1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
64 #define DEBUG_TYPE "hexagon-instrinfo"
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
72 cl::opt
<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden
,
73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74 "packetization boundary."));
76 static cl::opt
<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77 cl::Hidden
, cl::init(true), cl::desc("Enable branch prediction"));
79 static cl::opt
<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80 cl::Hidden
, cl::ZeroOrMore
, cl::init(false),
81 cl::desc("Disable schedule adjustment for new value stores."));
83 static cl::opt
<bool> EnableTimingClassLatency(
84 "enable-timing-class-latency", cl::Hidden
, cl::init(false),
85 cl::desc("Enable timing class latency"));
87 static cl::opt
<bool> EnableALUForwarding(
88 "enable-alu-forwarding", cl::Hidden
, cl::init(true),
89 cl::desc("Enable vec alu forwarding"));
91 static cl::opt
<bool> EnableACCForwarding(
92 "enable-acc-forwarding", cl::Hidden
, cl::init(true),
93 cl::desc("Enable vec acc forwarding"));
95 static cl::opt
<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96 cl::init(true), cl::Hidden
, cl::ZeroOrMore
, cl::desc("branch relax asm"));
98 static cl::opt
<bool> UseDFAHazardRec("dfa-hazard-rec",
99 cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
100 cl::desc("Use the DFA based hazard recognizer."));
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX
= 4095;
104 const int Hexagon_MEMW_OFFSET_MIN
= -4096;
105 const int Hexagon_MEMD_OFFSET_MAX
= 8191;
106 const int Hexagon_MEMD_OFFSET_MIN
= -8192;
107 const int Hexagon_MEMH_OFFSET_MAX
= 2047;
108 const int Hexagon_MEMH_OFFSET_MIN
= -2048;
109 const int Hexagon_MEMB_OFFSET_MAX
= 1023;
110 const int Hexagon_MEMB_OFFSET_MIN
= -1024;
111 const int Hexagon_ADDI_OFFSET_MAX
= 32767;
112 const int Hexagon_ADDI_OFFSET_MIN
= -32768;
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget
&ST
)
118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN
, Hexagon::ADJCALLSTACKUP
),
121 static bool isIntRegForSubInst(unsigned Reg
) {
122 return (Reg
>= Hexagon::R0
&& Reg
<= Hexagon::R7
) ||
123 (Reg
>= Hexagon::R16
&& Reg
<= Hexagon::R23
);
126 static bool isDblRegForSubInst(unsigned Reg
, const HexagonRegisterInfo
&HRI
) {
127 return isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_lo
)) &&
128 isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_hi
));
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB
,
133 MachineBasicBlock::const_instr_iterator MIE
) {
135 for (; MIB
!= MIE
; ++MIB
) {
136 if (!MIB
->isDebugInstr())
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr
*HexagonInstrInfo::findLoopInstr(MachineBasicBlock
*BB
,
147 unsigned EndLoopOp
, MachineBasicBlock
*TargetBB
,
148 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const {
151 if (EndLoopOp
== Hexagon::ENDLOOP0
) {
152 LOOPi
= Hexagon::J2_loop0i
;
153 LOOPr
= Hexagon::J2_loop0r
;
154 } else { // EndLoopOp == Hexagon::EndLOOP1
155 LOOPi
= Hexagon::J2_loop1i
;
156 LOOPr
= Hexagon::J2_loop1r
;
159 // The loop set-up instruction will be in a predecessor block
160 for (MachineBasicBlock
*PB
: BB
->predecessors()) {
161 // If this has been visited, already skip it.
162 if (!Visited
.insert(PB
).second
)
166 for (auto I
= PB
->instr_rbegin(), E
= PB
->instr_rend(); I
!= E
; ++I
) {
167 unsigned Opc
= I
->getOpcode();
168 if (Opc
== LOOPi
|| Opc
== LOOPr
)
170 // We've reached a different loop, which means the loop01 has been
172 if (Opc
== EndLoopOp
&& I
->getOperand(0).getMBB() != TargetBB
)
175 // Check the predecessors for the LOOP instruction.
176 if (MachineInstr
*Loop
= findLoopInstr(PB
, EndLoopOp
, TargetBB
, Visited
))
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr
&MI
,
186 SmallVector
<unsigned, 4> &Defs
, SmallVector
<unsigned, 8> &Uses
) {
190 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
191 const MachineOperand
&MO
= MI
.getOperand(i
);
196 Register Reg
= MO
.getReg();
201 Uses
.push_back(MO
.getReg());
204 Defs
.push_back(MO
.getReg());
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga
, unsigned Gb
) {
211 case HexagonII::HSIG_None
:
214 case HexagonII::HSIG_L1
:
215 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_A
);
216 case HexagonII::HSIG_L2
:
217 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
218 Gb
== HexagonII::HSIG_A
);
219 case HexagonII::HSIG_S1
:
220 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
221 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_A
);
222 case HexagonII::HSIG_S2
:
223 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
224 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_S2
||
225 Gb
== HexagonII::HSIG_A
);
226 case HexagonII::HSIG_A
:
227 return (Gb
== HexagonII::HSIG_A
);
228 case HexagonII::HSIG_Compound
:
229 return (Gb
== HexagonII::HSIG_Compound
);
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot. If
237 /// not, return 0. This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
240 int &FrameIndex
) const {
241 switch (MI
.getOpcode()) {
244 case Hexagon::L2_loadri_io
:
245 case Hexagon::L2_loadrd_io
:
246 case Hexagon::V6_vL32b_ai
:
247 case Hexagon::V6_vL32b_nt_ai
:
248 case Hexagon::V6_vL32Ub_ai
:
249 case Hexagon::LDriw_pred
:
250 case Hexagon::LDriw_ctr
:
251 case Hexagon::PS_vloadrq_ai
:
252 case Hexagon::PS_vloadrw_ai
:
253 case Hexagon::PS_vloadrw_nt_ai
: {
254 const MachineOperand OpFI
= MI
.getOperand(1);
257 const MachineOperand OpOff
= MI
.getOperand(2);
258 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
260 FrameIndex
= OpFI
.getIndex();
261 return MI
.getOperand(0).getReg();
264 case Hexagon::L2_ploadrit_io
:
265 case Hexagon::L2_ploadrif_io
:
266 case Hexagon::L2_ploadrdt_io
:
267 case Hexagon::L2_ploadrdf_io
: {
268 const MachineOperand OpFI
= MI
.getOperand(2);
271 const MachineOperand OpOff
= MI
.getOperand(3);
272 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
274 FrameIndex
= OpFI
.getIndex();
275 return MI
.getOperand(0).getReg();
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
288 int &FrameIndex
) const {
289 switch (MI
.getOpcode()) {
292 case Hexagon::S2_storerb_io
:
293 case Hexagon::S2_storerh_io
:
294 case Hexagon::S2_storeri_io
:
295 case Hexagon::S2_storerd_io
:
296 case Hexagon::V6_vS32b_ai
:
297 case Hexagon::V6_vS32Ub_ai
:
298 case Hexagon::STriw_pred
:
299 case Hexagon::STriw_ctr
:
300 case Hexagon::PS_vstorerq_ai
:
301 case Hexagon::PS_vstorerw_ai
: {
302 const MachineOperand
&OpFI
= MI
.getOperand(0);
305 const MachineOperand
&OpOff
= MI
.getOperand(1);
306 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
308 FrameIndex
= OpFI
.getIndex();
309 return MI
.getOperand(2).getReg();
312 case Hexagon::S2_pstorerbt_io
:
313 case Hexagon::S2_pstorerbf_io
:
314 case Hexagon::S2_pstorerht_io
:
315 case Hexagon::S2_pstorerhf_io
:
316 case Hexagon::S2_pstorerit_io
:
317 case Hexagon::S2_pstorerif_io
:
318 case Hexagon::S2_pstorerdt_io
:
319 case Hexagon::S2_pstorerdf_io
: {
320 const MachineOperand
&OpFI
= MI
.getOperand(1);
323 const MachineOperand
&OpOff
= MI
.getOperand(2);
324 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
326 FrameIndex
= OpFI
.getIndex();
327 return MI
.getOperand(3).getReg();
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338 const MachineInstr
&MI
,
339 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
341 const MachineBasicBlock
*MBB
= MI
.getParent();
342 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
343 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII
, Accesses
))
349 return TargetInstrInfo::hasLoadFromStackSlot(MI
, Accesses
);
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356 const MachineInstr
&MI
,
357 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
359 const MachineBasicBlock
*MBB
= MI
.getParent();
360 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
361 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
362 if (TargetInstrInfo::hasStoreToStackSlot(*MII
, Accesses
))
367 return TargetInstrInfo::hasStoreToStackSlot(MI
, Accesses
);
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
379 /// Cond[0] = ENDLOOP
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
386 MachineBasicBlock
*&TBB
,
387 MachineBasicBlock
*&FBB
,
388 SmallVectorImpl
<MachineOperand
> &Cond
,
389 bool AllowModify
) const {
394 // If the block has no terminators, it just falls into the block after it.
395 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
396 if (I
== MBB
.instr_begin())
399 // A basic block may looks like this:
409 // It has two succs but does not have a terminator
410 // Don't know how to handle it.
414 // Don't analyze EH branches.
416 } while (I
!= MBB
.instr_begin());
421 while (I
->isDebugInstr()) {
422 if (I
== MBB
.instr_begin())
427 bool JumpToBlock
= I
->getOpcode() == Hexagon::J2_jump
&&
428 I
->getOperand(0).isMBB();
429 // Delete the J2_jump if it's equivalent to a fall-through.
430 if (AllowModify
&& JumpToBlock
&&
431 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433 I
->eraseFromParent();
435 if (I
== MBB
.instr_begin())
439 if (!isUnpredicatedTerminator(*I
))
442 // Get the last instruction in the block.
443 MachineInstr
*LastInst
= &*I
;
444 MachineInstr
*SecondLastInst
= nullptr;
445 // Find one more terminator if present.
447 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
449 SecondLastInst
= &*I
;
451 // This is a third branch.
454 if (I
== MBB
.instr_begin())
459 int LastOpcode
= LastInst
->getOpcode();
460 int SecLastOpcode
= SecondLastInst
? SecondLastInst
->getOpcode() : 0;
461 // If the branch target is not a basic block, it could be a tail call.
462 // (It is, if the target is a function.)
463 if (LastOpcode
== Hexagon::J2_jump
&& !LastInst
->getOperand(0).isMBB())
465 if (SecLastOpcode
== Hexagon::J2_jump
&&
466 !SecondLastInst
->getOperand(0).isMBB())
469 bool LastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(LastOpcode
);
470 bool LastOpcodeHasNVJump
= isNewValueJump(*LastInst
);
472 if (LastOpcodeHasJMP_c
&& !LastInst
->getOperand(1).isMBB())
475 // If there is only one terminator instruction, process it.
476 if (LastInst
&& !SecondLastInst
) {
477 if (LastOpcode
== Hexagon::J2_jump
) {
478 TBB
= LastInst
->getOperand(0).getMBB();
481 if (isEndLoopN(LastOpcode
)) {
482 TBB
= LastInst
->getOperand(0).getMBB();
483 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
484 Cond
.push_back(LastInst
->getOperand(0));
487 if (LastOpcodeHasJMP_c
) {
488 TBB
= LastInst
->getOperand(1).getMBB();
489 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
490 Cond
.push_back(LastInst
->getOperand(0));
493 // Only supporting rr/ri versions of new-value jumps.
494 if (LastOpcodeHasNVJump
&& (LastInst
->getNumExplicitOperands() == 3)) {
495 TBB
= LastInst
->getOperand(2).getMBB();
496 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
497 Cond
.push_back(LastInst
->getOperand(0));
498 Cond
.push_back(LastInst
->getOperand(1));
501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
502 << " with one jump\n";);
503 // Otherwise, don't know what this is.
507 bool SecLastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(SecLastOpcode
);
508 bool SecLastOpcodeHasNVJump
= isNewValueJump(*SecondLastInst
);
509 if (SecLastOpcodeHasJMP_c
&& (LastOpcode
== Hexagon::J2_jump
)) {
510 if (!SecondLastInst
->getOperand(1).isMBB())
512 TBB
= SecondLastInst
->getOperand(1).getMBB();
513 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
514 Cond
.push_back(SecondLastInst
->getOperand(0));
515 FBB
= LastInst
->getOperand(0).getMBB();
519 // Only supporting rr/ri versions of new-value jumps.
520 if (SecLastOpcodeHasNVJump
&&
521 (SecondLastInst
->getNumExplicitOperands() == 3) &&
522 (LastOpcode
== Hexagon::J2_jump
)) {
523 TBB
= SecondLastInst
->getOperand(2).getMBB();
524 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
525 Cond
.push_back(SecondLastInst
->getOperand(0));
526 Cond
.push_back(SecondLastInst
->getOperand(1));
527 FBB
= LastInst
->getOperand(0).getMBB();
531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
532 // executed, so remove it.
533 if (SecLastOpcode
== Hexagon::J2_jump
&& LastOpcode
== Hexagon::J2_jump
) {
534 TBB
= SecondLastInst
->getOperand(0).getMBB();
535 I
= LastInst
->getIterator();
537 I
->eraseFromParent();
541 // If the block ends with an ENDLOOP, and J2_jump, handle it.
542 if (isEndLoopN(SecLastOpcode
) && LastOpcode
== Hexagon::J2_jump
) {
543 TBB
= SecondLastInst
->getOperand(0).getMBB();
544 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
545 Cond
.push_back(SecondLastInst
->getOperand(0));
546 FBB
= LastInst
->getOperand(0).getMBB();
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
550 << " with two jumps";);
551 // Otherwise, can't handle this.
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
556 int *BytesRemoved
) const {
557 assert(!BytesRemoved
&& "code size not handled");
559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB
));
560 MachineBasicBlock::iterator I
= MBB
.end();
562 while (I
!= MBB
.begin()) {
564 if (I
->isDebugInstr())
566 // Only removing branches from end of MBB.
569 if (Count
&& (I
->getOpcode() == Hexagon::J2_jump
))
570 llvm_unreachable("Malformed basic block: unconditional branch not last");
571 MBB
.erase(&MBB
.back());
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
579 MachineBasicBlock
*TBB
,
580 MachineBasicBlock
*FBB
,
581 ArrayRef
<MachineOperand
> Cond
,
583 int *BytesAdded
) const {
584 unsigned BOpc
= Hexagon::J2_jump
;
585 unsigned BccOpc
= Hexagon::J2_jumpt
;
586 assert(validateBranchCond(Cond
) && "Invalid branching condition");
587 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
588 assert(!BytesAdded
&& "code size not handled");
590 // Check if reverseBranchCondition has asked to reverse this branch
591 // If we want to reverse the branch an odd number of times, we want
593 if (!Cond
.empty() && Cond
[0].isImm())
594 BccOpc
= Cond
[0].getImm();
598 // Due to a bug in TailMerging/CFG Optimization, we need to add a
599 // special case handling of a predicated jump followed by an
600 // unconditional jump. If not, Tail Merging and CFG Optimization go
601 // into an infinite loop.
602 MachineBasicBlock
*NewTBB
, *NewFBB
;
603 SmallVector
<MachineOperand
, 4> Cond
;
604 auto Term
= MBB
.getFirstTerminator();
605 if (Term
!= MBB
.end() && isPredicated(*Term
) &&
606 !analyzeBranch(MBB
, NewTBB
, NewFBB
, Cond
, false) &&
607 MachineFunction::iterator(NewTBB
) == ++MBB
.getIterator()) {
608 reverseBranchCondition(Cond
);
610 return insertBranch(MBB
, TBB
, nullptr, Cond
, DL
);
612 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
613 } else if (isEndLoopN(Cond
[0].getImm())) {
614 int EndLoopOp
= Cond
[0].getImm();
615 assert(Cond
[1].isMBB());
616 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617 // Check for it, and change the BB target if needed.
618 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
619 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
621 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
622 Loop
->getOperand(0).setMBB(TBB
);
623 // Add the ENDLOOP after the finding the LOOP0.
624 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
625 } else if (isNewValueJump(Cond
[0].getImm())) {
626 assert((Cond
.size() == 3) && "Only supporting rr/ri version of nvjump");
628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630 unsigned Flags1
= getUndefRegState(Cond
[1].isUndef());
631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632 << printMBBReference(MBB
););
633 if (Cond
[2].isReg()) {
634 unsigned Flags2
= getUndefRegState(Cond
[2].isUndef());
635 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
636 addReg(Cond
[2].getReg(), Flags2
).addMBB(TBB
);
637 } else if(Cond
[2].isImm()) {
638 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
639 addImm(Cond
[2].getImm()).addMBB(TBB
);
641 llvm_unreachable("Invalid condition for branching");
643 assert((Cond
.size() == 2) && "Malformed cond vector");
644 const MachineOperand
&RO
= Cond
[1];
645 unsigned Flags
= getUndefRegState(RO
.isUndef());
646 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
650 assert((!Cond
.empty()) &&
651 "Cond. cannot be empty when multiple branchings are required");
652 assert((!isNewValueJump(Cond
[0].getImm())) &&
653 "NV-jump cannot be inserted with another branch");
654 // Special case for hardware loops. The condition is a basic block.
655 if (isEndLoopN(Cond
[0].getImm())) {
656 int EndLoopOp
= Cond
[0].getImm();
657 assert(Cond
[1].isMBB());
658 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659 // Check for it, and change the BB target if needed.
660 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
661 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
663 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
664 Loop
->getOperand(0).setMBB(TBB
);
665 // Add the ENDLOOP after the finding the LOOP0.
666 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
668 const MachineOperand
&RO
= Cond
[1];
669 unsigned Flags
= getUndefRegState(RO
.isUndef());
670 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
672 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
677 /// Analyze the loop code to find the loop induction variable and compare used
678 /// to compute the number of iterations. Currently, we analyze loop that are
679 /// controlled using hardware loops. In this case, the induction variable
680 /// instruction is null. For all other cases, this function returns true, which
681 /// means we're unable to analyze it.
682 bool HexagonInstrInfo::analyzeLoop(MachineLoop
&L
,
683 MachineInstr
*&IndVarInst
,
684 MachineInstr
*&CmpInst
) const {
686 MachineBasicBlock
*LoopEnd
= L
.getBottomBlock();
687 MachineBasicBlock::iterator I
= LoopEnd
->getFirstTerminator();
688 // We really "analyze" only hardware loops right now.
689 if (I
!= LoopEnd
->end() && isEndLoopN(I
->getOpcode())) {
690 IndVarInst
= nullptr;
697 /// Generate code to reduce the loop iteration by one and check if the loop is
698 /// finished. Return the value/register of the new loop count. this function
699 /// assumes the nth iteration is peeled first.
700 unsigned HexagonInstrInfo::reduceLoopCount(
701 MachineBasicBlock
&MBB
, MachineBasicBlock
&PreHeader
, MachineInstr
*IndVar
,
702 MachineInstr
&Cmp
, SmallVectorImpl
<MachineOperand
> &Cond
,
703 SmallVectorImpl
<MachineInstr
*> &PrevInsts
, unsigned Iter
,
704 unsigned MaxIter
) const {
705 // We expect a hardware loop currently. This means that IndVar is set
706 // to null, and the compare is the ENDLOOP instruction.
707 assert((!IndVar
) && isEndLoopN(Cmp
.getOpcode())
708 && "Expecting a hardware loop");
709 MachineFunction
*MF
= MBB
.getParent();
710 DebugLoc DL
= Cmp
.getDebugLoc();
711 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
712 MachineInstr
*Loop
= findLoopInstr(&MBB
, Cmp
.getOpcode(),
713 Cmp
.getOperand(0).getMBB(), VisitedBBs
);
716 // If the loop trip count is a compile-time value, then just change the
718 if (Loop
->getOpcode() == Hexagon::J2_loop0i
||
719 Loop
->getOpcode() == Hexagon::J2_loop1i
) {
720 int64_t Offset
= Loop
->getOperand(1).getImm();
722 Loop
->eraseFromParent();
724 Loop
->getOperand(1).setImm(Offset
- 1);
727 // The loop trip count is a run-time value. We generate code to subtract
728 // one from the trip count, and update the loop instruction.
