428 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1429 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1430 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1431 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1432 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1433 // Misc:
1434 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1435 // Vector:
1436 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1437 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1438 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1439 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
1442 for (MVT VT : MVT::vector_valuetypes()) {
1443 for (unsigned VectExpOp : VectExpOps)
1444 setOperationAction(VectExpOp, VT, Expand);
1446 // Expand all extending loads and truncating stores:
1447 for (MVT TargetVT : MVT::vector_valuetypes()) {
1448 if (TargetVT == VT)
1449 continue;
1450 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1451 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1452 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1453 setTruncStoreAction(VT, TargetVT, Expand);
1456 // Normalize all inputs to SELECT to be vectors of i32.
1457 if (VT.getVectorElementType() != MVT::i32) {
1458 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1459 setOperationAction(ISD::SELECT, VT, Promote);
1460 AddPromotedToType(ISD::SELECT, VT, VT32);
1462 setOperationAction(ISD::SRA, VT, Custom);
1463 setOperationAction(ISD::SHL, VT, Custom);
1464 setOperationAction(ISD::SRL, VT, Custom);
1467 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1468 // are legal.
1469 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1470 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1471 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1472 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1473 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1474 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1476 // Types natively supported:
1477 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1478 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1479 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1480 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1481 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1482 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1483 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1484 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1486 setOperationAction(ISD::ADD, NativeVT, Legal);
1487 setOperationAction(ISD::SUB, NativeVT, Legal);
1488 setOperationAction(ISD::MUL, NativeVT, Legal);
1489 setOperationAction(ISD::AND, NativeVT, Legal);
1490 setOperationAction(ISD::OR, NativeVT, Legal);
1491 setOperationAction(ISD::XOR, NativeVT, Legal);
1494 // Custom lower unaligned loads.
1495 // Also, for both loads and stores, verify the alignment of the address
1496 // in case it is a compile-time constant. This is a usability feature to
1497 // provide a meaningful error message to users.
1498 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1499 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1500 setOperationAction(ISD::LOAD, VT, Custom);
1501 setOperationAction(ISD::STORE, VT, Custom);
1504 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1505 MVT::v2i32}) {
1506 setCondCodeAction(ISD::SETNE, VT, Expand);
1507 setCondCodeAction(ISD::SETLE, VT, Expand);
1508 setCondCodeAction(ISD::SETGE, VT, Expand);
1509 setCondCodeAction(ISD::SETLT, VT, Expand);
1510 setCondCodeAction(ISD::SETULE, VT, Expand);
1511 setCondCodeAction(ISD::SETUGE, VT, Expand);
1512 setCondCodeAction(ISD::SETULT, VT, Expand);
1515 // Custom-lower bitcasts from i8 to v8i1.
1516 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1517 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1518 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
1519 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1520 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1521 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1522 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1524 // V5+.
1525 setOperationAction(ISD::FMA, MVT::f64, Expand);
1526 setOperationAction(ISD::FADD, MVT::f64, Expand);
1527 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1528 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1530 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1531 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1533 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1534 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1535 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1536 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1537 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1538 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1539 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1540 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1541 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1542 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1543 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1544 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1546 // Handling of indexed loads/stores: default is "expand".
1548 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1549 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1550 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1551 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1554 // Subtarget-specific operation actions.
1556 if (Subtarget.hasV60Ops()) {
1557 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1558 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1559 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1560 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1562 if (Subtarget.hasV66Ops()) {
1563 setOperationAction(ISD::FADD, MVT::f64, Legal);
1564 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1567 setTargetDAGCombine(ISD::VSELECT);
1569 if (Subtarget.useHVXOps())
1570 initializeHVXLowering();
1572 computeRegisterProperties(&HRI);
1575 // Library calls for unsupported operations
1577 bool FastMath = EnableFastMath;
1579 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1580 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1581 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1582 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1583 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1584 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1585 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1586 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1588 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1589 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1590 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1591 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1592 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1593 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1595 // This is the only fast library function for sqrtd.
1596 if (FastMath)
1597 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1599 // Prefix is: nothing for "slow-math",
1600 // "fast2_" for V5+ fast-math double-precision
1601 // (actually, keep fast-math and fast-math2 separate for now)
1602 if (FastMath) {
1603 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1604 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1605 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1606 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1607 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1608 } else {
1609 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1610 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1611 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1612 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1613 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1616 if (FastMath)
1617 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1618 else
1619 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1621 // These cause problems when the shift amount is non-constant.
1622 setLibcallName(RTLIB::SHL_I128, nullptr);
1623 setLibcallName(RTLIB::SRL_I128, nullptr);
1624 setLibcallName(RTLIB::SRA_I128, nullptr);
1627 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1628 switch ((HexagonISD::NodeType)Opcode) {
1629 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1630 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1631 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1632 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1633 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1634 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1635 case HexagonISD::CALL: return "HexagonISD::CALL";
1636 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1637 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1638 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1639 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1640 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1641 case HexagonISD::CP: return "HexagonISD::CP";
1642 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1643 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1644 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1645 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1646 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1647 case HexagonISD::JT: return "HexagonISD::JT";
1648 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1649 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1650 case HexagonISD::VASL: return "HexagonISD::VASL";
1651 case HexagonISD::VASR: return "HexagonISD::VASR";
1652 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1653 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT";
1654 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1655 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1656 case HexagonISD::VROR: return "HexagonISD::VROR";
1657 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1658 case HexagonISD::PTRUE: return "HexagonISD::PTRUE";
1659 case HexagonISD::PFALSE: return "HexagonISD::PFALSE";
1660 case HexagonISD::VZERO: return "HexagonISD::VZERO";
1661 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW";
1662 case HexagonISD::D2P: return "HexagonISD::D2P";
1663 case HexagonISD::P2D: return "HexagonISD::P2D";
1664 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1665 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1666 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1667 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1668 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1669 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1670 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1671 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1672 case HexagonISD::OP_END: break;
1674 return nullptr;
1677 void
1678 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1679 unsigned NeedAlign) const {
1680 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1681 if (!CA)
1682 return;
1683 unsigned Addr = CA->getZExtValue();
1684 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1685 if (HaveAlign < NeedAlign) {
1686 std::string ErrMsg;
1687 raw_string_ostream O(ErrMsg);
1688 O << "Misaligned constant address: " << format_hex(Addr, 10)
1689 << " has alignment " << HaveAlign
1690 << ", but the memory access requires " << NeedAlign;
1691 if (DebugLoc DL = dl.getDebugLoc())
1692 DL.print(O << ", at ");
1693 report_fatal_error(O.str());
1697 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1698 // intrinsic.
