[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / Hexagon / HexagonInstrInfo.cpp
blob97318a8057bddc5d71e0edb22548fd4b819c0580
1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
14 #include "Hexagon.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cassert>
55 #include <cctype>
56 #include <cstdint>
57 #include <cstring>
58 #include <iterator>
59 #include <string>
60 #include <utility>
62 using namespace llvm;
64 #define DEBUG_TYPE "hexagon-instrinfo"
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
72 cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74 "packetization boundary."));
76 static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
79 static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80 cl::Hidden, cl::ZeroOrMore, cl::init(false),
81 cl::desc("Disable schedule adjustment for new value stores."));
83 static cl::opt<bool> EnableTimingClassLatency(
84 "enable-timing-class-latency", cl::Hidden, cl::init(false),
85 cl::desc("Enable timing class latency"));
87 static cl::opt<bool> EnableALUForwarding(
88 "enable-alu-forwarding", cl::Hidden, cl::init(true),
89 cl::desc("Enable vec alu forwarding"));
91 static cl::opt<bool> EnableACCForwarding(
92 "enable-acc-forwarding", cl::Hidden, cl::init(true),
93 cl::desc("Enable vec acc forwarding"));
95 static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
98 static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
99 cl::init(true), cl::Hidden, cl::ZeroOrMore,
100 cl::desc("Use the DFA based hazard recognizer."));
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX = 4095;
104 const int Hexagon_MEMW_OFFSET_MIN = -4096;
105 const int Hexagon_MEMD_OFFSET_MAX = 8191;
106 const int Hexagon_MEMD_OFFSET_MIN = -8192;
107 const int Hexagon_MEMH_OFFSET_MAX = 2047;
108 const int Hexagon_MEMH_OFFSET_MIN = -2048;
109 const int Hexagon_MEMB_OFFSET_MAX = 1023;
110 const int Hexagon_MEMB_OFFSET_MIN = -1024;
111 const int Hexagon_ADDI_OFFSET_MAX = 32767;
112 const int Hexagon_ADDI_OFFSET_MIN = -32768;
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
119 Subtarget(ST) {}
121 static bool isIntRegForSubInst(unsigned Reg) {
122 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
123 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
126 static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
127 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
128 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
133 MachineBasicBlock::const_instr_iterator MIE) {
134 unsigned Count = 0;
135 for (; MIB != MIE; ++MIB) {
136 if (!MIB->isDebugInstr())
137 ++Count;
139 return Count;
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr *HexagonInstrInfo::findLoopInstr(MachineBasicBlock *BB,
147 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
148 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
149 unsigned LOOPi;
150 unsigned LOOPr;
151 if (EndLoopOp == Hexagon::ENDLOOP0) {
152 LOOPi = Hexagon::J2_loop0i;
153 LOOPr = Hexagon::J2_loop0r;
154 } else { // EndLoopOp == Hexagon::EndLOOP1
155 LOOPi = Hexagon::J2_loop1i;
156 LOOPr = Hexagon::J2_loop1r;
159 // The loop set-up instruction will be in a predecessor block
160 for (MachineBasicBlock *PB : BB->predecessors()) {
161 // If this has been visited, already skip it.
162 if (!Visited.insert(PB).second)
163 continue;
164 if (PB == BB)
165 continue;
166 for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
167 unsigned Opc = I->getOpcode();
168 if (Opc == LOOPi || Opc == LOOPr)
169 return &*I;
170 // We've reached a different loop, which means the loop01 has been
171 // removed.
172 if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
173 return nullptr;
175 // Check the predecessors for the LOOP instruction.
176 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
177 return Loop;
179 return nullptr;
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr &MI,
186 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
187 Defs.clear();
188 Uses.clear();
190 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
191 const MachineOperand &MO = MI.getOperand(i);
193 if (!MO.isReg())
194 continue;
196 Register Reg = MO.getReg();
197 if (!Reg)
198 continue;
200 if (MO.isUse())
201 Uses.push_back(MO.getReg());
203 if (MO.isDef())
204 Defs.push_back(MO.getReg());
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
210 switch (Ga) {
211 case HexagonII::HSIG_None:
212 default:
213 return false;
214 case HexagonII::HSIG_L1:
215 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
216 case HexagonII::HSIG_L2:
217 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
218 Gb == HexagonII::HSIG_A);
219 case HexagonII::HSIG_S1:
220 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
221 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
222 case HexagonII::HSIG_S2:
223 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
224 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
225 Gb == HexagonII::HSIG_A);
226 case HexagonII::HSIG_A:
227 return (Gb == HexagonII::HSIG_A);
228 case HexagonII::HSIG_Compound:
229 return (Gb == HexagonII::HSIG_Compound);
231 return false;
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot. If
237 /// not, return 0. This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
240 int &FrameIndex) const {
241 switch (MI.getOpcode()) {
242 default:
243 break;
244 case Hexagon::L2_loadri_io:
245 case Hexagon::L2_loadrd_io:
246 case Hexagon::V6_vL32b_ai:
247 case Hexagon::V6_vL32b_nt_ai:
248 case Hexagon::V6_vL32Ub_ai:
249 case Hexagon::LDriw_pred:
250 case Hexagon::LDriw_ctr:
251 case Hexagon::PS_vloadrq_ai:
252 case Hexagon::PS_vloadrw_ai:
253 case Hexagon::PS_vloadrw_nt_ai: {
254 const MachineOperand OpFI = MI.getOperand(1);
255 if (!OpFI.isFI())
256 return 0;
257 const MachineOperand OpOff = MI.getOperand(2);
258 if (!OpOff.isImm() || OpOff.getImm() != 0)
259 return 0;
260 FrameIndex = OpFI.getIndex();
261 return MI.getOperand(0).getReg();
264 case Hexagon::L2_ploadrit_io:
265 case Hexagon::L2_ploadrif_io:
266 case Hexagon::L2_ploadrdt_io:
267 case Hexagon::L2_ploadrdf_io: {
268 const MachineOperand OpFI = MI.getOperand(2);
269 if (!OpFI.isFI())
270 return 0;
271 const MachineOperand OpOff = MI.getOperand(3);
272 if (!OpOff.isImm() || OpOff.getImm() != 0)
273 return 0;
274 FrameIndex = OpFI.getIndex();
275 return MI.getOperand(0).getReg();
279 return 0;
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
288 int &FrameIndex) const {
289 switch (MI.getOpcode()) {
290 default:
291 break;
292 case Hexagon::S2_storerb_io:
293 case Hexagon::S2_storerh_io:
294 case Hexagon::S2_storeri_io:
295 case Hexagon::S2_storerd_io:
296 case Hexagon::V6_vS32b_ai:
297 case Hexagon::V6_vS32Ub_ai:
298 case Hexagon::STriw_pred:
299 case Hexagon::STriw_ctr:
300 case Hexagon::PS_vstorerq_ai:
301 case Hexagon::PS_vstorerw_ai: {
302 const MachineOperand &OpFI = MI.getOperand(0);
303 if (!OpFI.isFI())
304 return 0;
305 const MachineOperand &OpOff = MI.getOperand(1);
306 if (!OpOff.isImm() || OpOff.getImm() != 0)
307 return 0;
308 FrameIndex = OpFI.getIndex();
309 return MI.getOperand(2).getReg();
312 case Hexagon::S2_pstorerbt_io:
313 case Hexagon::S2_pstorerbf_io:
314 case Hexagon::S2_pstorerht_io:
315 case Hexagon::S2_pstorerhf_io:
316 case Hexagon::S2_pstorerit_io:
317 case Hexagon::S2_pstorerif_io:
318 case Hexagon::S2_pstorerdt_io:
319 case Hexagon::S2_pstorerdf_io: {
320 const MachineOperand &OpFI = MI.getOperand(1);
321 if (!OpFI.isFI())
322 return 0;
323 const MachineOperand &OpOff = MI.getOperand(2);
324 if (!OpOff.isImm() || OpOff.getImm() != 0)
325 return 0;
326 FrameIndex = OpFI.getIndex();
327 return MI.getOperand(3).getReg();
331 return 0;
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338 const MachineInstr &MI,
339 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
340 if (MI.isBundle()) {
341 const MachineBasicBlock *MBB = MI.getParent();
342 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
343 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
345 return true;
346 return false;
349 return TargetInstrInfo::hasLoadFromStackSlot(MI, Accesses);
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356 const MachineInstr &MI,
357 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
358 if (MI.isBundle()) {
359 const MachineBasicBlock *MBB = MI.getParent();
360 MachineBasicBlock::const_instr_iterator MII = MI.getIterator();
361 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
362 if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
363 return true;
364 return false;
367 return TargetInstrInfo::hasStoreToStackSlot(MI, Accesses);
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
376 /// Cond[0] = Jump_c
377 /// Cond[1] = p
378 /// HW-loop ENDLOOP:
379 /// Cond[0] = ENDLOOP
380 /// Cond[1] = MBB
381 /// New value jump:
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
383 /// Cond[1] = R
384 /// Cond[2] = Imm
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
386 MachineBasicBlock *&TBB,
387 MachineBasicBlock *&FBB,
388 SmallVectorImpl<MachineOperand> &Cond,
389 bool AllowModify) const {
390 TBB = nullptr;
391 FBB = nullptr;
392 Cond.clear();
394 // If the block has no terminators, it just falls into the block after it.
395 MachineBasicBlock::instr_iterator I = MBB.instr_end();
396 if (I == MBB.instr_begin())
397 return false;
399 // A basic block may looks like this:
401 // [ insn
402 // EH_LABEL
403 // insn
404 // insn
405 // insn
406 // EH_LABEL
407 // insn ]
409 // It has two succs but does not have a terminator
410 // Don't know how to handle it.
411 do {
412 --I;
413 if (I->isEHLabel())
414 // Don't analyze EH branches.
415 return true;
416 } while (I != MBB.instr_begin());
418 I = MBB.instr_end();
419 --I;
421 while (I->isDebugInstr()) {
422 if (I == MBB.instr_begin())
423 return false;
424 --I;
427 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
428 I->getOperand(0).isMBB();
429 // Delete the J2_jump if it's equivalent to a fall-through.
430 if (AllowModify && JumpToBlock &&
431 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433 I->eraseFromParent();
434 I = MBB.instr_end();
435 if (I == MBB.instr_begin())
436 return false;
437 --I;
439 if (!isUnpredicatedTerminator(*I))
440 return false;
442 // Get the last instruction in the block.
443 MachineInstr *LastInst = &*I;
444 MachineInstr *SecondLastInst = nullptr;
445 // Find one more terminator if present.
446 while (true) {
447 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
448 if (!SecondLastInst)
449 SecondLastInst = &*I;
450 else
451 // This is a third branch.
452 return true;
454 if (I == MBB.instr_begin())
455 break;
456 --I;
459 int LastOpcode = LastInst->getOpcode();
460 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
461 // If the branch target is not a basic block, it could be a tail call.
462 // (It is, if the target is a function.)
463 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
464 return true;
465 if (SecLastOpcode == Hexagon::J2_jump &&
466 !SecondLastInst->getOperand(0).isMBB())
467 return true;
469 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
470 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
472 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
473 return true;
475 // If there is only one terminator instruction, process it.
476 if (LastInst && !SecondLastInst) {
477 if (LastOpcode == Hexagon::J2_jump) {
478 TBB = LastInst->getOperand(0).getMBB();
479 return false;
481 if (isEndLoopN(LastOpcode)) {
482 TBB = LastInst->getOperand(0).getMBB();
483 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
484 Cond.push_back(LastInst->getOperand(0));
485 return false;
487 if (LastOpcodeHasJMP_c) {
488 TBB = LastInst->getOperand(1).getMBB();
489 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
490 Cond.push_back(LastInst->getOperand(0));
491 return false;
493 // Only supporting rr/ri versions of new-value jumps.
494 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
495 TBB = LastInst->getOperand(2).getMBB();
496 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
497 Cond.push_back(LastInst->getOperand(0));
498 Cond.push_back(LastInst->getOperand(1));
499 return false;
501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
502 << " with one jump\n";);
503 // Otherwise, don't know what this is.
504 return true;
507 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
508 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
509 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
510 if (!SecondLastInst->getOperand(1).isMBB())
511 return true;
512 TBB = SecondLastInst->getOperand(1).getMBB();
513 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
514 Cond.push_back(SecondLastInst->getOperand(0));
515 FBB = LastInst->getOperand(0).getMBB();
516 return false;
519 // Only supporting rr/ri versions of new-value jumps.
520 if (SecLastOpcodeHasNVJump &&
521 (SecondLastInst->getNumExplicitOperands() == 3) &&
522 (LastOpcode == Hexagon::J2_jump)) {
523 TBB = SecondLastInst->getOperand(2).getMBB();
524 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
525 Cond.push_back(SecondLastInst->getOperand(0));
526 Cond.push_back(SecondLastInst->getOperand(1));
527 FBB = LastInst->getOperand(0).getMBB();
528 return false;
531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
532 // executed, so remove it.
533 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
534 TBB = SecondLastInst->getOperand(0).getMBB();
535 I = LastInst->getIterator();
536 if (AllowModify)
537 I->eraseFromParent();
538 return false;
541 // If the block ends with an ENDLOOP, and J2_jump, handle it.
542 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
543 TBB = SecondLastInst->getOperand(0).getMBB();
544 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
545 Cond.push_back(SecondLastInst->getOperand(0));
546 FBB = LastInst->getOperand(0).getMBB();
547 return false;
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
550 << " with two jumps";);
551 // Otherwise, can't handle this.
552 return true;
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
556 int *BytesRemoved) const {
557 assert(!BytesRemoved && "code size not handled");
559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
560 MachineBasicBlock::iterator I = MBB.end();
561 unsigned Count = 0;
562 while (I != MBB.begin()) {
563 --I;
564 if (I->isDebugInstr())
565 continue;
566 // Only removing branches from end of MBB.
567 if (!I->isBranch())
568 return Count;
569 if (Count && (I->getOpcode() == Hexagon::J2_jump))
570 llvm_unreachable("Malformed basic block: unconditional branch not last");
571 MBB.erase(&MBB.back());
572 I = MBB.end();
573 ++Count;
575 return Count;
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
579 MachineBasicBlock *TBB,
580 MachineBasicBlock *FBB,
581 ArrayRef<MachineOperand> Cond,
582 const DebugLoc &DL,
583 int *BytesAdded) const {
584 unsigned BOpc = Hexagon::J2_jump;
585 unsigned BccOpc = Hexagon::J2_jumpt;
586 assert(validateBranchCond(Cond) && "Invalid branching condition");
587 assert(TBB && "insertBranch must not be told to insert a fallthrough");
588 assert(!BytesAdded && "code size not handled");
590 // Check if reverseBranchCondition has asked to reverse this branch
591 // If we want to reverse the branch an odd number of times, we want
592 // J2_jumpf.
593 if (!Cond.empty() && Cond[0].isImm())
594 BccOpc = Cond[0].getImm();
596 if (!FBB) {
597 if (Cond.empty()) {
598 // Due to a bug in TailMerging/CFG Optimization, we need to add a
599 // special case handling of a predicated jump followed by an
600 // unconditional jump. If not, Tail Merging and CFG Optimization go
601 // into an infinite loop.
602 MachineBasicBlock *NewTBB, *NewFBB;
603 SmallVector<MachineOperand, 4> Cond;
604 auto Term = MBB.getFirstTerminator();
605 if (Term != MBB.end() && isPredicated(*Term) &&
606 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
607 MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
608 reverseBranchCondition(Cond);
609 removeBranch(MBB);
610 return insertBranch(MBB, TBB, nullptr, Cond, DL);
612 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
613 } else if (isEndLoopN(Cond[0].getImm())) {
614 int EndLoopOp = Cond[0].getImm();
615 assert(Cond[1].isMBB());
616 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617 // Check for it, and change the BB target if needed.
618 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
619 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
620 VisitedBBs);
621 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
622 Loop->getOperand(0).setMBB(TBB);
623 // Add the ENDLOOP after the finding the LOOP0.
624 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
625 } else if (isNewValueJump(Cond[0].getImm())) {
626 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
627 // New value jump
628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632 << printMBBReference(MBB););
633 if (Cond[2].isReg()) {
634 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
635 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
636 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
637 } else if(Cond[2].isImm()) {
638 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
639 addImm(Cond[2].getImm()).addMBB(TBB);
640 } else
641 llvm_unreachable("Invalid condition for branching");
642 } else {
643 assert((Cond.size() == 2) && "Malformed cond vector");
644 const MachineOperand &RO = Cond[1];
645 unsigned Flags = getUndefRegState(RO.isUndef());
646 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
648 return 1;
650 assert((!Cond.empty()) &&
651 "Cond. cannot be empty when multiple branchings are required");
652 assert((!isNewValueJump(Cond[0].getImm())) &&
653 "NV-jump cannot be inserted with another branch");
654 // Special case for hardware loops. The condition is a basic block.
655 if (isEndLoopN(Cond[0].getImm())) {
656 int EndLoopOp = Cond[0].getImm();
657 assert(Cond[1].isMBB());
658 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659 // Check for it, and change the BB target if needed.
660 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
661 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
662 VisitedBBs);
663 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
664 Loop->getOperand(0).setMBB(TBB);
665 // Add the ENDLOOP after the finding the LOOP0.