729 assert(Loop
->getOpcode() == Hexagon::J2_loop0r
&& "Unexpected instruction");
730 Register LoopCount
= Loop
->getOperand(1).getReg();
731 // Check if we're done with the loop.
732 unsigned LoopEnd
= createVR(MF
, MVT::i1
);
733 MachineInstr
*NewCmp
= BuildMI(&MBB
, DL
, get(Hexagon::C2_cmpgtui
), LoopEnd
).
734 addReg(LoopCount
).addImm(1);
735 unsigned NewLoopCount
= createVR(MF
, MVT::i32
);
736 MachineInstr
*NewAdd
= BuildMI(&MBB
, DL
, get(Hexagon::A2_addi
), NewLoopCount
).
737 addReg(LoopCount
).addImm(-1);
738 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
739 // Update the previously generated instructions with the new loop counter.
740 for (SmallVectorImpl
<MachineInstr
*>::iterator I
= PrevInsts
.begin(),
741 E
= PrevInsts
.end(); I
!= E
; ++I
)
742 (*I
)->substituteRegister(LoopCount
, NewLoopCount
, 0, HRI
);
744 PrevInsts
.push_back(NewCmp
);
745 PrevInsts
.push_back(NewAdd
);
746 // Insert the new loop instruction if this is the last time the loop is
749 BuildMI(&MBB
, DL
, get(Hexagon::J2_loop0r
)).
750 addMBB(Loop
->getOperand(0).getMBB()).addReg(NewLoopCount
);
751 // Delete the old loop instruction.
753 Loop
->eraseFromParent();
754 Cond
.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf
));
755 Cond
.push_back(NewCmp
->getOperand(0));
759 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&MBB
,
760 unsigned NumCycles
, unsigned ExtraPredCycles
,
761 BranchProbability Probability
) const {
762 return nonDbgBBSize(&MBB
) <= 3;
765 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
766 unsigned NumTCycles
, unsigned ExtraTCycles
, MachineBasicBlock
&FMBB
,
767 unsigned NumFCycles
, unsigned ExtraFCycles
, BranchProbability Probability
)
769 return nonDbgBBSize(&TMBB
) <= 3 && nonDbgBBSize(&FMBB
) <= 3;
772 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
773 unsigned NumInstrs
, BranchProbability Probability
) const {
774 return NumInstrs
<= 4;
777 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
778 MachineBasicBlock::iterator I
,
779 const DebugLoc
&DL
, unsigned DestReg
,
780 unsigned SrcReg
, bool KillSrc
) const {
781 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
782 unsigned KillFlag
= getKillRegState(KillSrc
);
784 if (Hexagon::IntRegsRegClass
.contains(SrcReg
, DestReg
)) {
785 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfr
), DestReg
)
786 .addReg(SrcReg
, KillFlag
);
789 if (Hexagon::DoubleRegsRegClass
.contains(SrcReg
, DestReg
)) {
790 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrp
), DestReg
)
791 .addReg(SrcReg
, KillFlag
);
794 if (Hexagon::PredRegsRegClass
.contains(SrcReg
, DestReg
)) {
795 // Map Pd = Ps to Pd = or(Ps, Ps).
796 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_or
), DestReg
)
797 .addReg(SrcReg
).addReg(SrcReg
, KillFlag
);
800 if (Hexagon::CtrRegsRegClass
.contains(DestReg
) &&
801 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
802 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
803 .addReg(SrcReg
, KillFlag
);
806 if (Hexagon::IntRegsRegClass
.contains(DestReg
) &&
807 Hexagon::CtrRegsRegClass
.contains(SrcReg
)) {
808 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrcrr
), DestReg
)
809 .addReg(SrcReg
, KillFlag
);
812 if (Hexagon::ModRegsRegClass
.contains(DestReg
) &&
813 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
814 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
815 .addReg(SrcReg
, KillFlag
);
818 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
819 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
820 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
821 .addReg(SrcReg
, KillFlag
);
824 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
825 Hexagon::PredRegsRegClass
.contains(DestReg
)) {
826 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrrp
), DestReg
)
827 .addReg(SrcReg
, KillFlag
);
830 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
831 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
832 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
833 .addReg(SrcReg
, KillFlag
);
836 if (Hexagon::HvxVRRegClass
.contains(SrcReg
, DestReg
)) {
837 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vassign
), DestReg
).
838 addReg(SrcReg
, KillFlag
);
841 if (Hexagon::HvxWRRegClass
.contains(SrcReg
, DestReg
)) {
842 Register LoSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
843 Register HiSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
844 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vcombine
), DestReg
)
845 .addReg(HiSrc
, KillFlag
)
846 .addReg(LoSrc
, KillFlag
);
849 if (Hexagon::HvxQRRegClass
.contains(SrcReg
, DestReg
)) {
850 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_pred_and
), DestReg
)
852 .addReg(SrcReg
, KillFlag
);
855 if (Hexagon::HvxQRRegClass
.contains(SrcReg
) &&
856 Hexagon::HvxVRRegClass
.contains(DestReg
)) {
857 llvm_unreachable("Unimplemented pred to vec");
860 if (Hexagon::HvxQRRegClass
.contains(DestReg
) &&
861 Hexagon::HvxVRRegClass
.contains(SrcReg
)) {
862 llvm_unreachable("Unimplemented vec to pred");
867 // Show the invalid registers to ease debugging.
868 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB
) << ": "
869 << printReg(DestReg
, &HRI
) << " = " << printReg(SrcReg
, &HRI
) << '\n';
871 llvm_unreachable("Unimplemented");
874 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
875 MachineBasicBlock::iterator I
, unsigned SrcReg
, bool isKill
, int FI
,
876 const TargetRegisterClass
*RC
, const TargetRegisterInfo
*TRI
) const {
877 DebugLoc DL
= MBB
.findDebugLoc(I
);
878 MachineFunction
&MF
= *MBB
.getParent();
879 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
880 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
881 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
882 unsigned KillFlag
= getKillRegState(isKill
);
883 bool HasAlloca
= MFI
.hasVarSizedObjects();
884 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
886 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
887 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
888 MFI
.getObjectSize(FI
), SlotAlign
);
890 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
891 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storeri_io
))
892 .addFrameIndex(FI
).addImm(0)
893 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
894 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
895 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storerd_io
))
896 .addFrameIndex(FI
).addImm(0)
897 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
898 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
899 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_pred
))
900 .addFrameIndex(FI
).addImm(0)
901 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
902 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
903 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_ctr
))
904 .addFrameIndex(FI
).addImm(0)
905 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
906 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
907 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerq_ai
))
908 .addFrameIndex(FI
).addImm(0)
909 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
910 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
911 // If there are variable-sized objects, spills will not be aligned.
913 SlotAlign
= HFI
.getStackAlignment();
914 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vS32Ub_ai
915 : Hexagon::V6_vS32b_ai
;
916 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
917 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
918 MFI
.getObjectSize(FI
), SlotAlign
);
919 BuildMI(MBB
, I
, DL
, get(Opc
))
920 .addFrameIndex(FI
).addImm(0)
921 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
922 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
923 // If there are variable-sized objects, spills will not be aligned.
925 SlotAlign
= HFI
.getStackAlignment();
926 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vstorerwu_ai
927 : Hexagon::PS_vstorerw_ai
;
928 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
929 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
930 MFI
.getObjectSize(FI
), SlotAlign
);
931 BuildMI(MBB
, I
, DL
, get(Opc
))
932 .addFrameIndex(FI
).addImm(0)
933 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
935 llvm_unreachable("Unimplemented");
939 void HexagonInstrInfo::loadRegFromStackSlot(
940 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
, unsigned DestReg
,
941 int FI
, const TargetRegisterClass
*RC
,
942 const TargetRegisterInfo
*TRI
) const {
943 DebugLoc DL
= MBB
.findDebugLoc(I
);
944 MachineFunction
&MF
= *MBB
.getParent();
945 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
946 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
947 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
948 bool HasAlloca
= MFI
.hasVarSizedObjects();
949 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
951 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
952 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
953 MFI
.getObjectSize(FI
), SlotAlign
);
955 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
956 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadri_io
), DestReg
)
957 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
958 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
959 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadrd_io
), DestReg
)
960 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
961 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
962 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_pred
), DestReg
)
963 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
964 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
965 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_ctr
), DestReg
)
966 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
967 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
968 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrq_ai
), DestReg
)
969 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
970 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
971 // If there are variable-sized objects, spills will not be aligned.
973 SlotAlign
= HFI
.getStackAlignment();
974 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vL32Ub_ai
975 : Hexagon::V6_vL32b_ai
;
976 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
977 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
978 MFI
.getObjectSize(FI
), SlotAlign
);
979 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
980 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
981 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
982 // If there are variable-sized objects, spills will not be aligned.
984 SlotAlign
= HFI
.getStackAlignment();
985 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vloadrwu_ai
986 : Hexagon::PS_vloadrw_ai
;
987 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
988 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
989 MFI
.getObjectSize(FI
), SlotAlign
);
990 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
991 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
993 llvm_unreachable("Can't store this register to stack slot");
997 static void getLiveRegsAt(LivePhysRegs
&Regs
, const MachineInstr
&MI
) {
998 const MachineBasicBlock
&B
= *MI
.getParent();
1000 auto E
= ++MachineBasicBlock::const_iterator(MI
.getIterator()).getReverse();
1001 for (auto I
= B
.rbegin(); I
!= E
; ++I
)
1002 Regs
.stepBackward(*I
);
1005 /// expandPostRAPseudo - This function is called for all pseudo instructions
1006 /// that remain after register allocation. Many pseudo instructions are
1007 /// created to help register allocation. This is the place to convert them
1008 /// into real instructions. The target can edit MI in place, or it can insert
1009 /// new instructions and erase MI. The function should return true if
1010 /// anything was changed.
1011 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1012 MachineBasicBlock
&MBB
= *MI
.getParent();
1013 MachineFunction
&MF
= *MBB
.getParent();
1014 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1015 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1016 DebugLoc DL
= MI
.getDebugLoc();
1017 unsigned Opc
= MI
.getOpcode();
1019 auto RealCirc
= [&](unsigned Opc
, bool HasImm
, unsigned MxOp
) {
1020 Register Mx
= MI
.getOperand(MxOp
).getReg();
1021 unsigned CSx
= (Mx
== Hexagon::M0
? Hexagon::CS0
: Hexagon::CS1
);
1022 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrrcr
), CSx
)
1023 .add(MI
.getOperand((HasImm
? 5 : 4)));
1024 auto MIB
= BuildMI(MBB
, MI
, DL
, get(Opc
)).add(MI
.getOperand(0))
1025 .add(MI
.getOperand(1)).add(MI
.getOperand(2)).add(MI
.getOperand(3));
1027 MIB
.add(MI
.getOperand(4));
1028 MIB
.addReg(CSx
, RegState::Implicit
);
1034 case TargetOpcode::COPY
: {
1035 MachineOperand
&MD
= MI
.getOperand(0);
1036 MachineOperand
&MS
= MI
.getOperand(1);
1037 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1038 if (MD
.getReg() != MS
.getReg() && !MS
.isUndef()) {
1039 copyPhysReg(MBB
, MI
, DL
, MD
.getReg(), MS
.getReg(), MS
.isKill());
1040 std::prev(MBBI
)->copyImplicitOps(*MBB
.getParent(), MI
);
1045 case Hexagon::PS_aligna
:
1046 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_andir
), MI
.getOperand(0).getReg())
1047 .addReg(HRI
.getFrameRegister())
1048 .addImm(-MI
.getOperand(1).getImm());
1051 case Hexagon::V6_vassignp
: {
1052 Register SrcReg
= MI
.getOperand(1).getReg();
1053 Register DstReg
= MI
.getOperand(0).getReg();
1054 unsigned Kill
= getKillRegState(MI
.getOperand(1).isKill());
1055 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcombine
), DstReg
)
1056 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
), Kill
)
1057 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
), Kill
);
1061 case Hexagon::V6_lo
: {
1062 Register SrcReg
= MI
.getOperand(1).getReg();
1063 Register DstReg
= MI
.getOperand(0).getReg();
1064 Register SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1065 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubLo
, MI
.getOperand(1).isKill());
1067 MRI
.clearKillFlags(SrcSubLo
);
1070 case Hexagon::V6_hi
: {
1071 Register SrcReg
= MI
.getOperand(1).getReg();
1072 Register DstReg
= MI
.getOperand(0).getReg();
1073 Register SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1074 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubHi
, MI
.getOperand(1).isKill());
1076 MRI
.clearKillFlags(SrcSubHi
);
1079 case Hexagon::PS_vstorerw_ai
:
1080 case Hexagon::PS_vstorerwu_ai
: {
1081 bool Aligned
= Opc
== Hexagon::PS_vstorerw_ai
;
1082 Register SrcReg
= MI
.getOperand(2).getReg();
1083 Register SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1084 Register SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1085 unsigned NewOpc
= Aligned
? Hexagon::V6_vS32b_ai
: Hexagon::V6_vS32Ub_ai
;
1086 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1088 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1089 .add(MI
.getOperand(0))
1090 .addImm(MI
.getOperand(1).getImm())
1093 MI1New
->getOperand(0).setIsKill(false);
1094 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1095 .add(MI
.getOperand(0))
1096 // The Vectors are indexed in multiples of vector size.
1097 .addImm(MI
.getOperand(1).getImm() + Offset
)
1103 case Hexagon::PS_vloadrw_ai
:
1104 case Hexagon::PS_vloadrwu_ai
: {
1105 bool Aligned
= Opc
== Hexagon::PS_vloadrw_ai
;
1106 Register DstReg
= MI
.getOperand(0).getReg();
1107 unsigned NewOpc
= Aligned
? Hexagon::V6_vL32b_ai
: Hexagon::V6_vL32Ub_ai
;
1108 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1110 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
),
1111 HRI
.getSubReg(DstReg
, Hexagon::vsub_lo
))
1112 .add(MI
.getOperand(1))
1113 .addImm(MI
.getOperand(2).getImm())
1115 MI1New
->getOperand(1).setIsKill(false);
1116 BuildMI(MBB
, MI
, DL
, get(NewOpc
), HRI
.getSubReg(DstReg
, Hexagon::vsub_hi
))
1117 .add(MI
.getOperand(1))
1118 // The Vectors are indexed in multiples of vector size.
1119 .addImm(MI
.getOperand(2).getImm() + Offset
)
1124 case Hexagon::PS_true
: {
1125 Register Reg
= MI
.getOperand(0).getReg();
1126 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_orn
), Reg
)
1127 .addReg(Reg
, RegState::Undef
)
1128 .addReg(Reg
, RegState::Undef
);
1132 case Hexagon::PS_false
: {
1133 Register Reg
= MI
.getOperand(0).getReg();
1134 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_andn
), Reg
)
1135 .addReg(Reg
, RegState::Undef
)
1136 .addReg(Reg
, RegState::Undef
);
1140 case Hexagon::PS_qtrue
: {
1141 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_veqw
), MI
.getOperand(0).getReg())
1142 .addReg(Hexagon::V0
, RegState::Undef
)
1143 .addReg(Hexagon::V0
, RegState::Undef
);
1147 case Hexagon::PS_qfalse
: {
1148 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgtw
), MI
.getOperand(0).getReg())
1149 .addReg(Hexagon::V0
, RegState::Undef
)
1150 .addReg(Hexagon::V0
, RegState::Undef
);
1154 case Hexagon::PS_vdd0
: {
1155 Register Vd
= MI
.getOperand(0).getReg();
1156 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vsubw_dv
), Vd
)
1157 .addReg(Vd
, RegState::Undef
)
1158 .addReg(Vd
, RegState::Undef
);
1162 case Hexagon::PS_vmulw
: {
1163 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1164 Register DstReg
= MI
.getOperand(0).getReg();
1165 Register Src1Reg
= MI
.getOperand(1).getReg();
1166 Register Src2Reg
= MI
.getOperand(2).getReg();
1167 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1168 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1169 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1170 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1171 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1172 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1175 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1176 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1180 MRI
.clearKillFlags(Src1SubHi
);
1181 MRI
.clearKillFlags(Src1SubLo
);
1182 MRI
.clearKillFlags(Src2SubHi
);
1183 MRI
.clearKillFlags(Src2SubLo
);
1186 case Hexagon::PS_vmulw_acc
: {
1187 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1188 Register DstReg
= MI
.getOperand(0).getReg();
1189 Register Src1Reg
= MI
.getOperand(1).getReg();
1190 Register Src2Reg
= MI
.getOperand(2).getReg();
1191 Register Src3Reg
= MI
.getOperand(3).getReg();
1192 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1193 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1194 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1195 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1196 Register Src3SubHi
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_hi
);
1197 Register Src3SubLo
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_lo
);
1198 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1199 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1203 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1204 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1209 MRI
.clearKillFlags(Src1SubHi
);
1210 MRI
.clearKillFlags(Src1SubLo
);
1211 MRI
.clearKillFlags(Src2SubHi
);
1212 MRI
.clearKillFlags(Src2SubLo
);
1213 MRI
.clearKillFlags(Src3SubHi
);
1214 MRI
.clearKillFlags(Src3SubLo
);
1217 case Hexagon::PS_pselect
: {
1218 const MachineOperand
&Op0
= MI
.getOperand(0);
1219 const MachineOperand
&Op1
= MI
.getOperand(1);
1220 const MachineOperand
&Op2
= MI
.getOperand(2);
1221 const MachineOperand
&Op3
= MI
.getOperand(3);
1222 Register Rd
= Op0
.getReg();
1223 Register Pu
= Op1
.getReg();
1224 Register Rs
= Op2
.getReg();
1225 Register Rt
= Op3
.getReg();
1226 DebugLoc DL
= MI
.getDebugLoc();
1227 unsigned K1
= getKillRegState(Op1
.isKill());
1228 unsigned K2
= getKillRegState(Op2
.isKill());
1229 unsigned K3
= getKillRegState(Op3
.isKill());
1231 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpt
), Rd
)
1232 .addReg(Pu
, (Rd
== Rt
) ? K1
: 0)
1235 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpf
), Rd
)
1241 case Hexagon::PS_vselect
: {
1242 const MachineOperand
&Op0
= MI
.getOperand(0);
1243 const MachineOperand
&Op1
= MI
.getOperand(1);
1244 const MachineOperand
&Op2
= MI
.getOperand(2);
1245 const MachineOperand
&Op3
= MI
.getOperand(3);
1246 LivePhysRegs
LiveAtMI(HRI
);
1247 getLiveRegsAt(LiveAtMI
, MI
);
1248 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1249 Register PReg
= Op1
.getReg();
1250 assert(Op1
.getSubReg() == 0);
1251 unsigned PState
= getRegState(Op1
);
1253 if (Op0
.getReg() != Op2
.getReg()) {
1254 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1256 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcmov
))
1261 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1264 if (Op0
.getReg() != Op3
.getReg()) {
1265 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vncmov
))
1267 .addReg(PReg
, PState
)
1270 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1275 case Hexagon::PS_wselect
: {
1276 MachineOperand
&Op0
= MI
.getOperand(0);
1277 MachineOperand
&Op1
= MI
.getOperand(1);
1278 MachineOperand
&Op2
= MI
.getOperand(2);
1279 MachineOperand
&Op3
= MI
.getOperand(3);
1280 LivePhysRegs
LiveAtMI(HRI
);
1281 getLiveRegsAt(LiveAtMI
, MI
);
1282 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1283 Register PReg
= Op1
.getReg();
1284 assert(Op1
.getSubReg() == 0);
1285 unsigned PState
= getRegState(Op1
);
1287 if (Op0
.getReg() != Op2
.getReg()) {
1288 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1290 Register SrcLo
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_lo
);
1291 Register SrcHi
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_hi
);
1292 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vccombine
))
1298 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1301 if (Op0
.getReg() != Op3
.getReg()) {
1302 Register SrcLo
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_lo
);
1303 Register SrcHi
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_hi
);
1304 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vnccombine
))
1306 .addReg(PReg
, PState
)
1310 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1316 case Hexagon::PS_crash
: {
1317 // Generate a misaligned load that is guaranteed to cause a crash.