1699 static bool isBrevLdIntrinsic(const Value *Inst) {
1700 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1701 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1702 ID == Intrinsic::hexagon_L2_loadri_pbr ||
1703 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1704 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1705 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1706 ID == Intrinsic::hexagon_L2_loadrub_pbr);
1709 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1710 // instruction. So far we only handle bitcast, extract value and bit reverse
1711 // load intrinsic instructions. Should we handle CGEP ?
1712 static Value *getBrevLdObject(Value *V) {
1713 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1714 Operator::getOpcode(V) == Instruction::BitCast)
1715 V = cast<Operator>(V)->getOperand(0);
1716 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1717 V = cast<Instruction>(V)->getOperand(0);
1718 return V;
1721 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1722 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1723 // edge is returned.
1724 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1725 const BasicBlock *Parent = PN->getParent();
1726 int Idx = -1;
1727 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1728 BasicBlock *Blk = PN->getIncomingBlock(i);
1729 // Determine if the back edge is originated from intrinsic.
1730 if (Blk == Parent) {
1731 Value *BackEdgeVal = PN->getIncomingValue(i);
1732 Value *BaseVal;
1733 // Loop over till we return the same Value or we hit the IntrBaseVal.
1734 do {
1735 BaseVal = BackEdgeVal;
1736 BackEdgeVal = getBrevLdObject(BackEdgeVal);
1737 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1738 // If the getBrevLdObject returns IntrBaseVal, we should return the
1739 // incoming edge.
1740 if (IntrBaseVal == BackEdgeVal)
1741 continue;
1742 Idx = i;
1743 break;
1744 } else // Set the node to incoming edge.
1745 Idx = i;
1747 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1748 return PN->getIncomingValue(Idx);
1751 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1752 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1753 // memoperand might help alias analysis to figure out the dependencies.
1754 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1755 Value *IntrBaseVal = V;
1756 Value *BaseVal;
1757 // Loop over till we return the same Value, implies we either figure out
1758 // the object or we hit a PHI
1759 do {
1760 BaseVal = V;
1761 V = getBrevLdObject(V);
1762 } while (BaseVal != V);
1764 // Identify the object from PHINode.
1765 if (const PHINode *PN = dyn_cast<PHINode>(V))
1766 return returnEdge(PN, IntrBaseVal);
1767 // For non PHI nodes, the object is the last value returned by getBrevLdObject
1768 else
1769 return V;
1772 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1773 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1774 /// true and store the intrinsic information into the IntrinsicInfo that was
1775 /// passed to the function.
1776 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1777 const CallInst &I,
1778 MachineFunction &MF,
1779 unsigned Intrinsic) const {
1780 switch (Intrinsic) {
1781 case Intrinsic::hexagon_L2_loadrd_pbr:
1782 case Intrinsic::hexagon_L2_loadri_pbr:
1783 case Intrinsic::hexagon_L2_loadrh_pbr:
1784 case Intrinsic::hexagon_L2_loadruh_pbr:
1785 case Intrinsic::hexagon_L2_loadrb_pbr:
1786 case Intrinsic::hexagon_L2_loadrub_pbr: {
1787 Info.opc = ISD::INTRINSIC_W_CHAIN;
1788 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1789 auto &Cont = I.getCalledFunction()->getParent()->getContext();
1790 // The intrinsic function call is of the form { ElTy, i8* }
1791 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1792 // should be derived from ElTy.
1793 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1794 Info.memVT = MVT::getVT(ElTy);
1795 llvm::Value *BasePtrVal = I.getOperand(0);
1796 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1797 // The offset value comes through Modifier register. For now, assume the
1798 // offset is 0.
1799 Info.offset = 0;
1800 Info.align =
1801 MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)));
1802 Info.flags = MachineMemOperand::MOLoad;
1803 return true;
1805 case Intrinsic::hexagon_V6_vgathermw:
1806 case Intrinsic::hexagon_V6_vgathermw_128B:
1807 case Intrinsic::hexagon_V6_vgathermh:
1808 case Intrinsic::hexagon_V6_vgathermh_128B:
1809 case Intrinsic::hexagon_V6_vgathermhw:
1810 case Intrinsic::hexagon_V6_vgathermhw_128B:
1811 case Intrinsic::hexagon_V6_vgathermwq:
1812 case Intrinsic::hexagon_V6_vgathermwq_128B:
1813 case Intrinsic::hexagon_V6_vgathermhq:
1814 case Intrinsic::hexagon_V6_vgathermhq_128B:
1815 case Intrinsic::hexagon_V6_vgathermhwq:
1816 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1817 const Module &M = *I.getParent()->getParent()->getParent();
1818 Info.opc = ISD::INTRINSIC_W_CHAIN;
1819 Type *VecTy = I.getArgOperand(1)->getType();
1820 Info.memVT = MVT::getVT(VecTy);
1821 Info.ptrVal = I.getArgOperand(0);
1822 Info.offset = 0;
1823 Info.align =
1824 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
1825 Info.flags = MachineMemOperand::MOLoad |
1826 MachineMemOperand::MOStore |
1827 MachineMemOperand::MOVolatile;
1828 return true;
1830 default:
1831 break;
1833 return false;
1836 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1837 return X.getValueType().isScalarInteger(); // 'tstbit'
1840 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1841 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1844 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1845 if (!VT1.isSimple() || !VT2.isSimple())
1846 return false;
1847 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1850 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1851 return isOperationLegalOrCustom(ISD::FMA, VT);
1854 // Should we expand the build vector with shuffles?
1855 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1856 unsigned DefinedValues) const {
1857 return false;
1860 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1861 EVT VT) const {
1862 return true;
1865 TargetLoweringBase::LegalizeTypeAction
1866 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1867 if (VT.getVectorNumElements() == 1)
1868 return TargetLoweringBase::TypeScalarizeVector;
1870 // Always widen vectors of i1.
1871 MVT ElemTy = VT.getVectorElementType();
1872 if (ElemTy == MVT::i1)
1873 return TargetLoweringBase::TypeWidenVector;
1875 if (Subtarget.useHVXOps()) {
1876 // If the size of VT is at least half of the vector length,
1877 // widen the vector. Note: the threshold was not selected in
1878 // any scientific way.