666 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
667 } else {
668 const MachineOperand &RO = Cond[1];
669 unsigned Flags = getUndefRegState(RO.isUndef());
670 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
672 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
674 return 2;
677 /// Analyze the loop code to find the loop induction variable and compare used
678 /// to compute the number of iterations. Currently, we analyze loop that are
679 /// controlled using hardware loops. In this case, the induction variable
680 /// instruction is null. For all other cases, this function returns true, which
681 /// means we're unable to analyze it.
682 bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
683 MachineInstr *&IndVarInst,
684 MachineInstr *&CmpInst) const {
686 MachineBasicBlock *LoopEnd = L.getBottomBlock();
687 MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
688 // We really "analyze" only hardware loops right now.
689 if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
690 IndVarInst = nullptr;
691 CmpInst = &*I;
692 return false;
694 return true;
697 /// Generate code to reduce the loop iteration by one and check if the loop is
698 /// finished. Return the value/register of the new loop count. this function
699 /// assumes the nth iteration is peeled first.
700 unsigned HexagonInstrInfo::reduceLoopCount(
701 MachineBasicBlock &MBB, MachineBasicBlock &PreHeader, MachineInstr *IndVar,
702 MachineInstr &Cmp, SmallVectorImpl<MachineOperand> &Cond,
703 SmallVectorImpl<MachineInstr *> &PrevInsts, unsigned Iter,
704 unsigned MaxIter) const {
705 // We expect a hardware loop currently. This means that IndVar is set
706 // to null, and the compare is the ENDLOOP instruction.
707 assert((!IndVar) && isEndLoopN(Cmp.getOpcode())
708 && "Expecting a hardware loop");
709 MachineFunction *MF = MBB.getParent();
710 DebugLoc DL = Cmp.getDebugLoc();
711 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
712 MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(),
713 Cmp.getOperand(0).getMBB(), VisitedBBs);
714 if (!Loop)
715 return 0;
716 // If the loop trip count is a compile-time value, then just change the
717 // value.
718 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
719 Loop->getOpcode() == Hexagon::J2_loop1i) {
720 int64_t Offset = Loop->getOperand(1).getImm();
721 if (Offset <= 1)
722 Loop->eraseFromParent();
723 else
724 Loop->getOperand(1).setImm(Offset - 1);
725 return Offset - 1;
727 // The loop trip count is a run-time value. We generate code to subtract
728 // one from the trip count, and update the loop instruction.
729 assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
730 Register LoopCount = Loop->getOperand(1).getReg();
731 // Check if we're done with the loop.
732 unsigned LoopEnd = createVR(MF, MVT::i1);
733 MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
734 addReg(LoopCount).addImm(1);
735 unsigned NewLoopCount = createVR(MF, MVT::i32);
736 MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
737 addReg(LoopCount).addImm(-1);
738 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
739 // Update the previously generated instructions with the new loop counter.
740 for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
741 E = PrevInsts.end(); I != E; ++I)
742 (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI);
743 PrevInsts.clear();
744 PrevInsts.push_back(NewCmp);
745 PrevInsts.push_back(NewAdd);
746 // Insert the new loop instruction if this is the last time the loop is
747 // decremented.
748 if (Iter == MaxIter)
749 BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
750 addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
751 // Delete the old loop instruction.
752 if (Iter == 0)
753 Loop->eraseFromParent();
754 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
755 Cond.push_back(NewCmp->getOperand(0));
756 return NewLoopCount;
759 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
760 unsigned NumCycles, unsigned ExtraPredCycles,
761 BranchProbability Probability) const {
762 return nonDbgBBSize(&MBB) <= 3;
765 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
766 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
767 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
768 const {
769 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
772 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
773 unsigned NumInstrs, BranchProbability Probability) const {
774 return NumInstrs <= 4;
777 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
778 MachineBasicBlock::iterator I,
779 const DebugLoc &DL, unsigned DestReg,
780 unsigned SrcReg, bool KillSrc) const {
781 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
782 unsigned KillFlag = getKillRegState(KillSrc);
784 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
785 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
786 .addReg(SrcReg, KillFlag);
787 return;
789 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
790 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
791 .addReg(SrcReg, KillFlag);
792 return;
794 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
795 // Map Pd = Ps to Pd = or(Ps, Ps).
796 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
797 .addReg(SrcReg).addReg(SrcReg, KillFlag);
798 return;
800 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
801 Hexagon::IntRegsRegClass.contains(SrcReg)) {
802 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
803 .addReg(SrcReg, KillFlag);
804 return;
806 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
807 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
808 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
809 .addReg(SrcReg, KillFlag);
810 return;
812 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
813 Hexagon::IntRegsRegClass.contains(SrcReg)) {
814 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
815 .addReg(SrcReg, KillFlag);
816 return;
818 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
819 Hexagon::IntRegsRegClass.contains(DestReg)) {
820 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
821 .addReg(SrcReg, KillFlag);
822 return;
824 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
825 Hexagon::PredRegsRegClass.contains(DestReg)) {
826 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
827 .addReg(SrcReg, KillFlag);
828 return;
830 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
831 Hexagon::IntRegsRegClass.contains(DestReg)) {
832 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
833 .addReg(SrcReg, KillFlag);
834 return;
836 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
837 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
838 addReg(SrcReg, KillFlag);
839 return;
841 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
842 Register LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
843 Register HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
844 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
845 .addReg(HiSrc, KillFlag)
846 .addReg(LoSrc, KillFlag);
847 return;
849 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
850 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
851 .addReg(SrcReg)
852 .addReg(SrcReg, KillFlag);
853 return;
855 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
856 Hexagon::HvxVRRegClass.contains(DestReg)) {
857 llvm_unreachable("Unimplemented pred to vec");
858 return;
860 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
861 Hexagon::HvxVRRegClass.contains(SrcReg)) {
862 llvm_unreachable("Unimplemented vec to pred");
863 return;
866 #ifndef NDEBUG
867 // Show the invalid registers to ease debugging.
868 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
869 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
870 #endif
871 llvm_unreachable("Unimplemented");
874 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
875 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
876 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
877 DebugLoc DL = MBB.findDebugLoc(I);
878 MachineFunction &MF = *MBB.getParent();
879 MachineFrameInfo &MFI = MF.getFrameInfo();
880 unsigned SlotAlign = MFI.getObjectAlignment(FI);
881 unsigned RegAlign = TRI->getSpillAlignment(*RC);
882 unsigned KillFlag = getKillRegState(isKill);
883 bool HasAlloca = MFI.hasVarSizedObjects();
884 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
886 MachineMemOperand *MMO = MF.getMachineMemOperand(
887 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
888 MFI.getObjectSize(FI), SlotAlign);
890 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
891 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
892 .addFrameIndex(FI).addImm(0)
893 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
894 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
895 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
896 .addFrameIndex(FI).addImm(0)
897 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
898 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
899 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
900 .addFrameIndex(FI).addImm(0)
901 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
902 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
903 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
904 .addFrameIndex(FI).addImm(0)
905 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
906 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
907 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
908 .addFrameIndex(FI).addImm(0)
909 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
910 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
911 // If there are variable-sized objects, spills will not be aligned.
912 if (HasAlloca)
913 SlotAlign = HFI.getStackAlignment();
914 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
915 : Hexagon::V6_vS32b_ai;
916 MachineMemOperand *MMOA = MF.getMachineMemOperand(
917 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
918 MFI.getObjectSize(FI), SlotAlign);
919 BuildMI(MBB, I, DL, get(Opc))
920 .addFrameIndex(FI).addImm(0)
921 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
922 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
923 // If there are variable-sized objects, spills will not be aligned.
924 if (HasAlloca)
925 SlotAlign = HFI.getStackAlignment();
926 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
927 : Hexagon::PS_vstorerw_ai;
928 MachineMemOperand *MMOA = MF.getMachineMemOperand(
929 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
930 MFI.getObjectSize(FI), SlotAlign);
931 BuildMI(MBB, I, DL, get(Opc))
932 .addFrameIndex(FI).addImm(0)
933 .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
934 } else {
935 llvm_unreachable("Unimplemented");
939 void HexagonInstrInfo::loadRegFromStackSlot(
940 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
941 int FI, const TargetRegisterClass *RC,
942 const TargetRegisterInfo *TRI) const {
943 DebugLoc DL = MBB.findDebugLoc(I);
944 MachineFunction &MF = *MBB.getParent();
945 MachineFrameInfo &MFI = MF.getFrameInfo();
946 unsigned SlotAlign = MFI.getObjectAlignment(FI);
947 unsigned RegAlign = TRI->getSpillAlignment(*RC);
948 bool HasAlloca = MFI.hasVarSizedObjects();
949 const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();
951 MachineMemOperand *MMO = MF.getMachineMemOperand(
952 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
953 MFI.getObjectSize(FI), SlotAlign);
955 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
956 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
957 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
958 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
959 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
960 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
961 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
962 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
963 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
964 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
965 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
966 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
967 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
968 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
969 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
970 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
971 // If there are variable-sized objects, spills will not be aligned.
972 if (HasAlloca)
973 SlotAlign = HFI.getStackAlignment();
974 unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
975 : Hexagon::V6_vL32b_ai;
976 MachineMemOperand *MMOA = MF.getMachineMemOperand(
977 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
978 MFI.getObjectSize(FI), SlotAlign);
979 BuildMI(MBB, I, DL, get(Opc), DestReg)
980 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
981 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
982 // If there are variable-sized objects, spills will not be aligned.
983 if (HasAlloca)
984 SlotAlign = HFI.getStackAlignment();
985 unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
986 : Hexagon::PS_vloadrw_ai;
987 MachineMemOperand *MMOA = MF.getMachineMemOperand(
988 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
989 MFI.getObjectSize(FI), SlotAlign);
990 BuildMI(MBB, I, DL, get(Opc), DestReg)
991 .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
992 } else {
993 llvm_unreachable("Can't store this register to stack slot");
997 static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
998 const MachineBasicBlock &B = *MI.getParent();
999 Regs.addLiveOuts(B);
1000 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
1001 for (auto I = B.rbegin(); I != E; ++I)
1002 Regs.stepBackward(*I);
1005 /// expandPostRAPseudo - This function is called for all pseudo instructions
1006 /// that remain after register allocation. Many pseudo instructions are
1007 /// created to help register allocation. This is the place to convert them
1008 /// into real instructions. The target can edit MI in place, or it can insert
1009 /// new instructions and erase MI. The function should return true if
1010 /// anything was changed.
1011 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1012 MachineBasicBlock &MBB = *MI.getParent();
1013 MachineFunction &MF = *MBB.getParent();
1014 MachineRegisterInfo &MRI = MF.getRegInfo();
1015 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1016 DebugLoc DL = MI.getDebugLoc();
1017 unsigned Opc = MI.getOpcode();
1019 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1020 Register Mx = MI.getOperand(MxOp).getReg();
1021 unsigned CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1022 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1023 .add(MI.getOperand((HasImm ? 5 : 4)));
1024 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1025 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1026 if (HasImm)
1027 MIB.add(MI.getOperand(4));
1028 MIB.addReg(CSx, RegState::Implicit);
1029 MBB.erase(MI);
1030 return true;
1033 switch (Opc) {
1034 case TargetOpcode::COPY: {
1035 MachineOperand &MD = MI.getOperand(0);
1036 MachineOperand &MS = MI.getOperand(1);
1037 MachineBasicBlock::iterator MBBI = MI.getIterator();
1038 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1039 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1040 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1042 MBB.erase(MBBI);
1043 return true;
1045 case Hexagon::PS_aligna:
1046 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1047 .addReg(HRI.getFrameRegister())
1048 .addImm(-MI.getOperand(1).getImm());
1049 MBB.erase(MI);
1050 return true;
1051 case Hexagon::V6_vassignp: {
1052 Register SrcReg = MI.getOperand(1).getReg();
1053 Register DstReg = MI.getOperand(0).getReg();
1054 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1055 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1056 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
1057 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
1058 MBB.erase(MI);
1059 return true;
1061 case Hexagon::V6_lo: {
1062 Register SrcReg = MI.getOperand(1).getReg();
1063 Register DstReg = MI.getOperand(0).getReg();
1064 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1065 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1066 MBB.erase(MI);
1067 MRI.clearKillFlags(SrcSubLo);
1068 return true;
1070 case Hexagon::V6_hi: {
1071 Register SrcReg = MI.getOperand(1).getReg();
1072 Register DstReg = MI.getOperand(0).getReg();
1073 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1074 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1075 MBB.erase(MI);
1076 MRI.clearKillFlags(SrcSubHi);
1077 return true;
1079 case Hexagon::PS_vstorerw_ai:
1080 case Hexagon::PS_vstorerwu_ai: {
1081 bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
1082 Register SrcReg = MI.getOperand(2).getReg();
1083 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1084 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1085 unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
1086 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1088 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc))
1089 .add(MI.getOperand(0))
1090 .addImm(MI.getOperand(1).getImm())
1091 .addReg(SrcSubLo)
1092 .cloneMemRefs(MI);
1093 MI1New->getOperand(0).setIsKill(false);
1094 BuildMI(MBB, MI, DL, get(NewOpc))
1095 .add(MI.getOperand(0))
1096 // The Vectors are indexed in multiples of vector size.
1097 .addImm(MI.getOperand(1).getImm() + Offset)
1098 .addReg(SrcSubHi)
1099 .cloneMemRefs(MI);
1100 MBB.erase(MI);
1101 return true;
1103 case Hexagon::PS_vloadrw_ai:
1104 case Hexagon::PS_vloadrwu_ai: {
1105 bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
1106 Register DstReg = MI.getOperand(0).getReg();
1107 unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
1108 unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1110 MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
1111 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1112 .add(MI.getOperand(1))
1113 .addImm(MI.getOperand(2).getImm())
1114 .cloneMemRefs(MI);
1115 MI1New->getOperand(1).setIsKill(false);
1116 BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1117 .add(MI.getOperand(1))
1118 // The Vectors are indexed in multiples of vector size.
1119 .addImm(MI.getOperand(2).getImm() + Offset)
1120 .cloneMemRefs(MI);
1121 MBB.erase(MI);
1122 return true;
1124 case Hexagon::PS_true: {
1125 Register Reg = MI.getOperand(0).getReg();
1126 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1127 .addReg(Reg, RegState::Undef)
1128 .addReg(Reg, RegState::Undef);
1129 MBB.erase(MI);
1130 return true;
1132 case Hexagon::PS_false: {
1133 Register Reg = MI.getOperand(0).getReg();
1134 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1135 .addReg(Reg, RegState::Undef)
1136 .addReg(Reg, RegState::Undef);
1137 MBB.erase(MI);
1138 return true;
1140 case Hexagon::PS_qtrue: {
1141 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1142 .addReg(Hexagon::V0, RegState::Undef)
1143 .addReg(Hexagon::V0, RegState::Undef);
1144 MBB.erase(MI);
1145 return true;
1147 case Hexagon::PS_qfalse: {
1148 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1149 .addReg(Hexagon::V0, RegState::Undef)
1150 .addReg(Hexagon::V0, RegState::Undef);
1151 MBB.erase(MI);
1152 return true;
1154 case Hexagon::PS_vdd0: {
1155 Register Vd = MI.getOperand(0).getReg();
1156 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1157 .addReg(Vd, RegState::Undef)
1158 .addReg(Vd, RegState::Undef);
1159 MBB.erase(MI);
1160 return true;
1162 case Hexagon::PS_vmulw: {
1163 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1164 Register DstReg = MI.getOperand(0).getReg();
1165 Register Src1Reg = MI.getOperand(1).getReg();
1166 Register Src2Reg = MI.getOperand(2).getReg();
1167 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1168 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1169 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1170 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1171 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1172 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1173 .addReg(Src1SubHi)
1174 .addReg(Src2SubHi);
1175 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1176 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1177 .addReg(Src1SubLo)
1178 .addReg(Src2SubLo);
1179 MBB.erase(MI);
1180 MRI.clearKillFlags(Src1SubHi);
1181 MRI.clearKillFlags(Src1SubLo);
1182 MRI.clearKillFlags(Src2SubHi);
1183 MRI.clearKillFlags(Src2SubLo);
1184 return true;
1186 case Hexagon::PS_vmulw_acc: {
1187 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1188 Register DstReg = MI.getOperand(0).getReg();
1189 Register Src1Reg = MI.getOperand(1).getReg();
1190 Register Src2Reg = MI.getOperand(2).getReg();
1191 Register Src3Reg = MI.getOperand(3).getReg();
1192 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1193 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1194 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1195 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1196 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1197 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1198 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1199 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1200 .addReg(Src1SubHi)
1201 .addReg(Src2SubHi)
1202 .addReg(Src3SubHi);
1203 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1204 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1205 .addReg(Src1SubLo)
1206 .addReg(Src2SubLo)
1207 .addReg(Src3SubLo);
1208 MBB.erase(MI);
1209 MRI.clearKillFlags(Src1SubHi);
1210 MRI.clearKillFlags(Src1SubLo);
1211 MRI.clearKillFlags(Src2SubHi);
1212 MRI.clearKillFlags(Src2SubLo);
1213 MRI.clearKillFlags(Src3SubHi);
1214 MRI.clearKillFlags(Src3SubLo);
1215 return true;
1217 case Hexagon::PS_pselect: {
1218 const MachineOperand &Op0 = MI.getOperand(0);
1219 const MachineOperand &Op1 = MI.getOperand(1);
1220 const MachineOperand &Op2 = MI.getOperand(2);
1221 const MachineOperand &Op3 = MI.getOperand(3);
1222 Register Rd = Op0.getReg();
1223 Register Pu = Op1.getReg();
1224 Register Rs = Op2.getReg();
1225 Register Rt = Op3.getReg();
1226 DebugLoc DL = MI.getDebugLoc();
1227 unsigned K1 = getKillRegState(Op1.isKill());
1228 unsigned K2 = getKillRegState(Op2.isKill());
1229 unsigned K3 = getKillRegState(Op3.isKill());
1230 if (Rd != Rs)
1231 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1232 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1233 .addReg(Rs, K2);
1234 if (Rd != Rt)
1235 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1236 .addReg(Pu, K1)
1237 .addReg(Rt, K3);
1238 MBB.erase(MI);
1239 return true;
1241 case Hexagon::PS_vselect: {
1242 const MachineOperand &Op0 = MI.getOperand(0);
1243 const MachineOperand &Op1 = MI.getOperand(1);
1244 const MachineOperand &Op2 = MI.getOperand(2);
1245 const MachineOperand &Op3 = MI.getOperand(3);
1246 LivePhysRegs LiveAtMI(HRI);
1247 getLiveRegsAt(LiveAtMI, MI);
1248 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1249 Register PReg = Op1.getReg();
1250 assert(Op1.getSubReg() == 0);
1251 unsigned PState = getRegState(Op1);
1253 if (Op0.getReg() != Op2.getReg()) {
1254 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1255 : PState;
1256 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1257 .add(Op0)
1258 .addReg(PReg, S)
1259 .add(Op2);
1260 if (IsDestLive)
1261 T.addReg(Op0.getReg(), RegState::Implicit);
1262 IsDestLive = true;
1264 if (Op0.getReg() != Op3.getReg()) {
1265 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1266 .add(Op0)
1267 .addReg(PReg, PState)
1268 .add(Op3);
1269 if (IsDestLive)
1270 T.addReg(Op0.getReg(), RegState::Implicit);
1272 MBB.erase(MI);
1273 return true;
1275 case Hexagon::PS_wselect: {
1276 MachineOperand &Op0 = MI.getOperand(0);
1277 MachineOperand &Op1 = MI.getOperand(1);
1278 MachineOperand &Op2 = MI.getOperand(2);
1279 MachineOperand &Op3 = MI.getOperand(3);
1280 LivePhysRegs LiveAtMI(HRI);
1281 getLiveRegsAt(LiveAtMI, MI);
1282 bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
1283 Register PReg = Op1.getReg();
1284 assert(Op1.getSubReg() == 0);
1285 unsigned PState = getRegState(Op1);
1287 if (Op0.getReg() != Op2.getReg()) {
1288 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1289 : PState;
1290 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1291 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1292 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1293 .add(Op0)
1294 .addReg(PReg, S)
1295 .addReg(SrcHi)
1296 .addReg(SrcLo);
1297 if (IsDestLive)
1298 T.addReg(Op0.getReg(), RegState::Implicit);
1299 IsDestLive = true;
1301 if (Op0.getReg() != Op3.getReg()) {
1302 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1303 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1304 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1305 .add(Op0)
1306 .addReg(PReg, PState)
1307 .addReg(SrcHi)
1308 .addReg(SrcLo);
1309 if (IsDestLive)
1310 T.addReg(Op0.getReg(), RegState::Implicit);
1312 MBB.erase(MI);
1313 return true;
1316 case Hexagon::PS_crash: {
1317 // Generate a misaligned load that is guaranteed to cause a crash.