1318 class CrashPseudoSourceValue
: public PseudoSourceValue
{
1320 CrashPseudoSourceValue(const TargetInstrInfo
&TII
)
1321 : PseudoSourceValue(TargetCustom
, TII
) {}
1323 bool isConstant(const MachineFrameInfo
*) const override
{
1326 bool isAliased(const MachineFrameInfo
*) const override
{
1329 bool mayAlias(const MachineFrameInfo
*) const override
{
1332 void printCustom(raw_ostream
&OS
) const override
{
1333 OS
<< "MisalignedCrash";
1337 static const CrashPseudoSourceValue
CrashPSV(*this);
1338 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1339 MachinePointerInfo(&CrashPSV
),
1340 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 8, 1);
1341 BuildMI(MBB
, MI
, DL
, get(Hexagon::PS_loadrdabs
), Hexagon::D13
)
1342 .addImm(0xBADC0FEE) // Misaligned load.
1343 .addMemOperand(MMO
);
1348 case Hexagon::PS_tailcall_i
:
1349 MI
.setDesc(get(Hexagon::J2_jump
));
1351 case Hexagon::PS_tailcall_r
:
1352 case Hexagon::PS_jmpret
:
1353 MI
.setDesc(get(Hexagon::J2_jumpr
));
1355 case Hexagon::PS_jmprett
:
1356 MI
.setDesc(get(Hexagon::J2_jumprt
));
1358 case Hexagon::PS_jmpretf
:
1359 MI
.setDesc(get(Hexagon::J2_jumprf
));
1361 case Hexagon::PS_jmprettnewpt
:
1362 MI
.setDesc(get(Hexagon::J2_jumprtnewpt
));
1364 case Hexagon::PS_jmpretfnewpt
:
1365 MI
.setDesc(get(Hexagon::J2_jumprfnewpt
));
1367 case Hexagon::PS_jmprettnew
:
1368 MI
.setDesc(get(Hexagon::J2_jumprtnew
));
1370 case Hexagon::PS_jmpretfnew
:
1371 MI
.setDesc(get(Hexagon::J2_jumprfnew
));
1374 case Hexagon::PS_loadrub_pci
:
1375 return RealCirc(Hexagon::L2_loadrub_pci
, /*HasImm*/true, /*MxOp*/4);
1376 case Hexagon::PS_loadrb_pci
:
1377 return RealCirc(Hexagon::L2_loadrb_pci
, /*HasImm*/true, /*MxOp*/4);
1378 case Hexagon::PS_loadruh_pci
:
1379 return RealCirc(Hexagon::L2_loadruh_pci
, /*HasImm*/true, /*MxOp*/4);
1380 case Hexagon::PS_loadrh_pci
:
1381 return RealCirc(Hexagon::L2_loadrh_pci
, /*HasImm*/true, /*MxOp*/4);
1382 case Hexagon::PS_loadri_pci
:
1383 return RealCirc(Hexagon::L2_loadri_pci
, /*HasImm*/true, /*MxOp*/4);
1384 case Hexagon::PS_loadrd_pci
:
1385 return RealCirc(Hexagon::L2_loadrd_pci
, /*HasImm*/true, /*MxOp*/4);
1386 case Hexagon::PS_loadrub_pcr
:
1387 return RealCirc(Hexagon::L2_loadrub_pcr
, /*HasImm*/false, /*MxOp*/3);
1388 case Hexagon::PS_loadrb_pcr
:
1389 return RealCirc(Hexagon::L2_loadrb_pcr
, /*HasImm*/false, /*MxOp*/3);
1390 case Hexagon::PS_loadruh_pcr
:
1391 return RealCirc(Hexagon::L2_loadruh_pcr
, /*HasImm*/false, /*MxOp*/3);
1392 case Hexagon::PS_loadrh_pcr
:
1393 return RealCirc(Hexagon::L2_loadrh_pcr
, /*HasImm*/false, /*MxOp*/3);
1394 case Hexagon::PS_loadri_pcr
:
1395 return RealCirc(Hexagon::L2_loadri_pcr
, /*HasImm*/false, /*MxOp*/3);
1396 case Hexagon::PS_loadrd_pcr
:
1397 return RealCirc(Hexagon::L2_loadrd_pcr
, /*HasImm*/false, /*MxOp*/3);
1398 case Hexagon::PS_storerb_pci
:
1399 return RealCirc(Hexagon::S2_storerb_pci
, /*HasImm*/true, /*MxOp*/3);
1400 case Hexagon::PS_storerh_pci
:
1401 return RealCirc(Hexagon::S2_storerh_pci
, /*HasImm*/true, /*MxOp*/3);
1402 case Hexagon::PS_storerf_pci
:
1403 return RealCirc(Hexagon::S2_storerf_pci
, /*HasImm*/true, /*MxOp*/3);
1404 case Hexagon::PS_storeri_pci
:
1405 return RealCirc(Hexagon::S2_storeri_pci
, /*HasImm*/true, /*MxOp*/3);
1406 case Hexagon::PS_storerd_pci
:
1407 return RealCirc(Hexagon::S2_storerd_pci
, /*HasImm*/true, /*MxOp*/3);
1408 case Hexagon::PS_storerb_pcr
:
1409 return RealCirc(Hexagon::S2_storerb_pcr
, /*HasImm*/false, /*MxOp*/2);
1410 case Hexagon::PS_storerh_pcr
:
1411 return RealCirc(Hexagon::S2_storerh_pcr
, /*HasImm*/false, /*MxOp*/2);
1412 case Hexagon::PS_storerf_pcr
:
1413 return RealCirc(Hexagon::S2_storerf_pcr
, /*HasImm*/false, /*MxOp*/2);
1414 case Hexagon::PS_storeri_pcr
:
1415 return RealCirc(Hexagon::S2_storeri_pcr
, /*HasImm*/false, /*MxOp*/2);
1416 case Hexagon::PS_storerd_pcr
:
1417 return RealCirc(Hexagon::S2_storerd_pcr
, /*HasImm*/false, /*MxOp*/2);
1423 MachineBasicBlock::instr_iterator
1424 HexagonInstrInfo::expandVGatherPseudo(MachineInstr
&MI
) const {
1425 MachineBasicBlock
&MBB
= *MI
.getParent();
1426 const DebugLoc
&DL
= MI
.getDebugLoc();
1427 unsigned Opc
= MI
.getOpcode();
1428 MachineBasicBlock::iterator First
;
1431 case Hexagon::V6_vgathermh_pseudo
:
1432 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermh
))
1433 .add(MI
.getOperand(1))
1434 .add(MI
.getOperand(2))
1435 .add(MI
.getOperand(3));
1436 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1437 .add(MI
.getOperand(0))
1439 .addReg(Hexagon::VTMP
);
1441 return First
.getInstrIterator();
1443 case Hexagon::V6_vgathermw_pseudo
:
1444 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermw
))
1445 .add(MI
.getOperand(1))
1446 .add(MI
.getOperand(2))
1447 .add(MI
.getOperand(3));
1448 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1449 .add(MI
.getOperand(0))
1451 .addReg(Hexagon::VTMP
);
1453 return First
.getInstrIterator();
1455 case Hexagon::V6_vgathermhw_pseudo
:
1456 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhw
))
1457 .add(MI
.getOperand(1))
1458 .add(MI
.getOperand(2))
1459 .add(MI
.getOperand(3));
1460 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1461 .add(MI
.getOperand(0))
1463 .addReg(Hexagon::VTMP
);
1465 return First
.getInstrIterator();
1467 case Hexagon::V6_vgathermhq_pseudo
:
1468 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhq
))
1469 .add(MI
.getOperand(1))
1470 .add(MI
.getOperand(2))
1471 .add(MI
.getOperand(3))
1472 .add(MI
.getOperand(4));
1473 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1474 .add(MI
.getOperand(0))
1476 .addReg(Hexagon::VTMP
);
1478 return First
.getInstrIterator();
1480 case Hexagon::V6_vgathermwq_pseudo
:
1481 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermwq
))
1482 .add(MI
.getOperand(1))
1483 .add(MI
.getOperand(2))
1484 .add(MI
.getOperand(3))
1485 .add(MI
.getOperand(4));
1486 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1487 .add(MI
.getOperand(0))
1489 .addReg(Hexagon::VTMP
);
1491 return First
.getInstrIterator();
1493 case Hexagon::V6_vgathermhwq_pseudo
:
1494 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhwq
))
1495 .add(MI
.getOperand(1))
1496 .add(MI
.getOperand(2))
1497 .add(MI
.getOperand(3))
1498 .add(MI
.getOperand(4));
1499 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1500 .add(MI
.getOperand(0))
1502 .addReg(Hexagon::VTMP
);
1504 return First
.getInstrIterator();
1507 return MI
.getIterator();
1510 // We indicate that we want to reverse the branch by
1511 // inserting the reversed branching opcode.
1512 bool HexagonInstrInfo::reverseBranchCondition(
1513 SmallVectorImpl
<MachineOperand
> &Cond
) const {
1516 assert(Cond
[0].isImm() && "First entry in the cond vector not imm-val");
1517 unsigned opcode
= Cond
[0].getImm();
1519 assert(get(opcode
).isBranch() && "Should be a branching condition.");
1520 if (isEndLoopN(opcode
))
1522 unsigned NewOpcode
= getInvertedPredicatedOpcode(opcode
);
1523 Cond
[0].setImm(NewOpcode
);
1527 void HexagonInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
1528 MachineBasicBlock::iterator MI
) const {
1530 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_nop
));
1533 bool HexagonInstrInfo::isPostIncrement(const MachineInstr
&MI
) const {
1534 return getAddrMode(MI
) == HexagonII::PostInc
;
1537 // Returns true if an instruction is predicated irrespective of the predicate
1538 // sense. For example, all of the following will return true.
1539 // if (p0) R1 = add(R2, R3)
1540 // if (!p0) R1 = add(R2, R3)
1541 // if (p0.new) R1 = add(R2, R3)
1542 // if (!p0.new) R1 = add(R2, R3)
1543 // Note: New-value stores are not included here as in the current
1544 // implementation, we don't need to check their predicate sense.
1545 bool HexagonInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1546 const uint64_t F
= MI
.getDesc().TSFlags
;
1547 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
1550 bool HexagonInstrInfo::PredicateInstruction(
1551 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Cond
) const {
1552 if (Cond
.empty() || isNewValueJump(Cond
[0].getImm()) ||
1553 isEndLoopN(Cond
[0].getImm())) {
1554 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI
.dump(););
1557 int Opc
= MI
.getOpcode();
1558 assert (isPredicable(MI
) && "Expected predicable instruction");
1559 bool invertJump
= predOpcodeHasNot(Cond
);
1561 // We have to predicate MI "in place", i.e. after this function returns,
1562 // MI will need to be transformed into a predicated form. To avoid com-
1563 // plicated manipulations with the operands (handling tied operands,
1564 // etc.), build a new temporary instruction, then overwrite MI with it.
1566 MachineBasicBlock
&B
= *MI
.getParent();
1567 DebugLoc DL
= MI
.getDebugLoc();
1568 unsigned PredOpc
= getCondOpcode(Opc
, invertJump
);
1569 MachineInstrBuilder T
= BuildMI(B
, MI
, DL
, get(PredOpc
));
1570 unsigned NOp
= 0, NumOps
= MI
.getNumOperands();
1571 while (NOp
< NumOps
) {
1572 MachineOperand
&Op
= MI
.getOperand(NOp
);
1573 if (!Op
.isReg() || !Op
.isDef() || Op
.isImplicit())
1579 unsigned PredReg
, PredRegPos
, PredRegFlags
;
1580 bool GotPredReg
= getPredReg(Cond
, PredReg
, PredRegPos
, PredRegFlags
);
1583 T
.addReg(PredReg
, PredRegFlags
);
1584 while (NOp
< NumOps
)
1585 T
.add(MI
.getOperand(NOp
++));
1587 MI
.setDesc(get(PredOpc
));
1588 while (unsigned n
= MI
.getNumOperands())
1589 MI
.RemoveOperand(n
-1);
1590 for (unsigned i
= 0, n
= T
->getNumOperands(); i
< n
; ++i
)
1591 MI
.addOperand(T
->getOperand(i
));
1593 MachineBasicBlock::instr_iterator TI
= T
->getIterator();
1596 MachineRegisterInfo
&MRI
= B
.getParent()->getRegInfo();
1597 MRI
.clearKillFlags(PredReg
);
1601 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1602 ArrayRef
<MachineOperand
> Pred2
) const {
1607 bool HexagonInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1608 std::vector
<MachineOperand
> &Pred
) const {
1609 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1611 for (unsigned oper
= 0; oper
< MI
.getNumOperands(); ++oper
) {
1612 MachineOperand MO
= MI
.getOperand(oper
);
1616 const TargetRegisterClass
* RC
= HRI
.getMinimalPhysRegClass(MO
.getReg());
1617 if (RC
== &Hexagon::PredRegsRegClass
) {
1622 } else if (MO
.isRegMask()) {
1623 for (unsigned PR
: Hexagon::PredRegsRegClass
) {
1624 if (!MI
.modifiesRegister(PR
, &HRI
))
1634 bool HexagonInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1635 if (!MI
.getDesc().isPredicable())
1638 if (MI
.isCall() || isTailCall(MI
)) {
1639 if (!Subtarget
.usePredicatedCalls())
1643 // HVX loads are not predicable on v60, but are on v62.
1644 if (!Subtarget
.hasV62Ops()) {
1645 switch (MI
.getOpcode()) {
1646 case Hexagon::V6_vL32b_ai
:
1647 case Hexagon::V6_vL32b_pi
:
1648 case Hexagon::V6_vL32b_ppu
:
1649 case Hexagon::V6_vL32b_cur_ai
:
1650 case Hexagon::V6_vL32b_cur_pi
:
1651 case Hexagon::V6_vL32b_cur_ppu
:
1652 case Hexagon::V6_vL32b_nt_ai
:
1653 case Hexagon::V6_vL32b_nt_pi
:
1654 case Hexagon::V6_vL32b_nt_ppu
:
1655 case Hexagon::V6_vL32b_tmp_ai
:
1656 case Hexagon::V6_vL32b_tmp_pi
:
1657 case Hexagon::V6_vL32b_tmp_ppu
:
1658 case Hexagon::V6_vL32b_nt_cur_ai
:
1659 case Hexagon::V6_vL32b_nt_cur_pi
:
1660 case Hexagon::V6_vL32b_nt_cur_ppu
:
1661 case Hexagon::V6_vL32b_nt_tmp_ai
:
1662 case Hexagon::V6_vL32b_nt_tmp_pi
:
1663 case Hexagon::V6_vL32b_nt_tmp_ppu
:
1670 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1671 const MachineBasicBlock
*MBB
,
1672 const MachineFunction
&MF
) const {
1673 // Debug info is never a scheduling boundary. It's necessary to be explicit
1674 // due to the special treatment of IT instructions below, otherwise a
1675 // dbg_value followed by an IT will result in the IT instruction being
1676 // considered a scheduling hazard, which is wrong. It should be the actual
1677 // instruction preceding the dbg_value instruction(s), just like it is
1678 // when debug info is not present.
1679 if (MI
.isDebugInstr())
1682 // Throwing call is a boundary.
1684 // Don't mess around with no return calls.
1685 if (doesNotReturn(MI
))
1687 // If any of the block's successors is a landing pad, this could be a
1689 for (auto I
: MBB
->successors())
1694 // Terminators and labels can't be scheduled around.
1695 if (MI
.getDesc().isTerminator() || MI
.isPosition())
1698 if (MI
.isInlineAsm() && !ScheduleInlineAsm
)
1704 /// Measure the specified inline asm to determine an approximation of its
1706 /// Comments (which run till the next SeparatorString or newline) do not
1707 /// count as an instruction.
1708 /// Any other non-whitespace text is considered an instruction, with
1709 /// multiple instructions separated by SeparatorString or newlines.
1710 /// Variable-length instructions are not handled here; this function
1711 /// may be overloaded in the target code to do that.
1712 /// Hexagon counts the number of ##'s and adjust for that many
1713 /// constant exenders.
1714 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str
,
1715 const MCAsmInfo
&MAI
,
1716 const TargetSubtargetInfo
*STI
) const {
1717 StringRef
AStr(Str
);
1718 // Count the number of instructions in the asm.
1719 bool atInsnStart
= true;
1720 unsigned Length
= 0;
1721 const unsigned MaxInstLength
= MAI
.getMaxInstLength(STI
);
1722 for (; *Str
; ++Str
) {
1723 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
1724 strlen(MAI
.getSeparatorString())) == 0)
1726 if (atInsnStart
&& !std::isspace(static_cast<unsigned char>(*Str
))) {
1727 Length
+= MaxInstLength
;
1728 atInsnStart
= false;
1730 if (atInsnStart
&& strncmp(Str
, MAI
.getCommentString().data(),
1731 MAI
.getCommentString().size()) == 0)
1732 atInsnStart
= false;
1735 // Add to size number of constant extenders seen * 4.
1736 StringRef
Occ("##");
1737 Length
+= AStr
.count(Occ
)*4;
1741 ScheduleHazardRecognizer
*
1742 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1743 const InstrItineraryData
*II
, const ScheduleDAG
*DAG
) const {
1744 if (UseDFAHazardRec
)
1745 return new HexagonHazardRecognizer(II
, this, Subtarget
);
1746 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
1749 /// For a comparison instruction, return the source registers in
1750 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1751 /// compares against in CmpValue. Return true if the comparison instruction
1752 /// can be analyzed.
1753 bool HexagonInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1754 unsigned &SrcReg2
, int &Mask
,
1756 unsigned Opc
= MI
.getOpcode();
1758 // Set mask and the first source register.
1760 case Hexagon::C2_cmpeq
:
1761 case Hexagon::C2_cmpeqp
:
1762 case Hexagon::C2_cmpgt
:
1763 case Hexagon::C2_cmpgtp
:
1764 case Hexagon::C2_cmpgtu
:
1765 case Hexagon::C2_cmpgtup
:
1766 case Hexagon::C4_cmpneq
:
1767 case Hexagon::C4_cmplte
:
1768 case Hexagon::C4_cmplteu
:
1769 case Hexagon::C2_cmpeqi
:
1770 case Hexagon::C2_cmpgti
:
1771 case Hexagon::C2_cmpgtui
:
1772 case Hexagon::C4_cmpneqi
:
1773 case Hexagon::C4_cmplteui
:
1774 case Hexagon::C4_cmpltei
:
1775 SrcReg
= MI
.getOperand(1).getReg();
1778 case Hexagon::A4_cmpbeq
:
1779 case Hexagon::A4_cmpbgt
:
1780 case Hexagon::A4_cmpbgtu
:
1781 case Hexagon::A4_cmpbeqi
:
1782 case Hexagon::A4_cmpbgti
:
1783 case Hexagon::A4_cmpbgtui
:
1784 SrcReg
= MI
.getOperand(1).getReg();
1787 case Hexagon::A4_cmpheq
:
1788 case Hexagon::A4_cmphgt
:
1789 case Hexagon::A4_cmphgtu
:
1790 case Hexagon::A4_cmpheqi
:
1791 case Hexagon::A4_cmphgti
:
1792 case Hexagon::A4_cmphgtui
:
1793 SrcReg
= MI
.getOperand(1).getReg();
1798 // Set the value/second source register.