1879 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1880 if (llvm::find(Tys, ElemTy) != Tys.end()) {
1881 unsigned HwWidth = 8*Subtarget.getVectorLength();
1882 unsigned VecWidth = VT.getSizeInBits();
1883 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1884 return TargetLoweringBase::TypeWidenVector;
1887 return TargetLoweringBase::TypeSplitVector;
1890 std::pair<SDValue, int>
1891 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1892 if (Addr.getOpcode() == ISD::ADD) {
1893 SDValue Op1 = Addr.getOperand(1);
1894 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1895 return { Addr.getOperand(0), CN->getSExtValue() };
1897 return { Addr, 0 };
1900 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
1901 // to select data from, V3 is the permutation.
1902 SDValue
1903 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1904 const {
1905 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1906 ArrayRef<int> AM = SVN->getMask();
1907 assert(AM.size() <= 8 && "Unexpected shuffle mask");
1908 unsigned VecLen = AM.size();
1910 MVT VecTy = ty(Op);
1911 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1912 "HVX shuffles should be legal");
1913 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1915 SDValue Op0 = Op.getOperand(0);
1916 SDValue Op1 = Op.getOperand(1);
1917 const SDLoc &dl(Op);
1919 // If the inputs are not the same as the output, bail. This is not an
1920 // error situation, but complicates the handling and the default expansion
1921 // (into BUILD_VECTOR) should be adequate.
1922 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1923 return SDValue();
1925 // Normalize the mask so that the first non-negative index comes from
1926 // the first operand.
1927 SmallVector<int,8> Mask(AM.begin(), AM.end());
1928 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1929 if (F == AM.size())
1930 return DAG.getUNDEF(VecTy);
1931 if (AM[F] >= int(VecLen)) {
1932 ShuffleVectorSDNode::commuteMask(Mask);
1933 std::swap(Op0, Op1);
1936 // Express the shuffle mask in terms of bytes.
1937 SmallVector<int,8> ByteMask;
1938 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
1939 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1940 int M = Mask[i];
1941 if (M < 0) {
1942 for (unsigned j = 0; j != ElemBytes; ++j)
1943 ByteMask.push_back(-1);
1944 } else {
1945 for (unsigned j = 0; j != ElemBytes; ++j)
1946 ByteMask.push_back(M*ElemBytes + j);
1949 assert(ByteMask.size() <= 8);
1951 // All non-undef (non-negative) indexes are well within [0..127], so they
1952 // fit in a single byte. Build two 64-bit words:
1953 // - MaskIdx where each byte is the corresponding index (for non-negative
1954 // indexes), and 0xFF for negative indexes, and
1955 // - MaskUnd that has 0xFF for each negative index.
1956 uint64_t MaskIdx = 0;
1957 uint64_t MaskUnd = 0;
1958 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
1959 unsigned S = 8*i;
1960 uint64_t M = ByteMask[i] & 0xFF;
1961 if (M == 0xFF)
1962 MaskUnd |= M << S;
1963 MaskIdx |= M << S;
1966 if (ByteMask.size() == 4) {
1967 // Identity.
1968 if (MaskIdx == (0x03020100 | MaskUnd))
1969 return Op0;
1970 // Byte swap.
1971 if (MaskIdx == (0x00010203 | MaskUnd)) {
1972 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
1973 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
1974 return DAG.getBitcast(VecTy, T1);
1977 // Byte packs.
1978 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
1979 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
1980 if (MaskIdx == (0x06040200 | MaskUnd))
1981 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
1982 if (MaskIdx == (0x07050301 | MaskUnd))
1983 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
1985 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
1986 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
1987 if (MaskIdx == (0x02000604 | MaskUnd))
1988 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
1989 if (MaskIdx == (0x03010705 | MaskUnd))
1990 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
1993 if (ByteMask.size() == 8) {
1994 // Identity.
1995 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
1996 return Op0;
1997 // Byte swap.
1998 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
1999 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2000 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2001 return DAG.getBitcast(VecTy, T1);
2004 // Halfword picks.
2005 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2006 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2007 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2008 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2009 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2010 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2011 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2012 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2013 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2014 VectorPair P = opSplit(Op0, dl, DAG);
2015 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2018 // Byte packs.
2019 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2020 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2021 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2022 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2025 return SDValue();
2028 // Create a Hexagon-specific node for shifting a vector by an integer.
2029 SDValue
2030 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2031 const {
2032 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2033 if (SDValue S = BVN->getSplatValue()) {
2034 unsigned NewOpc;
2035 switch (Op.getOpcode()) {
2036 case ISD::SHL:
2037 NewOpc = HexagonISD::VASL;
2038 break;
2039 case ISD::SRA:
2040 NewOpc = HexagonISD::VASR;
2041 break;
2042 case ISD::SRL:
2043 NewOpc = HexagonISD::VLSR;
2044 break;
2045 default:
2046 llvm_unreachable("Unexpected shift opcode");
2048 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2052 return SDValue();
2055 SDValue
2056 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2057 return getVectorShiftByInt(Op, DAG);
2060 SDValue
2061 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2062 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2063 return Op;
2064 return SDValue();
2067 SDValue
2068 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2069 MVT ResTy = ty(Op);
2070 SDValue InpV = Op.getOperand(0);
2071 MVT InpTy = ty(InpV);
2072 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2073 const SDLoc &dl(Op);
2075 // Handle conversion from i8 to v8i1.
2076 if (ResTy == MVT::v8i1) {
2077 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2078 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2079 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2082 return SDValue();
2085 bool
2086 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2087 MVT VecTy, SelectionDAG &DAG,
2088 MutableArrayRef<ConstantInt*> Consts) const {
2089 MVT ElemTy = VecTy.getVectorElementType();
2090 unsigned ElemWidth = ElemTy.getSizeInBits();
2091 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2092 bool AllConst = true;
2094 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2095 SDValue V = Values[i];
2096 if (V.isUndef()) {
2097 Consts[i] = ConstantInt::get(IntTy, 0);
2098 continue;
2100 // Make sure to always cast to IntTy.
2101 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2102 const ConstantInt *CI = CN->getConstantIntValue();
2103 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2104 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2105 const ConstantFP *CF = CN->getConstantFPValue();
2106 APInt A = CF->getValueAPF().bitcastToAPInt();
2107 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2108 } else {
2109 AllConst = false;
2112 return AllConst;
2115 SDValue
2116 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2117 MVT VecTy, SelectionDAG &DAG) const {
2118 MVT ElemTy = VecTy.getVectorElementType();
2119 assert(VecTy.getVectorNumElements() == Elem.size());
2121 SmallVector<ConstantInt*,4> Consts(Elem.size());
2122 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2124 unsigned First, Num = Elem.size();
2125 for (First = 0; First != Num; ++First)
2126 if (!isUndef(Elem[First]))
2127 break;
2128 if (First == Num)
2129 return DAG.getUNDEF(VecTy);
2131 if (AllConst &&
2132 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2133 return getZero(dl, VecTy, DAG);
2135 if (ElemTy == MVT::i16) {
2136 assert(Elem.size() == 2);
2137 if (AllConst) {
2138 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2139 Consts[1]->getZExtValue() << 16;
2140 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2142 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2143 {Elem[1], Elem[0]}, DAG);
2144 return DAG.getBitcast(MVT::v2i16, N);
2147 if (ElemTy == MVT::i8) {
2148 // First try generating a constant.