1318 class CrashPseudoSourceValue : public PseudoSourceValue {
1319 public:
1320 CrashPseudoSourceValue(const TargetInstrInfo &TII)
1321 : PseudoSourceValue(TargetCustom, TII) {}
1323 bool isConstant(const MachineFrameInfo *) const override {
1324 return false;
1326 bool isAliased(const MachineFrameInfo *) const override {
1327 return false;
1329 bool mayAlias(const MachineFrameInfo *) const override {
1330 return false;
1332 void printCustom(raw_ostream &OS) const override {
1333 OS << "MisalignedCrash";
1337 static const CrashPseudoSourceValue CrashPSV(*this);
1338 MachineMemOperand *MMO = MF.getMachineMemOperand(
1339 MachinePointerInfo(&CrashPSV),
1340 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 8, 1);
1341 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1342 .addImm(0xBADC0FEE) // Misaligned load.
1343 .addMemOperand(MMO);
1344 MBB.erase(MI);
1345 return true;
1348 case Hexagon::PS_tailcall_i:
1349 MI.setDesc(get(Hexagon::J2_jump));
1350 return true;
1351 case Hexagon::PS_tailcall_r:
1352 case Hexagon::PS_jmpret:
1353 MI.setDesc(get(Hexagon::J2_jumpr));
1354 return true;
1355 case Hexagon::PS_jmprett:
1356 MI.setDesc(get(Hexagon::J2_jumprt));
1357 return true;
1358 case Hexagon::PS_jmpretf:
1359 MI.setDesc(get(Hexagon::J2_jumprf));
1360 return true;
1361 case Hexagon::PS_jmprettnewpt:
1362 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1363 return true;
1364 case Hexagon::PS_jmpretfnewpt:
1365 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1366 return true;
1367 case Hexagon::PS_jmprettnew:
1368 MI.setDesc(get(Hexagon::J2_jumprtnew));
1369 return true;
1370 case Hexagon::PS_jmpretfnew:
1371 MI.setDesc(get(Hexagon::J2_jumprfnew));
1372 return true;
1374 case Hexagon::PS_loadrub_pci:
1375 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1376 case Hexagon::PS_loadrb_pci:
1377 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1378 case Hexagon::PS_loadruh_pci:
1379 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1380 case Hexagon::PS_loadrh_pci:
1381 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1382 case Hexagon::PS_loadri_pci:
1383 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1384 case Hexagon::PS_loadrd_pci:
1385 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1386 case Hexagon::PS_loadrub_pcr:
1387 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1388 case Hexagon::PS_loadrb_pcr:
1389 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1390 case Hexagon::PS_loadruh_pcr:
1391 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1392 case Hexagon::PS_loadrh_pcr:
1393 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1394 case Hexagon::PS_loadri_pcr:
1395 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1396 case Hexagon::PS_loadrd_pcr:
1397 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1398 case Hexagon::PS_storerb_pci:
1399 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1400 case Hexagon::PS_storerh_pci:
1401 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1402 case Hexagon::PS_storerf_pci:
1403 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1404 case Hexagon::PS_storeri_pci:
1405 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1406 case Hexagon::PS_storerd_pci:
1407 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1408 case Hexagon::PS_storerb_pcr:
1409 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1410 case Hexagon::PS_storerh_pcr:
1411 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1412 case Hexagon::PS_storerf_pcr:
1413 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1414 case Hexagon::PS_storeri_pcr:
1415 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1416 case Hexagon::PS_storerd_pcr:
1417 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1420 return false;
1423 MachineBasicBlock::instr_iterator
1424 HexagonInstrInfo::expandVGatherPseudo(MachineInstr &MI) const {
1425 MachineBasicBlock &MBB = *MI.getParent();
1426 const DebugLoc &DL = MI.getDebugLoc();
1427 unsigned Opc = MI.getOpcode();
1428 MachineBasicBlock::iterator First;
1430 switch (Opc) {
1431 case Hexagon::V6_vgathermh_pseudo:
1432 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1433 .add(MI.getOperand(1))
1434 .add(MI.getOperand(2))
1435 .add(MI.getOperand(3));
1436 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1437 .add(MI.getOperand(0))
1438 .addImm(0)
1439 .addReg(Hexagon::VTMP);
1440 MBB.erase(MI);
1441 return First.getInstrIterator();
1443 case Hexagon::V6_vgathermw_pseudo:
1444 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1445 .add(MI.getOperand(1))
1446 .add(MI.getOperand(2))
1447 .add(MI.getOperand(3));
1448 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1449 .add(MI.getOperand(0))
1450 .addImm(0)
1451 .addReg(Hexagon::VTMP);
1452 MBB.erase(MI);
1453 return First.getInstrIterator();
1455 case Hexagon::V6_vgathermhw_pseudo:
1456 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1457 .add(MI.getOperand(1))
1458 .add(MI.getOperand(2))
1459 .add(MI.getOperand(3));
1460 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1461 .add(MI.getOperand(0))
1462 .addImm(0)
1463 .addReg(Hexagon::VTMP);
1464 MBB.erase(MI);
1465 return First.getInstrIterator();
1467 case Hexagon::V6_vgathermhq_pseudo:
1468 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1469 .add(MI.getOperand(1))
1470 .add(MI.getOperand(2))
1471 .add(MI.getOperand(3))
1472 .add(MI.getOperand(4));
1473 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1474 .add(MI.getOperand(0))
1475 .addImm(0)
1476 .addReg(Hexagon::VTMP);
1477 MBB.erase(MI);
1478 return First.getInstrIterator();
1480 case Hexagon::V6_vgathermwq_pseudo:
1481 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1482 .add(MI.getOperand(1))
1483 .add(MI.getOperand(2))
1484 .add(MI.getOperand(3))
1485 .add(MI.getOperand(4));
1486 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1487 .add(MI.getOperand(0))
1488 .addImm(0)
1489 .addReg(Hexagon::VTMP);
1490 MBB.erase(MI);
1491 return First.getInstrIterator();
1493 case Hexagon::V6_vgathermhwq_pseudo:
1494 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1495 .add(MI.getOperand(1))
1496 .add(MI.getOperand(2))
1497 .add(MI.getOperand(3))
1498 .add(MI.getOperand(4));
1499 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1500 .add(MI.getOperand(0))
1501 .addImm(0)
1502 .addReg(Hexagon::VTMP);
1503 MBB.erase(MI);
1504 return First.getInstrIterator();
1507 return MI.getIterator();
1510 // We indicate that we want to reverse the branch by
1511 // inserting the reversed branching opcode.
1512 bool HexagonInstrInfo::reverseBranchCondition(
1513 SmallVectorImpl<MachineOperand> &Cond) const {
1514 if (Cond.empty())
1515 return true;
1516 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1517 unsigned opcode = Cond[0].getImm();
1518 //unsigned temp;
1519 assert(get(opcode).isBranch() && "Should be a branching condition.");
1520 if (isEndLoopN(opcode))
1521 return true;
1522 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1523 Cond[0].setImm(NewOpcode);
1524 return false;
1527 void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
1528 MachineBasicBlock::iterator MI) const {
1529 DebugLoc DL;
1530 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1533 bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
1534 return getAddrMode(MI) == HexagonII::PostInc;
1537 // Returns true if an instruction is predicated irrespective of the predicate
1538 // sense. For example, all of the following will return true.
1539 // if (p0) R1 = add(R2, R3)
1540 // if (!p0) R1 = add(R2, R3)
1541 // if (p0.new) R1 = add(R2, R3)
1542 // if (!p0.new) R1 = add(R2, R3)
1543 // Note: New-value stores are not included here as in the current
1544 // implementation, we don't need to check their predicate sense.
1545 bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
1546 const uint64_t F = MI.getDesc().TSFlags;
1547 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
1550 bool HexagonInstrInfo::PredicateInstruction(
1551 MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
1552 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1553 isEndLoopN(Cond[0].getImm())) {
1554 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1555 return false;
1557 int Opc = MI.getOpcode();
1558 assert (isPredicable(MI) && "Expected predicable instruction");
1559 bool invertJump = predOpcodeHasNot(Cond);
1561 // We have to predicate MI "in place", i.e. after this function returns,
1562 // MI will need to be transformed into a predicated form. To avoid com-
1563 // plicated manipulations with the operands (handling tied operands,
1564 // etc.), build a new temporary instruction, then overwrite MI with it.
1566 MachineBasicBlock &B = *MI.getParent();
1567 DebugLoc DL = MI.getDebugLoc();
1568 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1569 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1570 unsigned NOp = 0, NumOps = MI.getNumOperands();
1571 while (NOp < NumOps) {
1572 MachineOperand &Op = MI.getOperand(NOp);
1573 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1574 break;
1575 T.add(Op);
1576 NOp++;
1579 unsigned PredReg, PredRegPos, PredRegFlags;
1580 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1581 (void)GotPredReg;
1582 assert(GotPredReg);
1583 T.addReg(PredReg, PredRegFlags);
1584 while (NOp < NumOps)
1585 T.add(MI.getOperand(NOp++));
1587 MI.setDesc(get(PredOpc));
1588 while (unsigned n = MI.getNumOperands())
1589 MI.RemoveOperand(n-1);
1590 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1591 MI.addOperand(T->getOperand(i));
1593 MachineBasicBlock::instr_iterator TI = T->getIterator();
1594 B.erase(TI);
1596 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1597 MRI.clearKillFlags(PredReg);
1598 return true;
1601 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1602 ArrayRef<MachineOperand> Pred2) const {
1603 // TODO: Fix this
1604 return false;
1607 bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
1608 std::vector<MachineOperand> &Pred) const {
1609 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1611 for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
1612 MachineOperand MO = MI.getOperand(oper);
1613 if (MO.isReg()) {
1614 if (!MO.isDef())
1615 continue;
1616 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1617 if (RC == &Hexagon::PredRegsRegClass) {
1618 Pred.push_back(MO);
1619 return true;
1621 continue;
1622 } else if (MO.isRegMask()) {
1623 for (unsigned PR : Hexagon::PredRegsRegClass) {
1624 if (!MI.modifiesRegister(PR, &HRI))
1625 continue;
1626 Pred.push_back(MO);
1627 return true;
1631 return false;
1634 bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
1635 if (!MI.getDesc().isPredicable())
1636 return false;
1638 if (MI.isCall() || isTailCall(MI)) {
1639 if (!Subtarget.usePredicatedCalls())
1640 return false;
1643 // HVX loads are not predicable on v60, but are on v62.
1644 if (!Subtarget.hasV62Ops()) {
1645 switch (MI.getOpcode()) {
1646 case Hexagon::V6_vL32b_ai:
1647 case Hexagon::V6_vL32b_pi:
1648 case Hexagon::V6_vL32b_ppu:
1649 case Hexagon::V6_vL32b_cur_ai:
1650 case Hexagon::V6_vL32b_cur_pi:
1651 case Hexagon::V6_vL32b_cur_ppu:
1652 case Hexagon::V6_vL32b_nt_ai:
1653 case Hexagon::V6_vL32b_nt_pi:
1654 case Hexagon::V6_vL32b_nt_ppu:
1655 case Hexagon::V6_vL32b_tmp_ai:
1656 case Hexagon::V6_vL32b_tmp_pi:
1657 case Hexagon::V6_vL32b_tmp_ppu:
1658 case Hexagon::V6_vL32b_nt_cur_ai:
1659 case Hexagon::V6_vL32b_nt_cur_pi:
1660 case Hexagon::V6_vL32b_nt_cur_ppu:
1661 case Hexagon::V6_vL32b_nt_tmp_ai:
1662 case Hexagon::V6_vL32b_nt_tmp_pi:
1663 case Hexagon::V6_vL32b_nt_tmp_ppu:
1664 return false;
1667 return true;
1670 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1671 const MachineBasicBlock *MBB,
1672 const MachineFunction &MF) const {
1673 // Debug info is never a scheduling boundary. It's necessary to be explicit
1674 // due to the special treatment of IT instructions below, otherwise a
1675 // dbg_value followed by an IT will result in the IT instruction being
1676 // considered a scheduling hazard, which is wrong. It should be the actual
1677 // instruction preceding the dbg_value instruction(s), just like it is
1678 // when debug info is not present.
1679 if (MI.isDebugInstr())
1680 return false;
1682 // Throwing call is a boundary.
1683 if (MI.isCall()) {
1684 // Don't mess around with no return calls.
1685 if (doesNotReturn(MI))
1686 return true;
1687 // If any of the block's successors is a landing pad, this could be a
1688 // throwing call.
1689 for (auto I : MBB->successors())
1690 if (I->isEHPad())
1691 return true;
1694 // Terminators and labels can't be scheduled around.
1695 if (MI.getDesc().isTerminator() || MI.isPosition())
1696 return true;
1698 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1699 return true;
1701 return false;
1704 /// Measure the specified inline asm to determine an approximation of its
1705 /// length.
1706 /// Comments (which run till the next SeparatorString or newline) do not
1707 /// count as an instruction.
1708 /// Any other non-whitespace text is considered an instruction, with
1709 /// multiple instructions separated by SeparatorString or newlines.
1710 /// Variable-length instructions are not handled here; this function
1711 /// may be overloaded in the target code to do that.
1712 /// Hexagon counts the number of ##'s and adjust for that many
1713 /// constant exenders.
1714 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1715 const MCAsmInfo &MAI,
1716 const TargetSubtargetInfo *STI) const {
1717 StringRef AStr(Str);
1718 // Count the number of instructions in the asm.
1719 bool atInsnStart = true;
1720 unsigned Length = 0;
1721 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1722 for (; *Str; ++Str) {
1723 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1724 strlen(MAI.getSeparatorString())) == 0)
1725 atInsnStart = true;
1726 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1727 Length += MaxInstLength;
1728 atInsnStart = false;
1730 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1731 MAI.getCommentString().size()) == 0)
1732 atInsnStart = false;
1735 // Add to size number of constant extenders seen * 4.
1736 StringRef Occ("##");
1737 Length += AStr.count(Occ)*4;
1738 return Length;
1741 ScheduleHazardRecognizer*
1742 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1743 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1744 if (UseDFAHazardRec)
1745 return new HexagonHazardRecognizer(II, this, Subtarget);
1746 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1749 /// For a comparison instruction, return the source registers in
1750 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1751 /// compares against in CmpValue. Return true if the comparison instruction
1752 /// can be analyzed.