1800 case Hexagon::C2_cmpeq
:
1801 case Hexagon::C2_cmpeqp
:
1802 case Hexagon::C2_cmpgt
:
1803 case Hexagon::C2_cmpgtp
:
1804 case Hexagon::C2_cmpgtu
:
1805 case Hexagon::C2_cmpgtup
:
1806 case Hexagon::A4_cmpbeq
:
1807 case Hexagon::A4_cmpbgt
:
1808 case Hexagon::A4_cmpbgtu
:
1809 case Hexagon::A4_cmpheq
:
1810 case Hexagon::A4_cmphgt
:
1811 case Hexagon::A4_cmphgtu
:
1812 case Hexagon::C4_cmpneq
:
1813 case Hexagon::C4_cmplte
:
1814 case Hexagon::C4_cmplteu
:
1815 SrcReg2
= MI
.getOperand(2).getReg();
1818 case Hexagon::C2_cmpeqi
:
1819 case Hexagon::C2_cmpgtui
:
1820 case Hexagon::C2_cmpgti
:
1821 case Hexagon::C4_cmpneqi
:
1822 case Hexagon::C4_cmplteui
:
1823 case Hexagon::C4_cmpltei
:
1824 case Hexagon::A4_cmpbeqi
:
1825 case Hexagon::A4_cmpbgti
:
1826 case Hexagon::A4_cmpbgtui
:
1827 case Hexagon::A4_cmpheqi
:
1828 case Hexagon::A4_cmphgti
:
1829 case Hexagon::A4_cmphgtui
: {
1831 const MachineOperand
&Op2
= MI
.getOperand(2);
1834 Value
= MI
.getOperand(2).getImm();
1842 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1843 const MachineInstr
&MI
,
1844 unsigned *PredCost
) const {
1845 return getInstrTimingClassLatency(ItinData
, MI
);
1848 DFAPacketizer
*HexagonInstrInfo::CreateTargetScheduleState(
1849 const TargetSubtargetInfo
&STI
) const {
1850 const InstrItineraryData
*II
= STI
.getInstrItineraryData();
1851 return static_cast<const HexagonSubtarget
&>(STI
).createDFAPacketizer(II
);
1854 // Inspired by this pair:
1855 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1856 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1857 // Currently AA considers the addresses in these instructions to be aliasing.
1858 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1859 const MachineInstr
&MIa
, const MachineInstr
&MIb
,
1860 AliasAnalysis
*AA
) const {
1861 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
1862 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
1865 // Instructions that are pure loads, not loads and stores like memops are not
1867 if (MIa
.mayLoad() && !isMemOp(MIa
) && MIb
.mayLoad() && !isMemOp(MIb
))
1870 // Get the base register in MIa.
1871 unsigned BasePosA
, OffsetPosA
;
1872 if (!getBaseAndOffsetPosition(MIa
, BasePosA
, OffsetPosA
))
1874 const MachineOperand
&BaseA
= MIa
.getOperand(BasePosA
);
1875 Register BaseRegA
= BaseA
.getReg();
1876 unsigned BaseSubA
= BaseA
.getSubReg();
1878 // Get the base register in MIb.
1879 unsigned BasePosB
, OffsetPosB
;
1880 if (!getBaseAndOffsetPosition(MIb
, BasePosB
, OffsetPosB
))
1882 const MachineOperand
&BaseB
= MIb
.getOperand(BasePosB
);
1883 Register BaseRegB
= BaseB
.getReg();
1884 unsigned BaseSubB
= BaseB
.getSubReg();
1886 if (BaseRegA
!= BaseRegB
|| BaseSubA
!= BaseSubB
)
1889 // Get the access sizes.
1890 unsigned SizeA
= getMemAccessSize(MIa
);
1891 unsigned SizeB
= getMemAccessSize(MIb
);
1893 // Get the offsets. Handle immediates only for now.
1894 const MachineOperand
&OffA
= MIa
.getOperand(OffsetPosA
);
1895 const MachineOperand
&OffB
= MIb
.getOperand(OffsetPosB
);
1896 if (!MIa
.getOperand(OffsetPosA
).isImm() ||
1897 !MIb
.getOperand(OffsetPosB
).isImm())
1899 int OffsetA
= isPostIncrement(MIa
) ? 0 : OffA
.getImm();
1900 int OffsetB
= isPostIncrement(MIb
) ? 0 : OffB
.getImm();
1902 // This is a mem access with the same base register and known offsets from it.
1904 if (OffsetA
> OffsetB
) {
1905 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetA
- (int64_t)OffsetB
);
1906 return SizeB
<= OffDiff
;
1908 if (OffsetA
< OffsetB
) {
1909 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetB
- (int64_t)OffsetA
);
1910 return SizeA
<= OffDiff
;
1916 /// If the instruction is an increment of a constant value, return the amount.
1917 bool HexagonInstrInfo::getIncrementValue(const MachineInstr
&MI
,
1919 if (isPostIncrement(MI
)) {
1920 unsigned BasePos
= 0, OffsetPos
= 0;
1921 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
1923 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
1924 if (OffsetOp
.isImm()) {
1925 Value
= OffsetOp
.getImm();
1928 } else if (MI
.getOpcode() == Hexagon::A2_addi
) {
1929 const MachineOperand
&AddOp
= MI
.getOperand(2);
1930 if (AddOp
.isImm()) {
1931 Value
= AddOp
.getImm();
1939 std::pair
<unsigned, unsigned>
1940 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
1941 return std::make_pair(TF
& ~HexagonII::MO_Bitmasks
,
1942 TF
& HexagonII::MO_Bitmasks
);
1945 ArrayRef
<std::pair
<unsigned, const char*>>
1946 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1947 using namespace HexagonII
;
1949 static const std::pair
<unsigned, const char*> Flags
[] = {
1950 {MO_PCREL
, "hexagon-pcrel"},
1951 {MO_GOT
, "hexagon-got"},
1952 {MO_LO16
, "hexagon-lo16"},
1953 {MO_HI16
, "hexagon-hi16"},
1954 {MO_GPREL
, "hexagon-gprel"},
1955 {MO_GDGOT
, "hexagon-gdgot"},
1956 {MO_GDPLT
, "hexagon-gdplt"},
1957 {MO_IE
, "hexagon-ie"},
1958 {MO_IEGOT
, "hexagon-iegot"},
1959 {MO_TPREL
, "hexagon-tprel"}
1961 return makeArrayRef(Flags
);
1964 ArrayRef
<std::pair
<unsigned, const char*>>
1965 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1966 using namespace HexagonII
;
1968 static const std::pair
<unsigned, const char*> Flags
[] = {
1969 {HMOTF_ConstExtended
, "hexagon-ext"}
1971 return makeArrayRef(Flags
);
1974 unsigned HexagonInstrInfo::createVR(MachineFunction
*MF
, MVT VT
) const {
1975 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1976 const TargetRegisterClass
*TRC
;
1977 if (VT
== MVT::i1
) {
1978 TRC
= &Hexagon::PredRegsRegClass
;
1979 } else if (VT
== MVT::i32
|| VT
== MVT::f32
) {
1980 TRC
= &Hexagon::IntRegsRegClass
;
1981 } else if (VT
== MVT::i64
|| VT
== MVT::f64
) {
1982 TRC
= &Hexagon::DoubleRegsRegClass
;
1984 llvm_unreachable("Cannot handle this register class");
1987 Register NewReg
= MRI
.createVirtualRegister(TRC
);
1991 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr
&MI
) const {
1992 return (getAddrMode(MI
) == HexagonII::AbsoluteSet
);
1995 bool HexagonInstrInfo::isAccumulator(const MachineInstr
&MI
) const {
1996 const uint64_t F
= MI
.getDesc().TSFlags
;
1997 return((F
>> HexagonII::AccumulatorPos
) & HexagonII::AccumulatorMask
);
2000 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr
&MI
) const {
2001 return getAddrMode(MI
) == HexagonII::BaseImmOffset
;
2004 bool HexagonInstrInfo::isComplex(const MachineInstr
&MI
) const {
2005 return !isTC1(MI
) && !isTC2Early(MI
) && !MI
.getDesc().mayLoad() &&
2006 !MI
.getDesc().mayStore() &&
2007 MI
.getDesc().getOpcode() != Hexagon::S2_allocframe
&&
2008 MI
.getDesc().getOpcode() != Hexagon::L2_deallocframe
&&
2009 !isMemOp(MI
) && !MI
.isBranch() && !MI
.isReturn() && !MI
.isCall();
2012 // Return true if the instruction is a compund branch instruction.
2013 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr
&MI
) const {
2014 return getType(MI
) == HexagonII::TypeCJ
&& MI
.isBranch();
2017 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2018 // isFPImm and later getFPImm as well.
2019 bool HexagonInstrInfo::isConstExtended(const MachineInstr
&MI
) const {
2020 const uint64_t F
= MI
.getDesc().TSFlags
;
2021 unsigned isExtended
= (F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
;
2022 if (isExtended
) // Instruction must be extended.
2025 unsigned isExtendable
=
2026 (F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
;
2033 short ExtOpNum
= getCExtOpNum(MI
);
2034 const MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
2035 // Use MO operand flags to determine if MO
2036 // has the HMOTF_ConstExtended flag set.
2037 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2039 // If this is a Machine BB address we are talking about, and it is
2040 // not marked as extended, say so.
2044 // We could be using an instruction with an extendable immediate and shoehorn
2045 // a global address into it. If it is a global address it will be constant
2046 // extended. We do this for COMBINE.
2047 if (MO
.isGlobal() || MO
.isSymbol() || MO
.isBlockAddress() ||
2048 MO
.isJTI() || MO
.isCPI() || MO
.isFPImm())
2051 // If the extendable operand is not 'Immediate' type, the instruction should
2052 // have 'isExtended' flag set.
2053 assert(MO
.isImm() && "Extendable operand must be Immediate type");
2055 int MinValue
= getMinValue(MI
);
2056 int MaxValue
= getMaxValue(MI
);
2057 int ImmValue
= MO
.getImm();
2059 return (ImmValue
< MinValue
|| ImmValue
> MaxValue
);
2062 bool HexagonInstrInfo::isDeallocRet(const MachineInstr
&MI
) const {
2063 switch (MI
.getOpcode()) {
2064 case Hexagon::L4_return
:
2065 case Hexagon::L4_return_t
:
2066 case Hexagon::L4_return_f
:
2067 case Hexagon::L4_return_tnew_pnt
:
2068 case Hexagon::L4_return_fnew_pnt
:
2069 case Hexagon::L4_return_tnew_pt
:
2070 case Hexagon::L4_return_fnew_pt
:
2076 // Return true when ConsMI uses a register defined by ProdMI.
2077 bool HexagonInstrInfo::isDependent(const MachineInstr
&ProdMI
,
2078 const MachineInstr
&ConsMI
) const {
2079 if (!ProdMI
.getDesc().getNumDefs())
2081 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
2083 SmallVector
<unsigned, 4> DefsA
;
2084 SmallVector
<unsigned, 4> DefsB
;
2085 SmallVector
<unsigned, 8> UsesA
;
2086 SmallVector
<unsigned, 8> UsesB
;
2088 parseOperands(ProdMI
, DefsA
, UsesA
);
2089 parseOperands(ConsMI
, DefsB
, UsesB
);
2091 for (auto &RegA
: DefsA
)
2092 for (auto &RegB
: UsesB
) {
2093 // True data dependency.
2097 if (Register::isPhysicalRegister(RegA
))
2098 for (MCSubRegIterator
SubRegs(RegA
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2099 if (RegB
== *SubRegs
)
2102 if (Register::isPhysicalRegister(RegB
))
2103 for (MCSubRegIterator
SubRegs(RegB
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2104 if (RegA
== *SubRegs
)
2111 // Returns true if the instruction is alread a .cur.
2112 bool HexagonInstrInfo::isDotCurInst(const MachineInstr
&MI
) const {
2113 switch (MI
.getOpcode()) {
2114 case Hexagon::V6_vL32b_cur_pi
:
2115 case Hexagon::V6_vL32b_cur_ai
:
2121 // Returns true, if any one of the operands is a dot new
2122 // insn, whether it is predicated dot new or register dot new.
2123 bool HexagonInstrInfo::isDotNewInst(const MachineInstr
&MI
) const {
2124 if (isNewValueInst(MI
) || (isPredicated(MI
) && isPredicatedNew(MI
)))
2130 /// Symmetrical. See if these two instructions are fit for duplex pair.
2131 bool HexagonInstrInfo::isDuplexPair(const MachineInstr
&MIa
,
2132 const MachineInstr
&MIb
) const {
2133 HexagonII::SubInstructionGroup MIaG
= getDuplexCandidateGroup(MIa
);
2134 HexagonII::SubInstructionGroup MIbG
= getDuplexCandidateGroup(MIb
);
2135 return (isDuplexPairMatch(MIaG
, MIbG
) || isDuplexPairMatch(MIbG
, MIaG
));
2138 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr
&MI
) const {
2139 if (MI
.mayLoad() || MI
.mayStore() || MI
.isCompare())
2143 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2144 return is_TC4x(SchedClass
) || is_TC3x(SchedClass
);
2147 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode
) const {
2148 return (Opcode
== Hexagon::ENDLOOP0
||
2149 Opcode
== Hexagon::ENDLOOP1
);
2152 bool HexagonInstrInfo::isExpr(unsigned OpType
) const {
2154 case MachineOperand::MO_MachineBasicBlock
:
2155 case MachineOperand::MO_GlobalAddress
:
2156 case MachineOperand::MO_ExternalSymbol
:
2157 case MachineOperand::MO_JumpTableIndex
:
2158 case MachineOperand::MO_ConstantPoolIndex
:
2159 case MachineOperand::MO_BlockAddress
:
2166 bool HexagonInstrInfo::isExtendable(const MachineInstr
&MI
) const {
2167 const MCInstrDesc
&MID
= MI
.getDesc();
2168 const uint64_t F
= MID
.TSFlags
;
2169 if ((F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
)
2172 // TODO: This is largely obsolete now. Will need to be removed
2173 // in consecutive patches.
2174 switch (MI
.getOpcode()) {
2175 // PS_fi and PS_fia remain special cases.
2176 case Hexagon::PS_fi
:
2177 case Hexagon::PS_fia
:
2185 // This returns true in two cases:
2186 // - The OP code itself indicates that this is an extended instruction.
2187 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2188 bool HexagonInstrInfo::isExtended(const MachineInstr
&MI
) const {
2189 // First check if this is permanently extended op code.
2190 const uint64_t F
= MI
.getDesc().TSFlags
;
2191 if ((F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
)
2193 // Use MO operand flags to determine if one of MI's operands
2194 // has HMOTF_ConstExtended flag set.
2195 for (const MachineOperand
&MO
: MI
.operands())
2196 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2201 bool HexagonInstrInfo::isFloat(const MachineInstr
&MI
) const {
2202 unsigned Opcode
= MI
.getOpcode();
2203 const uint64_t F
= get(Opcode
).TSFlags
;
2204 return (F
>> HexagonII::FPPos
) & HexagonII::FPMask
;
2207 // No V60 HVX VMEM with A_INDIRECT.
2208 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr
&I
,
2209 const MachineInstr
&J
) const {
2212 if (!I
.mayLoad() && !I
.mayStore())
2214 return J
.isIndirectBranch() || isIndirectCall(J
) || isIndirectL4Return(J
);
2217 bool HexagonInstrInfo::isIndirectCall(const MachineInstr
&MI
) const {
2218 switch (MI
.getOpcode()) {
2219 case Hexagon::J2_callr
:
2220 case Hexagon::J2_callrf
:
2221 case Hexagon::J2_callrt
:
2222 case Hexagon::PS_call_nr
:
2228 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr
&MI
) const {
2229 switch (MI
.getOpcode()) {
2230 case Hexagon::L4_return
:
2231 case Hexagon::L4_return_t
:
2232 case Hexagon::L4_return_f
:
2233 case Hexagon::L4_return_fnew_pnt
:
2234 case Hexagon::L4_return_fnew_pt
:
2235 case Hexagon::L4_return_tnew_pnt
:
2236 case Hexagon::L4_return_tnew_pt
:
2242 bool HexagonInstrInfo::isJumpR(const MachineInstr
&MI
) const {
2243 switch (MI
.getOpcode()) {
2244 case Hexagon::J2_jumpr
:
2245 case Hexagon::J2_jumprt
:
2246 case Hexagon::J2_jumprf
:
2247 case Hexagon::J2_jumprtnewpt
:
2248 case Hexagon::J2_jumprfnewpt
:
2249 case Hexagon::J2_jumprtnew
:
2250 case Hexagon::J2_jumprfnew
:
2256 // Return true if a given MI can accommodate given offset.
2257 // Use abs estimate as oppose to the exact number.
2258 // TODO: This will need to be changed to use MC level
2259 // definition of instruction extendable field size.
2260 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr
&MI
,
2261 unsigned offset
) const {
2262 // This selection of jump instructions matches to that what
2263 // analyzeBranch can parse, plus NVJ.
2264 if (isNewValueJump(MI
)) // r9:2
2265 return isInt
<11>(offset
);
2267 switch (MI
.getOpcode()) {
2268 // Still missing Jump to address condition on register value.
2271 case Hexagon::J2_jump
: // bits<24> dst; // r22:2
2272 case Hexagon::J2_call
:
2273 case Hexagon::PS_call_nr
:
2274 return isInt
<24>(offset
);
2275 case Hexagon::J2_jumpt
: //bits<17> dst; // r15:2
2276 case Hexagon::J2_jumpf
:
2277 case Hexagon::J2_jumptnew
:
2278 case Hexagon::J2_jumptnewpt
:
2279 case Hexagon::J2_jumpfnew
:
2280 case Hexagon::J2_jumpfnewpt
:
2281 case Hexagon::J2_callt
:
2282 case Hexagon::J2_callf
:
2283 return isInt
<17>(offset
);
2284 case Hexagon::J2_loop0i
:
2285 case Hexagon::J2_loop0iext
:
2286 case Hexagon::J2_loop0r
:
2287 case Hexagon::J2_loop0rext
:
2288 case Hexagon::J2_loop1i
:
2289 case Hexagon::J2_loop1iext
:
2290 case Hexagon::J2_loop1r
:
2291 case Hexagon::J2_loop1rext
:
2292 return isInt
<9>(offset
);
2293 // TODO: Add all the compound branches here. Can we do this in Relation model?
2294 case Hexagon::J4_cmpeqi_tp0_jump_nt
:
2295 case Hexagon::J4_cmpeqi_tp1_jump_nt
:
2296 case Hexagon::J4_cmpeqn1_tp0_jump_nt
:
2297 case Hexagon::J4_cmpeqn1_tp1_jump_nt
:
2298 return isInt
<11>(offset
);
2302 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr
&LRMI
,
2303 const MachineInstr
&ESMI
) const {
2304 bool isLate
= isLateResultInstr(LRMI
);
2305 bool isEarly
= isEarlySourceInstr(ESMI
);
2307 LLVM_DEBUG(dbgs() << "V60" << (isLate
? "-LR " : " -- "));
2308 LLVM_DEBUG(LRMI
.dump());
2309 LLVM_DEBUG(dbgs() << "V60" << (isEarly
? "-ES " : " -- "));
2310 LLVM_DEBUG(ESMI
.dump());
2312 if (isLate
&& isEarly
) {
2313 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2320 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr
&MI
) const {
2321 switch (MI
.getOpcode()) {
2322 case TargetOpcode::EXTRACT_SUBREG
:
2323 case TargetOpcode::INSERT_SUBREG
:
2324 case TargetOpcode::SUBREG_TO_REG
:
2325 case TargetOpcode::REG_SEQUENCE
:
2326 case TargetOpcode::IMPLICIT_DEF
:
2327 case TargetOpcode::COPY
:
2328 case TargetOpcode::INLINEASM
:
2329 case TargetOpcode::PHI
:
2335 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2336 return !is_TC1(SchedClass
);
2339 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr
&MI
) const {
2340 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2341 // resource, but all operands can be received late like an ALU instruction.