2149 if (AllConst) {
2150 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2151 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2152 (Consts[1]->getZExtValue() & 0xFF) << 16 |
2153 Consts[2]->getZExtValue() << 24;
2154 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2157 // Then try splat.
2158 bool IsSplat = true;
2159 for (unsigned i = 0; i != Num; ++i) {
2160 if (i == First)
2161 continue;
2162 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2163 continue;
2164 IsSplat = false;
2165 break;
2167 if (IsSplat) {
2168 // Legalize the operand to VSPLAT.
2169 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2170 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2173 // Generate
2174 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2175 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2176 assert(Elem.size() == 4);
2177 SDValue Vs[4];
2178 for (unsigned i = 0; i != 4; ++i) {
2179 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2180 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2182 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2183 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2184 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2185 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2186 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2188 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2189 return DAG.getBitcast(MVT::v4i8, R);
2192 #ifndef NDEBUG
2193 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2194 #endif
2195 llvm_unreachable("Unexpected vector element type");
2198 SDValue
2199 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2200 MVT VecTy, SelectionDAG &DAG) const {
2201 MVT ElemTy = VecTy.getVectorElementType();
2202 assert(VecTy.getVectorNumElements() == Elem.size());
2204 SmallVector<ConstantInt*,8> Consts(Elem.size());
2205 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2207 unsigned First, Num = Elem.size();
2208 for (First = 0; First != Num; ++First)
2209 if (!isUndef(Elem[First]))
2210 break;
2211 if (First == Num)
2212 return DAG.getUNDEF(VecTy);
2214 if (AllConst &&
2215 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2216 return getZero(dl, VecTy, DAG);
2218 // First try splat if possible.
2219 if (ElemTy == MVT::i16) {
2220 bool IsSplat = true;
2221 for (unsigned i = 0; i != Num; ++i) {
2222 if (i == First)
2223 continue;
2224 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2225 continue;
2226 IsSplat = false;
2227 break;
2229 if (IsSplat) {
2230 // Legalize the operand to VSPLAT.
2231 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2232 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2236 // Then try constant.
2237 if (AllConst) {
2238 uint64_t Val = 0;
2239 unsigned W = ElemTy.getSizeInBits();
2240 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
2241 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2242 for (unsigned i = 0; i != Num; ++i)
2243 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2244 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2245 return DAG.getBitcast(VecTy, V0);
2248 // Build two 32-bit vectors and concatenate.
2249 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2250 SDValue L = (ElemTy == MVT::i32)
2251 ? Elem[0]
2252 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2253 SDValue H = (ElemTy == MVT::i32)
2254 ? Elem[1]
2255 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2256 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2259 SDValue
2260 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2261 const SDLoc &dl, MVT ValTy, MVT ResTy,
2262 SelectionDAG &DAG) const {
2263 MVT VecTy = ty(VecV);
2264 assert(!ValTy.isVector() ||
2265 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2266 unsigned VecWidth = VecTy.getSizeInBits();
2267 unsigned ValWidth = ValTy.getSizeInBits();
2268 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2269 assert((VecWidth % ElemWidth) == 0);
2270 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2272 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2273 // without any coprocessors).
2274 if (ElemWidth == 1) {
2275 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2276 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2277 // Check if this is an extract of the lowest bit.
2278 if (IdxN) {
2279 // Extracting the lowest bit is a no-op, but it changes the type,
2280 // so it must be kept as an operation to avoid errors related to
2281 // type mismatches.
2282 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2283 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2286 // If the value extracted is a single bit, use tstbit.
2287 if (ValWidth == 1) {
2288 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2289 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2290 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2291 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2294 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2295 // a predicate register. The elements of the vector are repeated
2296 // in the register (if necessary) so that the total number is 8.
2297 // The extracted subvector will need to be expanded in such a way.
2298 unsigned Scale = VecWidth / ValWidth;
2300 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2301 // position 0.
2302 assert(ty(IdxV) == MVT::i32);
2303 unsigned VecRep = 8 / VecWidth;
2304 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2305 DAG.getConstant(8*VecRep, dl, MVT::i32));
2306 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2307 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2308 while (Scale > 1) {
2309 // The longest possible subvector is at most 32 bits, so it is always
2310 // contained in the low subregister.
2311 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2312 T1 = expandPredicate(T1, dl, DAG);
2313 Scale /= 2;
2316 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2319 assert(VecWidth == 32 || VecWidth == 64);
2321 // Cast everything to scalar integer types.
2322 MVT ScalarTy = tyScalar(VecTy);
2323 VecV = DAG.getBitcast(ScalarTy, VecV);
2325 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2326 SDValue ExtV;
2328 if (IdxN) {
2329 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2330 if (VecWidth == 64 && ValWidth == 32) {
2331 assert(Off == 0 || Off == 32);
2332 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2333 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2334 } else if (Off == 0 && (ValWidth % 8) == 0) {
2335 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2336 } else {
2337 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2338 // The return type of EXTRACTU must be the same as the type of the
2339 // input vector.
2340 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2341 {VecV, WidthV, OffV});
2343 } else {
2344 if (ty(IdxV) != MVT::i32)
2345 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2346 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2347 DAG.getConstant(ElemWidth, dl, MVT::i32));
2348 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2349 {VecV, WidthV, OffV});
2352 // Cast ExtV to the requested result type.
2353 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2354 ExtV = DAG.getBitcast(ResTy, ExtV);
2355 return ExtV;
2358 SDValue
2359 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2360 const SDLoc &dl, MVT ValTy,
2361 SelectionDAG &DAG) const {
2362 MVT VecTy = ty(VecV);
2363 if (VecTy.getVectorElementType() == MVT::i1) {
2364 MVT ValTy = ty(ValV);
2365 assert(ValTy.getVectorElementType() == MVT::i1);
2366 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2367 unsigned VecLen = VecTy.getVectorNumElements();
2368 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2369 assert(Scale > 1);
2371 for (unsigned R = Scale; R > 1; R /= 2) {
2372 ValR = contractPredicate(ValR, dl, DAG);
2373 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2374 DAG.getUNDEF(MVT::i32), ValR);
2376 // The longest possible subvector is at most 32 bits, so it is always
2377 // contained in the low subregister.