1753 bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1754 unsigned &SrcReg2, int &Mask,
1755 int &Value) const {
1756 unsigned Opc = MI.getOpcode();
1758 // Set mask and the first source register.
1759 switch (Opc) {
1760 case Hexagon::C2_cmpeq:
1761 case Hexagon::C2_cmpeqp:
1762 case Hexagon::C2_cmpgt:
1763 case Hexagon::C2_cmpgtp:
1764 case Hexagon::C2_cmpgtu:
1765 case Hexagon::C2_cmpgtup:
1766 case Hexagon::C4_cmpneq:
1767 case Hexagon::C4_cmplte:
1768 case Hexagon::C4_cmplteu:
1769 case Hexagon::C2_cmpeqi:
1770 case Hexagon::C2_cmpgti:
1771 case Hexagon::C2_cmpgtui:
1772 case Hexagon::C4_cmpneqi:
1773 case Hexagon::C4_cmplteui:
1774 case Hexagon::C4_cmpltei:
1775 SrcReg = MI.getOperand(1).getReg();
1776 Mask = ~0;
1777 break;
1778 case Hexagon::A4_cmpbeq:
1779 case Hexagon::A4_cmpbgt:
1780 case Hexagon::A4_cmpbgtu:
1781 case Hexagon::A4_cmpbeqi:
1782 case Hexagon::A4_cmpbgti:
1783 case Hexagon::A4_cmpbgtui:
1784 SrcReg = MI.getOperand(1).getReg();
1785 Mask = 0xFF;
1786 break;
1787 case Hexagon::A4_cmpheq:
1788 case Hexagon::A4_cmphgt:
1789 case Hexagon::A4_cmphgtu:
1790 case Hexagon::A4_cmpheqi:
1791 case Hexagon::A4_cmphgti:
1792 case Hexagon::A4_cmphgtui:
1793 SrcReg = MI.getOperand(1).getReg();
1794 Mask = 0xFFFF;
1795 break;
1798 // Set the value/second source register.
1799 switch (Opc) {
1800 case Hexagon::C2_cmpeq:
1801 case Hexagon::C2_cmpeqp:
1802 case Hexagon::C2_cmpgt:
1803 case Hexagon::C2_cmpgtp:
1804 case Hexagon::C2_cmpgtu:
1805 case Hexagon::C2_cmpgtup:
1806 case Hexagon::A4_cmpbeq:
1807 case Hexagon::A4_cmpbgt:
1808 case Hexagon::A4_cmpbgtu:
1809 case Hexagon::A4_cmpheq:
1810 case Hexagon::A4_cmphgt:
1811 case Hexagon::A4_cmphgtu:
1812 case Hexagon::C4_cmpneq:
1813 case Hexagon::C4_cmplte:
1814 case Hexagon::C4_cmplteu:
1815 SrcReg2 = MI.getOperand(2).getReg();
1816 return true;
1818 case Hexagon::C2_cmpeqi:
1819 case Hexagon::C2_cmpgtui:
1820 case Hexagon::C2_cmpgti:
1821 case Hexagon::C4_cmpneqi:
1822 case Hexagon::C4_cmplteui:
1823 case Hexagon::C4_cmpltei:
1824 case Hexagon::A4_cmpbeqi:
1825 case Hexagon::A4_cmpbgti:
1826 case Hexagon::A4_cmpbgtui:
1827 case Hexagon::A4_cmpheqi:
1828 case Hexagon::A4_cmphgti:
1829 case Hexagon::A4_cmphgtui: {
1830 SrcReg2 = 0;
1831 const MachineOperand &Op2 = MI.getOperand(2);
1832 if (!Op2.isImm())
1833 return false;
1834 Value = MI.getOperand(2).getImm();
1835 return true;
1839 return false;
1842 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1843 const MachineInstr &MI,
1844 unsigned *PredCost) const {
1845 return getInstrTimingClassLatency(ItinData, MI);
1848 DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1849 const TargetSubtargetInfo &STI) const {
1850 const InstrItineraryData *II = STI.getInstrItineraryData();
1851 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1854 // Inspired by this pair:
1855 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1856 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1857 // Currently AA considers the addresses in these instructions to be aliasing.
1858 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1859 const MachineInstr &MIa, const MachineInstr &MIb,
1860 AliasAnalysis *AA) const {
1861 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
1862 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1863 return false;
1865 // Instructions that are pure loads, not loads and stores like memops are not
1866 // dependent.
1867 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1868 return true;
1870 // Get the base register in MIa.
1871 unsigned BasePosA, OffsetPosA;
1872 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
1873 return false;
1874 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
1875 Register BaseRegA = BaseA.getReg();
1876 unsigned BaseSubA = BaseA.getSubReg();
1878 // Get the base register in MIb.
1879 unsigned BasePosB, OffsetPosB;
1880 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
1881 return false;
1882 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
1883 Register BaseRegB = BaseB.getReg();
1884 unsigned BaseSubB = BaseB.getSubReg();
1886 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
1887 return false;
1889 // Get the access sizes.
1890 unsigned SizeA = getMemAccessSize(MIa);
1891 unsigned SizeB = getMemAccessSize(MIb);
1893 // Get the offsets. Handle immediates only for now.
1894 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
1895 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
1896 if (!MIa.getOperand(OffsetPosA).isImm() ||
1897 !MIb.getOperand(OffsetPosB).isImm())
1898 return false;
1899 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
1900 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
1902 // This is a mem access with the same base register and known offsets from it.
1903 // Reason about it.
1904 if (OffsetA > OffsetB) {
1905 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1906 return SizeB <= OffDiff;
1908 if (OffsetA < OffsetB) {
1909 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1910 return SizeA <= OffDiff;
1913 return false;
1916 /// If the instruction is an increment of a constant value, return the amount.
1917 bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
1918 int &Value) const {
1919 if (isPostIncrement(MI)) {
1920 unsigned BasePos = 0, OffsetPos = 0;
1921 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
1922 return false;
1923 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
1924 if (OffsetOp.isImm()) {
1925 Value = OffsetOp.getImm();
1926 return true;
1928 } else if (MI.getOpcode() == Hexagon::A2_addi) {
1929 const MachineOperand &AddOp = MI.getOperand(2);
1930 if (AddOp.isImm()) {
1931 Value = AddOp.getImm();
1932 return true;
1936 return false;
1939 std::pair<unsigned, unsigned>
1940 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1941 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
1942 TF & HexagonII::MO_Bitmasks);
1945 ArrayRef<std::pair<unsigned, const char*>>
1946 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1947 using namespace HexagonII;
1949 static const std::pair<unsigned, const char*> Flags[] = {
1950 {MO_PCREL, "hexagon-pcrel"},
1951 {MO_GOT, "hexagon-got"},
1952 {MO_LO16, "hexagon-lo16"},
1953 {MO_HI16, "hexagon-hi16"},
1954 {MO_GPREL, "hexagon-gprel"},
1955 {MO_GDGOT, "hexagon-gdgot"},
1956 {MO_GDPLT, "hexagon-gdplt"},
1957 {MO_IE, "hexagon-ie"},
1958 {MO_IEGOT, "hexagon-iegot"},
1959 {MO_TPREL, "hexagon-tprel"}
1961 return makeArrayRef(Flags);
1964 ArrayRef<std::pair<unsigned, const char*>>
1965 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1966 using namespace HexagonII;
1968 static const std::pair<unsigned, const char*> Flags[] = {
1969 {HMOTF_ConstExtended, "hexagon-ext"}
1971 return makeArrayRef(Flags);
1974 unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
1975 MachineRegisterInfo &MRI = MF->getRegInfo();
1976 const TargetRegisterClass *TRC;
1977 if (VT == MVT::i1) {
1978 TRC = &Hexagon::PredRegsRegClass;
1979 } else if (VT == MVT::i32 || VT == MVT::f32) {
1980 TRC = &Hexagon::IntRegsRegClass;
1981 } else if (VT == MVT::i64 || VT == MVT::f64) {
1982 TRC = &Hexagon::DoubleRegsRegClass;
1983 } else {
1984 llvm_unreachable("Cannot handle this register class");
1987 Register NewReg = MRI.createVirtualRegister(TRC);
1988 return NewReg;
1991 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
1992 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1995 bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
1996 const uint64_t F = MI.getDesc().TSFlags;
1997 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
2000 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr &MI) const {
2001 return getAddrMode(MI) == HexagonII::BaseImmOffset;
2004 bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
2005 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2006 !MI.getDesc().mayStore() &&
2007 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2008 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2009 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2012 // Return true if the instruction is a compund branch instruction.
2013 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
2014 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2017 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2018 // isFPImm and later getFPImm as well.
2019 bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
2020 const uint64_t F = MI.getDesc().TSFlags;
2021 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
2022 if (isExtended) // Instruction must be extended.
2023 return true;
2025 unsigned isExtendable =
2026 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
2027 if (!isExtendable)
2028 return false;
2030 if (MI.isCall())
2031 return false;
2033 short ExtOpNum = getCExtOpNum(MI);
2034 const MachineOperand &MO = MI.getOperand(ExtOpNum);
2035 // Use MO operand flags to determine if MO
2036 // has the HMOTF_ConstExtended flag set.
2037 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2038 return true;
2039 // If this is a Machine BB address we are talking about, and it is
2040 // not marked as extended, say so.
2041 if (MO.isMBB())
2042 return false;
2044 // We could be using an instruction with an extendable immediate and shoehorn
2045 // a global address into it. If it is a global address it will be constant
2046 // extended. We do this for COMBINE.
2047 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2048 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2049 return true;
2051 // If the extendable operand is not 'Immediate' type, the instruction should
2052 // have 'isExtended' flag set.
2053 assert(MO.isImm() && "Extendable operand must be Immediate type");
2055 int MinValue = getMinValue(MI);
2056 int MaxValue = getMaxValue(MI);
2057 int ImmValue = MO.getImm();
2059 return (ImmValue < MinValue || ImmValue > MaxValue);
2062 bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
2063 switch (MI.getOpcode()) {
2064 case Hexagon::L4_return:
2065 case Hexagon::L4_return_t:
2066 case Hexagon::L4_return_f:
2067 case Hexagon::L4_return_tnew_pnt:
2068 case Hexagon::L4_return_fnew_pnt:
2069 case Hexagon::L4_return_tnew_pt:
2070 case Hexagon::L4_return_fnew_pt:
2071 return true;
2073 return false;
2076 // Return true when ConsMI uses a register defined by ProdMI.
2077 bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
2078 const MachineInstr &ConsMI) const {
2079 if (!ProdMI.getDesc().getNumDefs())
2080 return false;
2081 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2083 SmallVector<unsigned, 4> DefsA;
2084 SmallVector<unsigned, 4> DefsB;
2085 SmallVector<unsigned, 8> UsesA;
2086 SmallVector<unsigned, 8> UsesB;
2088 parseOperands(ProdMI, DefsA, UsesA);
2089 parseOperands(ConsMI, DefsB, UsesB);
2091 for (auto &RegA : DefsA)
2092 for (auto &RegB : UsesB) {
2093 // True data dependency.
2094 if (RegA == RegB)
2095 return true;
2097 if (Register::isPhysicalRegister(RegA))
2098 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
2099 if (RegB == *SubRegs)
2100 return true;
2102 if (Register::isPhysicalRegister(RegB))
2103 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
2104 if (RegA == *SubRegs)
2105 return true;
2108 return false;
2111 // Returns true if the instruction is alread a .cur.
2112 bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
2113 switch (MI.getOpcode()) {
2114 case Hexagon::V6_vL32b_cur_pi:
2115 case Hexagon::V6_vL32b_cur_ai:
2116 return true;
2118 return false;
2121 // Returns true, if any one of the operands is a dot new
2122 // insn, whether it is predicated dot new or register dot new.
2123 bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
2124 if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
2125 return true;
2127 return false;
2130 /// Symmetrical. See if these two instructions are fit for duplex pair.
2131 bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
2132 const MachineInstr &MIb) const {
2133 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
2134 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
2135 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2138 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
2139 if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
2140 return true;
2142 // Multiply
2143 unsigned SchedClass = MI.getDesc().getSchedClass();
2144 return is_TC4x(SchedClass) || is_TC3x(SchedClass);
2147 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2148 return (Opcode == Hexagon::ENDLOOP0 ||
2149 Opcode == Hexagon::ENDLOOP1);
2152 bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2153 switch(OpType) {
2154 case MachineOperand::MO_MachineBasicBlock:
2155 case MachineOperand::MO_GlobalAddress:
2156 case MachineOperand::MO_ExternalSymbol:
2157 case MachineOperand::MO_JumpTableIndex:
2158 case MachineOperand::MO_ConstantPoolIndex:
2159 case MachineOperand::MO_BlockAddress:
2160 return true;
2161 default:
2162 return false;
2166 bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
2167 const MCInstrDesc &MID = MI.getDesc();
2168 const uint64_t F = MID.TSFlags;
2169 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
2170 return true;
2172 // TODO: This is largely obsolete now. Will need to be removed
2173 // in consecutive patches.
2174 switch (MI.getOpcode()) {
2175 // PS_fi and PS_fia remain special cases.
2176 case Hexagon::PS_fi:
2177 case Hexagon::PS_fia:
2178 return true;
2179 default:
2180 return false;
2182 return false;
2185 // This returns true in two cases:
2186 // - The OP code itself indicates that this is an extended instruction.
2187 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2188 bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
2189 // First check if this is permanently extended op code.
2190 const uint64_t F = MI.getDesc().TSFlags;
2191 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
2192 return true;
2193 // Use MO operand flags to determine if one of MI's operands
2194 // has HMOTF_ConstExtended flag set.
2195 for (const MachineOperand &MO : MI.operands())
2196 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2197 return true;
2198 return false;
2201 bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
2202 unsigned Opcode = MI.getOpcode();
2203 const uint64_t F = get(Opcode).TSFlags;
2204 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2207 // No V60 HVX VMEM with A_INDIRECT.
2208 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
2209 const MachineInstr &J) const {
2210 if (!isHVXVec(I))
2211 return false;
2212 if (!I.mayLoad() && !I.mayStore())
2213 return false;
2214 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2217 bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
2218 switch (MI.getOpcode()) {
2219 case Hexagon::J2_callr:
2220 case Hexagon::J2_callrf:
2221 case Hexagon::J2_callrt:
2222 case Hexagon::PS_call_nr:
2223 return true;
2225 return false;
2228 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
2229 switch (MI.getOpcode()) {
2230 case Hexagon::L4_return:
2231 case Hexagon::L4_return_t:
2232 case Hexagon::L4_return_f:
2233 case Hexagon::L4_return_fnew_pnt:
2234 case Hexagon::L4_return_fnew_pt:
2235 case Hexagon::L4_return_tnew_pnt:
2236 case Hexagon::L4_return_tnew_pt:
2237 return true;
2239 return false;
2242 bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
2243 switch (MI.getOpcode()) {
2244 case Hexagon::J2_jumpr:
2245 case Hexagon::J2_jumprt:
2246 case Hexagon::J2_jumprf:
2247 case Hexagon::J2_jumprtnewpt:
2248 case Hexagon::J2_jumprfnewpt:
2249 case Hexagon::J2_jumprtnew:
2250 case Hexagon::J2_jumprfnew:
2251 return true;
2253 return false;
2256 // Return true if a given MI can accommodate given offset.
2257 // Use abs estimate as oppose to the exact number.
2258 // TODO: This will need to be changed to use MC level
2259 // definition of instruction extendable field size.
2260 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
2261 unsigned offset) const {
2262 // This selection of jump instructions matches to that what
2263 // analyzeBranch can parse, plus NVJ.
2264 if (isNewValueJump(MI)) // r9:2
2265 return isInt<11>(offset);
2267 switch (MI.getOpcode()) {
2268 // Still missing Jump to address condition on register value.
2269 default:
2270 return false;
2271 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2272 case Hexagon::J2_call:
2273 case Hexagon::PS_call_nr:
2274 return isInt<24>(offset);
2275 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2276 case Hexagon::J2_jumpf:
2277 case Hexagon::J2_jumptnew:
2278 case Hexagon::J2_jumptnewpt:
2279 case Hexagon::J2_jumpfnew:
2280 case Hexagon::J2_jumpfnewpt:
2281 case Hexagon::J2_callt:
2282 case Hexagon::J2_callf:
2283 return isInt<17>(offset);
2284 case Hexagon::J2_loop0i:
2285 case Hexagon::J2_loop0iext:
2286 case Hexagon::J2_loop0r:
2287 case Hexagon::J2_loop0rext:
2288 case Hexagon::J2_loop1i:
2289 case Hexagon::J2_loop1iext:
2290 case Hexagon::J2_loop1r:
2291 case Hexagon::J2_loop1rext:
2292 return isInt<9>(offset);
2293 // TODO: Add all the compound branches here. Can we do this in Relation model?
2294 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2295 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2296 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2297 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2298 return isInt<11>(offset);
2302 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
2303 const MachineInstr &ESMI) const {
2304 bool isLate = isLateResultInstr(LRMI);
2305 bool isEarly = isEarlySourceInstr(ESMI);
2307 LLVM_DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
2308 LLVM_DEBUG(LRMI.dump());
2309 LLVM_DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
2310 LLVM_DEBUG(ESMI.dump());
2312 if (isLate && isEarly) {
2313 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2314 return true;
2317 return false;
2320 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
2321 switch (MI.getOpcode()) {
2322 case TargetOpcode::EXTRACT_SUBREG:
2323 case TargetOpcode::INSERT_SUBREG:
2324 case TargetOpcode::SUBREG_TO_REG:
2325 case TargetOpcode::REG_SEQUENCE:
2326 case TargetOpcode::IMPLICIT_DEF:
2327 case TargetOpcode::COPY:
2328 case TargetOpcode::INLINEASM:
2329 case TargetOpcode::PHI:
2330 return false;
2331 default:
2332 break;
2335 unsigned SchedClass = MI.getDesc().getSchedClass();
2336 return !is_TC1(SchedClass);
2339 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
2340 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2341 // resource, but all operands can be received late like an ALU instruction.
