[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / MSP430 / MSP430ISelLowering.cpp
blobc400fa5e45fc56b4f2fbfe8ec44cdab4679a4d21
1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MSP430TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "MSP430ISelLowering.h"
14 #include "MSP430.h"
15 #include "MSP430MachineFunctionInfo.h"
16 #include "MSP430Subtarget.h"
17 #include "MSP430TargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "msp430-lower"
40 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
41 const MSP430Subtarget &STI)
42 : TargetLowering(TM) {
44 // Set up the register classes.
45 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
46 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
48 // Compute derived properties from the register classes
49 computeRegisterProperties(STI.getRegisterInfo());
51 // Provide all sorts of operation actions
52 setStackPointerRegisterToSaveRestore(MSP430::SP);
53 setBooleanContents(ZeroOrOneBooleanContent);
54 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
56 // We have post-incremented loads / stores.
57 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
58 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
60 for (MVT VT : MVT::integer_valuetypes()) {
61 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
62 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
63 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
64 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
65 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
68 // We don't have any truncstores
69 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
71 setOperationAction(ISD::SRA, MVT::i8, Custom);
72 setOperationAction(ISD::SHL, MVT::i8, Custom);
73 setOperationAction(ISD::SRL, MVT::i8, Custom);
74 setOperationAction(ISD::SRA, MVT::i16, Custom);
75 setOperationAction(ISD::SHL, MVT::i16, Custom);
76 setOperationAction(ISD::SRL, MVT::i16, Custom);
77 setOperationAction(ISD::ROTL, MVT::i8, Expand);
78 setOperationAction(ISD::ROTR, MVT::i8, Expand);
79 setOperationAction(ISD::ROTL, MVT::i16, Expand);
80 setOperationAction(ISD::ROTR, MVT::i16, Expand);
81 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
82 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
83 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
84 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
85 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
86 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
87 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88 setOperationAction(ISD::SETCC, MVT::i8, Custom);
89 setOperationAction(ISD::SETCC, MVT::i16, Custom);
90 setOperationAction(ISD::SELECT, MVT::i8, Expand);
91 setOperationAction(ISD::SELECT, MVT::i16, Expand);
92 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
93 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
94 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
95 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
96 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
97 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
98 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100 setOperationAction(ISD::CTTZ, MVT::i8, Expand);
101 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
102 setOperationAction(ISD::CTLZ, MVT::i8, Expand);
103 setOperationAction(ISD::CTLZ, MVT::i16, Expand);
104 setOperationAction(ISD::CTPOP, MVT::i8, Expand);
105 setOperationAction(ISD::CTPOP, MVT::i16, Expand);
107 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
108 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
109 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
110 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
111 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
112 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
116 // FIXME: Implement efficiently multiplication by a constant
117 setOperationAction(ISD::MUL, MVT::i8, Promote);
118 setOperationAction(ISD::MULHS, MVT::i8, Promote);
119 setOperationAction(ISD::MULHU, MVT::i8, Promote);
120 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
121 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
122 setOperationAction(ISD::MUL, MVT::i16, LibCall);
123 setOperationAction(ISD::MULHS, MVT::i16, Expand);
124 setOperationAction(ISD::MULHU, MVT::i16, Expand);
125 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
126 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
128 setOperationAction(ISD::UDIV, MVT::i8, Promote);
129 setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
130 setOperationAction(ISD::UREM, MVT::i8, Promote);
131 setOperationAction(ISD::SDIV, MVT::i8, Promote);
132 setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
133 setOperationAction(ISD::SREM, MVT::i8, Promote);
134 setOperationAction(ISD::UDIV, MVT::i16, LibCall);
135 setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
136 setOperationAction(ISD::UREM, MVT::i16, LibCall);
137 setOperationAction(ISD::SDIV, MVT::i16, LibCall);
138 setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
139 setOperationAction(ISD::SREM, MVT::i16, LibCall);
141 // varargs support
142 setOperationAction(ISD::VASTART, MVT::Other, Custom);
143 setOperationAction(ISD::VAARG, MVT::Other, Expand);
144 setOperationAction(ISD::VAEND, MVT::Other, Expand);
145 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
146 setOperationAction(ISD::JumpTable, MVT::i16, Custom);
148 // EABI Libcalls - EABI Section 6.2
149 const struct {
150 const RTLIB::Libcall Op;
151 const char * const Name;
152 const ISD::CondCode Cond;
153 } LibraryCalls[] = {
154 // Floating point conversions - EABI Table 6
155 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