2378 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2380 unsigned ValBytes = 64 / Scale;
2381 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2382 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2383 DAG.getConstant(8, dl, MVT::i32));
2384 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2385 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2386 {VecR, ValR, Width, Idx});
2387 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2390 unsigned VecWidth = VecTy.getSizeInBits();
2391 unsigned ValWidth = ValTy.getSizeInBits();
2392 assert(VecWidth == 32 || VecWidth == 64);
2393 assert((VecWidth % ValWidth) == 0);
2395 // Cast everything to scalar integer types.
2396 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2397 // The actual type of ValV may be different than ValTy (which is related
2398 // to the vector type).
2399 unsigned VW = ty(ValV).getSizeInBits();
2400 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2401 VecV = DAG.getBitcast(ScalarTy, VecV);
2402 if (VW != VecWidth)
2403 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2405 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2406 SDValue InsV;
2408 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2409 unsigned W = C->getZExtValue() * ValWidth;
2410 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2411 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2412 {VecV, ValV, WidthV, OffV});
2413 } else {
2414 if (ty(IdxV) != MVT::i32)
2415 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2416 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2417 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2418 {VecV, ValV, WidthV, OffV});
2421 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2424 SDValue
2425 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2426 SelectionDAG &DAG) const {
2427 assert(ty(Vec32).getSizeInBits() == 32);
2428 if (isUndef(Vec32))
2429 return DAG.getUNDEF(MVT::i64);
2430 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2433 SDValue
2434 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2435 SelectionDAG &DAG) const {
2436 assert(ty(Vec64).getSizeInBits() == 64);
2437 if (isUndef(Vec64))
2438 return DAG.getUNDEF(MVT::i32);
2439 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2442 SDValue
2443 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2444 const {
2445 if (Ty.isVector()) {
2446 assert(Ty.isInteger() && "Only integer vectors are supported here");
2447 unsigned W = Ty.getSizeInBits();
2448 if (W <= 64)
2449 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2450 return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2453 if (Ty.isInteger())
2454 return DAG.getConstant(0, dl, Ty);
2455 if (Ty.isFloatingPoint())
2456 return DAG.getConstantFP(0.0, dl, Ty);
2457 llvm_unreachable("Invalid type for zero");
2460 SDValue
2461 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2462 MVT VecTy = ty(Op);
2463 unsigned BW = VecTy.getSizeInBits();
2464 const SDLoc &dl(Op);
2465 SmallVector<SDValue,8> Ops;
2466 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2467 Ops.push_back(Op.getOperand(i));
2469 if (BW == 32)
2470 return buildVector32(Ops, dl, VecTy, DAG);
2471 if (BW == 64)
2472 return buildVector64(Ops, dl, VecTy, DAG);
2474 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2475 // Check if this is a special case or all-0 or all-1.
2476 bool All0 = true, All1 = true;
2477 for (SDValue P : Ops) {
2478 auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2479 if (CN == nullptr) {
2480 All0 = All1 = false;
2481 break;
2483 uint32_t C = CN->getZExtValue();
2484 All0 &= (C == 0);
2485 All1 &= (C == 1);
2487 if (All0)
2488 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2489 if (All1)
2490 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2492 // For each i1 element in the resulting predicate register, put 1
2493 // shifted by the index of the element into a general-purpose register,
2494 // then or them together and transfer it back into a predicate register.
2495 SDValue Rs[8];
2496 SDValue Z = getZero(dl, MVT::i32, DAG);
2497 // Always produce 8 bits, repeat inputs if necessary.
2498 unsigned Rep = 8 / VecTy.getVectorNumElements();
2499 for (unsigned i = 0; i != 8; ++i) {
2500 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2501 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2503 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2504 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2505 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2507 // Move the value directly to a predicate register.
2508 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2511 return SDValue();
2514 SDValue
2515 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2516 SelectionDAG &DAG) const {
2517 MVT VecTy = ty(Op);
2518 const SDLoc &dl(Op);
2519 if (VecTy.getSizeInBits() == 64) {
2520 assert(Op.getNumOperands() == 2);
2521 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2522 Op.getOperand(0));
2525 MVT ElemTy = VecTy.getVectorElementType();
2526 if (ElemTy == MVT::i1) {
2527 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2528 MVT OpTy = ty(Op.getOperand(0));
2529 // Scale is how many times the operands need to be contracted to match
2530 // the representation in the target register.
2531 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2532 assert(Scale == Op.getNumOperands() && Scale > 1);
2534 // First, convert all bool vectors to integers, then generate pairwise
2535 // inserts to form values of doubled length. Up until there are only
2536 // two values left to concatenate, all of these values will fit in a
2537 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2538 SmallVector<SDValue,4> Words[2];
2539 unsigned IdxW = 0;
2541 for (SDValue P : Op.getNode()->op_values()) {
2542 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2543 for (unsigned R = Scale; R > 1; R /= 2) {
2544 W = contractPredicate(W, dl, DAG);
2545 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2546 DAG.getUNDEF(MVT::i32), W);
2548 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2549 Words[IdxW].push_back(W);
2552 while (Scale > 2) {
2553 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2554 Words[IdxW ^ 1].clear();
2556 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2557 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2558 // Insert W1 into W0 right next to the significant bits of W0.
2559 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2560 {W0, W1, WidthV, WidthV});
2561 Words[IdxW ^ 1].push_back(T);
2563 IdxW ^= 1;
2564 Scale /= 2;
2567 // Another sanity check. At this point there should only be two words
2568 // left, and Scale should be 2.
2569 assert(Scale == 2 && Words[IdxW].size() == 2);
2571 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2572 Words[IdxW][1], Words[IdxW][0]);
2573 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2576 return SDValue();
2579 SDValue
2580 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2581 SelectionDAG &DAG) const {
2582 SDValue Vec = Op.getOperand(0);
2583 MVT ElemTy = ty(Vec).getVectorElementType();
2584 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2587 SDValue
2588 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2589 SelectionDAG &DAG) const {
2590 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2591 ty(Op), ty(Op), DAG);
2594 SDValue
2595 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2596 SelectionDAG &DAG) const {
2597 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2598 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2601 SDValue
2602 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2603 SelectionDAG &DAG) const {
2604 SDValue ValV = Op.getOperand(1);
2605 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2606 SDLoc(Op), ty(ValV), DAG);
2609 bool
2610 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2611 // Assuming the caller does not have either a signext or zeroext modifier, and
2612 // only one value is accepted, any reasonable truncation is allowed.