2342 return getType(MI
) == HexagonII::TypeCVI_VX_LATE
;
2345 bool HexagonInstrInfo::isLoopN(const MachineInstr
&MI
) const {
2346 unsigned Opcode
= MI
.getOpcode();
2347 return Opcode
== Hexagon::J2_loop0i
||
2348 Opcode
== Hexagon::J2_loop0r
||
2349 Opcode
== Hexagon::J2_loop0iext
||
2350 Opcode
== Hexagon::J2_loop0rext
||
2351 Opcode
== Hexagon::J2_loop1i
||
2352 Opcode
== Hexagon::J2_loop1r
||
2353 Opcode
== Hexagon::J2_loop1iext
||
2354 Opcode
== Hexagon::J2_loop1rext
;
2357 bool HexagonInstrInfo::isMemOp(const MachineInstr
&MI
) const {
2358 switch (MI
.getOpcode()) {
2359 default: return false;
2360 case Hexagon::L4_iadd_memopw_io
:
2361 case Hexagon::L4_isub_memopw_io
:
2362 case Hexagon::L4_add_memopw_io
:
2363 case Hexagon::L4_sub_memopw_io
:
2364 case Hexagon::L4_and_memopw_io
:
2365 case Hexagon::L4_or_memopw_io
:
2366 case Hexagon::L4_iadd_memoph_io
:
2367 case Hexagon::L4_isub_memoph_io
:
2368 case Hexagon::L4_add_memoph_io
:
2369 case Hexagon::L4_sub_memoph_io
:
2370 case Hexagon::L4_and_memoph_io
:
2371 case Hexagon::L4_or_memoph_io
:
2372 case Hexagon::L4_iadd_memopb_io
:
2373 case Hexagon::L4_isub_memopb_io
:
2374 case Hexagon::L4_add_memopb_io
:
2375 case Hexagon::L4_sub_memopb_io
:
2376 case Hexagon::L4_and_memopb_io
:
2377 case Hexagon::L4_or_memopb_io
:
2378 case Hexagon::L4_ior_memopb_io
:
2379 case Hexagon::L4_ior_memoph_io
:
2380 case Hexagon::L4_ior_memopw_io
:
2381 case Hexagon::L4_iand_memopb_io
:
2382 case Hexagon::L4_iand_memoph_io
:
2383 case Hexagon::L4_iand_memopw_io
:
2389 bool HexagonInstrInfo::isNewValue(const MachineInstr
&MI
) const {
2390 const uint64_t F
= MI
.getDesc().TSFlags
;
2391 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2394 bool HexagonInstrInfo::isNewValue(unsigned Opcode
) const {
2395 const uint64_t F
= get(Opcode
).TSFlags
;
2396 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2399 bool HexagonInstrInfo::isNewValueInst(const MachineInstr
&MI
) const {
2400 return isNewValueJump(MI
) || isNewValueStore(MI
);
2403 bool HexagonInstrInfo::isNewValueJump(const MachineInstr
&MI
) const {
2404 return isNewValue(MI
) && MI
.isBranch();
2407 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode
) const {
2408 return isNewValue(Opcode
) && get(Opcode
).isBranch() && isPredicated(Opcode
);
2411 bool HexagonInstrInfo::isNewValueStore(const MachineInstr
&MI
) const {
2412 const uint64_t F
= MI
.getDesc().TSFlags
;
2413 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2416 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode
) const {
2417 const uint64_t F
= get(Opcode
).TSFlags
;
2418 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2421 // Returns true if a particular operand is extendable for an instruction.
2422 bool HexagonInstrInfo::isOperandExtended(const MachineInstr
&MI
,
2423 unsigned OperandNum
) const {
2424 const uint64_t F
= MI
.getDesc().TSFlags
;
2425 return ((F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
)
2429 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr
&MI
) const {
2430 const uint64_t F
= MI
.getDesc().TSFlags
;
2431 assert(isPredicated(MI
));
2432 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2435 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode
) const {
2436 const uint64_t F
= get(Opcode
).TSFlags
;
2437 assert(isPredicated(Opcode
));
2438 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2441 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr
&MI
) const {
2442 const uint64_t F
= MI
.getDesc().TSFlags
;
2443 return !((F
>> HexagonII::PredicatedFalsePos
) &
2444 HexagonII::PredicatedFalseMask
);
2447 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode
) const {
2448 const uint64_t F
= get(Opcode
).TSFlags
;
2449 // Make sure that the instruction is predicated.
2450 assert((F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
);
2451 return !((F
>> HexagonII::PredicatedFalsePos
) &
2452 HexagonII::PredicatedFalseMask
);
2455 bool HexagonInstrInfo::isPredicated(unsigned Opcode
) const {
2456 const uint64_t F
= get(Opcode
).TSFlags
;
2457 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
2460 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode
) const {
2461 const uint64_t F
= get(Opcode
).TSFlags
;
2462 return (F
>> HexagonII::PredicateLatePos
) & HexagonII::PredicateLateMask
;
2465 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode
) const {
2466 const uint64_t F
= get(Opcode
).TSFlags
;
2467 assert(get(Opcode
).isBranch() &&
2468 (isPredicatedNew(Opcode
) || isNewValue(Opcode
)));
2469 return (F
>> HexagonII::TakenPos
) & HexagonII::TakenMask
;
2472 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr
&MI
) const {
2473 return MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4
||
2474 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT
||
2475 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC
||
2476 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
;
2479 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr
&MI
) const {
2480 switch (MI
.getOpcode()) {
2482 case Hexagon::L2_loadrb_io
:
2483 case Hexagon::L4_loadrb_ur
:
2484 case Hexagon::L4_loadrb_ap
:
2485 case Hexagon::L2_loadrb_pr
:
2486 case Hexagon::L2_loadrb_pbr
:
2487 case Hexagon::L2_loadrb_pi
:
2488 case Hexagon::L2_loadrb_pci
:
2489 case Hexagon::L2_loadrb_pcr
:
2490 case Hexagon::L2_loadbsw2_io
:
2491 case Hexagon::L4_loadbsw2_ur
:
2492 case Hexagon::L4_loadbsw2_ap
:
2493 case Hexagon::L2_loadbsw2_pr
:
2494 case Hexagon::L2_loadbsw2_pbr
:
2495 case Hexagon::L2_loadbsw2_pi
:
2496 case Hexagon::L2_loadbsw2_pci
:
2497 case Hexagon::L2_loadbsw2_pcr
:
2498 case Hexagon::L2_loadbsw4_io
:
2499 case Hexagon::L4_loadbsw4_ur
:
2500 case Hexagon::L4_loadbsw4_ap
:
2501 case Hexagon::L2_loadbsw4_pr
:
2502 case Hexagon::L2_loadbsw4_pbr
:
2503 case Hexagon::L2_loadbsw4_pi
:
2504 case Hexagon::L2_loadbsw4_pci
:
2505 case Hexagon::L2_loadbsw4_pcr
:
2506 case Hexagon::L4_loadrb_rr
:
2507 case Hexagon::L2_ploadrbt_io
:
2508 case Hexagon::L2_ploadrbt_pi
:
2509 case Hexagon::L2_ploadrbf_io
:
2510 case Hexagon::L2_ploadrbf_pi
:
2511 case Hexagon::L2_ploadrbtnew_io
:
2512 case Hexagon::L2_ploadrbfnew_io
:
2513 case Hexagon::L4_ploadrbt_rr
:
2514 case Hexagon::L4_ploadrbf_rr
:
2515 case Hexagon::L4_ploadrbtnew_rr
:
2516 case Hexagon::L4_ploadrbfnew_rr
:
2517 case Hexagon::L2_ploadrbtnew_pi
:
2518 case Hexagon::L2_ploadrbfnew_pi
:
2519 case Hexagon::L4_ploadrbt_abs
:
2520 case Hexagon::L4_ploadrbf_abs
:
2521 case Hexagon::L4_ploadrbtnew_abs
:
2522 case Hexagon::L4_ploadrbfnew_abs
:
2523 case Hexagon::L2_loadrbgp
:
2525 case Hexagon::L2_loadrh_io
:
2526 case Hexagon::L4_loadrh_ur
:
2527 case Hexagon::L4_loadrh_ap
:
2528 case Hexagon::L2_loadrh_pr
:
2529 case Hexagon::L2_loadrh_pbr
:
2530 case Hexagon::L2_loadrh_pi
:
2531 case Hexagon::L2_loadrh_pci
:
2532 case Hexagon::L2_loadrh_pcr
:
2533 case Hexagon::L4_loadrh_rr
:
2534 case Hexagon::L2_ploadrht_io
:
2535 case Hexagon::L2_ploadrht_pi
:
2536 case Hexagon::L2_ploadrhf_io
:
2537 case Hexagon::L2_ploadrhf_pi
:
2538 case Hexagon::L2_ploadrhtnew_io
:
2539 case Hexagon::L2_ploadrhfnew_io
:
2540 case Hexagon::L4_ploadrht_rr
:
2541 case Hexagon::L4_ploadrhf_rr
:
2542 case Hexagon::L4_ploadrhtnew_rr
:
2543 case Hexagon::L4_ploadrhfnew_rr
:
2544 case Hexagon::L2_ploadrhtnew_pi
:
2545 case Hexagon::L2_ploadrhfnew_pi
:
2546 case Hexagon::L4_ploadrht_abs
:
2547 case Hexagon::L4_ploadrhf_abs
:
2548 case Hexagon::L4_ploadrhtnew_abs
:
2549 case Hexagon::L4_ploadrhfnew_abs
:
2550 case Hexagon::L2_loadrhgp
:
2557 bool HexagonInstrInfo::isSolo(const MachineInstr
&MI
) const {
2558 const uint64_t F
= MI
.getDesc().TSFlags
;
2559 return (F
>> HexagonII::SoloPos
) & HexagonII::SoloMask
;
2562 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr
&MI
) const {
2563 switch (MI
.getOpcode()) {
2564 case Hexagon::STriw_pred
:
2565 case Hexagon::LDriw_pred
:
2572 bool HexagonInstrInfo::isTailCall(const MachineInstr
&MI
) const {
2576 for (auto &Op
: MI
.operands())
2577 if (Op
.isGlobal() || Op
.isSymbol())
2582 // Returns true when SU has a timing class TC1.
2583 bool HexagonInstrInfo::isTC1(const MachineInstr
&MI
) const {
2584 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2585 return is_TC1(SchedClass
);
2588 bool HexagonInstrInfo::isTC2(const MachineInstr
&MI
) const {
2589 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2590 return is_TC2(SchedClass
);
2593 bool HexagonInstrInfo::isTC2Early(const MachineInstr
&MI
) const {
2594 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2595 return is_TC2early(SchedClass
);
2598 bool HexagonInstrInfo::isTC4x(const MachineInstr
&MI
) const {
2599 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2600 return is_TC4x(SchedClass
);
2603 // Schedule this ASAP.
2604 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr
&MI1
,
2605 const MachineInstr
&MI2
) const {
2606 if (mayBeCurLoad(MI1
)) {
2607 // if (result of SU is used in Next) return true;
2608 Register DstReg
= MI1
.getOperand(0).getReg();
2609 int N
= MI2
.getNumOperands();
2610 for (int I
= 0; I
< N
; I
++)
2611 if (MI2
.getOperand(I
).isReg() && DstReg
== MI2
.getOperand(I
).getReg())
2614 if (mayBeNewStore(MI2
))
2615 if (MI2
.getOpcode() == Hexagon::V6_vS32b_pi
)
2616 if (MI1
.getOperand(0).isReg() && MI2
.getOperand(3).isReg() &&
2617 MI1
.getOperand(0).getReg() == MI2
.getOperand(3).getReg())
2622 bool HexagonInstrInfo::isHVXVec(const MachineInstr
&MI
) const {
2623 const uint64_t V
= getType(MI
);
2624 return HexagonII::TypeCVI_FIRST
<= V
&& V
<= HexagonII::TypeCVI_LAST
;
2627 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2628 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT
, int Offset
) const {
2629 int Size
= VT
.getSizeInBits() / 8;
2630 if (Offset
% Size
!= 0)
2632 int Count
= Offset
/ Size
;
2634 switch (VT
.getSimpleVT().SimpleTy
) {
2635 // For scalars the auto-inc is s4
2647 return isInt
<4>(Count
);
2648 // For HVX vectors the auto-inc is s3
2657 return isInt
<3>(Count
);
2662 llvm_unreachable("Not an valid type!");
2665 bool HexagonInstrInfo::isValidOffset(unsigned Opcode
, int Offset
,
2666 const TargetRegisterInfo
*TRI
, bool Extend
) const {
2667 // This function is to check whether the "Offset" is in the correct range of
2668 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2669 // inserted to calculate the final address. Due to this reason, the function
2670 // assumes that the "Offset" has correct alignment.
2671 // We used to assert if the offset was not properly aligned, however,
2672 // there are cases where a misaligned pointer recast can cause this
2673 // problem, and we need to allow for it. The front end warns of such
2674 // misaligns with respect to load size.
2676 case Hexagon::PS_vstorerq_ai
:
2677 case Hexagon::PS_vstorerw_ai
:
2678 case Hexagon::PS_vstorerw_nt_ai
:
2679 case Hexagon::PS_vloadrq_ai
:
2680 case Hexagon::PS_vloadrw_ai
:
2681 case Hexagon::PS_vloadrw_nt_ai
:
2682 case Hexagon::V6_vL32b_ai
:
2683 case Hexagon::V6_vS32b_ai
:
2684 case Hexagon::V6_vL32b_nt_ai
:
2685 case Hexagon::V6_vS32b_nt_ai
:
2686 case Hexagon::V6_vL32Ub_ai
:
2687 case Hexagon::V6_vS32Ub_ai
: {
2688 unsigned VectorSize
= TRI
->getSpillSize(Hexagon::HvxVRRegClass
);
2689 assert(isPowerOf2_32(VectorSize
));
2690 if (Offset
& (VectorSize
-1))
2692 return isInt
<4>(Offset
>> Log2_32(VectorSize
));
2695 case Hexagon::J2_loop0i
:
2696 case Hexagon::J2_loop1i
:
2697 return isUInt
<10>(Offset
);
2699 case Hexagon::S4_storeirb_io
:
2700 case Hexagon::S4_storeirbt_io
:
2701 case Hexagon::S4_storeirbf_io
:
2702 return isUInt
<6>(Offset
);
2704 case Hexagon::S4_storeirh_io
:
2705 case Hexagon::S4_storeirht_io
:
2706 case Hexagon::S4_storeirhf_io
:
2707 return isShiftedUInt
<6,1>(Offset
);
2709 case Hexagon::S4_storeiri_io
:
2710 case Hexagon::S4_storeirit_io
:
2711 case Hexagon::S4_storeirif_io
:
2712 return isShiftedUInt
<6,2>(Offset
);
2719 case Hexagon::L2_loadri_io
:
2720 case Hexagon::S2_storeri_io
:
2721 return (Offset
>= Hexagon_MEMW_OFFSET_MIN
) &&
2722 (Offset
<= Hexagon_MEMW_OFFSET_MAX
);
2724 case Hexagon::L2_loadrd_io
:
2725 case Hexagon::S2_storerd_io
:
2726 return (Offset
>= Hexagon_MEMD_OFFSET_MIN
) &&
2727 (Offset
<= Hexagon_MEMD_OFFSET_MAX
);
2729 case Hexagon::L2_loadrh_io
:
2730 case Hexagon::L2_loadruh_io
:
2731 case Hexagon::S2_storerh_io
:
2732 case Hexagon::S2_storerf_io
:
2733 return (Offset
>= Hexagon_MEMH_OFFSET_MIN
) &&
2734 (Offset
<= Hexagon_MEMH_OFFSET_MAX
);
2736 case Hexagon::L2_loadrb_io
:
2737 case Hexagon::L2_loadrub_io
:
2738 case Hexagon::S2_storerb_io
:
2739 return (Offset
>= Hexagon_MEMB_OFFSET_MIN
) &&
2740 (Offset
<= Hexagon_MEMB_OFFSET_MAX
);
2742 case Hexagon::A2_addi
:
2743 return (Offset
>= Hexagon_ADDI_OFFSET_MIN
) &&
2744 (Offset
<= Hexagon_ADDI_OFFSET_MAX
);
2746 case Hexagon::L4_iadd_memopw_io
:
2747 case Hexagon::L4_isub_memopw_io
:
2748 case Hexagon::L4_add_memopw_io
:
2749 case Hexagon::L4_sub_memopw_io
:
2750 case Hexagon::L4_and_memopw_io
:
2751 case Hexagon::L4_or_memopw_io
:
2752 return (0 <= Offset
&& Offset
<= 255);
2754 case Hexagon::L4_iadd_memoph_io
:
2755 case Hexagon::L4_isub_memoph_io
:
2756 case Hexagon::L4_add_memoph_io
:
2757 case Hexagon::L4_sub_memoph_io
:
2758 case Hexagon::L4_and_memoph_io
:
2759 case Hexagon::L4_or_memoph_io
:
2760 return (0 <= Offset
&& Offset
<= 127);
2762 case Hexagon::L4_iadd_memopb_io
:
2763 case Hexagon::L4_isub_memopb_io
:
2764 case Hexagon::L4_add_memopb_io
:
2765 case Hexagon::L4_sub_memopb_io
:
2766 case Hexagon::L4_and_memopb_io
:
2767 case Hexagon::L4_or_memopb_io
:
2768 return (0 <= Offset
&& Offset
<= 63);
2770 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2771 // any size. Later pass knows how to handle it.