156 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
157 // The following is NOT implemented in libgcc
158 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
159 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
160 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
161 // The following is NOT implemented in libgcc
162 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
163 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
164 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
165 // The following is NOT implemented in libgcc
166 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
167 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
168 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
169 // The following is NOT implemented in libgcc
170 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
171 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
172 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
173 // TODO The following IS implemented in libgcc
174 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
175 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
176 // TODO The following IS implemented in libgcc but is not in the EABI
177 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
178 // TODO The following IS implemented in libgcc
179 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
180 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
181 // The following IS implemented in libgcc but is not in the EABI
182 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
183 // TODO The following IS implemented in libgcc
184 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
185 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
186 // TODO The following IS implemented in libgcc but is not in the EABI
187 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
188 // TODO The following IS implemented in libgcc
189 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
190 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
191 // The following IS implemented in libgcc but is not in the EABI
192 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
194 // Floating point comparisons - EABI Table 7
195 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
196 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
197 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
198 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
199 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
200 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
201 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
202 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
203 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
204 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
205 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
206 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
208 // Floating point arithmetic - EABI Table 8
209 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
210 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
211 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
212 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
213 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
214 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
215 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
216 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
217 // The following are NOT implemented in libgcc
218 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
219 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
221 // Universal Integer Operations - EABI Table 9
222 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
223 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
224 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
225 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
226 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
227 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
228 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
229 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
230 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
231 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
232 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
233 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
235 // Bitwise Operations - EABI Table 10
236 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
237 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
238 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
239 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
240 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
244 for (const auto &LC : LibraryCalls) {
245 setLibcallName(LC.Op, LC.Name);
246 if (LC.Cond != ISD::SETCC_INVALID)
247 setCmpLibcallCC(LC.Op, LC.Cond);
250 if (STI.hasHWMult16()) {
251 const struct {
252 const RTLIB::Libcall Op;
253 const char * const Name;
254 } LibraryCalls[] = {
255 // Integer Multiply - EABI Table 9
256 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
257 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
258 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
259 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
260 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
262 for (const auto &LC : LibraryCalls) {
263 setLibcallName(LC.Op, LC.Name);
265 } else if (STI.hasHWMult32()) {
266 const struct {
267 const RTLIB::Libcall Op;
268 const char * const Name;
269 } LibraryCalls[] = {
270 // Integer Multiply - EABI Table 9
271 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
272 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
273 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