2342 return getType(MI) == HexagonII::TypeCVI_VX_LATE;
2345 bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
2346 unsigned Opcode = MI.getOpcode();
2347 return Opcode == Hexagon::J2_loop0i ||
2348 Opcode == Hexagon::J2_loop0r ||
2349 Opcode == Hexagon::J2_loop0iext ||
2350 Opcode == Hexagon::J2_loop0rext ||
2351 Opcode == Hexagon::J2_loop1i ||
2352 Opcode == Hexagon::J2_loop1r ||
2353 Opcode == Hexagon::J2_loop1iext ||
2354 Opcode == Hexagon::J2_loop1rext;
2357 bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
2358 switch (MI.getOpcode()) {
2359 default: return false;
2360 case Hexagon::L4_iadd_memopw_io:
2361 case Hexagon::L4_isub_memopw_io:
2362 case Hexagon::L4_add_memopw_io:
2363 case Hexagon::L4_sub_memopw_io:
2364 case Hexagon::L4_and_memopw_io:
2365 case Hexagon::L4_or_memopw_io:
2366 case Hexagon::L4_iadd_memoph_io:
2367 case Hexagon::L4_isub_memoph_io:
2368 case Hexagon::L4_add_memoph_io:
2369 case Hexagon::L4_sub_memoph_io:
2370 case Hexagon::L4_and_memoph_io:
2371 case Hexagon::L4_or_memoph_io:
2372 case Hexagon::L4_iadd_memopb_io:
2373 case Hexagon::L4_isub_memopb_io:
2374 case Hexagon::L4_add_memopb_io:
2375 case Hexagon::L4_sub_memopb_io:
2376 case Hexagon::L4_and_memopb_io:
2377 case Hexagon::L4_or_memopb_io:
2378 case Hexagon::L4_ior_memopb_io:
2379 case Hexagon::L4_ior_memoph_io:
2380 case Hexagon::L4_ior_memopw_io:
2381 case Hexagon::L4_iand_memopb_io:
2382 case Hexagon::L4_iand_memoph_io:
2383 case Hexagon::L4_iand_memopw_io:
2384 return true;
2386 return false;
2389 bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
2390 const uint64_t F = MI.getDesc().TSFlags;
2391 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2394 bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2395 const uint64_t F = get(Opcode).TSFlags;
2396 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
2399 bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
2400 return isNewValueJump(MI) || isNewValueStore(MI);
2403 bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
2404 return isNewValue(MI) && MI.isBranch();
2407 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2408 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2411 bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
2412 const uint64_t F = MI.getDesc().TSFlags;
2413 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2416 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2417 const uint64_t F = get(Opcode).TSFlags;
2418 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
2421 // Returns true if a particular operand is extendable for an instruction.
2422 bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
2423 unsigned OperandNum) const {
2424 const uint64_t F = MI.getDesc().TSFlags;
2425 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
2426 == OperandNum;
2429 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
2430 const uint64_t F = MI.getDesc().TSFlags;
2431 assert(isPredicated(MI));
2432 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2435 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2436 const uint64_t F = get(Opcode).TSFlags;
2437 assert(isPredicated(Opcode));
2438 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2441 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
2442 const uint64_t F = MI.getDesc().TSFlags;
2443 return !((F >> HexagonII::PredicatedFalsePos) &
2444 HexagonII::PredicatedFalseMask);
2447 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2448 const uint64_t F = get(Opcode).TSFlags;
2449 // Make sure that the instruction is predicated.
2450 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2451 return !((F >> HexagonII::PredicatedFalsePos) &
2452 HexagonII::PredicatedFalseMask);
2455 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2456 const uint64_t F = get(Opcode).TSFlags;
2457 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2460 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2461 const uint64_t F = get(Opcode).TSFlags;
2462 return (F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2465 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2466 const uint64_t F = get(Opcode).TSFlags;
2467 assert(get(Opcode).isBranch() &&
2468 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2469 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2472 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
2473 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2474 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2475 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2476 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2479 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
2480 switch (MI.getOpcode()) {
2481 // Byte
2482 case Hexagon::L2_loadrb_io:
2483 case Hexagon::L4_loadrb_ur:
2484 case Hexagon::L4_loadrb_ap:
2485 case Hexagon::L2_loadrb_pr:
2486 case Hexagon::L2_loadrb_pbr:
2487 case Hexagon::L2_loadrb_pi:
2488 case Hexagon::L2_loadrb_pci:
2489 case Hexagon::L2_loadrb_pcr:
2490 case Hexagon::L2_loadbsw2_io:
2491 case Hexagon::L4_loadbsw2_ur:
2492 case Hexagon::L4_loadbsw2_ap:
2493 case Hexagon::L2_loadbsw2_pr:
2494 case Hexagon::L2_loadbsw2_pbr:
2495 case Hexagon::L2_loadbsw2_pi:
2496 case Hexagon::L2_loadbsw2_pci:
2497 case Hexagon::L2_loadbsw2_pcr:
2498 case Hexagon::L2_loadbsw4_io:
2499 case Hexagon::L4_loadbsw4_ur:
2500 case Hexagon::L4_loadbsw4_ap:
2501 case Hexagon::L2_loadbsw4_pr:
2502 case Hexagon::L2_loadbsw4_pbr:
2503 case Hexagon::L2_loadbsw4_pi:
2504 case Hexagon::L2_loadbsw4_pci:
2505 case Hexagon::L2_loadbsw4_pcr:
2506 case Hexagon::L4_loadrb_rr:
2507 case Hexagon::L2_ploadrbt_io:
2508 case Hexagon::L2_ploadrbt_pi:
2509 case Hexagon::L2_ploadrbf_io:
2510 case Hexagon::L2_ploadrbf_pi:
2511 case Hexagon::L2_ploadrbtnew_io:
2512 case Hexagon::L2_ploadrbfnew_io:
2513 case Hexagon::L4_ploadrbt_rr:
2514 case Hexagon::L4_ploadrbf_rr:
2515 case Hexagon::L4_ploadrbtnew_rr:
2516 case Hexagon::L4_ploadrbfnew_rr:
2517 case Hexagon::L2_ploadrbtnew_pi:
2518 case Hexagon::L2_ploadrbfnew_pi:
2519 case Hexagon::L4_ploadrbt_abs:
2520 case Hexagon::L4_ploadrbf_abs:
2521 case Hexagon::L4_ploadrbtnew_abs:
2522 case Hexagon::L4_ploadrbfnew_abs:
2523 case Hexagon::L2_loadrbgp:
2524 // Half
2525 case Hexagon::L2_loadrh_io:
2526 case Hexagon::L4_loadrh_ur:
2527 case Hexagon::L4_loadrh_ap:
2528 case Hexagon::L2_loadrh_pr:
2529 case Hexagon::L2_loadrh_pbr:
2530 case Hexagon::L2_loadrh_pi:
2531 case Hexagon::L2_loadrh_pci:
2532 case Hexagon::L2_loadrh_pcr:
2533 case Hexagon::L4_loadrh_rr:
2534 case Hexagon::L2_ploadrht_io:
2535 case Hexagon::L2_ploadrht_pi:
2536 case Hexagon::L2_ploadrhf_io:
2537 case Hexagon::L2_ploadrhf_pi:
2538 case Hexagon::L2_ploadrhtnew_io:
2539 case Hexagon::L2_ploadrhfnew_io:
2540 case Hexagon::L4_ploadrht_rr:
2541 case Hexagon::L4_ploadrhf_rr:
2542 case Hexagon::L4_ploadrhtnew_rr:
2543 case Hexagon::L4_ploadrhfnew_rr:
2544 case Hexagon::L2_ploadrhtnew_pi:
2545 case Hexagon::L2_ploadrhfnew_pi:
2546 case Hexagon::L4_ploadrht_abs:
2547 case Hexagon::L4_ploadrhf_abs:
2548 case Hexagon::L4_ploadrhtnew_abs:
2549 case Hexagon::L4_ploadrhfnew_abs:
2550 case Hexagon::L2_loadrhgp:
2551 return true;
2552 default:
2553 return false;
2557 bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
2558 const uint64_t F = MI.getDesc().TSFlags;
2559 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2562 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
2563 switch (MI.getOpcode()) {
2564 case Hexagon::STriw_pred:
2565 case Hexagon::LDriw_pred:
2566 return true;
2567 default:
2568 return false;
2572 bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
2573 if (!MI.isBranch())
2574 return false;
2576 for (auto &Op : MI.operands())
2577 if (Op.isGlobal() || Op.isSymbol())
2578 return true;
2579 return false;
2582 // Returns true when SU has a timing class TC1.
2583 bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
2584 unsigned SchedClass = MI.getDesc().getSchedClass();
2585 return is_TC1(SchedClass);
2588 bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
2589 unsigned SchedClass = MI.getDesc().getSchedClass();
2590 return is_TC2(SchedClass);
2593 bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
2594 unsigned SchedClass = MI.getDesc().getSchedClass();
2595 return is_TC2early(SchedClass);
2598 bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
2599 unsigned SchedClass = MI.getDesc().getSchedClass();
2600 return is_TC4x(SchedClass);
2603 // Schedule this ASAP.
2604 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
2605 const MachineInstr &MI2) const {
2606 if (mayBeCurLoad(MI1)) {
2607 // if (result of SU is used in Next) return true;
2608 Register DstReg = MI1.getOperand(0).getReg();
2609 int N = MI2.getNumOperands();
2610 for (int I = 0; I < N; I++)
2611 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2612 return true;
2614 if (mayBeNewStore(MI2))
2615 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2616 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2617 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2618 return true;
2619 return false;
2622 bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
2623 const uint64_t V = getType(MI);
2624 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2627 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2628 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
2629 int Size = VT.getSizeInBits() / 8;
2630 if (Offset % Size != 0)
2631 return false;
2632 int Count = Offset / Size;
2634 switch (VT.getSimpleVT().SimpleTy) {
2635 // For scalars the auto-inc is s4
2636 case MVT::i8:
2637 case MVT::i16:
2638 case MVT::i32:
2639 case MVT::i64:
2640 case MVT::f32:
2641 case MVT::f64:
2642 case MVT::v2i16:
2643 case MVT::v2i32:
2644 case MVT::v4i8:
2645 case MVT::v4i16:
2646 case MVT::v8i8:
2647 return isInt<4>(Count);
2648 // For HVX vectors the auto-inc is s3
2649 case MVT::v64i8:
2650 case MVT::v32i16:
2651 case MVT::v16i32:
2652 case MVT::v8i64:
2653 case MVT::v128i8:
2654 case MVT::v64i16:
2655 case MVT::v32i32:
2656 case MVT::v16i64:
2657 return isInt<3>(Count);
2658 default:
2659 break;
2662 llvm_unreachable("Not an valid type!");
2665 bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2666 const TargetRegisterInfo *TRI, bool Extend) const {
2667 // This function is to check whether the "Offset" is in the correct range of
2668 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2669 // inserted to calculate the final address. Due to this reason, the function
2670 // assumes that the "Offset" has correct alignment.
2671 // We used to assert if the offset was not properly aligned, however,
2672 // there are cases where a misaligned pointer recast can cause this
2673 // problem, and we need to allow for it. The front end warns of such
2674 // misaligns with respect to load size.
2675 switch (Opcode) {
2676 case Hexagon::PS_vstorerq_ai:
2677 case Hexagon::PS_vstorerw_ai:
2678 case Hexagon::PS_vstorerw_nt_ai:
2679 case Hexagon::PS_vloadrq_ai:
2680 case Hexagon::PS_vloadrw_ai:
2681 case Hexagon::PS_vloadrw_nt_ai:
2682 case Hexagon::V6_vL32b_ai:
2683 case Hexagon::V6_vS32b_ai:
2684 case Hexagon::V6_vL32b_nt_ai:
2685 case Hexagon::V6_vS32b_nt_ai:
2686 case Hexagon::V6_vL32Ub_ai:
2687 case Hexagon::V6_vS32Ub_ai: {
2688 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2689 assert(isPowerOf2_32(VectorSize));
2690 if (Offset & (VectorSize-1))
2691 return false;
2692 return isInt<4>(Offset >> Log2_32(VectorSize));
2695 case Hexagon::J2_loop0i:
2696 case Hexagon::J2_loop1i:
2697 return isUInt<10>(Offset);
2699 case Hexagon::S4_storeirb_io:
2700 case Hexagon::S4_storeirbt_io:
2701 case Hexagon::S4_storeirbf_io:
2702 return isUInt<6>(Offset);
2704 case Hexagon::S4_storeirh_io:
2705 case Hexagon::S4_storeirht_io:
2706 case Hexagon::S4_storeirhf_io:
2707 return isShiftedUInt<6,1>(Offset);
2709 case Hexagon::S4_storeiri_io:
2710 case Hexagon::S4_storeirit_io:
2711 case Hexagon::S4_storeirif_io:
2712 return isShiftedUInt<6,2>(Offset);
2715 if (Extend)
2716 return true;
2718 switch (Opcode) {
2719 case Hexagon::L2_loadri_io:
2720 case Hexagon::S2_storeri_io:
2721 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2722 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2724 case Hexagon::L2_loadrd_io:
2725 case Hexagon::S2_storerd_io:
2726 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2727 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2729 case Hexagon::L2_loadrh_io:
2730 case Hexagon::L2_loadruh_io:
2731 case Hexagon::S2_storerh_io:
2732 case Hexagon::S2_storerf_io:
2733 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2734 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2736 case Hexagon::L2_loadrb_io:
2737 case Hexagon::L2_loadrub_io:
2738 case Hexagon::S2_storerb_io:
2739 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2740 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2742 case Hexagon::A2_addi:
2743 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2744 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2746 case Hexagon::L4_iadd_memopw_io:
2747 case Hexagon::L4_isub_memopw_io:
2748 case Hexagon::L4_add_memopw_io:
2749 case Hexagon::L4_sub_memopw_io:
2750 case Hexagon::L4_and_memopw_io:
2751 case Hexagon::L4_or_memopw_io:
2752 return (0 <= Offset && Offset <= 255);
2754 case Hexagon::L4_iadd_memoph_io:
2755 case Hexagon::L4_isub_memoph_io:
2756 case Hexagon::L4_add_memoph_io:
2757 case Hexagon::L4_sub_memoph_io:
2758 case Hexagon::L4_and_memoph_io:
2759 case Hexagon::L4_or_memoph_io:
2760 return (0 <= Offset && Offset <= 127);
2762 case Hexagon::L4_iadd_memopb_io:
2763 case Hexagon::L4_isub_memopb_io:
2764 case Hexagon::L4_add_memopb_io:
2765 case Hexagon::L4_sub_memopb_io:
2766 case Hexagon::L4_and_memopb_io:
2767 case Hexagon::L4_or_memopb_io:
2768 return (0 <= Offset && Offset <= 63);
2770 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2771 // any size. Later pass knows how to handle it.