2772 case Hexagon::STriw_pred
:
2773 case Hexagon::LDriw_pred
:
2774 case Hexagon::STriw_ctr
:
2775 case Hexagon::LDriw_ctr
:
2778 case Hexagon::PS_fi
:
2779 case Hexagon::PS_fia
:
2780 case Hexagon::INLINEASM
:
2783 case Hexagon::L2_ploadrbt_io
:
2784 case Hexagon::L2_ploadrbf_io
:
2785 case Hexagon::L2_ploadrubt_io
:
2786 case Hexagon::L2_ploadrubf_io
:
2787 case Hexagon::S2_pstorerbt_io
:
2788 case Hexagon::S2_pstorerbf_io
:
2789 return isUInt
<6>(Offset
);
2791 case Hexagon::L2_ploadrht_io
:
2792 case Hexagon::L2_ploadrhf_io
:
2793 case Hexagon::L2_ploadruht_io
:
2794 case Hexagon::L2_ploadruhf_io
:
2795 case Hexagon::S2_pstorerht_io
:
2796 case Hexagon::S2_pstorerhf_io
:
2797 return isShiftedUInt
<6,1>(Offset
);
2799 case Hexagon::L2_ploadrit_io
:
2800 case Hexagon::L2_ploadrif_io
:
2801 case Hexagon::S2_pstorerit_io
:
2802 case Hexagon::S2_pstorerif_io
:
2803 return isShiftedUInt
<6,2>(Offset
);
2805 case Hexagon::L2_ploadrdt_io
:
2806 case Hexagon::L2_ploadrdf_io
:
2807 case Hexagon::S2_pstorerdt_io
:
2808 case Hexagon::S2_pstorerdf_io
:
2809 return isShiftedUInt
<6,3>(Offset
);
2812 llvm_unreachable("No offset range is defined for this opcode. "
2813 "Please define it in the above switch statement!");
2816 bool HexagonInstrInfo::isVecAcc(const MachineInstr
&MI
) const {
2817 return isHVXVec(MI
) && isAccumulator(MI
);
2820 bool HexagonInstrInfo::isVecALU(const MachineInstr
&MI
) const {
2821 const uint64_t F
= get(MI
.getOpcode()).TSFlags
;
2822 const uint64_t V
= ((F
>> HexagonII::TypePos
) & HexagonII::TypeMask
);
2824 V
== HexagonII::TypeCVI_VA
||
2825 V
== HexagonII::TypeCVI_VA_DV
;
2828 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr
&ProdMI
,
2829 const MachineInstr
&ConsMI
) const {
2830 if (EnableACCForwarding
&& isVecAcc(ProdMI
) && isVecAcc(ConsMI
))
2833 if (EnableALUForwarding
&& (isVecALU(ConsMI
) || isLateSourceInstr(ConsMI
)))
2836 if (mayBeNewStore(ConsMI
))
2842 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr
&MI
) const {
2843 switch (MI
.getOpcode()) {
2845 case Hexagon::L2_loadrub_io
:
2846 case Hexagon::L4_loadrub_ur
:
2847 case Hexagon::L4_loadrub_ap
:
2848 case Hexagon::L2_loadrub_pr
:
2849 case Hexagon::L2_loadrub_pbr
:
2850 case Hexagon::L2_loadrub_pi
:
2851 case Hexagon::L2_loadrub_pci
:
2852 case Hexagon::L2_loadrub_pcr
:
2853 case Hexagon::L2_loadbzw2_io
:
2854 case Hexagon::L4_loadbzw2_ur
:
2855 case Hexagon::L4_loadbzw2_ap
:
2856 case Hexagon::L2_loadbzw2_pr
:
2857 case Hexagon::L2_loadbzw2_pbr
:
2858 case Hexagon::L2_loadbzw2_pi
:
2859 case Hexagon::L2_loadbzw2_pci
:
2860 case Hexagon::L2_loadbzw2_pcr
:
2861 case Hexagon::L2_loadbzw4_io
:
2862 case Hexagon::L4_loadbzw4_ur
:
2863 case Hexagon::L4_loadbzw4_ap
:
2864 case Hexagon::L2_loadbzw4_pr
:
2865 case Hexagon::L2_loadbzw4_pbr
:
2866 case Hexagon::L2_loadbzw4_pi
:
2867 case Hexagon::L2_loadbzw4_pci
:
2868 case Hexagon::L2_loadbzw4_pcr
:
2869 case Hexagon::L4_loadrub_rr
:
2870 case Hexagon::L2_ploadrubt_io
:
2871 case Hexagon::L2_ploadrubt_pi
:
2872 case Hexagon::L2_ploadrubf_io
:
2873 case Hexagon::L2_ploadrubf_pi
:
2874 case Hexagon::L2_ploadrubtnew_io
:
2875 case Hexagon::L2_ploadrubfnew_io
:
2876 case Hexagon::L4_ploadrubt_rr
:
2877 case Hexagon::L4_ploadrubf_rr
:
2878 case Hexagon::L4_ploadrubtnew_rr
:
2879 case Hexagon::L4_ploadrubfnew_rr
:
2880 case Hexagon::L2_ploadrubtnew_pi
:
2881 case Hexagon::L2_ploadrubfnew_pi
:
2882 case Hexagon::L4_ploadrubt_abs
:
2883 case Hexagon::L4_ploadrubf_abs
:
2884 case Hexagon::L4_ploadrubtnew_abs
:
2885 case Hexagon::L4_ploadrubfnew_abs
:
2886 case Hexagon::L2_loadrubgp
:
2888 case Hexagon::L2_loadruh_io
:
2889 case Hexagon::L4_loadruh_ur
:
2890 case Hexagon::L4_loadruh_ap
:
2891 case Hexagon::L2_loadruh_pr
:
2892 case Hexagon::L2_loadruh_pbr
:
2893 case Hexagon::L2_loadruh_pi
:
2894 case Hexagon::L2_loadruh_pci
:
2895 case Hexagon::L2_loadruh_pcr
:
2896 case Hexagon::L4_loadruh_rr
:
2897 case Hexagon::L2_ploadruht_io
:
2898 case Hexagon::L2_ploadruht_pi
:
2899 case Hexagon::L2_ploadruhf_io
:
2900 case Hexagon::L2_ploadruhf_pi
:
2901 case Hexagon::L2_ploadruhtnew_io
:
2902 case Hexagon::L2_ploadruhfnew_io
:
2903 case Hexagon::L4_ploadruht_rr
:
2904 case Hexagon::L4_ploadruhf_rr
:
2905 case Hexagon::L4_ploadruhtnew_rr
:
2906 case Hexagon::L4_ploadruhfnew_rr
:
2907 case Hexagon::L2_ploadruhtnew_pi
:
2908 case Hexagon::L2_ploadruhfnew_pi
:
2909 case Hexagon::L4_ploadruht_abs
:
2910 case Hexagon::L4_ploadruhf_abs
:
2911 case Hexagon::L4_ploadruhtnew_abs
:
2912 case Hexagon::L4_ploadruhfnew_abs
:
2913 case Hexagon::L2_loadruhgp
:
2920 // Add latency to instruction.
2921 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr
&MI1
,
2922 const MachineInstr
&MI2
) const {
2923 if (isHVXVec(MI1
) && isHVXVec(MI2
))
2924 if (!isVecUsableNextPacket(MI1
, MI2
))
2929 /// Get the base register and byte offset of a load/store instr.
2930 bool HexagonInstrInfo::getMemOperandWithOffset(
2931 const MachineInstr
&LdSt
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
2932 const TargetRegisterInfo
*TRI
) const {
2933 unsigned AccessSize
= 0;
2934 BaseOp
= getBaseAndOffset(LdSt
, Offset
, AccessSize
);
2935 assert((!BaseOp
|| BaseOp
->isReg()) &&
2936 "getMemOperandWithOffset only supports base "
2937 "operands of type register.");
2938 return BaseOp
!= nullptr;
2941 /// Can these instructions execute at the same time in a bundle.
2942 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr
&First
,
2943 const MachineInstr
&Second
) const {
2944 if (Second
.mayStore() && First
.getOpcode() == Hexagon::S2_allocframe
) {
2945 const MachineOperand
&Op
= Second
.getOperand(0);
2946 if (Op
.isReg() && Op
.isUse() && Op
.getReg() == Hexagon::R29
)
2949 if (DisableNVSchedule
)
2951 if (mayBeNewStore(Second
)) {
2952 // Make sure the definition of the first instruction is the value being
2954 const MachineOperand
&Stored
=
2955 Second
.getOperand(Second
.getNumOperands() - 1);
2956 if (!Stored
.isReg())
2958 for (unsigned i
= 0, e
= First
.getNumOperands(); i
< e
; ++i
) {
2959 const MachineOperand
&Op
= First
.getOperand(i
);
2960 if (Op
.isReg() && Op
.isDef() && Op
.getReg() == Stored
.getReg())
2967 bool HexagonInstrInfo::doesNotReturn(const MachineInstr
&CallMI
) const {
2968 unsigned Opc
= CallMI
.getOpcode();
2969 return Opc
== Hexagon::PS_call_nr
|| Opc
== Hexagon::PS_callr_nr
;
2972 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock
*B
) const {
2979 // Returns true if an instruction can be converted into a non-extended
2980 // equivalent instruction.
2981 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr
&MI
) const {
2983 // Check if the instruction has a register form that uses register in place
2984 // of the extended operand, if so return that as the non-extended form.
2985 if (Hexagon::getRegForm(MI
.getOpcode()) >= 0)
2988 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
2989 // Check addressing mode and retrieve non-ext equivalent instruction.
2991 switch (getAddrMode(MI
)) {
2992 case HexagonII::Absolute
:
2993 // Load/store with absolute addressing mode can be converted into
2994 // base+offset mode.
2995 NonExtOpcode
= Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
2997 case HexagonII::BaseImmOffset
:
2998 // Load/store with base+offset addressing mode can be converted into
2999 // base+register offset addressing mode. However left shift operand should
3001 NonExtOpcode
= Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
3003 case HexagonII::BaseLongOffset
:
3004 NonExtOpcode
= Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
3009 if (NonExtOpcode
< 0)
3016 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr
&MI
) const {
3017 return Hexagon::getRealHWInstr(MI
.getOpcode(),
3018 Hexagon::InstrType_Pseudo
) >= 0;
3021 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock
*B
)
3023 MachineBasicBlock::const_iterator I
= B
->getFirstTerminator(), E
= B
->end();
3032 // Returns true, if a LD insn can be promoted to a cur load.
3033 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr
&MI
) const {
3034 const uint64_t F
= MI
.getDesc().TSFlags
;
3035 return ((F
>> HexagonII::mayCVLoadPos
) & HexagonII::mayCVLoadMask
) &&
3036 Subtarget
.hasV60Ops();
3039 // Returns true, if a ST insn can be promoted to a new-value store.
3040 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr
&MI
) const {
3041 if (MI
.mayStore() && !Subtarget
.useNewValueStores())
3044 const uint64_t F
= MI
.getDesc().TSFlags
;
3045 return (F
>> HexagonII::mayNVStorePos
) & HexagonII::mayNVStoreMask
;
3048 bool HexagonInstrInfo::producesStall(const MachineInstr
&ProdMI
,
3049 const MachineInstr
&ConsMI
) const {
3050 // There is no stall when ProdMI is not a V60 vector.
3051 if (!isHVXVec(ProdMI
))
3054 // There is no stall when ProdMI and ConsMI are not dependent.
3055 if (!isDependent(ProdMI
, ConsMI
))
3058 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3059 // are scheduled in consecutive packets.
3060 if (isVecUsableNextPacket(ProdMI
, ConsMI
))
3066 bool HexagonInstrInfo::producesStall(const MachineInstr
&MI
,
3067 MachineBasicBlock::const_instr_iterator BII
) const {
3068 // There is no stall when I is not a V60 vector.
3072 MachineBasicBlock::const_instr_iterator MII
= BII
;
3073 MachineBasicBlock::const_instr_iterator MIE
= MII
->getParent()->instr_end();
3075 if (!MII
->isBundle())
3076 return producesStall(*MII
, MI
);
3078 for (++MII
; MII
!= MIE
&& MII
->isInsideBundle(); ++MII
) {
3079 const MachineInstr
&J
= *MII
;
3080 if (producesStall(J
, MI
))
3086 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr
&MI
,
3087 unsigned PredReg
) const {
3088 for (const MachineOperand
&MO
: MI
.operands()) {
3089 // Predicate register must be explicitly defined.
3090 if (MO
.isRegMask() && MO
.clobbersPhysReg(PredReg
))
3092 if (MO
.isReg() && MO
.isDef() && MO
.isImplicit() && (MO
.getReg() == PredReg
))
3096 // Instruction that produce late predicate cannot be used as sources of
3098 switch (MI
.getOpcode()) {
3099 case Hexagon::A4_addp_c
:
3100 case Hexagon::A4_subp_c
:
3101 case Hexagon::A4_tlbmatch
:
3102 case Hexagon::A5_ACS
:
3103 case Hexagon::F2_sfinvsqrta
:
3104 case Hexagon::F2_sfrecipa
:
3105 case Hexagon::J2_endloop0
:
3106 case Hexagon::J2_endloop01
:
3107 case Hexagon::J2_ploop1si
:
3108 case Hexagon::J2_ploop1sr
:
3109 case Hexagon::J2_ploop2si
:
3110 case Hexagon::J2_ploop2sr
:
3111 case Hexagon::J2_ploop3si
:
3112 case Hexagon::J2_ploop3sr
:
3113 case Hexagon::S2_cabacdecbin
:
3114 case Hexagon::S2_storew_locked
:
3115 case Hexagon::S4_stored_locked
:
3121 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode
) const {
3122 return Opcode
== Hexagon::J2_jumpt
||
3123 Opcode
== Hexagon::J2_jumptpt
||
3124 Opcode
== Hexagon::J2_jumpf
||
3125 Opcode
== Hexagon::J2_jumpfpt
||
3126 Opcode
== Hexagon::J2_jumptnew
||
3127 Opcode
== Hexagon::J2_jumpfnew
||
3128 Opcode
== Hexagon::J2_jumptnewpt
||
3129 Opcode
== Hexagon::J2_jumpfnewpt
;
3132 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef
<MachineOperand
> Cond
) const {
3133 if (Cond
.empty() || !isPredicated(Cond
[0].getImm()))
3135 return !isPredicatedTrue(Cond
[0].getImm());
3138 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr
&MI
) const {
3139 const uint64_t F
= MI
.getDesc().TSFlags
;
3140 return (F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
;
3143 // Returns the base register in a memory access (load/store). The offset is
3144 // returned in Offset and the access size is returned in AccessSize.
3145 // If the base operand has a subregister or the offset field does not contain
3146 // an immediate value, return nullptr.
3147 MachineOperand
*HexagonInstrInfo::getBaseAndOffset(const MachineInstr
&MI
,
3149 unsigned &AccessSize
) const {
3150 // Return if it is not a base+offset type instruction or a MemOp.
3151 if (getAddrMode(MI
) != HexagonII::BaseImmOffset
&&
3152 getAddrMode(MI
) != HexagonII::BaseLongOffset
&&
3153 !isMemOp(MI
) && !isPostIncrement(MI
))
3156 AccessSize
= getMemAccessSize(MI
);
3158 unsigned BasePos
= 0, OffsetPos
= 0;
3159 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
3162 // Post increment updates its EA after the mem access,
3163 // so we need to treat its offset as zero.
3164 if (isPostIncrement(MI
)) {
3167 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
3168 if (!OffsetOp
.isImm())
3170 Offset
= OffsetOp
.getImm();
3173 const MachineOperand
&BaseOp
= MI
.getOperand(BasePos
);
3174 if (BaseOp
.getSubReg() != 0)
3176 return &const_cast<MachineOperand
&>(BaseOp
);
3179 /// Return the position of the base and offset operands for this instruction.
3180 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr
&MI
,
3181 unsigned &BasePos
, unsigned &OffsetPos
) const {
3182 if (!isAddrModeWithOffset(MI
) && !isPostIncrement(MI
))
3185 // Deal with memops first.
3189 } else if (MI
.mayStore()) {
3192 } else if (MI
.mayLoad()) {
3198 if (isPredicated(MI
)) {
3202 if (isPostIncrement(MI
)) {
3207 if (!MI
.getOperand(BasePos
).isReg() || !MI
.getOperand(OffsetPos
).isImm())
3213 // Inserts branching instructions in reverse order of their occurrence.
3214 // e.g. jump_t t1 (i1)
3216 // Jumpers = {i2, i1}
3217 SmallVector
<MachineInstr
*, 2> HexagonInstrInfo::getBranchingInstrs(
3218 MachineBasicBlock
& MBB
) const {
3219 SmallVector
<MachineInstr
*, 2> Jumpers
;
3220 // If the block has no terminators, it just falls into the block after it.
3221 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
3222 if (I
== MBB
.instr_begin())
3225 // A basic block may looks like this:
3235 // It has two succs but does not have a terminator
3236 // Don't know how to handle it.
3241 } while (I
!= MBB
.instr_begin());
3243 I
= MBB
.instr_end();
3246 while (I
->isDebugInstr()) {
3247 if (I
== MBB
.instr_begin())
3251 if (!isUnpredicatedTerminator(*I
))
3254 // Get the last instruction in the block.
3255 MachineInstr
*LastInst
= &*I
;
3256 Jumpers
.push_back(LastInst
);
3257 MachineInstr
*SecondLastInst
= nullptr;
3258 // Find one more terminator if present.
3260 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
3261 if (!SecondLastInst
) {
3262 SecondLastInst
= &*I
;
3263 Jumpers
.push_back(SecondLastInst
);
3264 } else // This is a third branch.
3267 if (I
== MBB
.instr_begin())
3274 // Returns Operand Index for the constant extended instruction.
3275 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr
&MI
) const {
3276 const uint64_t F
= MI
.getDesc().TSFlags
;
3277 return (F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
;
3280 // See if instruction could potentially be a duplex candidate.
3281 // If so, return its group. Zero otherwise.
3282 HexagonII::CompoundGroup
HexagonInstrInfo::getCompoundCandidateGroup(
3283 const MachineInstr
&MI
) const {
3284 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3286 switch (MI
.getOpcode()) {
3288 return HexagonII::HCG_None
;
3291 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3292 // "Rd16=#U6 ; jump #r9:2"
3293 // "Rd16=Rs16 ; jump #r9:2"
3295 case Hexagon::C2_cmpeq
:
3296 case Hexagon::C2_cmpgt
:
3297 case Hexagon::C2_cmpgtu
:
3298 DstReg
= MI
.getOperand(0).getReg();
3299 Src1Reg
= MI
.getOperand(1).getReg();
3300 Src2Reg
= MI
.getOperand(2).getReg();
3301 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3302 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3303 isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
))
3304 return HexagonII::HCG_A
;
3306 case Hexagon::C2_cmpeqi
:
3307 case Hexagon::C2_cmpgti
:
3308 case Hexagon::C2_cmpgtui
:
3309 // P0 = cmp.eq(Rs,#u2)
3310 DstReg
= MI
.getOperand(0).getReg();
3311 SrcReg
= MI
.getOperand(1).getReg();
3312 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3313 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3314 isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3315 ((isUInt
<5>(MI
.getOperand(2).getImm())) ||
3316 (MI
.getOperand(2).getImm() == -1)))
3317 return HexagonII::HCG_A
;
3319 case Hexagon::A2_tfr
:
3321 DstReg
= MI
.getOperand(0).getReg();
3322 SrcReg
= MI
.getOperand(1).getReg();
3323 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3324 return HexagonII::HCG_A
;
3326 case Hexagon::A2_tfrsi
:
3328 // Do not test for #u6 size since the const is getting extended
3329 // regardless and compound could be formed.
3330 DstReg
= MI
.getOperand(0).getReg();
3331 if (isIntRegForSubInst(DstReg
))
3332 return HexagonII::HCG_A
;
3334 case Hexagon::S2_tstbit_i
:
3335 DstReg
= MI
.getOperand(0).getReg();
3336 Src1Reg
= MI
.getOperand(1).getReg();
3337 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3338 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3339 MI
.getOperand(2).isImm() &&
3340 isIntRegForSubInst(Src1Reg
) && (MI
.getOperand(2).getImm() == 0))
3341 return HexagonII::HCG_A
;
3343 // The fact that .new form is used pretty much guarantees
3344 // that predicate register will match. Nevertheless,
3345 // there could be some false positives without additional
3347 case Hexagon::J2_jumptnew
:
3348 case Hexagon::J2_jumpfnew
:
3349 case Hexagon::J2_jumptnewpt
:
3350 case Hexagon::J2_jumpfnewpt
:
3351 Src1Reg
= MI
.getOperand(0).getReg();
3352 if (Hexagon::PredRegsRegClass
.contains(Src1Reg
) &&
3353 (Hexagon::P0
== Src1Reg
|| Hexagon::P1
== Src1Reg
))
3354 return HexagonII::HCG_B
;
3356 // Transfer and jump:
3357 // Rd=#U6 ; jump #r9:2
3358 // Rd=Rs ; jump #r9:2
3359 // Do not test for jump range here.
3360 case Hexagon::J2_jump
:
3361 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3362 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3363 return HexagonII::HCG_C
;
3366 return HexagonII::HCG_None
;
3369 // Returns -1 when there is no opcode found.
3370 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr
&GA
,
3371 const MachineInstr
&GB
) const {
3372 assert(getCompoundCandidateGroup(GA
) == HexagonII::HCG_A
);
3373 assert(getCompoundCandidateGroup(GB
) == HexagonII::HCG_B
);
3374 if ((GA
.getOpcode() != Hexagon::C2_cmpeqi
) ||
3375 (GB
.getOpcode() != Hexagon::J2_jumptnew
))
3377 Register DestReg
= GA
.getOperand(0).getReg();
3378 if (!GB
.readsRegister(DestReg
))
3380 if (DestReg
!= Hexagon::P0
&& DestReg
!= Hexagon::P1
)
3382 // The value compared against must be either u5 or -1.
3383 const MachineOperand
&CmpOp
= GA
.getOperand(2);
3386 int V
= CmpOp
.getImm();
3388 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqn1_tp0_jump_nt
3389 : Hexagon::J4_cmpeqn1_tp1_jump_nt
;
3392 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqi_tp0_jump_nt
3393 : Hexagon::J4_cmpeqi_tp1_jump_nt
;
3396 int HexagonInstrInfo::getCondOpcode(int Opc
, bool invertPredicate
) const {
3397 enum Hexagon::PredSense inPredSense
;
3398 inPredSense
= invertPredicate
? Hexagon::PredSense_false
:
3399 Hexagon::PredSense_true
;
3400 int CondOpcode
= Hexagon::getPredOpcode(Opc
, inPredSense
);
3401 if (CondOpcode
>= 0) // Valid Conditional opcode/instruction
3404 llvm_unreachable("Unexpected predicable instruction");
3407 // Return the cur value instruction for a given store.