274 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
275 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
277 for (const auto &LC : LibraryCalls) {
278 setLibcallName(LC.Op, LC.Name);
280 } else if (STI.hasHWMultF5()) {
281 const struct {
282 const RTLIB::Libcall Op;
283 const char * const Name;
284 } LibraryCalls[] = {
285 // Integer Multiply - EABI Table 9
286 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
287 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
288 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
289 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
290 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
292 for (const auto &LC : LibraryCalls) {
293 setLibcallName(LC.Op, LC.Name);
295 } else { // NoHWMult
296 const struct {
297 const RTLIB::Libcall Op;
298 const char * const Name;
299 } LibraryCalls[] = {
300 // Integer Multiply - EABI Table 9
301 { RTLIB::MUL_I16, "__mspabi_mpyi" },
302 { RTLIB::MUL_I32, "__mspabi_mpyl" },
303 { RTLIB::MUL_I64, "__mspabi_mpyll" },
304 // The __mspabi_mpysl* functions are NOT implemented in libgcc
305 // The __mspabi_mpyul* functions are NOT implemented in libgcc
307 for (const auto &LC : LibraryCalls) {
308 setLibcallName(LC.Op, LC.Name);
310 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
313 // Several of the runtime library functions use a special calling conv
314 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
315 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
316 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
317 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
318 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
319 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
320 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
321 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
322 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
323 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
324 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
325 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
326 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
327 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
328 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
330 setMinFunctionAlignment(1);
331 setPrefFunctionAlignment(1);
334 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
335 SelectionDAG &DAG) const {
336 switch (Op.getOpcode()) {
337 case ISD::SHL: // FALLTHROUGH
338 case ISD::SRL:
339 case ISD::SRA: return LowerShifts(Op, DAG);
340 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
341 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
342 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
343 case ISD::SETCC: return LowerSETCC(Op, DAG);
344 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
345 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
346 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
347 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
348 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
349 case ISD::VASTART: return LowerVASTART(Op, DAG);
350 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
351 default:
352 llvm_unreachable("unimplemented operand");
356 //===----------------------------------------------------------------------===//
357 // MSP430 Inline Assembly Support
358 //===----------------------------------------------------------------------===//
360 /// getConstraintType - Given a constraint letter, return the type of
361 /// constraint it is for this target.
362 TargetLowering::ConstraintType
363 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
364 if (Constraint.size() == 1) {
365 switch (Constraint[0]) {
366 case 'r':
367 return C_RegisterClass;
368 default:
369 break;
372 return TargetLowering::getConstraintType(Constraint);
375 std::pair<unsigned, const TargetRegisterClass *>
376 MSP430TargetLowering::getRegForInlineAsmConstraint(
377 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
378 if (Constraint.size() == 1) {
379 // GCC Constraint Letters
380 switch (Constraint[0]) {
381 default: break;
382 case 'r': // GENERAL_REGS
383 if (VT == MVT::i8)
384 return std::make_pair(0U, &MSP430::GR8RegClass);
386 return std::make_pair(0U, &MSP430::GR16RegClass);
390 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
393 //===----------------------------------------------------------------------===//
394 // Calling Convention Implementation
395 //===----------------------------------------------------------------------===//
397 #include "MSP430GenCallingConv.inc"
399 /// For each argument in a function store the number of pieces it is composed
400 /// of.
401 template<typename ArgT>
402 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
403 SmallVectorImpl<unsigned> &Out) {
404 unsigned CurrentArgIndex;
406 if (Args.empty())
407 return;
409 CurrentArgIndex = Args[0].OrigArgIndex;
410 Out.push_back(0);
412 for (auto &Arg : Args) {
413 if (CurrentArgIndex == Arg.OrigArgIndex) {
414 Out.back() += 1;
415 } else {
416 Out.push_back(1);
417 CurrentArgIndex = Arg.OrigArgIndex;
422 static void AnalyzeVarArgs(CCState &State,
423 const SmallVectorImpl<ISD::OutputArg> &Outs) {
424 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
427 static void AnalyzeVarArgs(CCState &State,
428 const SmallVectorImpl<ISD::InputArg> &Ins) {
429 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
432 /// Analyze incoming and outgoing function arguments. We need custom C++ code
433 /// to handle special constraints in the ABI like reversing the order of the
434 /// pieces of splitted arguments. In addition, all pieces of a certain argument
435 /// have to be passed either using registers or the stack but never mixing both.