2772 case Hexagon::STriw_pred:
2773 case Hexagon::LDriw_pred:
2774 case Hexagon::STriw_ctr:
2775 case Hexagon::LDriw_ctr:
2776 return true;
2778 case Hexagon::PS_fi:
2779 case Hexagon::PS_fia:
2780 case Hexagon::INLINEASM:
2781 return true;
2783 case Hexagon::L2_ploadrbt_io:
2784 case Hexagon::L2_ploadrbf_io:
2785 case Hexagon::L2_ploadrubt_io:
2786 case Hexagon::L2_ploadrubf_io:
2787 case Hexagon::S2_pstorerbt_io:
2788 case Hexagon::S2_pstorerbf_io:
2789 return isUInt<6>(Offset);
2791 case Hexagon::L2_ploadrht_io:
2792 case Hexagon::L2_ploadrhf_io:
2793 case Hexagon::L2_ploadruht_io:
2794 case Hexagon::L2_ploadruhf_io:
2795 case Hexagon::S2_pstorerht_io:
2796 case Hexagon::S2_pstorerhf_io:
2797 return isShiftedUInt<6,1>(Offset);
2799 case Hexagon::L2_ploadrit_io:
2800 case Hexagon::L2_ploadrif_io:
2801 case Hexagon::S2_pstorerit_io:
2802 case Hexagon::S2_pstorerif_io:
2803 return isShiftedUInt<6,2>(Offset);
2805 case Hexagon::L2_ploadrdt_io:
2806 case Hexagon::L2_ploadrdf_io:
2807 case Hexagon::S2_pstorerdt_io:
2808 case Hexagon::S2_pstorerdf_io:
2809 return isShiftedUInt<6,3>(Offset);
2810 } // switch
2812 llvm_unreachable("No offset range is defined for this opcode. "
2813 "Please define it in the above switch statement!");
2816 bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
2817 return isHVXVec(MI) && isAccumulator(MI);
2820 bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
2821 const uint64_t F = get(MI.getOpcode()).TSFlags;
2822 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2823 return
2824 V == HexagonII::TypeCVI_VA ||
2825 V == HexagonII::TypeCVI_VA_DV;
2828 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
2829 const MachineInstr &ConsMI) const {
2830 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2831 return true;
2833 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2834 return true;
2836 if (mayBeNewStore(ConsMI))
2837 return true;
2839 return false;
2842 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
2843 switch (MI.getOpcode()) {
2844 // Byte
2845 case Hexagon::L2_loadrub_io:
2846 case Hexagon::L4_loadrub_ur:
2847 case Hexagon::L4_loadrub_ap:
2848 case Hexagon::L2_loadrub_pr:
2849 case Hexagon::L2_loadrub_pbr:
2850 case Hexagon::L2_loadrub_pi:
2851 case Hexagon::L2_loadrub_pci:
2852 case Hexagon::L2_loadrub_pcr:
2853 case Hexagon::L2_loadbzw2_io:
2854 case Hexagon::L4_loadbzw2_ur:
2855 case Hexagon::L4_loadbzw2_ap:
2856 case Hexagon::L2_loadbzw2_pr:
2857 case Hexagon::L2_loadbzw2_pbr:
2858 case Hexagon::L2_loadbzw2_pi:
2859 case Hexagon::L2_loadbzw2_pci:
2860 case Hexagon::L2_loadbzw2_pcr:
2861 case Hexagon::L2_loadbzw4_io:
2862 case Hexagon::L4_loadbzw4_ur:
2863 case Hexagon::L4_loadbzw4_ap:
2864 case Hexagon::L2_loadbzw4_pr:
2865 case Hexagon::L2_loadbzw4_pbr:
2866 case Hexagon::L2_loadbzw4_pi:
2867 case Hexagon::L2_loadbzw4_pci:
2868 case Hexagon::L2_loadbzw4_pcr:
2869 case Hexagon::L4_loadrub_rr:
2870 case Hexagon::L2_ploadrubt_io:
2871 case Hexagon::L2_ploadrubt_pi:
2872 case Hexagon::L2_ploadrubf_io:
2873 case Hexagon::L2_ploadrubf_pi:
2874 case Hexagon::L2_ploadrubtnew_io:
2875 case Hexagon::L2_ploadrubfnew_io:
2876 case Hexagon::L4_ploadrubt_rr:
2877 case Hexagon::L4_ploadrubf_rr:
2878 case Hexagon::L4_ploadrubtnew_rr:
2879 case Hexagon::L4_ploadrubfnew_rr:
2880 case Hexagon::L2_ploadrubtnew_pi:
2881 case Hexagon::L2_ploadrubfnew_pi:
2882 case Hexagon::L4_ploadrubt_abs:
2883 case Hexagon::L4_ploadrubf_abs:
2884 case Hexagon::L4_ploadrubtnew_abs:
2885 case Hexagon::L4_ploadrubfnew_abs:
2886 case Hexagon::L2_loadrubgp:
2887 // Half
2888 case Hexagon::L2_loadruh_io:
2889 case Hexagon::L4_loadruh_ur:
2890 case Hexagon::L4_loadruh_ap:
2891 case Hexagon::L2_loadruh_pr:
2892 case Hexagon::L2_loadruh_pbr:
2893 case Hexagon::L2_loadruh_pi:
2894 case Hexagon::L2_loadruh_pci:
2895 case Hexagon::L2_loadruh_pcr:
2896 case Hexagon::L4_loadruh_rr:
2897 case Hexagon::L2_ploadruht_io:
2898 case Hexagon::L2_ploadruht_pi:
2899 case Hexagon::L2_ploadruhf_io:
2900 case Hexagon::L2_ploadruhf_pi:
2901 case Hexagon::L2_ploadruhtnew_io:
2902 case Hexagon::L2_ploadruhfnew_io:
2903 case Hexagon::L4_ploadruht_rr:
2904 case Hexagon::L4_ploadruhf_rr:
2905 case Hexagon::L4_ploadruhtnew_rr:
2906 case Hexagon::L4_ploadruhfnew_rr:
2907 case Hexagon::L2_ploadruhtnew_pi:
2908 case Hexagon::L2_ploadruhfnew_pi:
2909 case Hexagon::L4_ploadruht_abs:
2910 case Hexagon::L4_ploadruhf_abs:
2911 case Hexagon::L4_ploadruhtnew_abs:
2912 case Hexagon::L4_ploadruhfnew_abs:
2913 case Hexagon::L2_loadruhgp:
2914 return true;
2915 default:
2916 return false;
2920 // Add latency to instruction.
2921 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
2922 const MachineInstr &MI2) const {
2923 if (isHVXVec(MI1) && isHVXVec(MI2))
2924 if (!isVecUsableNextPacket(MI1, MI2))
2925 return true;
2926 return false;
2929 /// Get the base register and byte offset of a load/store instr.
2930 bool HexagonInstrInfo::getMemOperandWithOffset(
2931 const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset,
2932 const TargetRegisterInfo *TRI) const {
2933 unsigned AccessSize = 0;
2934 BaseOp = getBaseAndOffset(LdSt, Offset, AccessSize);
2935 assert((!BaseOp || BaseOp->isReg()) &&
2936 "getMemOperandWithOffset only supports base "
2937 "operands of type register.");
2938 return BaseOp != nullptr;
2941 /// Can these instructions execute at the same time in a bundle.
2942 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
2943 const MachineInstr &Second) const {
2944 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
2945 const MachineOperand &Op = Second.getOperand(0);
2946 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
2947 return true;
2949 if (DisableNVSchedule)
2950 return false;
2951 if (mayBeNewStore(Second)) {
2952 // Make sure the definition of the first instruction is the value being
2953 // stored.
2954 const MachineOperand &Stored =
2955 Second.getOperand(Second.getNumOperands() - 1);
2956 if (!Stored.isReg())
2957 return false;
2958 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
2959 const MachineOperand &Op = First.getOperand(i);
2960 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
2961 return true;
2964 return false;
2967 bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
2968 unsigned Opc = CallMI.getOpcode();
2969 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
2972 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2973 for (auto &I : *B)
2974 if (I.isEHLabel())
2975 return true;
2976 return false;
2979 // Returns true if an instruction can be converted into a non-extended
2980 // equivalent instruction.
2981 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
2982 short NonExtOpcode;
2983 // Check if the instruction has a register form that uses register in place
2984 // of the extended operand, if so return that as the non-extended form.
2985 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
2986 return true;
2988 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
2989 // Check addressing mode and retrieve non-ext equivalent instruction.
2991 switch (getAddrMode(MI)) {
2992 case HexagonII::Absolute:
2993 // Load/store with absolute addressing mode can be converted into
2994 // base+offset mode.
2995 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
2996 break;
2997 case HexagonII::BaseImmOffset:
2998 // Load/store with base+offset addressing mode can be converted into
2999 // base+register offset addressing mode. However left shift operand should
3000 // be set to 0.
3001 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3002 break;
3003 case HexagonII::BaseLongOffset:
3004 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3005 break;
3006 default:
3007 return false;
3009 if (NonExtOpcode < 0)
3010 return false;
3011 return true;
3013 return false;
3016 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
3017 return Hexagon::getRealHWInstr(MI.getOpcode(),
3018 Hexagon::InstrType_Pseudo) >= 0;
3021 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
3022 const {
3023 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3024 while (I != E) {
3025 if (I->isBarrier())
3026 return true;
3027 ++I;
3029 return false;
3032 // Returns true, if a LD insn can be promoted to a cur load.
3033 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
3034 const uint64_t F = MI.getDesc().TSFlags;
3035 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
3036 Subtarget.hasV60Ops();
3039 // Returns true, if a ST insn can be promoted to a new-value store.
3040 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
3041 if (MI.mayStore() && !Subtarget.useNewValueStores())
3042 return false;
3044 const uint64_t F = MI.getDesc().TSFlags;
3045 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
3048 bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
3049 const MachineInstr &ConsMI) const {
3050 // There is no stall when ProdMI is not a V60 vector.
3051 if (!isHVXVec(ProdMI))
3052 return false;
3054 // There is no stall when ProdMI and ConsMI are not dependent.
3055 if (!isDependent(ProdMI, ConsMI))
3056 return false;
3058 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3059 // are scheduled in consecutive packets.
3060 if (isVecUsableNextPacket(ProdMI, ConsMI))
3061 return false;
3063 return true;
3066 bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
3067 MachineBasicBlock::const_instr_iterator BII) const {
3068 // There is no stall when I is not a V60 vector.
3069 if (!isHVXVec(MI))
3070 return false;
3072 MachineBasicBlock::const_instr_iterator MII = BII;
3073 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3075 if (!MII->isBundle())
3076 return producesStall(*MII, MI);
3078 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3079 const MachineInstr &J = *MII;
3080 if (producesStall(J, MI))
3081 return true;
3083 return false;
3086 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
3087 unsigned PredReg) const {
3088 for (const MachineOperand &MO : MI.operands()) {
3089 // Predicate register must be explicitly defined.
3090 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3091 return false;
3092 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3093 return false;
3096 // Instruction that produce late predicate cannot be used as sources of
3097 // dot-new.
3098 switch (MI.getOpcode()) {
3099 case Hexagon::A4_addp_c:
3100 case Hexagon::A4_subp_c:
3101 case Hexagon::A4_tlbmatch:
3102 case Hexagon::A5_ACS:
3103 case Hexagon::F2_sfinvsqrta:
3104 case Hexagon::F2_sfrecipa:
3105 case Hexagon::J2_endloop0:
3106 case Hexagon::J2_endloop01:
3107 case Hexagon::J2_ploop1si:
3108 case Hexagon::J2_ploop1sr:
3109 case Hexagon::J2_ploop2si:
3110 case Hexagon::J2_ploop2sr:
3111 case Hexagon::J2_ploop3si:
3112 case Hexagon::J2_ploop3sr:
3113 case Hexagon::S2_cabacdecbin:
3114 case Hexagon::S2_storew_locked:
3115 case Hexagon::S4_stored_locked:
3116 return false;
3118 return true;
3121 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3122 return Opcode == Hexagon::J2_jumpt ||
3123 Opcode == Hexagon::J2_jumptpt ||
3124 Opcode == Hexagon::J2_jumpf ||
3125 Opcode == Hexagon::J2_jumpfpt ||
3126 Opcode == Hexagon::J2_jumptnew ||
3127 Opcode == Hexagon::J2_jumpfnew ||
3128 Opcode == Hexagon::J2_jumptnewpt ||
3129 Opcode == Hexagon::J2_jumpfnewpt;
3132 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
3133 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3134 return false;
3135 return !isPredicatedTrue(Cond[0].getImm());
3138 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
3139 const uint64_t F = MI.getDesc().TSFlags;
3140 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
3143 // Returns the base register in a memory access (load/store). The offset is
3144 // returned in Offset and the access size is returned in AccessSize.
3145 // If the base operand has a subregister or the offset field does not contain
3146 // an immediate value, return nullptr.
3147 MachineOperand *HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
3148 int64_t &Offset,
3149 unsigned &AccessSize) const {
3150 // Return if it is not a base+offset type instruction or a MemOp.
3151 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
3152 getAddrMode(MI) != HexagonII::BaseLongOffset &&
3153 !isMemOp(MI) && !isPostIncrement(MI))
3154 return nullptr;
3156 AccessSize = getMemAccessSize(MI);
3158 unsigned BasePos = 0, OffsetPos = 0;
3159 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3160 return nullptr;
3162 // Post increment updates its EA after the mem access,
3163 // so we need to treat its offset as zero.
3164 if (isPostIncrement(MI)) {
3165 Offset = 0;
3166 } else {
3167 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3168 if (!OffsetOp.isImm())
3169 return nullptr;
3170 Offset = OffsetOp.getImm();
3173 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3174 if (BaseOp.getSubReg() != 0)
3175 return nullptr;
3176 return &const_cast<MachineOperand&>(BaseOp);
3179 /// Return the position of the base and offset operands for this instruction.
3180 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
3181 unsigned &BasePos, unsigned &OffsetPos) const {
3182 if (!isAddrModeWithOffset(MI) && !isPostIncrement(MI))
3183 return false;
3185 // Deal with memops first.
3186 if (isMemOp(MI)) {
3187 BasePos = 0;
3188 OffsetPos = 1;
3189 } else if (MI.mayStore()) {
3190 BasePos = 0;
3191 OffsetPos = 1;
3192 } else if (MI.mayLoad()) {
3193 BasePos = 1;
3194 OffsetPos = 2;
3195 } else
3196 return false;
3198 if (isPredicated(MI)) {
3199 BasePos++;
3200 OffsetPos++;
3202 if (isPostIncrement(MI)) {
3203 BasePos++;
3204 OffsetPos++;
3207 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3208 return false;
3210 return true;
3213 // Inserts branching instructions in reverse order of their occurrence.
3214 // e.g. jump_t t1 (i1)
3215 // jump t2 (i2)
3216 // Jumpers = {i2, i1}
3217 SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
3218 MachineBasicBlock& MBB) const {
3219 SmallVector<MachineInstr*, 2> Jumpers;
3220 // If the block has no terminators, it just falls into the block after it.
3221 MachineBasicBlock::instr_iterator I = MBB.instr_end();
3222 if (I == MBB.instr_begin())
3223 return Jumpers;
3225 // A basic block may looks like this:
3227 // [ insn
3228 // EH_LABEL
3229 // insn
3230 // insn
3231 // insn
3232 // EH_LABEL
3233 // insn ]
3235 // It has two succs but does not have a terminator
3236 // Don't know how to handle it.
3237 do {
3238 --I;
3239 if (I->isEHLabel())
3240 return Jumpers;
3241 } while (I != MBB.instr_begin());
3243 I = MBB.instr_end();
3244 --I;
3246 while (I->isDebugInstr()) {
3247 if (I == MBB.instr_begin())
3248 return Jumpers;
3249 --I;
3251 if (!isUnpredicatedTerminator(*I))
3252 return Jumpers;
3254 // Get the last instruction in the block.
3255 MachineInstr *LastInst = &*I;
3256 Jumpers.push_back(LastInst);
3257 MachineInstr *SecondLastInst = nullptr;
3258 // Find one more terminator if present.
3259 do {
3260 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3261 if (!SecondLastInst) {
3262 SecondLastInst = &*I;
3263 Jumpers.push_back(SecondLastInst);
3264 } else // This is a third branch.
3265 return Jumpers;
3267 if (I == MBB.instr_begin())
3268 break;
3269 --I;
3270 } while (true);
3271 return Jumpers;
3274 // Returns Operand Index for the constant extended instruction.
3275 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
3276 const uint64_t F = MI.getDesc().TSFlags;
3277 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
3280 // See if instruction could potentially be a duplex candidate.
3281 // If so, return its group. Zero otherwise.
3282 HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
3283 const MachineInstr &MI) const {
3284 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3286 switch (MI.getOpcode()) {
3287 default:
3288 return HexagonII::HCG_None;
3290 // Compound pairs.
3291 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3292 // "Rd16=#U6 ; jump #r9:2"
3293 // "Rd16=Rs16 ; jump #r9:2"
3295 case Hexagon::C2_cmpeq:
3296 case Hexagon::C2_cmpgt:
3297 case Hexagon::C2_cmpgtu:
3298 DstReg = MI.getOperand(0).getReg();
3299 Src1Reg = MI.getOperand(1).getReg();
3300 Src2Reg = MI.getOperand(2).getReg();
3301 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3302 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3303 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3304 return HexagonII::HCG_A;
3305 break;
3306 case Hexagon::C2_cmpeqi:
3307 case Hexagon::C2_cmpgti:
3308 case Hexagon::C2_cmpgtui:
3309 // P0 = cmp.eq(Rs,#u2)
3310 DstReg = MI.getOperand(0).getReg();
3311 SrcReg = MI.getOperand(1).getReg();
3312 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3313 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3314 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3315 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3316 (MI.getOperand(2).getImm() == -1)))
3317 return HexagonII::HCG_A;
3318 break;
3319 case Hexagon::A2_tfr:
3320 // Rd = Rs
3321 DstReg = MI.getOperand(0).getReg();
3322 SrcReg = MI.getOperand(1).getReg();
3323 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3324 return HexagonII::HCG_A;
3325 break;
3326 case Hexagon::A2_tfrsi:
3327 // Rd = #u6
3328 // Do not test for #u6 size since the const is getting extended
3329 // regardless and compound could be formed.
3330 DstReg = MI.getOperand(0).getReg();
3331 if (isIntRegForSubInst(DstReg))
3332 return HexagonII::HCG_A;
3333 break;
3334 case Hexagon::S2_tstbit_i:
3335 DstReg = MI.getOperand(0).getReg();
3336 Src1Reg = MI.getOperand(1).getReg();
3337 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3338 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3339 MI.getOperand(2).isImm() &&
3340 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3341 return HexagonII::HCG_A;
3342 break;
3343 // The fact that .new form is used pretty much guarantees
3344 // that predicate register will match. Nevertheless,
3345 // there could be some false positives without additional
3346 // checking.
3347 case Hexagon::J2_jumptnew:
3348 case Hexagon::J2_jumpfnew:
3349 case Hexagon::J2_jumptnewpt:
3350 case Hexagon::J2_jumpfnewpt:
3351 Src1Reg = MI.getOperand(0).getReg();
3352 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3353 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3354 return HexagonII::HCG_B;
3355 break;
3356 // Transfer and jump:
3357 // Rd=#U6 ; jump #r9:2
3358 // Rd=Rs ; jump #r9:2
3359 // Do not test for jump range here.
3360 case Hexagon::J2_jump:
3361 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3362 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3363 return HexagonII::HCG_C;
3366 return HexagonII::HCG_None;
3369 // Returns -1 when there is no opcode found.