2613 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2614 return false;
2616 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2617 // fragile at the moment: any support for multiple value returns would be
2618 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2619 return Ty1->getPrimitiveSizeInBits() <= 32;
2622 SDValue
2623 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2624 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2625 unsigned ClaimAlign = LN->getAlignment();
2626 validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2627 // Call LowerUnalignedLoad for all loads, it recognizes loads that
2628 // don't need extra aligning.
2629 return LowerUnalignedLoad(Op, DAG);
2632 SDValue
2633 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2634 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2635 unsigned ClaimAlign = SN->getAlignment();
2636 SDValue Ptr = SN->getBasePtr();
2637 const SDLoc &dl(Op);
2638 validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2640 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2641 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2642 if (ClaimAlign < NeedAlign)
2643 return expandUnalignedStore(SN, DAG);
2644 return Op;
2647 SDValue
2648 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2649 const {
2650 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2651 MVT LoadTy = ty(Op);
2652 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2653 unsigned HaveAlign = LN->getAlignment();
2654 if (HaveAlign >= NeedAlign)
2655 return Op;
2657 const SDLoc &dl(Op);
2658 const DataLayout &DL = DAG.getDataLayout();
2659 LLVMContext &Ctx = *DAG.getContext();
2661 // If the load aligning is disabled or the load can be broken up into two
2662 // smaller legal loads, do the default (target-independent) expansion.
2663 bool DoDefault = false;
2664 // Handle it in the default way if this is an indexed load.
2665 if (!LN->isUnindexed())
2666 DoDefault = true;
2668 if (!AlignLoads) {
2669 if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand()))
2670 return Op;
2671 DoDefault = true;
2673 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2674 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2675 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2676 : MVT::getVectorVT(MVT::i8, HaveAlign);
2677 DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand());
2679 if (DoDefault) {
2680 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2681 return DAG.getMergeValues({P.first, P.second}, dl);
2684 // The code below generates two loads, both aligned as NeedAlign, and
2685 // with the distance of NeedAlign between them. For that to cover the
2686 // bits that need to be loaded (and without overlapping), the size of
2687 // the loads should be equal to NeedAlign. This is true for all loadable
2688 // types, but add an assertion in case something changes in the future.
2689 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2691 unsigned LoadLen = NeedAlign;
2692 SDValue Base = LN->getBasePtr();
2693 SDValue Chain = LN->getChain();
2694 auto BO = getBaseAndOffset(Base);
2695 unsigned BaseOpc = BO.first.getOpcode();
2696 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2697 return Op;
2699 if (BO.second % LoadLen != 0) {
2700 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2701 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2702 BO.second -= BO.second % LoadLen;
2704 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2705 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2706 DAG.getConstant(NeedAlign, dl, MVT::i32))
2707 : BO.first;
2708 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2709 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2711 MachineMemOperand *WideMMO = nullptr;
2712 if (MachineMemOperand *MMO = LN->getMemOperand()) {
2713 MachineFunction &MF = DAG.getMachineFunction();
2714 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2715 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2716 MMO->getSyncScopeID(), MMO->getOrdering(),
2717 MMO->getFailureOrdering());
2720 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2721 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2723 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2724 {Load1, Load0, BaseNoOff.getOperand(0)});
2725 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2726 Load0.getValue(1), Load1.getValue(1));
2727 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2728 return M;
2731 SDValue
2732 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2733 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2734 auto *CY = dyn_cast<ConstantSDNode>(Y);
2735 if (!CY)
2736 return SDValue();
2738 const SDLoc &dl(Op);
2739 SDVTList VTs = Op.getNode()->getVTList();
2740 assert(VTs.NumVTs == 2);
2741 assert(VTs.VTs[1] == MVT::i1);
2742 unsigned Opc = Op.getOpcode();
2744 if (CY) {
2745 uint32_t VY = CY->getZExtValue();
2746 assert(VY != 0 && "This should have been folded");
2747 // X +/- 1
2748 if (VY != 1)
2749 return SDValue();
2751 if (Opc == ISD::UADDO) {
2752 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2753 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2754 ISD::SETEQ);
2755 return DAG.getMergeValues({Op, Ov}, dl);
2757 if (Opc == ISD::USUBO) {
2758 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2759 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2760 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2761 return DAG.getMergeValues({Op, Ov}, dl);
2765 return SDValue();
2768 SDValue
2769 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2770 const SDLoc &dl(Op);
2771 unsigned Opc = Op.getOpcode();
2772 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2774 if (Opc == ISD::ADDCARRY)
2775 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2776 { X, Y, C });
2778 EVT CarryTy = C.getValueType();
2779 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2780 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2781 SDValue Out[] = { SubC.getValue(0),
2782 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2783 return DAG.getMergeValues(Out, dl);
2786 SDValue
2787 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2788 SDValue Chain = Op.getOperand(0);
2789 SDValue Offset = Op.getOperand(1);
2790 SDValue Handler = Op.getOperand(2);
2791 SDLoc dl(Op);
2792 auto PtrVT = getPointerTy(DAG.getDataLayout());
2794 // Mark function as containing a call to EH_RETURN.
2795 HexagonMachineFunctionInfo *FuncInfo =
2796 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2797 FuncInfo->setHasEHReturn();
2799 unsigned OffsetReg = Hexagon::R28;
2801 SDValue StoreAddr =
2802 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2803 DAG.getIntPtrConstant(4, dl));
2804 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2805 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2807 // Not needed we already use it as explict input to EH_RETURN.
2808 // MF.getRegInfo().addLiveOut(OffsetReg);
2810 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2813 SDValue
2814 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2815 unsigned Opc = Op.getOpcode();
2817 // Handle INLINEASM first.
2818 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2819 return LowerINLINEASM(Op, DAG);
2821 if (isHvxOperation(Op)) {
2822 // If HVX lowering returns nothing, try the default lowering.