3408 int HexagonInstrInfo::getDotCurOp(const MachineInstr
&MI
) const {
3409 switch (MI
.getOpcode()) {
3410 default: llvm_unreachable("Unknown .cur type");
3411 case Hexagon::V6_vL32b_pi
:
3412 return Hexagon::V6_vL32b_cur_pi
;
3413 case Hexagon::V6_vL32b_ai
:
3414 return Hexagon::V6_vL32b_cur_ai
;
3415 case Hexagon::V6_vL32b_nt_pi
:
3416 return Hexagon::V6_vL32b_nt_cur_pi
;
3417 case Hexagon::V6_vL32b_nt_ai
:
3418 return Hexagon::V6_vL32b_nt_cur_ai
;
3423 // Return the regular version of the .cur instruction.
3424 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr
&MI
) const {
3425 switch (MI
.getOpcode()) {
3426 default: llvm_unreachable("Unknown .cur type");
3427 case Hexagon::V6_vL32b_cur_pi
:
3428 return Hexagon::V6_vL32b_pi
;
3429 case Hexagon::V6_vL32b_cur_ai
:
3430 return Hexagon::V6_vL32b_ai
;
3431 case Hexagon::V6_vL32b_nt_cur_pi
:
3432 return Hexagon::V6_vL32b_nt_pi
;
3433 case Hexagon::V6_vL32b_nt_cur_ai
:
3434 return Hexagon::V6_vL32b_nt_ai
;
3439 // The diagram below shows the steps involved in the conversion of a predicated
3440 // store instruction to its .new predicated new-value form.
3442 // Note: It doesn't include conditional new-value stores as they can't be
3443 // converted to .new predicate.
3445 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3447 // / \ (not OK. it will cause new-value store to be
3448 // / X conditional on p0.new while R2 producer is
3451 // p.new store p.old NV store
3452 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3458 // [if (p0)memw(R0+#0)=R2]
3460 // The following set of instructions further explains the scenario where
3461 // conditional new-value store becomes invalid when promoted to .new predicate
3464 // { 1) if (p0) r0 = add(r1, r2)
3465 // 2) p0 = cmp.eq(r3, #0) }
3467 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3468 // the first two instructions because in instr 1, r0 is conditional on old value
3469 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3470 // is not valid for new-value stores.
3471 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3472 // from the "Conditional Store" list. Because a predicated new value store
3473 // would NOT be promoted to a double dot new store. See diagram below:
3474 // This function returns yes for those stores that are predicated but not
3475 // yet promoted to predicate dot new instructions.
3477 // +---------------------+
3478 // /-----| if (p0) memw(..)=r0 |---------\~
3479 // || +---------------------+ ||
3480 // promote || /\ /\ || promote
3482 // \||/ demote || \||/
3484 // +-------------------------+ || +-------------------------+
3485 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3486 // +-------------------------+ || +-------------------------+
3489 // promote || \/ NOT possible
3493 // +-----------------------------+
3494 // | if (p0.new) memw(..)=r0.new |
3495 // +-----------------------------+
3496 // Double Dot New Store
3498 // Returns the most basic instruction for the .new predicated instructions and
3499 // new-value stores.
3500 // For example, all of the following instructions will be converted back to the
3501 // same instruction:
3502 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3503 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3504 // 3) if (p0.new) memw(R0+#0) = R1 --->
3506 // To understand the translation of instruction 1 to its original form, consider
3507 // a packet with 3 instructions.
3508 // { p0 = cmp.eq(R0,R1)
3509 // if (p0.new) R2 = add(R3, R4)
3510 // R5 = add (R3, R1)
3512 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3514 // This instruction can be part of the previous packet only if both p0 and R2
3515 // are promoted to .new values. This promotion happens in steps, first
3516 // predicate register is promoted to .new and in the next iteration R2 is
3517 // promoted. Therefore, in case of dependence check failure (due to R5) during
3518 // next iteration, it should be converted back to its most basic form.
3520 // Return the new value instruction for a given store.
3521 int HexagonInstrInfo::getDotNewOp(const MachineInstr
&MI
) const {
3522 int NVOpcode
= Hexagon::getNewValueOpcode(MI
.getOpcode());
3523 if (NVOpcode
>= 0) // Valid new-value store instruction.
3526 switch (MI
.getOpcode()) {
3528 report_fatal_error(std::string("Unknown .new type: ") +
3529 std::to_string(MI
.getOpcode()));
3530 case Hexagon::S4_storerb_ur
:
3531 return Hexagon::S4_storerbnew_ur
;
3533 case Hexagon::S2_storerb_pci
:
3534 return Hexagon::S2_storerb_pci
;
3536 case Hexagon::S2_storeri_pci
:
3537 return Hexagon::S2_storeri_pci
;
3539 case Hexagon::S2_storerh_pci
:
3540 return Hexagon::S2_storerh_pci
;
3542 case Hexagon::S2_storerd_pci
:
3543 return Hexagon::S2_storerd_pci
;
3545 case Hexagon::S2_storerf_pci
:
3546 return Hexagon::S2_storerf_pci
;
3548 case Hexagon::V6_vS32b_ai
:
3549 return Hexagon::V6_vS32b_new_ai
;
3551 case Hexagon::V6_vS32b_pi
:
3552 return Hexagon::V6_vS32b_new_pi
;
3557 // Returns the opcode to use when converting MI, which is a conditional jump,
3558 // into a conditional instruction which uses the .new value of the predicate.
3559 // We also use branch probabilities to add a hint to the jump.
3560 // If MBPI is null, all edges will be treated as equally likely for the
3561 // purposes of establishing a predication hint.
3562 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr
&MI
,
3563 const MachineBranchProbabilityInfo
*MBPI
) const {
3564 // We assume that block can have at most two successors.
3565 const MachineBasicBlock
*Src
= MI
.getParent();
3566 const MachineOperand
&BrTarget
= MI
.getOperand(1);
3568 const BranchProbability
OneHalf(1, 2);
3570 auto getEdgeProbability
= [MBPI
] (const MachineBasicBlock
*Src
,
3571 const MachineBasicBlock
*Dst
) {
3573 return MBPI
->getEdgeProbability(Src
, Dst
);
3574 return BranchProbability(1, Src
->succ_size());
3577 if (BrTarget
.isMBB()) {
3578 const MachineBasicBlock
*Dst
= BrTarget
.getMBB();
3579 Taken
= getEdgeProbability(Src
, Dst
) >= OneHalf
;
3581 // The branch target is not a basic block (most likely a function).
3582 // Since BPI only gives probabilities for targets that are basic blocks,
3583 // try to identify another target of this branch (potentially a fall-
3584 // -through) and check the probability of that target.
3586 // The only handled branch combinations are:
3587 // - one conditional branch,
3588 // - one conditional branch followed by one unconditional branch.
3589 // Otherwise, assume not-taken.
3590 assert(MI
.isConditionalBranch());
3591 const MachineBasicBlock
&B
= *MI
.getParent();
3592 bool SawCond
= false, Bad
= false;
3593 for (const MachineInstr
&I
: B
) {
3596 if (I
.isConditionalBranch()) {
3603 if (I
.isUnconditionalBranch() && !SawCond
) {
3609 MachineBasicBlock::const_instr_iterator
It(MI
);
3610 MachineBasicBlock::const_instr_iterator NextIt
= std::next(It
);
3611 if (NextIt
== B
.instr_end()) {
3612 // If this branch is the last, look for the fall-through block.
3613 for (const MachineBasicBlock
*SB
: B
.successors()) {
3614 if (!B
.isLayoutSuccessor(SB
))
3616 Taken
= getEdgeProbability(Src
, SB
) < OneHalf
;
3620 assert(NextIt
->isUnconditionalBranch());
3621 // Find the first MBB operand and assume it's the target.
3622 const MachineBasicBlock
*BT
= nullptr;
3623 for (const MachineOperand
&Op
: NextIt
->operands()) {
3629 Taken
= BT
&& getEdgeProbability(Src
, BT
) < OneHalf
;
3634 // The Taken flag should be set to something reasonable by this point.
3636 switch (MI
.getOpcode()) {
3637 case Hexagon::J2_jumpt
:
3638 return Taken
? Hexagon::J2_jumptnewpt
: Hexagon::J2_jumptnew
;
3639 case Hexagon::J2_jumpf
:
3640 return Taken
? Hexagon::J2_jumpfnewpt
: Hexagon::J2_jumpfnew
;
3643 llvm_unreachable("Unexpected jump instruction.");
3647 // Return .new predicate version for an instruction.
3648 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr
&MI
,
3649 const MachineBranchProbabilityInfo
*MBPI
) const {
3650 switch (MI
.getOpcode()) {
3652 case Hexagon::J2_jumpt
:
3653 case Hexagon::J2_jumpf
:
3654 return getDotNewPredJumpOp(MI
, MBPI
);
3657 int NewOpcode
= Hexagon::getPredNewOpcode(MI
.getOpcode());
3663 int HexagonInstrInfo::getDotOldOp(const MachineInstr
&MI
) const {
3664 int NewOp
= MI
.getOpcode();
3665 if (isPredicated(NewOp
) && isPredicatedNew(NewOp
)) { // Get predicate old form
3666 NewOp
= Hexagon::getPredOldOpcode(NewOp
);
3667 // All Hexagon architectures have prediction bits on dot-new branches,
3668 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3669 // to pick the right opcode when converting back to dot-old.
3670 if (!Subtarget
.getFeatureBits()[Hexagon::ArchV60
]) {
3672 case Hexagon::J2_jumptpt
:
3673 NewOp
= Hexagon::J2_jumpt
;
3675 case Hexagon::J2_jumpfpt
:
3676 NewOp
= Hexagon::J2_jumpf
;
3678 case Hexagon::J2_jumprtpt
:
3679 NewOp
= Hexagon::J2_jumprt
;
3681 case Hexagon::J2_jumprfpt
:
3682 NewOp
= Hexagon::J2_jumprf
;
3686 assert(NewOp
>= 0 &&
3687 "Couldn't change predicate new instruction to its old form.");
3690 if (isNewValueStore(NewOp
)) { // Convert into non-new-value format
3691 NewOp
= Hexagon::getNonNVStore(NewOp
);
3692 assert(NewOp
>= 0 && "Couldn't change new-value store to its old form.");
3695 if (Subtarget
.hasV60Ops())
3698 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3700 case Hexagon::J2_jumpfpt
:
3701 return Hexagon::J2_jumpf
;
3702 case Hexagon::J2_jumptpt
:
3703 return Hexagon::J2_jumpt
;
3704 case Hexagon::J2_jumprfpt
:
3705 return Hexagon::J2_jumprf
;
3706 case Hexagon::J2_jumprtpt
:
3707 return Hexagon::J2_jumprt
;
3712 // See if instruction could potentially be a duplex candidate.
3713 // If so, return its group. Zero otherwise.
3714 HexagonII::SubInstructionGroup
HexagonInstrInfo::getDuplexCandidateGroup(
3715 const MachineInstr
&MI
) const {
3716 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3717 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
3719 switch (MI
.getOpcode()) {
3721 return HexagonII::HSIG_None
;
3725 // Rd = memw(Rs+#u4:2)
3726 // Rd = memub(Rs+#u4:0)
3727 case Hexagon::L2_loadri_io
:
3728 DstReg
= MI
.getOperand(0).getReg();
3729 SrcReg
= MI
.getOperand(1).getReg();
3730 // Special case this one from Group L2.
3731 // Rd = memw(r29+#u5:2)
3732 if (isIntRegForSubInst(DstReg
)) {
3733 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3734 HRI
.getStackRegister() == SrcReg
&&
3735 MI
.getOperand(2).isImm() &&
3736 isShiftedUInt
<5,2>(MI
.getOperand(2).getImm()))
3737 return HexagonII::HSIG_L2
;
3738 // Rd = memw(Rs+#u4:2)
3739 if (isIntRegForSubInst(SrcReg
) &&
3740 (MI
.getOperand(2).isImm() &&
3741 isShiftedUInt
<4,2>(MI
.getOperand(2).getImm())))
3742 return HexagonII::HSIG_L1
;
3745 case Hexagon::L2_loadrub_io
:
3746 // Rd = memub(Rs+#u4:0)
3747 DstReg
= MI
.getOperand(0).getReg();
3748 SrcReg
= MI
.getOperand(1).getReg();
3749 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3750 MI
.getOperand(2).isImm() && isUInt
<4>(MI
.getOperand(2).getImm()))
3751 return HexagonII::HSIG_L1
;
3756 // Rd = memh/memuh(Rs+#u3:1)
3757 // Rd = memb(Rs+#u3:0)
3758 // Rd = memw(r29+#u5:2) - Handled above.
3759 // Rdd = memd(r29+#u5:3)
3761 // [if ([!]p0[.new])] dealloc_return
3762 // [if ([!]p0[.new])] jumpr r31
3763 case Hexagon::L2_loadrh_io
:
3764 case Hexagon::L2_loadruh_io
:
3765 // Rd = memh/memuh(Rs+#u3:1)
3766 DstReg
= MI
.getOperand(0).getReg();
3767 SrcReg
= MI
.getOperand(1).getReg();
3768 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3769 MI
.getOperand(2).isImm() &&
3770 isShiftedUInt
<3,1>(MI
.getOperand(2).getImm()))
3771 return HexagonII::HSIG_L2
;
3773 case Hexagon::L2_loadrb_io
:
3774 // Rd = memb(Rs+#u3:0)
3775 DstReg
= MI
.getOperand(0).getReg();
3776 SrcReg
= MI
.getOperand(1).getReg();
3777 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3778 MI
.getOperand(2).isImm() &&
3779 isUInt
<3>(MI
.getOperand(2).getImm()))
3780 return HexagonII::HSIG_L2
;
3782 case Hexagon::L2_loadrd_io
:
3783 // Rdd = memd(r29+#u5:3)
3784 DstReg
= MI
.getOperand(0).getReg();
3785 SrcReg
= MI
.getOperand(1).getReg();
3786 if (isDblRegForSubInst(DstReg
, HRI
) &&
3787 Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3788 HRI
.getStackRegister() == SrcReg
&&
3789 MI
.getOperand(2).isImm() &&
3790 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3791 return HexagonII::HSIG_L2
;
3793 // dealloc_return is not documented in Hexagon Manual, but marked
3794 // with A_SUBINSN attribute in iset_v4classic.py.
3795 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3796 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3797 case Hexagon::L4_return
:
3798 case Hexagon::L2_deallocframe
:
3799 return HexagonII::HSIG_L2
;
3800 case Hexagon::EH_RETURN_JMPR
:
3801 case Hexagon::PS_jmpret
:
3802 case Hexagon::SL2_jumpr31
:
3804 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3805 DstReg
= MI
.getOperand(0).getReg();
3806 if (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
))
3807 return HexagonII::HSIG_L2
;
3809 case Hexagon::PS_jmprett
:
3810 case Hexagon::PS_jmpretf
:
3811 case Hexagon::PS_jmprettnewpt
:
3812 case Hexagon::PS_jmpretfnewpt
:
3813 case Hexagon::PS_jmprettnew
:
3814 case Hexagon::PS_jmpretfnew
:
3815 case Hexagon::SL2_jumpr31_t
:
3816 case Hexagon::SL2_jumpr31_f
:
3817 case Hexagon::SL2_jumpr31_tnew
:
3818 DstReg
= MI
.getOperand(1).getReg();
3819 SrcReg
= MI
.getOperand(0).getReg();
3820 // [if ([!]p0[.new])] jumpr r31
3821 if ((Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
3822 (Hexagon::P0
== SrcReg
)) &&
3823 (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
)))
3824 return HexagonII::HSIG_L2
;
3826 case Hexagon::L4_return_t
:
3827 case Hexagon::L4_return_f
:
3828 case Hexagon::L4_return_tnew_pnt
:
3829 case Hexagon::L4_return_fnew_pnt
:
3830 case Hexagon::L4_return_tnew_pt
:
3831 case Hexagon::L4_return_fnew_pt
:
3832 // [if ([!]p0[.new])] dealloc_return
3833 SrcReg
= MI
.getOperand(0).getReg();
3834 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) && (Hexagon::P0
== SrcReg
))
3835 return HexagonII::HSIG_L2
;
3840 // memw(Rs+#u4:2) = Rt
3841 // memb(Rs+#u4:0) = Rt
3842 case Hexagon::S2_storeri_io
:
3843 // Special case this one from Group S2.
3844 // memw(r29+#u5:2) = Rt
3845 Src1Reg
= MI
.getOperand(0).getReg();
3846 Src2Reg
= MI
.getOperand(2).getReg();
3847 if (Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3848 isIntRegForSubInst(Src2Reg
) &&
3849 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3850 isShiftedUInt
<5,2>(MI
.getOperand(1).getImm()))
3851 return HexagonII::HSIG_S2
;
3852 // memw(Rs+#u4:2) = Rt
3853 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3854 MI
.getOperand(1).isImm() &&
3855 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()))
3856 return HexagonII::HSIG_S1
;
3858 case Hexagon::S2_storerb_io
:
3859 // memb(Rs+#u4:0) = Rt
3860 Src1Reg
= MI
.getOperand(0).getReg();
3861 Src2Reg
= MI
.getOperand(2).getReg();
3862 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3863 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()))
3864 return HexagonII::HSIG_S1
;
3869 // memh(Rs+#u3:1) = Rt
3870 // memw(r29+#u5:2) = Rt
3871 // memd(r29+#s6:3) = Rtt
3872 // memw(Rs+#u4:2) = #U1
3873 // memb(Rs+#u4) = #U1
3874 // allocframe(#u5:3)
3875 case Hexagon::S2_storerh_io
:
3876 // memh(Rs+#u3:1) = Rt
3877 Src1Reg
= MI
.getOperand(0).getReg();
3878 Src2Reg
= MI
.getOperand(2).getReg();
3879 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3880 MI
.getOperand(1).isImm() &&
3881 isShiftedUInt
<3,1>(MI
.getOperand(1).getImm()))
3882 return HexagonII::HSIG_S1
;
3884 case Hexagon::S2_storerd_io
:
3885 // memd(r29+#s6:3) = Rtt
3886 Src1Reg
= MI
.getOperand(0).getReg();
3887 Src2Reg
= MI
.getOperand(2).getReg();
3888 if (isDblRegForSubInst(Src2Reg
, HRI
) &&
3889 Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3890 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3891 isShiftedInt
<6,3>(MI
.getOperand(1).getImm()))
3892 return HexagonII::HSIG_S2
;
3894 case Hexagon::S4_storeiri_io
:
3895 // memw(Rs+#u4:2) = #U1
3896 Src1Reg
= MI
.getOperand(0).getReg();
3897 if (isIntRegForSubInst(Src1Reg
) && MI
.getOperand(1).isImm() &&
3898 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()) &&
3899 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3900 return HexagonII::HSIG_S2
;
3902 case Hexagon::S4_storeirb_io
:
3903 // memb(Rs+#u4) = #U1
3904 Src1Reg
= MI
.getOperand(0).getReg();
3905 if (isIntRegForSubInst(Src1Reg
) &&
3906 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()) &&
3907 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3908 return HexagonII::HSIG_S2
;
3910 case Hexagon::S2_allocframe
:
3911 if (MI
.getOperand(2).isImm() &&
3912 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3913 return HexagonII::HSIG_S1
;
3922 // if ([!]P0[.new]) Rd = #0
3923 // Rd = add(r29,#u6:2)
3925 // P0 = cmp.eq(Rs,#u2)
3926 // Rdd = combine(#0,Rs)
3927 // Rdd = combine(Rs,#0)
3928 // Rdd = combine(#u2,#U2)
3931 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3933 case Hexagon::A2_addi
:
3934 DstReg
= MI
.getOperand(0).getReg();
3935 SrcReg
= MI
.getOperand(1).getReg();
3936 if (isIntRegForSubInst(DstReg
)) {
3937 // Rd = add(r29,#u6:2)
3938 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3939 HRI
.getStackRegister() == SrcReg
&& MI
.getOperand(2).isImm() &&
3940 isShiftedUInt
<6,2>(MI
.getOperand(2).getImm()))
3941 return HexagonII::HSIG_A
;
3943 if ((DstReg
== SrcReg
) && MI
.getOperand(2).isImm() &&
3944 isInt
<7>(MI
.getOperand(2).getImm()))
3945 return HexagonII::HSIG_A
;
3948 if (isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3949 ((MI
.getOperand(2).getImm() == 1) ||
3950 (MI
.getOperand(2).getImm() == -1)))
3951 return HexagonII::HSIG_A
;
3954 case Hexagon::A2_add
:
3956 DstReg
= MI
.getOperand(0).getReg();
3957 Src1Reg
= MI
.getOperand(1).getReg();
3958 Src2Reg
= MI
.getOperand(2).getReg();
3959 if (isIntRegForSubInst(DstReg
) && (DstReg
== Src1Reg
) &&
3960 isIntRegForSubInst(Src2Reg
))
3961 return HexagonII::HSIG_A
;
3963 case Hexagon::A2_andir
:
3965 // Rd16=and(Rs16,#255)
3966 // Rd16=and(Rs16,#1)
3967 DstReg
= MI
.getOperand(0).getReg();
3968 SrcReg
= MI
.getOperand(1).getReg();
3969 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3970 MI
.getOperand(2).isImm() &&
3971 ((MI
.getOperand(2).getImm() == 1) ||
3972 (MI
.getOperand(2).getImm() == 255)))
3973 return HexagonII::HSIG_A
;
3975 case Hexagon::A2_tfr
:
3977 DstReg
= MI
.getOperand(0).getReg();
3978 SrcReg
= MI
.getOperand(1).getReg();
3979 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3980 return HexagonII::HSIG_A
;
3982 case Hexagon::A2_tfrsi
:
3984 // Do not test for #u6 size since the const is getting extended
3985 // regardless and compound could be formed.