3370 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
3371 const MachineInstr &GB) const {
3372 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
3373 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
3374 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3375 (GB.getOpcode() != Hexagon::J2_jumptnew))
3376 return -1u;
3377 Register DestReg = GA.getOperand(0).getReg();
3378 if (!GB.readsRegister(DestReg))
3379 return -1u;
3380 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3381 return -1u;
3382 // The value compared against must be either u5 or -1.
3383 const MachineOperand &CmpOp = GA.getOperand(2);
3384 if (!CmpOp.isImm())
3385 return -1u;
3386 int V = CmpOp.getImm();
3387 if (V == -1)
3388 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3389 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3390 if (!isUInt<5>(V))
3391 return -1u;
3392 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3393 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3396 int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3397 enum Hexagon::PredSense inPredSense;
3398 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3399 Hexagon::PredSense_true;
3400 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3401 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3402 return CondOpcode;
3404 llvm_unreachable("Unexpected predicable instruction");
3407 // Return the cur value instruction for a given store.
3408 int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
3409 switch (MI.getOpcode()) {
3410 default: llvm_unreachable("Unknown .cur type");
3411 case Hexagon::V6_vL32b_pi:
3412 return Hexagon::V6_vL32b_cur_pi;
3413 case Hexagon::V6_vL32b_ai:
3414 return Hexagon::V6_vL32b_cur_ai;
3415 case Hexagon::V6_vL32b_nt_pi:
3416 return Hexagon::V6_vL32b_nt_cur_pi;
3417 case Hexagon::V6_vL32b_nt_ai:
3418 return Hexagon::V6_vL32b_nt_cur_ai;
3420 return 0;
3423 // Return the regular version of the .cur instruction.
3424 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
3425 switch (MI.getOpcode()) {
3426 default: llvm_unreachable("Unknown .cur type");
3427 case Hexagon::V6_vL32b_cur_pi:
3428 return Hexagon::V6_vL32b_pi;
3429 case Hexagon::V6_vL32b_cur_ai:
3430 return Hexagon::V6_vL32b_ai;
3431 case Hexagon::V6_vL32b_nt_cur_pi:
3432 return Hexagon::V6_vL32b_nt_pi;
3433 case Hexagon::V6_vL32b_nt_cur_ai:
3434 return Hexagon::V6_vL32b_nt_ai;
3436 return 0;
3439 // The diagram below shows the steps involved in the conversion of a predicated
3440 // store instruction to its .new predicated new-value form.
3442 // Note: It doesn't include conditional new-value stores as they can't be
3443 // converted to .new predicate.
3445 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3446 // ^ ^
3447 // / \ (not OK. it will cause new-value store to be
3448 // / X conditional on p0.new while R2 producer is
3449 // / \ on p0)
3450 // / \.
3451 // p.new store p.old NV store
3452 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3453 // ^ ^
3454 // \ /
3455 // \ /
3456 // \ /
3457 // p.old store
3458 // [if (p0)memw(R0+#0)=R2]
3460 // The following set of instructions further explains the scenario where
3461 // conditional new-value store becomes invalid when promoted to .new predicate
3462 // form.
3464 // { 1) if (p0) r0 = add(r1, r2)
3465 // 2) p0 = cmp.eq(r3, #0) }
3467 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3468 // the first two instructions because in instr 1, r0 is conditional on old value
3469 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3470 // is not valid for new-value stores.
3471 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3472 // from the "Conditional Store" list. Because a predicated new value store
3473 // would NOT be promoted to a double dot new store. See diagram below:
3474 // This function returns yes for those stores that are predicated but not
3475 // yet promoted to predicate dot new instructions.
3477 // +---------------------+
3478 // /-----| if (p0) memw(..)=r0 |---------\~
3479 // || +---------------------+ ||
3480 // promote || /\ /\ || promote
3481 // || /||\ /||\ ||
3482 // \||/ demote || \||/
3483 // \/ || || \/
3484 // +-------------------------+ || +-------------------------+
3485 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3486 // +-------------------------+ || +-------------------------+
3487 // || || ||
3488 // || demote \||/
3489 // promote || \/ NOT possible
3490 // || || /\~
3491 // \||/ || /||\~
3492 // \/ || ||
3493 // +-----------------------------+
3494 // | if (p0.new) memw(..)=r0.new |
3495 // +-----------------------------+
3496 // Double Dot New Store
3498 // Returns the most basic instruction for the .new predicated instructions and
3499 // new-value stores.
3500 // For example, all of the following instructions will be converted back to the
3501 // same instruction:
3502 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3503 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3504 // 3) if (p0.new) memw(R0+#0) = R1 --->
3506 // To understand the translation of instruction 1 to its original form, consider
3507 // a packet with 3 instructions.
3508 // { p0 = cmp.eq(R0,R1)
3509 // if (p0.new) R2 = add(R3, R4)
3510 // R5 = add (R3, R1)
3511 // }
3512 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3514 // This instruction can be part of the previous packet only if both p0 and R2
3515 // are promoted to .new values. This promotion happens in steps, first
3516 // predicate register is promoted to .new and in the next iteration R2 is
3517 // promoted. Therefore, in case of dependence check failure (due to R5) during
3518 // next iteration, it should be converted back to its most basic form.
3520 // Return the new value instruction for a given store.
3521 int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
3522 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3523 if (NVOpcode >= 0) // Valid new-value store instruction.
3524 return NVOpcode;
3526 switch (MI.getOpcode()) {
3527 default:
3528 report_fatal_error(std::string("Unknown .new type: ") +
3529 std::to_string(MI.getOpcode()));
3530 case Hexagon::S4_storerb_ur:
3531 return Hexagon::S4_storerbnew_ur;
3533 case Hexagon::S2_storerb_pci:
3534 return Hexagon::S2_storerb_pci;
3536 case Hexagon::S2_storeri_pci:
3537 return Hexagon::S2_storeri_pci;
3539 case Hexagon::S2_storerh_pci:
3540 return Hexagon::S2_storerh_pci;
3542 case Hexagon::S2_storerd_pci:
3543 return Hexagon::S2_storerd_pci;
3545 case Hexagon::S2_storerf_pci:
3546 return Hexagon::S2_storerf_pci;
3548 case Hexagon::V6_vS32b_ai:
3549 return Hexagon::V6_vS32b_new_ai;
3551 case Hexagon::V6_vS32b_pi:
3552 return Hexagon::V6_vS32b_new_pi;
3554 return 0;
3557 // Returns the opcode to use when converting MI, which is a conditional jump,
3558 // into a conditional instruction which uses the .new value of the predicate.
3559 // We also use branch probabilities to add a hint to the jump.
3560 // If MBPI is null, all edges will be treated as equally likely for the
3561 // purposes of establishing a predication hint.
3562 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
3563 const MachineBranchProbabilityInfo *MBPI) const {
3564 // We assume that block can have at most two successors.
3565 const MachineBasicBlock *Src = MI.getParent();
3566 const MachineOperand &BrTarget = MI.getOperand(1);
3567 bool Taken = false;
3568 const BranchProbability OneHalf(1, 2);
3570 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3571 const MachineBasicBlock *Dst) {
3572 if (MBPI)
3573 return MBPI->getEdgeProbability(Src, Dst);
3574 return BranchProbability(1, Src->succ_size());
3577 if (BrTarget.isMBB()) {
3578 const MachineBasicBlock *Dst = BrTarget.getMBB();
3579 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3580 } else {
3581 // The branch target is not a basic block (most likely a function).
3582 // Since BPI only gives probabilities for targets that are basic blocks,
3583 // try to identify another target of this branch (potentially a fall-
3584 // -through) and check the probability of that target.
3586 // The only handled branch combinations are:
3587 // - one conditional branch,
3588 // - one conditional branch followed by one unconditional branch.
3589 // Otherwise, assume not-taken.
3590 assert(MI.isConditionalBranch());
3591 const MachineBasicBlock &B = *MI.getParent();
3592 bool SawCond = false, Bad = false;
3593 for (const MachineInstr &I : B) {
3594 if (!I.isBranch())
3595 continue;
3596 if (I.isConditionalBranch()) {
3597 SawCond = true;
3598 if (&I != &MI) {
3599 Bad = true;
3600 break;
3603 if (I.isUnconditionalBranch() && !SawCond) {
3604 Bad = true;
3605 break;
3608 if (!Bad) {
3609 MachineBasicBlock::const_instr_iterator It(MI);
3610 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3611 if (NextIt == B.instr_end()) {
3612 // If this branch is the last, look for the fall-through block.
3613 for (const MachineBasicBlock *SB : B.successors()) {
3614 if (!B.isLayoutSuccessor(SB))
3615 continue;
3616 Taken = getEdgeProbability(Src, SB) < OneHalf;
3617 break;
3619 } else {
3620 assert(NextIt->isUnconditionalBranch());
3621 // Find the first MBB operand and assume it's the target.
3622 const MachineBasicBlock *BT = nullptr;
3623 for (const MachineOperand &Op : NextIt->operands()) {
3624 if (!Op.isMBB())
3625 continue;
3626 BT = Op.getMBB();
3627 break;
3629 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3631 } // if (!Bad)
3634 // The Taken flag should be set to something reasonable by this point.
3636 switch (MI.getOpcode()) {
3637 case Hexagon::J2_jumpt:
3638 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3639 case Hexagon::J2_jumpf:
3640 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3642 default:
3643 llvm_unreachable("Unexpected jump instruction.");
3647 // Return .new predicate version for an instruction.
3648 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
3649 const MachineBranchProbabilityInfo *MBPI) const {
3650 switch (MI.getOpcode()) {
3651 // Condtional Jumps
3652 case Hexagon::J2_jumpt:
3653 case Hexagon::J2_jumpf:
3654 return getDotNewPredJumpOp(MI, MBPI);
3657 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3658 if (NewOpcode >= 0)
3659 return NewOpcode;
3660 return 0;
3663 int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
3664 int NewOp = MI.getOpcode();
3665 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3666 NewOp = Hexagon::getPredOldOpcode(NewOp);
3667 // All Hexagon architectures have prediction bits on dot-new branches,
3668 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3669 // to pick the right opcode when converting back to dot-old.
3670 if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
3671 switch (NewOp) {
3672 case Hexagon::J2_jumptpt:
3673 NewOp = Hexagon::J2_jumpt;
3674 break;
3675 case Hexagon::J2_jumpfpt:
3676 NewOp = Hexagon::J2_jumpf;
3677 break;
3678 case Hexagon::J2_jumprtpt:
3679 NewOp = Hexagon::J2_jumprt;
3680 break;
3681 case Hexagon::J2_jumprfpt:
3682 NewOp = Hexagon::J2_jumprf;
3683 break;
3686 assert(NewOp >= 0 &&
3687 "Couldn't change predicate new instruction to its old form.");
3690 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3691 NewOp = Hexagon::getNonNVStore(NewOp);
3692 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3695 if (Subtarget.hasV60Ops())
3696 return NewOp;
3698 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3699 switch (NewOp) {
3700 case Hexagon::J2_jumpfpt:
3701 return Hexagon::J2_jumpf;
3702 case Hexagon::J2_jumptpt:
3703 return Hexagon::J2_jumpt;
3704 case Hexagon::J2_jumprfpt:
3705 return Hexagon::J2_jumprf;
3706 case Hexagon::J2_jumprtpt:
3707 return Hexagon::J2_jumprt;
3709 return NewOp;
3712 // See if instruction could potentially be a duplex candidate.
3713 // If so, return its group. Zero otherwise.
3714 HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3715 const MachineInstr &MI) const {
3716 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3717 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3719 switch (MI.getOpcode()) {
3720 default:
3721 return HexagonII::HSIG_None;
3723 // Group L1:
3725 // Rd = memw(Rs+#u4:2)
3726 // Rd = memub(Rs+#u4:0)
3727 case Hexagon::L2_loadri_io:
3728 DstReg = MI.getOperand(0).getReg();
3729 SrcReg = MI.getOperand(1).getReg();
3730 // Special case this one from Group L2.
3731 // Rd = memw(r29+#u5:2)
3732 if (isIntRegForSubInst(DstReg)) {
3733 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3734 HRI.getStackRegister() == SrcReg &&
3735 MI.getOperand(2).isImm() &&
3736 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3737 return HexagonII::HSIG_L2;
3738 // Rd = memw(Rs+#u4:2)
3739 if (isIntRegForSubInst(SrcReg) &&
3740 (MI.getOperand(2).isImm() &&
3741 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3742 return HexagonII::HSIG_L1;
3744 break;
3745 case Hexagon::L2_loadrub_io:
3746 // Rd = memub(Rs+#u4:0)
3747 DstReg = MI.getOperand(0).getReg();
3748 SrcReg = MI.getOperand(1).getReg();
3749 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3750 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3751 return HexagonII::HSIG_L1;
3752 break;
3754 // Group L2:
3756 // Rd = memh/memuh(Rs+#u3:1)
3757 // Rd = memb(Rs+#u3:0)
3758 // Rd = memw(r29+#u5:2) - Handled above.
3759 // Rdd = memd(r29+#u5:3)
3760 // deallocframe
3761 // [if ([!]p0[.new])] dealloc_return
3762 // [if ([!]p0[.new])] jumpr r31
3763 case Hexagon::L2_loadrh_io:
3764 case Hexagon::L2_loadruh_io:
3765 // Rd = memh/memuh(Rs+#u3:1)
3766 DstReg = MI.getOperand(0).getReg();
3767 SrcReg = MI.getOperand(1).getReg();
3768 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3769 MI.getOperand(2).isImm() &&
3770 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3771 return HexagonII::HSIG_L2;
3772 break;
3773 case Hexagon::L2_loadrb_io:
3774 // Rd = memb(Rs+#u3:0)
3775 DstReg = MI.getOperand(0).getReg();
3776 SrcReg = MI.getOperand(1).getReg();
3777 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3778 MI.getOperand(2).isImm() &&
3779 isUInt<3>(MI.getOperand(2).getImm()))
3780 return HexagonII::HSIG_L2;
3781 break;
3782 case Hexagon::L2_loadrd_io:
3783 // Rdd = memd(r29+#u5:3)
3784 DstReg = MI.getOperand(0).getReg();
3785 SrcReg = MI.getOperand(1).getReg();
3786 if (isDblRegForSubInst(DstReg, HRI) &&
3787 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3788 HRI.getStackRegister() == SrcReg &&
3789 MI.getOperand(2).isImm() &&
3790 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3791 return HexagonII::HSIG_L2;
3792 break;
3793 // dealloc_return is not documented in Hexagon Manual, but marked
3794 // with A_SUBINSN attribute in iset_v4classic.py.
3795 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3796 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3797 case Hexagon::L4_return:
3798 case Hexagon::L2_deallocframe:
3799 return HexagonII::HSIG_L2;
3800 case Hexagon::EH_RETURN_JMPR:
3801 case Hexagon::PS_jmpret:
3802 case Hexagon::SL2_jumpr31:
3803 // jumpr r31
3804 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3805 DstReg = MI.getOperand(0).getReg();
3806 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3807 return HexagonII::HSIG_L2;
3808 break;
3809 case Hexagon::PS_jmprett:
3810 case Hexagon::PS_jmpretf:
3811 case Hexagon::PS_jmprettnewpt:
3812 case Hexagon::PS_jmpretfnewpt:
3813 case Hexagon::PS_jmprettnew:
3814 case Hexagon::PS_jmpretfnew:
3815 case Hexagon::SL2_jumpr31_t:
3816 case Hexagon::SL2_jumpr31_f:
3817 case Hexagon::SL2_jumpr31_tnew:
3818 DstReg = MI.getOperand(1).getReg();
3819 SrcReg = MI.getOperand(0).getReg();
3820 // [if ([!]p0[.new])] jumpr r31
3821 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3822 (Hexagon::P0 == SrcReg)) &&
3823 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3824 return HexagonII::HSIG_L2;
3825 break;
3826 case Hexagon::L4_return_t:
3827 case Hexagon::L4_return_f:
3828 case Hexagon::L4_return_tnew_pnt:
3829 case Hexagon::L4_return_fnew_pnt:
3830 case Hexagon::L4_return_tnew_pt:
3831 case Hexagon::L4_return_fnew_pt:
3832 // [if ([!]p0[.new])] dealloc_return
3833 SrcReg = MI.getOperand(0).getReg();
3834 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3835 return HexagonII::HSIG_L2;
3836 break;
3838 // Group S1:
3840 // memw(Rs+#u4:2) = Rt
3841 // memb(Rs+#u4:0) = Rt
3842 case Hexagon::S2_storeri_io:
3843 // Special case this one from Group S2.