2823 if (SDValue V = LowerHvxOperation(Op, DAG))
2824 return V;
2827 switch (Opc) {
2828 default:
2829 #ifndef NDEBUG
2830 Op.getNode()->dumpr(&DAG);
2831 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2832 errs() << "Error: check for a non-legal type in this operation\n";
2833 #endif
2834 llvm_unreachable("Should not custom lower this!");
2835 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2836 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
2837 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
2838 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
2839 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2840 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2841 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2842 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
2843 case ISD::LOAD: return LowerLoad(Op, DAG);
2844 case ISD::STORE: return LowerStore(Op, DAG);
2845 case ISD::UADDO:
2846 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
2847 case ISD::ADDCARRY:
2848 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
2849 case ISD::SRA:
2850 case ISD::SHL:
2851 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
2852 case ISD::ROTL: return LowerROTL(Op, DAG);
2853 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2854 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2855 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
2856 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
2857 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2858 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2859 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
2860 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
2861 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2862 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2863 case ISD::VASTART: return LowerVASTART(Op, DAG);
2864 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2865 case ISD::SETCC: return LowerSETCC(Op, DAG);
2866 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
2867 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2868 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
2869 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
2870 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
2871 break;
2874 return SDValue();
2877 void
2878 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2879 SmallVectorImpl<SDValue> &Results,
2880 SelectionDAG &DAG) const {
2881 // We are only custom-lowering stores to verify the alignment of the
2882 // address if it is a compile-time constant. Since a store can be modified
2883 // during type-legalization (the value being stored may need legalization),
2884 // return empty Results here to indicate that we don't really make any
2885 // changes in the custom lowering.
2886 if (N->getOpcode() != ISD::STORE)
2887 return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2890 void
2891 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2892 SmallVectorImpl<SDValue> &Results,
2893 SelectionDAG &DAG) const {
2894 const SDLoc &dl(N);
2895 switch (N->getOpcode()) {
2896 case ISD::SRL:
2897 case ISD::SRA:
2898 case ISD::SHL:
2899 return;
2900 case ISD::BITCAST:
2901 // Handle a bitcast from v8i1 to i8.
2902 if (N->getValueType(0) == MVT::i8) {
2903 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2904 N->getOperand(0), DAG);
2905 Results.push_back(P);
2907 break;
2911 SDValue
2912 HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
2913 const {
2914 SDValue Op(N, 0);
2915 if (isHvxOperation(Op)) {
2916 if (SDValue V = PerformHvxDAGCombine(N, DCI))
2917 return V;
2918 return SDValue();
2921 const SDLoc &dl(Op);
2922 unsigned Opc = Op.getOpcode();
2924 if (Opc == HexagonISD::P2D) {
2925 SDValue P = Op.getOperand(0);
2926 switch (P.getOpcode()) {
2927 case HexagonISD::PTRUE:
2928 return DCI.DAG.getConstant(-1, dl, ty(Op));
2929 case HexagonISD::PFALSE:
2930 return getZero(dl, ty(Op), DCI.DAG);
2931 default:
2932 break;
2934 } else if (Opc == ISD::VSELECT) {
2935 // This is pretty much duplicated in HexagonISelLoweringHVX...
2937 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
2938 SDValue Cond = Op.getOperand(0);
2939 if (Cond->getOpcode() == ISD::XOR) {
2940 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
2941 if (C1->getOpcode() == HexagonISD::PTRUE) {
2942 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
2943 Op.getOperand(2), Op.getOperand(1));
2944 return VSel;
2949 return SDValue();
2952 /// Returns relocation base for the given PIC jumptable.
2953 SDValue
2954 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2955 SelectionDAG &DAG) const {
2956 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2957 EVT VT = Table.getValueType();
2958 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2959 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2962 //===----------------------------------------------------------------------===//
2963 // Inline Assembly Support
2964 //===----------------------------------------------------------------------===//
2966 TargetLowering::ConstraintType
2967 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2968 if (Constraint.size() == 1) {
2969 switch (Constraint[0]) {
2970 case 'q':
2971 case 'v':
2972 if (Subtarget.useHVXOps())
2973 return C_RegisterClass;
2974 break;
2975 case 'a':
2976 return C_RegisterClass;
2977 default:
2978 break;
2981 return TargetLowering::getConstraintType(Constraint);
2984 std::pair<unsigned, const TargetRegisterClass*>
2985 HexagonTargetLowering::getRegForInlineAsmConstraint(
2986 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2988 if (Constraint.size() == 1) {
2989 switch (Constraint[0]) {
2990 case 'r': // R0-R31
2991 switch (VT.SimpleTy) {
2992 default:
2993 return {0u, nullptr};
2994 case MVT::i1:
2995 case MVT::i8:
2996 case MVT::i16:
2997 case MVT::i32:
2998 case MVT::f32:
2999 return {0u, &Hexagon::IntRegsRegClass};
3000 case MVT::i64:
3001 case MVT::f64:
3002 return {0u, &Hexagon::DoubleRegsRegClass};
3004 break;
3005 case 'a': // M0-M1
3006 if (VT != MVT::i32)
3007 return {0u, nullptr};
3008 return {0u, &Hexagon::ModRegsRegClass};
3009 case 'q': // q0-q3
3010 switch (VT.getSizeInBits()) {
3011 default:
3012 return {0u, nullptr};
3013 case 512:
3014 case 1024:
3015 return {0u, &Hexagon::HvxQRRegClass};
3017 break;
3018 case 'v': // V0-V31
3019 switch (VT.getSizeInBits()) {
3020 default:
3021 return {0u, nullptr};
3022 case 512:
3023 return {0u, &Hexagon::HvxVRRegClass};
3024 case 1024:
3025 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3026 return {0u, &Hexagon::HvxVRRegClass};
3027 return {0u, &Hexagon::HvxWRRegClass};
3028 case 2048:
3029 return {0u, &Hexagon::HvxWRRegClass};
3031 break;
3032 default:
3033 return {0u, nullptr};
3037 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3040 /// isFPImmLegal - Returns true if the target can instruction select the
3041 /// specified FP immediate natively. If false, the legalizer will
3042 /// materialize the FP immediate as a load from a constant pool.
3043 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3044 bool ForCodeSize) const {
3045 return true;
3048 /// isLegalAddressingMode - Return true if the addressing mode represented by
3049 /// AM is legal for this target, for a load/store of the specified type.
3050 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3051 const AddrMode &AM, Type *Ty,
3052 unsigned AS, Instruction *I) const {
3053 if (Ty->isSized()) {
3054 // When LSR detects uses of the same base address to access different
3055 // types (e.g. unions), it will assume a conservative type for these
3056 // uses:
3057 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
3058 // The type Ty passed here would then be "void". Skip the alignment
3059 // checks, but do not return false right away, since that confuses
3060 // LSR into crashing.
3061 unsigned A = DL.getABITypeAlignment(Ty);
3062 // The base offset must be a multiple of the alignment.
3063 if ((AM.BaseOffs % A) != 0)
3064 return false;
3065 // The shifted offset must fit in 11 bits.