436 template<typename ArgT>
437 static void AnalyzeArguments(CCState &State,
438 SmallVectorImpl<CCValAssign> &ArgLocs,
439 const SmallVectorImpl<ArgT> &Args) {
440 static const MCPhysReg CRegList[] = {
441 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
443 static const unsigned CNbRegs = array_lengthof(CRegList);
444 static const MCPhysReg BuiltinRegList[] = {
445 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
446 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
448 static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
450 ArrayRef<MCPhysReg> RegList;
451 unsigned NbRegs;
453 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
454 if (Builtin) {
455 RegList = BuiltinRegList;
456 NbRegs = BuiltinNbRegs;
457 } else {
458 RegList = CRegList;
459 NbRegs = CNbRegs;
462 if (State.isVarArg()) {
463 AnalyzeVarArgs(State, Args);
464 return;
467 SmallVector<unsigned, 4> ArgsParts;
468 ParseFunctionArgs(Args, ArgsParts);
470 if (Builtin) {
471 assert(ArgsParts.size() == 2 &&
472 "Builtin calling convention requires two arguments");
475 unsigned RegsLeft = NbRegs;
476 bool UsedStack = false;
477 unsigned ValNo = 0;
479 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
480 MVT ArgVT = Args[ValNo].VT;
481 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
482 MVT LocVT = ArgVT;
483 CCValAssign::LocInfo LocInfo = CCValAssign::Full;
485 // Promote i8 to i16
486 if (LocVT == MVT::i8) {
487 LocVT = MVT::i16;
488 if (ArgFlags.isSExt())
489 LocInfo = CCValAssign::SExt;
490 else if (ArgFlags.isZExt())
491 LocInfo = CCValAssign::ZExt;
492 else
493 LocInfo = CCValAssign::AExt;
496 // Handle byval arguments
497 if (ArgFlags.isByVal()) {
498 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
499 continue;
502 unsigned Parts = ArgsParts[i];
504 if (Builtin) {
505 assert(Parts == 4 &&
506 "Builtin calling convention requires 64-bit arguments");
509 if (!UsedStack && Parts == 2 && RegsLeft == 1) {
510 // Special case for 32-bit register split, see EABI section 3.3.3
511 unsigned Reg = State.AllocateReg(RegList);
512 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
513 RegsLeft -= 1;
515 UsedStack = true;
516 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
517 } else if (Parts <= RegsLeft) {
518 for (unsigned j = 0; j < Parts; j++) {
519 unsigned Reg = State.AllocateReg(RegList);
520 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
521 RegsLeft--;
523 } else {
524 UsedStack = true;
525 for (unsigned j = 0; j < Parts; j++)
526 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
531 static void AnalyzeRetResult(CCState &State,
532 const SmallVectorImpl<ISD::InputArg> &Ins) {
533 State.AnalyzeCallResult(Ins, RetCC_MSP430);
536 static void AnalyzeRetResult(CCState &State,
537 const SmallVectorImpl<ISD::OutputArg> &Outs) {
538 State.AnalyzeReturn(Outs, RetCC_MSP430);
541 template<typename ArgT>
542 static void AnalyzeReturnValues(CCState &State,
543 SmallVectorImpl<CCValAssign> &RVLocs,
544 const SmallVectorImpl<ArgT> &Args) {
545 AnalyzeRetResult(State, Args);
548 SDValue MSP430TargetLowering::LowerFormalArguments(
549 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
550 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
551 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
553 switch (CallConv) {
554 default:
555 report_fatal_error("Unsupported calling convention");
556 case CallingConv::C:
557 case CallingConv::Fast:
558 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
559 case CallingConv::MSP430_INTR:
560 if (Ins.empty())
561 return Chain;
562 report_fatal_error("ISRs cannot have arguments");
566 SDValue
567 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
568 SmallVectorImpl<SDValue> &InVals) const {
569 SelectionDAG &DAG = CLI.DAG;
570 SDLoc &dl = CLI.DL;
571 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
572 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
573 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
574 SDValue Chain = CLI.Chain;
575 SDValue Callee = CLI.Callee;
576 bool &isTailCall = CLI.IsTailCall;
577 CallingConv::ID CallConv = CLI.CallConv;
578 bool isVarArg = CLI.IsVarArg;
580 // MSP430 target does not yet support tail call optimization.