3844 // memw(r29+#u5:2) = Rt
3845 Src1Reg = MI.getOperand(0).getReg();
3846 Src2Reg = MI.getOperand(2).getReg();
3847 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3848 isIntRegForSubInst(Src2Reg) &&
3849 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3850 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
3851 return HexagonII::HSIG_S2;
3852 // memw(Rs+#u4:2) = Rt
3853 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3854 MI.getOperand(1).isImm() &&
3855 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
3856 return HexagonII::HSIG_S1;
3857 break;
3858 case Hexagon::S2_storerb_io:
3859 // memb(Rs+#u4:0) = Rt
3860 Src1Reg = MI.getOperand(0).getReg();
3861 Src2Reg = MI.getOperand(2).getReg();
3862 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3863 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
3864 return HexagonII::HSIG_S1;
3865 break;
3867 // Group S2:
3869 // memh(Rs+#u3:1) = Rt
3870 // memw(r29+#u5:2) = Rt
3871 // memd(r29+#s6:3) = Rtt
3872 // memw(Rs+#u4:2) = #U1
3873 // memb(Rs+#u4) = #U1
3874 // allocframe(#u5:3)
3875 case Hexagon::S2_storerh_io:
3876 // memh(Rs+#u3:1) = Rt
3877 Src1Reg = MI.getOperand(0).getReg();
3878 Src2Reg = MI.getOperand(2).getReg();
3879 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3880 MI.getOperand(1).isImm() &&
3881 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
3882 return HexagonII::HSIG_S1;
3883 break;
3884 case Hexagon::S2_storerd_io:
3885 // memd(r29+#s6:3) = Rtt
3886 Src1Reg = MI.getOperand(0).getReg();
3887 Src2Reg = MI.getOperand(2).getReg();
3888 if (isDblRegForSubInst(Src2Reg, HRI) &&
3889 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3890 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
3891 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
3892 return HexagonII::HSIG_S2;
3893 break;
3894 case Hexagon::S4_storeiri_io:
3895 // memw(Rs+#u4:2) = #U1
3896 Src1Reg = MI.getOperand(0).getReg();
3897 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
3898 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
3899 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3900 return HexagonII::HSIG_S2;
3901 break;
3902 case Hexagon::S4_storeirb_io:
3903 // memb(Rs+#u4) = #U1
3904 Src1Reg = MI.getOperand(0).getReg();
3905 if (isIntRegForSubInst(Src1Reg) &&
3906 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
3907 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
3908 return HexagonII::HSIG_S2;
3909 break;
3910 case Hexagon::S2_allocframe:
3911 if (MI.getOperand(2).isImm() &&
3912 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
3913 return HexagonII::HSIG_S1;
3914 break;
3916 // Group A:
3918 // Rx = add(Rx,#s7)
3919 // Rd = Rs
3920 // Rd = #u6
3921 // Rd = #-1
3922 // if ([!]P0[.new]) Rd = #0
3923 // Rd = add(r29,#u6:2)
3924 // Rx = add(Rx,Rs)
3925 // P0 = cmp.eq(Rs,#u2)
3926 // Rdd = combine(#0,Rs)
3927 // Rdd = combine(Rs,#0)
3928 // Rdd = combine(#u2,#U2)
3929 // Rd = add(Rs,#1)
3930 // Rd = add(Rs,#-1)
3931 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3932 // Rd = and(Rs,#1)
3933 case Hexagon::A2_addi:
3934 DstReg = MI.getOperand(0).getReg();
3935 SrcReg = MI.getOperand(1).getReg();
3936 if (isIntRegForSubInst(DstReg)) {
3937 // Rd = add(r29,#u6:2)
3938 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3939 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
3940 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
3941 return HexagonII::HSIG_A;
3942 // Rx = add(Rx,#s7)
3943 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
3944 isInt<7>(MI.getOperand(2).getImm()))
3945 return HexagonII::HSIG_A;
3946 // Rd = add(Rs,#1)
3947 // Rd = add(Rs,#-1)
3948 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3949 ((MI.getOperand(2).getImm() == 1) ||
3950 (MI.getOperand(2).getImm() == -1)))
3951 return HexagonII::HSIG_A;
3953 break;
3954 case Hexagon::A2_add:
3955 // Rx = add(Rx,Rs)
3956 DstReg = MI.getOperand(0).getReg();
3957 Src1Reg = MI.getOperand(1).getReg();
3958 Src2Reg = MI.getOperand(2).getReg();
3959 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3960 isIntRegForSubInst(Src2Reg))
3961 return HexagonII::HSIG_A;
3962 break;
3963 case Hexagon::A2_andir:
3964 // Same as zxtb.
3965 // Rd16=and(Rs16,#255)
3966 // Rd16=and(Rs16,#1)
3967 DstReg = MI.getOperand(0).getReg();
3968 SrcReg = MI.getOperand(1).getReg();
3969 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3970 MI.getOperand(2).isImm() &&
3971 ((MI.getOperand(2).getImm() == 1) ||
3972 (MI.getOperand(2).getImm() == 255)))
3973 return HexagonII::HSIG_A;
3974 break;
3975 case Hexagon::A2_tfr:
3976 // Rd = Rs
3977 DstReg = MI.getOperand(0).getReg();
3978 SrcReg = MI.getOperand(1).getReg();
3979 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3980 return HexagonII::HSIG_A;
3981 break;
3982 case Hexagon::A2_tfrsi:
3983 // Rd = #u6
3984 // Do not test for #u6 size since the const is getting extended
3985 // regardless and compound could be formed.
3986 // Rd = #-1
3987 DstReg = MI.getOperand(0).getReg();
3988 if (isIntRegForSubInst(DstReg))
3989 return HexagonII::HSIG_A;
3990 break;
3991 case Hexagon::C2_cmoveit:
3992 case Hexagon::C2_cmovenewit:
3993 case Hexagon::C2_cmoveif:
3994 case Hexagon::C2_cmovenewif:
3995 // if ([!]P0[.new]) Rd = #0
3996 // Actual form:
3997 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3998 DstReg = MI.getOperand(0).getReg();
3999 SrcReg = MI.getOperand(1).getReg();
4000 if (isIntRegForSubInst(DstReg) &&
4001 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4002 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4003 return HexagonII::HSIG_A;
4004 break;
4005 case Hexagon::C2_cmpeqi:
4006 // P0 = cmp.eq(Rs,#u2)
4007 DstReg = MI.getOperand(0).getReg();
4008 SrcReg = MI.getOperand(1).getReg();
4009 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4010 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4011 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4012 return HexagonII::HSIG_A;
4013 break;
4014 case Hexagon::A2_combineii:
4015 case Hexagon::A4_combineii:
4016 // Rdd = combine(#u2,#U2)
4017 DstReg = MI.getOperand(0).getReg();
4018 if (isDblRegForSubInst(DstReg, HRI) &&
4019 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4020 (MI.getOperand(1).isGlobal() &&
4021 isUInt<2>(MI.getOperand(1).getOffset()))) &&
4022 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4023 (MI.getOperand(2).isGlobal() &&
4024 isUInt<2>(MI.getOperand(2).getOffset()))))
4025 return HexagonII::HSIG_A;
4026 break;
4027 case Hexagon::A4_combineri:
4028 // Rdd = combine(Rs,#0)
4029 DstReg = MI.getOperand(0).getReg();
4030 SrcReg = MI.getOperand(1).getReg();
4031 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4032 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4033 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4034 return HexagonII::HSIG_A;
4035 break;
4036 case Hexagon::A4_combineir:
4037 // Rdd = combine(#0,Rs)
4038 DstReg = MI.getOperand(0).getReg();
4039 SrcReg = MI.getOperand(2).getReg();
4040 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4041 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4042 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4043 return HexagonII::HSIG_A;
4044 break;
4045 case Hexagon::A2_sxtb:
4046 case Hexagon::A2_sxth:
4047 case Hexagon::A2_zxtb:
4048 case Hexagon::A2_zxth:
4049 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4050 DstReg = MI.getOperand(0).getReg();
4051 SrcReg = MI.getOperand(1).getReg();
4052 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4053 return HexagonII::HSIG_A;
4054 break;
4057 return HexagonII::HSIG_None;
4060 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
4061 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4064 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4065 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4066 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4067 // still have a MinLatency property, which getStageLatency checks.
4068 if (!ItinData)
4069 return getInstrLatency(ItinData, MI);
4071 if (MI.isTransient())
4072 return 0;
4073 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4076 /// getOperandLatency - Compute and return the use operand latency of a given
4077 /// pair of def and use.
4078 /// In most cases, the static scheduling itinerary was enough to determine the
4079 /// operand latency. But it may not be possible for instructions with variable
4080 /// number of defs / uses.
4082 /// This is a raw interface to the itinerary that may be directly overriden by
4083 /// a target. Use computeOperandLatency to get the best estimate of latency.
4084 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4085 const MachineInstr &DefMI,
4086 unsigned DefIdx,
4087 const MachineInstr &UseMI,
4088 unsigned UseIdx) const {
4089 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4091 // Get DefIdx and UseIdx for super registers.
4092 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4094 if (DefMO.isReg() && Register::isPhysicalRegister(DefMO.getReg())) {
4095 if (DefMO.isImplicit()) {
4096 for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
4097 int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
4098 if (Idx != -1) {
4099 DefIdx = Idx;
4100 break;
4105 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4106 if (UseMO.isImplicit()) {
4107 for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
4108 int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
4109 if (Idx != -1) {
4110 UseIdx = Idx;
4111 break;
4117 int Latency = TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
4118 UseMI, UseIdx);
4119 if (!Latency)
4120 // We should never have 0 cycle latency between two instructions unless
4121 // they can be packetized together. However, this decision can't be made
4122 // here.
4123 Latency = 1;
4124 return Latency;
4127 // inverts the predication logic.
4128 // p -> NotP
4129 // NotP -> P
4130 bool HexagonInstrInfo::getInvertedPredSense(
4131 SmallVectorImpl<MachineOperand> &Cond) const {
4132 if (Cond.empty())
4133 return false;
4134 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4135 Cond[0].setImm(Opc);
4136 return true;
4139 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
4140 int InvPredOpcode;
4141 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4142 : Hexagon::getTruePredOpcode(Opc);
4143 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4144 return InvPredOpcode;
4146 llvm_unreachable("Unexpected predicated instruction");
4149 // Returns the max value that doesn't need to be extended.
4150 int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
4151 const uint64_t F = MI.getDesc().TSFlags;
4152 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4153 & HexagonII::ExtentSignedMask;
4154 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4155 & HexagonII::ExtentBitsMask;
4157 if (isSigned) // if value is signed
4158 return ~(-1U << (bits - 1));
4159 else
4160 return ~(-1U << bits);
4164 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr &MI) const {
4165 switch (MI.getOpcode()) {
4166 case Hexagon::L2_loadrbgp:
4167 case Hexagon::L2_loadrdgp:
4168 case Hexagon::L2_loadrhgp:
4169 case Hexagon::L2_loadrigp:
4170 case Hexagon::L2_loadrubgp:
4171 case Hexagon::L2_loadruhgp:
4172 case Hexagon::S2_storerbgp:
4173 case Hexagon::S2_storerbnewgp:
4174 case Hexagon::S2_storerhgp:
4175 case Hexagon::S2_storerhnewgp:
4176 case Hexagon::S2_storerigp:
4177 case Hexagon::S2_storerinewgp:
4178 case Hexagon::S2_storerdgp:
4179 case Hexagon::S2_storerfgp:
4180 return true;
4182 const uint64_t F = MI.getDesc().TSFlags;
4183 unsigned addrMode =
4184 ((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
4185 // Disallow any base+offset instruction. The assembler does not yet reorder
4186 // based up any zero offset instruction.
4187 return (addrMode == HexagonII::BaseRegOffset ||
4188 addrMode == HexagonII::BaseImmOffset ||
4189 addrMode == HexagonII::BaseLongOffset);
4192 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
4193 using namespace HexagonII;
4195 const uint64_t F = MI.getDesc().TSFlags;
4196 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4197 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4198 if (Size != 0)
4199 return Size;
4201 // Handle vector access sizes.
4202 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4203 switch (S) {
4204 case HexagonII::HVXVectorAccess:
4205 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4206 default:
4207 llvm_unreachable("Unexpected instruction");
4211 // Returns the min value that doesn't need to be extended.
4212 int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
4213 const uint64_t F = MI.getDesc().TSFlags;
4214 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4215 & HexagonII::ExtentSignedMask;
4216 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4217 & HexagonII::ExtentBitsMask;
4219 if (isSigned) // if value is signed
4220 return -1U << (bits - 1);
4221 else
4222 return 0;
4225 // Returns opcode of the non-extended equivalent instruction.
4226 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
4227 // Check if the instruction has a register form that uses register in place
4228 // of the extended operand, if so return that as the non-extended form.
4229 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4230 if (NonExtOpcode >= 0)
4231 return NonExtOpcode;
4233 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4234 // Check addressing mode and retrieve non-ext equivalent instruction.
4235 switch (getAddrMode(MI)) {
4236 case HexagonII::Absolute:
4237 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4238 case HexagonII::BaseImmOffset:
4239 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4240 case HexagonII::BaseLongOffset:
4241 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4243 default:
4244 return -1;
4247 return -1;
4250 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
4251 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4252 if (Cond.empty())
4253 return false;
4254 assert(Cond.size() == 2);
4255 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4256 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4257 return false;
4259 PredReg = Cond[1].getReg();
4260 PredRegPos = 1;
4261 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4262 PredRegFlags = 0;
4263 if (Cond[1].isImplicit())
4264 PredRegFlags = RegState::Implicit;
4265 if (Cond[1].isUndef())
4266 PredRegFlags |= RegState::Undef;
4267 return true;
4270 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
4271 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4274 short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
4275 return Hexagon::getRegForm(MI.getOpcode());
4278 // Return the number of bytes required to encode the instruction.
4279 // Hexagon instructions are fixed length, 4 bytes, unless they
4280 // use a constant extender, which requires another 4 bytes.
4281 // For debug instructions and prolog labels, return 0.
4282 unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
4283 if (MI.isDebugInstr() || MI.isPosition())
4284 return 0;
4286 unsigned Size = MI.getDesc().getSize();
4287 if (!Size)
4288 // Assume the default insn size in case it cannot be determined
4289 // for whatever reason.
4290 Size = HEXAGON_INSTR_SIZE;
4292 if (isConstExtended(MI) || isExtended(MI))
4293 Size += HEXAGON_INSTR_SIZE;
4295 // Try and compute number of instructions in asm.
4296 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4297 const MachineBasicBlock &MBB = *MI.getParent();
4298 const MachineFunction *MF = MBB.getParent();
4299 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4301 // Count the number of register definitions to find the asm string.
4302 unsigned NumDefs = 0;
4303 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4304 ++NumDefs)
4305 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4307 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4308 // Disassemble the AsmStr and approximate number of instructions.
4309 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4310 Size = getInlineAsmLength(AsmStr, *MAI);
4313 return Size;
4316 uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
4317 const uint64_t F = MI.getDesc().TSFlags;
4318 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
4321 unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
4322 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4323 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4325 return IS.getUnits();
4328 // Calculate size of the basic block without debug instructions.
4329 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
4330 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4333 unsigned HexagonInstrInfo::nonDbgBundleSize(
4334 MachineBasicBlock::const_iterator BundleHead) const {
4335 assert(BundleHead->isBundle() && "Not a bundle header");
4336 auto MII = BundleHead.getInstrIterator();
4337 // Skip the bundle header.
4338 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4341 /// immediateExtend - Changes the instruction in place to one using an immediate
4342 /// extender.
4343 void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
4344 assert((isExtendable(MI)||isConstExtended(MI)) &&
4345 "Instruction must be extendable");
4346 // Find which operand is extendable.
4347 short ExtOpNum = getCExtOpNum(MI);
4348 MachineOperand &MO = MI.getOperand(ExtOpNum);
4349 // This needs to be something we understand.
4350 assert((MO.isMBB() || MO.isImm()) &&
4351 "Branch with unknown extendable field type");
4352 // Mark given operand as extended.
4353 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
4356 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4357 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4358 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4359 << printMBBReference(*NewTarget);
4360 MI.dump(););
4361 assert(MI.isBranch());
4362 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4363 int TargetPos = MI.getNumOperands() - 1;
4364 // In general branch target is the last operand,
4365 // but some implicit defs added at the end might change it.
4366 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4367 --TargetPos;
4368 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4369 MI.getOperand(TargetPos).setMBB(NewTarget);
4370 if (EnableBranchPrediction && isPredicatedNew(MI)) {
4371 NewOpcode = reversePrediction(NewOpcode);
4373 MI.setDesc(get(NewOpcode));
4374 return true;
4377 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
4378 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4379 MachineFunction::iterator A = MF.begin();
4380 MachineBasicBlock &B = *A;
4381 MachineBasicBlock::iterator I = B.begin();
4382 DebugLoc DL = I->getDebugLoc();
4383 MachineInstr *NewMI;
4385 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4386 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4387 NewMI = BuildMI(B, I, DL, get(insn));
4388 LLVM_DEBUG(dbgs() << "\n"
4389 << getName(NewMI->getOpcode())
4390 << " Class: " << NewMI->getDesc().getSchedClass());
4391 NewMI->eraseFromParent();
4393 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4396 // inverts the predication logic.
4397 // p -> NotP
4398 // NotP -> P
4399 bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
4400 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4401 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4402 return true;
4405 // Reverse the branch prediction.
4406 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4407 int PredRevOpcode = -1;
4408 if (isPredictedTaken(Opcode))
4409 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4410 else
4411 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4412 assert(PredRevOpcode > 0);
4413 return PredRevOpcode;
4416 // TODO: Add more rigorous validation.
4417 bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
4418 const {
4419 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4422 void HexagonInstrInfo::
4423 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const {
4424 assert(MIB->isBundle());
4425 MachineOperand &Operand = MIB->getOperand(0);
4426 if (Operand.isImm())
4427 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4428 else
4429 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4432 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr &MIB) const {
4433 assert(MIB.isBundle());
4434 const MachineOperand &Operand = MIB.getOperand(0);
4435 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4438 // Addressing mode relations.
4439 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
4440 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4443 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
4444 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4447 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc) const {
4448 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4451 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
4452 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4455 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc) const {
4456 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4459 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
4460 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4463 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
4464 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4467 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
4468 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;