3066 if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
3067 return false;
3070 // No global is ever allowed as a base.
3071 if (AM.BaseGV)
3072 return false;
3074 int Scale = AM.Scale;
3075 if (Scale < 0)
3076 Scale = -Scale;
3077 switch (Scale) {
3078 case 0: // No scale reg, "r+i", "r", or just "i".
3079 break;
3080 default: // No scaled addressing mode.
3081 return false;
3083 return true;
3086 /// Return true if folding a constant offset with the given GlobalAddress is
3087 /// legal. It is frequently not legal in PIC relocation models.
3088 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3089 const {
3090 return HTM.getRelocationModel() == Reloc::Static;
3093 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3094 /// icmp immediate, that is the target has icmp instructions which can compare
3095 /// a register against the immediate without having to materialize the
3096 /// immediate into a register.
3097 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3098 return Imm >= -512 && Imm <= 511;
3101 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3102 /// for tail call optimization. Targets which want to do tail call
3103 /// optimization should implement this function.
3104 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3105 SDValue Callee,
3106 CallingConv::ID CalleeCC,
3107 bool IsVarArg,
3108 bool IsCalleeStructRet,
3109 bool IsCallerStructRet,
3110 const SmallVectorImpl<ISD::OutputArg> &Outs,
3111 const SmallVectorImpl<SDValue> &OutVals,
3112 const SmallVectorImpl<ISD::InputArg> &Ins,
3113 SelectionDAG& DAG) const {
3114 const Function &CallerF = DAG.getMachineFunction().getFunction();
3115 CallingConv::ID CallerCC = CallerF.getCallingConv();
3116 bool CCMatch = CallerCC == CalleeCC;
3118 // ***************************************************************************
3119 // Look for obvious safe cases to perform tail call optimization that do not
3120 // require ABI changes.
3121 // ***************************************************************************
3123 // If this is a tail call via a function pointer, then don't do it!
3124 if (!isa<GlobalAddressSDNode>(Callee) &&
3125 !isa<ExternalSymbolSDNode>(Callee)) {
3126 return false;
3129 // Do not optimize if the calling conventions do not match and the conventions
3130 // used are not C or Fast.
3131 if (!CCMatch) {
3132 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3133 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3134 // If R & E, then ok.
3135 if (!R || !E)
3136 return false;
3139 // Do not tail call optimize vararg calls.
3140 if (IsVarArg)
3141 return false;
3143 // Also avoid tail call optimization if either caller or callee uses struct
3144 // return semantics.
3145 if (IsCalleeStructRet || IsCallerStructRet)
3146 return false;
3148 // In addition to the cases above, we also disable Tail Call Optimization if
3149 // the calling convention code that at least one outgoing argument needs to
3150 // go on the stack. We cannot check that here because at this point that
3151 // information is not available.
3152 return true;
3155 /// Returns the target specific optimal type for load and store operations as
3156 /// a result of memset, memcpy, and memmove lowering.
3158 /// If DstAlign is zero that means it's safe to destination alignment can
3159 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3160 /// a need to check it against alignment requirement, probably because the
3161 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3162 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3163 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3164 /// does not need to be loaded. It returns EVT::Other if the type should be
3165 /// determined using generic target-independent logic.
3166 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3167 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3168 bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3170 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3171 return (GivenA % MinA) == 0;
3174 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3175 return MVT::i64;
3176 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3177 return MVT::i32;
3178 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3179 return MVT::i16;
3181 return MVT::Other;
3184 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3185 EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3186 bool *Fast) const {
3187 if (Fast)
3188 *Fast = false;
3189 return Subtarget.isHVXVectorType(VT.getSimpleVT());
3192 std::pair<const TargetRegisterClass*, uint8_t>
3193 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3194 MVT VT) const {
3195 if (Subtarget.isHVXVectorType(VT, true)) {
3196 unsigned BitWidth = VT.getSizeInBits();
3197 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3199 if (VT.getVectorElementType() == MVT::i1)
3200 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3201 if (BitWidth == VecWidth)
3202 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3203 assert(BitWidth == 2 * VecWidth);
3204 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3207 return TargetLowering::findRepresentativeClass(TRI, VT);
3210 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3211 ISD::LoadExtType ExtTy, EVT NewVT) const {
3212 // TODO: This may be worth removing. Check regression tests for diffs.
3213 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3214 return false;
3216 auto *L = cast<LoadSDNode>(Load);
3217 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3218 // Small-data object, do not shrink.
3219 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3220 return false;
3221 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3222 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3223 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3224 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3226 return true;
3229 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3230 AtomicOrdering Ord) const {
3231 BasicBlock *BB = Builder.GetInsertBlock();
3232 Module *M = BB->getParent()->getParent();
3233 auto PT = cast<PointerType>(Addr->getType());
3234 Type *Ty = PT->getElementType();
3235 unsigned SZ = Ty->getPrimitiveSizeInBits();
3236 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3237 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3238 : Intrinsic::hexagon_L4_loadd_locked;
3239 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3241 PointerType *NewPtrTy
3242 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3243 Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3245 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3247 return Builder.CreateBitCast(Call, Ty);
3250 /// Perform a store-conditional operation to Addr. Return the status of the
3251 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3252 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3253 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3254 BasicBlock *BB = Builder.GetInsertBlock();
3255 Module *M = BB->getParent()->getParent();
3256 Type *Ty = Val->getType();
3257 unsigned SZ = Ty->getPrimitiveSizeInBits();
3259 Type *CastTy = Builder.getIntNTy(SZ);
3260 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3261 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3262 : Intrinsic::hexagon_S4_stored_locked;
3263 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3265 unsigned AS = Addr->getType()->getPointerAddressSpace();
3266 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3267 Val = Builder.CreateBitCast(Val, CastTy);
3269 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3270 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3271 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3272 return Ext;
3275 TargetLowering::AtomicExpansionKind
3276 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3277 // Do not expand loads and stores that don't exceed 64 bits.
3278 return LI->getType()->getPrimitiveSizeInBits() > 64
3279 ? AtomicExpansionKind::LLOnly
3280 : AtomicExpansionKind::None;
3283 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3284 // Do not expand loads and stores that don't exceed 64 bits.
3285 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3288 TargetLowering::AtomicExpansionKind
3289 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3290 AtomicCmpXchgInst *AI) const {
3291 const DataLayout &DL = AI->getModule()->getDataLayout();
3292 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3293 if (Size >= 4 && Size <= 8)
3294 return AtomicExpansionKind::LLSC;
3295 return AtomicExpansionKind::None;