3987 DstReg
= MI
.getOperand(0).getReg();
3988 if (isIntRegForSubInst(DstReg
))
3989 return HexagonII::HSIG_A
;
3991 case Hexagon::C2_cmoveit
:
3992 case Hexagon::C2_cmovenewit
:
3993 case Hexagon::C2_cmoveif
:
3994 case Hexagon::C2_cmovenewif
:
3995 // if ([!]P0[.new]) Rd = #0
3997 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3998 DstReg
= MI
.getOperand(0).getReg();
3999 SrcReg
= MI
.getOperand(1).getReg();
4000 if (isIntRegForSubInst(DstReg
) &&
4001 Hexagon::PredRegsRegClass
.contains(SrcReg
) && Hexagon::P0
== SrcReg
&&
4002 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0)
4003 return HexagonII::HSIG_A
;
4005 case Hexagon::C2_cmpeqi
:
4006 // P0 = cmp.eq(Rs,#u2)
4007 DstReg
= MI
.getOperand(0).getReg();
4008 SrcReg
= MI
.getOperand(1).getReg();
4009 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
4010 Hexagon::P0
== DstReg
&& isIntRegForSubInst(SrcReg
) &&
4011 MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm()))
4012 return HexagonII::HSIG_A
;
4014 case Hexagon::A2_combineii
:
4015 case Hexagon::A4_combineii
:
4016 // Rdd = combine(#u2,#U2)
4017 DstReg
= MI
.getOperand(0).getReg();
4018 if (isDblRegForSubInst(DstReg
, HRI
) &&
4019 ((MI
.getOperand(1).isImm() && isUInt
<2>(MI
.getOperand(1).getImm())) ||
4020 (MI
.getOperand(1).isGlobal() &&
4021 isUInt
<2>(MI
.getOperand(1).getOffset()))) &&
4022 ((MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm())) ||
4023 (MI
.getOperand(2).isGlobal() &&
4024 isUInt
<2>(MI
.getOperand(2).getOffset()))))
4025 return HexagonII::HSIG_A
;
4027 case Hexagon::A4_combineri
:
4028 // Rdd = combine(Rs,#0)
4029 DstReg
= MI
.getOperand(0).getReg();
4030 SrcReg
= MI
.getOperand(1).getReg();
4031 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4032 ((MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) ||
4033 (MI
.getOperand(2).isGlobal() && MI
.getOperand(2).getOffset() == 0)))
4034 return HexagonII::HSIG_A
;
4036 case Hexagon::A4_combineir
:
4037 // Rdd = combine(#0,Rs)
4038 DstReg
= MI
.getOperand(0).getReg();
4039 SrcReg
= MI
.getOperand(2).getReg();
4040 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4041 ((MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) ||
4042 (MI
.getOperand(1).isGlobal() && MI
.getOperand(1).getOffset() == 0)))
4043 return HexagonII::HSIG_A
;
4045 case Hexagon::A2_sxtb
:
4046 case Hexagon::A2_sxth
:
4047 case Hexagon::A2_zxtb
:
4048 case Hexagon::A2_zxth
:
4049 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4050 DstReg
= MI
.getOperand(0).getReg();
4051 SrcReg
= MI
.getOperand(1).getReg();
4052 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
4053 return HexagonII::HSIG_A
;
4057 return HexagonII::HSIG_None
;
4060 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr
&MI
) const {
4061 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Real
);
4064 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4065 const InstrItineraryData
*ItinData
, const MachineInstr
&MI
) const {
4066 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4067 // still have a MinLatency property, which getStageLatency checks.
4069 return getInstrLatency(ItinData
, MI
);
4071 if (MI
.isTransient())
4073 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
4076 /// getOperandLatency - Compute and return the use operand latency of a given
4077 /// pair of def and use.
4078 /// In most cases, the static scheduling itinerary was enough to determine the
4079 /// operand latency. But it may not be possible for instructions with variable
4080 /// number of defs / uses.
4082 /// This is a raw interface to the itinerary that may be directly overriden by
4083 /// a target. Use computeOperandLatency to get the best estimate of latency.
4084 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4085 const MachineInstr
&DefMI
,
4087 const MachineInstr
&UseMI
,
4088 unsigned UseIdx
) const {
4089 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4091 // Get DefIdx and UseIdx for super registers.
4092 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4094 if (DefMO
.isReg() && Register::isPhysicalRegister(DefMO
.getReg())) {
4095 if (DefMO
.isImplicit()) {
4096 for (MCSuperRegIterator
SR(DefMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4097 int Idx
= DefMI
.findRegisterDefOperandIdx(*SR
, false, false, &HRI
);
4105 const MachineOperand
&UseMO
= UseMI
.getOperand(UseIdx
);
4106 if (UseMO
.isImplicit()) {
4107 for (MCSuperRegIterator
SR(UseMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4108 int Idx
= UseMI
.findRegisterUseOperandIdx(*SR
, false, &HRI
);
4117 int Latency
= TargetInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
4120 // We should never have 0 cycle latency between two instructions unless
4121 // they can be packetized together. However, this decision can't be made
4127 // inverts the predication logic.
4130 bool HexagonInstrInfo::getInvertedPredSense(
4131 SmallVectorImpl
<MachineOperand
> &Cond
) const {
4134 unsigned Opc
= getInvertedPredicatedOpcode(Cond
[0].getImm());
4135 Cond
[0].setImm(Opc
);
4139 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc
) const {
4141 InvPredOpcode
= isPredicatedTrue(Opc
) ? Hexagon::getFalsePredOpcode(Opc
)
4142 : Hexagon::getTruePredOpcode(Opc
);
4143 if (InvPredOpcode
>= 0) // Valid instruction with the inverted predicate.
4144 return InvPredOpcode
;
4146 llvm_unreachable("Unexpected predicated instruction");
4149 // Returns the max value that doesn't need to be extended.
4150 int HexagonInstrInfo::getMaxValue(const MachineInstr
&MI
) const {
4151 const uint64_t F
= MI
.getDesc().TSFlags
;
4152 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4153 & HexagonII::ExtentSignedMask
;
4154 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4155 & HexagonII::ExtentBitsMask
;
4157 if (isSigned
) // if value is signed
4158 return ~(-1U << (bits
- 1));
4160 return ~(-1U << bits
);
4164 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr
&MI
) const {
4165 switch (MI
.getOpcode()) {
4166 case Hexagon::L2_loadrbgp
:
4167 case Hexagon::L2_loadrdgp
:
4168 case Hexagon::L2_loadrhgp
:
4169 case Hexagon::L2_loadrigp
:
4170 case Hexagon::L2_loadrubgp
:
4171 case Hexagon::L2_loadruhgp
:
4172 case Hexagon::S2_storerbgp
:
4173 case Hexagon::S2_storerbnewgp
:
4174 case Hexagon::S2_storerhgp
:
4175 case Hexagon::S2_storerhnewgp
:
4176 case Hexagon::S2_storerigp
:
4177 case Hexagon::S2_storerinewgp
:
4178 case Hexagon::S2_storerdgp
:
4179 case Hexagon::S2_storerfgp
:
4182 const uint64_t F
= MI
.getDesc().TSFlags
;
4184 ((F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
);
4185 // Disallow any base+offset instruction. The assembler does not yet reorder
4186 // based up any zero offset instruction.
4187 return (addrMode
== HexagonII::BaseRegOffset
||
4188 addrMode
== HexagonII::BaseImmOffset
||
4189 addrMode
== HexagonII::BaseLongOffset
);
4192 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr
&MI
) const {
4193 using namespace HexagonII
;
4195 const uint64_t F
= MI
.getDesc().TSFlags
;
4196 unsigned S
= (F
>> MemAccessSizePos
) & MemAccesSizeMask
;
4197 unsigned Size
= getMemAccessSizeInBytes(MemAccessSize(S
));
4201 // Handle vector access sizes.
4202 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4204 case HexagonII::HVXVectorAccess
:
4205 return HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
4207 llvm_unreachable("Unexpected instruction");
4211 // Returns the min value that doesn't need to be extended.
4212 int HexagonInstrInfo::getMinValue(const MachineInstr
&MI
) const {
4213 const uint64_t F
= MI
.getDesc().TSFlags
;
4214 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4215 & HexagonII::ExtentSignedMask
;
4216 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4217 & HexagonII::ExtentBitsMask
;
4219 if (isSigned
) // if value is signed
4220 return -1U << (bits
- 1);
4225 // Returns opcode of the non-extended equivalent instruction.
4226 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr
&MI
) const {
4227 // Check if the instruction has a register form that uses register in place
4228 // of the extended operand, if so return that as the non-extended form.
4229 short NonExtOpcode
= Hexagon::getRegForm(MI
.getOpcode());
4230 if (NonExtOpcode
>= 0)
4231 return NonExtOpcode
;
4233 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
4234 // Check addressing mode and retrieve non-ext equivalent instruction.
4235 switch (getAddrMode(MI
)) {
4236 case HexagonII::Absolute
:
4237 return Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
4238 case HexagonII::BaseImmOffset
:
4239 return Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
4240 case HexagonII::BaseLongOffset
:
4241 return Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
4250 bool HexagonInstrInfo::getPredReg(ArrayRef
<MachineOperand
> Cond
,
4251 unsigned &PredReg
, unsigned &PredRegPos
, unsigned &PredRegFlags
) const {
4254 assert(Cond
.size() == 2);
4255 if (isNewValueJump(Cond
[0].getImm()) || Cond
[1].isMBB()) {
4256 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4259 PredReg
= Cond
[1].getReg();
4261 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4263 if (Cond
[1].isImplicit())
4264 PredRegFlags
= RegState::Implicit
;
4265 if (Cond
[1].isUndef())
4266 PredRegFlags
|= RegState::Undef
;
4270 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr
&MI
) const {
4271 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Pseudo
);
4274 short HexagonInstrInfo::getRegForm(const MachineInstr
&MI
) const {
4275 return Hexagon::getRegForm(MI
.getOpcode());
4278 // Return the number of bytes required to encode the instruction.
4279 // Hexagon instructions are fixed length, 4 bytes, unless they
4280 // use a constant extender, which requires another 4 bytes.
4281 // For debug instructions and prolog labels, return 0.
4282 unsigned HexagonInstrInfo::getSize(const MachineInstr
&MI
) const {
4283 if (MI
.isDebugInstr() || MI
.isPosition())
4286 unsigned Size
= MI
.getDesc().getSize();
4288 // Assume the default insn size in case it cannot be determined
4289 // for whatever reason.
4290 Size
= HEXAGON_INSTR_SIZE
;
4292 if (isConstExtended(MI
) || isExtended(MI
))
4293 Size
+= HEXAGON_INSTR_SIZE
;
4295 // Try and compute number of instructions in asm.
4296 if (BranchRelaxAsmLarge
&& MI
.getOpcode() == Hexagon::INLINEASM
) {
4297 const MachineBasicBlock
&MBB
= *MI
.getParent();
4298 const MachineFunction
*MF
= MBB
.getParent();
4299 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
4301 // Count the number of register definitions to find the asm string.
4302 unsigned NumDefs
= 0;
4303 for (; MI
.getOperand(NumDefs
).isReg() && MI
.getOperand(NumDefs
).isDef();
4305 assert(NumDefs
!= MI
.getNumOperands()-2 && "No asm string?");
4307 assert(MI
.getOperand(NumDefs
).isSymbol() && "No asm string?");
4308 // Disassemble the AsmStr and approximate number of instructions.
4309 const char *AsmStr
= MI
.getOperand(NumDefs
).getSymbolName();
4310 Size
= getInlineAsmLength(AsmStr
, *MAI
);
4316 uint64_t HexagonInstrInfo::getType(const MachineInstr
&MI
) const {
4317 const uint64_t F
= MI
.getDesc().TSFlags
;
4318 return (F
>> HexagonII::TypePos
) & HexagonII::TypeMask
;
4321 unsigned HexagonInstrInfo::getUnits(const MachineInstr
&MI
) const {
4322 const InstrItineraryData
&II
= *Subtarget
.getInstrItineraryData();
4323 const InstrStage
&IS
= *II
.beginStage(MI
.getDesc().getSchedClass());
4325 return IS
.getUnits();
4328 // Calculate size of the basic block without debug instructions.
4329 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock
*BB
) const {
4330 return nonDbgMICount(BB
->instr_begin(), BB
->instr_end());
4333 unsigned HexagonInstrInfo::nonDbgBundleSize(
4334 MachineBasicBlock::const_iterator BundleHead
) const {
4335 assert(BundleHead
->isBundle() && "Not a bundle header");
4336 auto MII
= BundleHead
.getInstrIterator();
4337 // Skip the bundle header.
4338 return nonDbgMICount(++MII
, getBundleEnd(BundleHead
.getInstrIterator()));
4341 /// immediateExtend - Changes the instruction in place to one using an immediate
4343 void HexagonInstrInfo::immediateExtend(MachineInstr
&MI
) const {
4344 assert((isExtendable(MI
)||isConstExtended(MI
)) &&
4345 "Instruction must be extendable");
4346 // Find which operand is extendable.
4347 short ExtOpNum
= getCExtOpNum(MI
);
4348 MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
4349 // This needs to be something we understand.
4350 assert((MO
.isMBB() || MO
.isImm()) &&
4351 "Branch with unknown extendable field type");
4352 // Mark given operand as extended.
4353 MO
.addTargetFlag(HexagonII::HMOTF_ConstExtended
);
4356 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4357 MachineInstr
&MI
, MachineBasicBlock
*NewTarget
) const {
4358 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4359 << printMBBReference(*NewTarget
);
4361 assert(MI
.isBranch());
4362 unsigned NewOpcode
= getInvertedPredicatedOpcode(MI
.getOpcode());
4363 int TargetPos
= MI
.getNumOperands() - 1;
4364 // In general branch target is the last operand,
4365 // but some implicit defs added at the end might change it.
4366 while ((TargetPos
> -1) && !MI
.getOperand(TargetPos
).isMBB())
4368 assert((TargetPos
>= 0) && MI
.getOperand(TargetPos
).isMBB());
4369 MI
.getOperand(TargetPos
).setMBB(NewTarget
);
4370 if (EnableBranchPrediction
&& isPredicatedNew(MI
)) {
4371 NewOpcode
= reversePrediction(NewOpcode
);
4373 MI
.setDesc(get(NewOpcode
));
4377 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction
&MF
) const {
4378 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4379 MachineFunction::iterator A
= MF
.begin();
4380 MachineBasicBlock
&B
= *A
;
4381 MachineBasicBlock::iterator I
= B
.begin();
4382 DebugLoc DL
= I
->getDebugLoc();
4383 MachineInstr
*NewMI
;
4385 for (unsigned insn
= TargetOpcode::GENERIC_OP_END
+1;
4386 insn
< Hexagon::INSTRUCTION_LIST_END
; ++insn
) {
4387 NewMI
= BuildMI(B
, I
, DL
, get(insn
));
4388 LLVM_DEBUG(dbgs() << "\n"
4389 << getName(NewMI
->getOpcode())
4390 << " Class: " << NewMI
->getDesc().getSchedClass());
4391 NewMI
->eraseFromParent();
4393 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4396 // inverts the predication logic.
4399 bool HexagonInstrInfo::reversePredSense(MachineInstr
&MI
) const {
4400 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI
.dump());
4401 MI
.setDesc(get(getInvertedPredicatedOpcode(MI
.getOpcode())));
4405 // Reverse the branch prediction.
4406 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode
) const {
4407 int PredRevOpcode
= -1;
4408 if (isPredictedTaken(Opcode
))
4409 PredRevOpcode
= Hexagon::notTakenBranchPrediction(Opcode
);
4411 PredRevOpcode
= Hexagon::takenBranchPrediction(Opcode
);
4412 assert(PredRevOpcode
> 0);
4413 return PredRevOpcode
;
4416 // TODO: Add more rigorous validation.
4417 bool HexagonInstrInfo::validateBranchCond(const ArrayRef
<MachineOperand
> &Cond
)
4419 return Cond
.empty() || (Cond
[0].isImm() && (Cond
.size() != 1));
4422 void HexagonInstrInfo::
4423 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB
) const {
4424 assert(MIB
->isBundle());
4425 MachineOperand
&Operand
= MIB
->getOperand(0);
4426 if (Operand
.isImm())
4427 Operand
.setImm(Operand
.getImm() | memShufDisabledMask
);
4429 MIB
->addOperand(MachineOperand::CreateImm(memShufDisabledMask
));
4432 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr
&MIB
) const {
4433 assert(MIB
.isBundle());
4434 const MachineOperand
&Operand
= MIB
.getOperand(0);
4435 return (Operand
.isImm() && (Operand
.getImm() & memShufDisabledMask
) != 0);
4438 // Addressing mode relations.
4439 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc
) const {
4440 return Opc
>= 0 ? Hexagon::changeAddrMode_abs_io(Opc
) : Opc
;
4443 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc
) const {
4444 return Opc
>= 0 ? Hexagon::changeAddrMode_io_abs(Opc
) : Opc
;
4447 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc
) const {
4448 return Opc
>= 0 ? Hexagon::changeAddrMode_io_pi(Opc
) : Opc
;
4451 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc
) const {
4452 return Opc
>= 0 ? Hexagon::changeAddrMode_io_rr(Opc
) : Opc
;
4455 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc
) const {
4456 return Opc
>= 0 ? Hexagon::changeAddrMode_pi_io(Opc
) : Opc
;
4459 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc
) const {
4460 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_io(Opc
) : Opc
;
4463 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc
) const {
4464 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_ur(Opc
) : Opc
;
4467 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc
) const {
4468 return Opc
>= 0 ? Hexagon::changeAddrMode_ur_rr(Opc
) : Opc
;