581 isTailCall = false;
583 switch (CallConv) {
584 default:
585 report_fatal_error("Unsupported calling convention");
586 case CallingConv::MSP430_BUILTIN:
587 case CallingConv::Fast:
588 case CallingConv::C:
589 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
590 Outs, OutVals, Ins, dl, DAG, InVals);
591 case CallingConv::MSP430_INTR:
592 report_fatal_error("ISRs cannot be called directly");
596 /// LowerCCCArguments - transform physical registers into virtual registers and
597 /// generate load operations for arguments places on the stack.
598 // FIXME: struct return stuff
599 SDValue MSP430TargetLowering::LowerCCCArguments(
600 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
601 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
602 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
603 MachineFunction &MF = DAG.getMachineFunction();
604 MachineFrameInfo &MFI = MF.getFrameInfo();
605 MachineRegisterInfo &RegInfo = MF.getRegInfo();
606 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
608 // Assign locations to all of the incoming arguments.
609 SmallVector<CCValAssign, 16> ArgLocs;
610 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
611 *DAG.getContext());
612 AnalyzeArguments(CCInfo, ArgLocs, Ins);
614 // Create frame index for the start of the first vararg value
615 if (isVarArg) {
616 unsigned Offset = CCInfo.getNextStackOffset();
617 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
620 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
621 CCValAssign &VA = ArgLocs[i];
622 if (VA.isRegLoc()) {
623 // Arguments passed in registers
624 EVT RegVT = VA.getLocVT();
625 switch (RegVT.getSimpleVT().SimpleTy) {
626 default:
628 #ifndef NDEBUG
629 errs() << "LowerFormalArguments Unhandled argument type: "
630 << RegVT.getEVTString() << "\n";
631 #endif
632 llvm_unreachable(nullptr);
634 case MVT::i16:
635 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
636 RegInfo.addLiveIn(VA.getLocReg(), VReg);
637 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
639 // If this is an 8-bit value, it is really passed promoted to 16
640 // bits. Insert an assert[sz]ext to capture this, then truncate to the
641 // right size.
642 if (VA.getLocInfo() == CCValAssign::SExt)
643 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
644 DAG.getValueType(VA.getValVT()));
645 else if (VA.getLocInfo() == CCValAssign::ZExt)
646 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
647 DAG.getValueType(VA.getValVT()));
649 if (VA.getLocInfo() != CCValAssign::Full)
650 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
652 InVals.push_back(ArgValue);
654 } else {
655 // Sanity check
656 assert(VA.isMemLoc());
658 SDValue InVal;
659 ISD::ArgFlagsTy Flags = Ins[i].Flags;
661 if (Flags.isByVal()) {
662 int FI = MFI.CreateFixedObject(Flags.getByValSize(),
663 VA.getLocMemOffset(), true);
664 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
665 } else {
666 // Load the argument to a virtual register
667 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
668 if (ObjSize > 2) {
669 errs() << "LowerFormalArguments Unhandled argument type: "
670 << EVT(VA.getLocVT()).getEVTString()
671 << "\n";
673 // Create the frame index object for this incoming parameter...
674 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
676 // Create the SelectionDAG nodes corresponding to a load
677 //from this parameter
678 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
679 InVal = DAG.getLoad(
680 VA.getLocVT(), dl, Chain, FIN,
681 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
684 InVals.push_back(InVal);
688 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
689 if (Ins[i].Flags.isSRet()) {
690 unsigned Reg = FuncInfo->getSRetReturnReg();
691 if (!Reg) {
692 Reg = MF.getRegInfo().createVirtualRegister(
693 getRegClassFor(MVT::i16));
694 FuncInfo->setSRetReturnReg(Reg);
696 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
697 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
701 return Chain;
704 bool
705 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
706 MachineFunction &MF,
707 bool IsVarArg,
708 const SmallVectorImpl<ISD::OutputArg> &Outs,
709 LLVMContext &Context) const {
710 SmallVector<CCValAssign, 16> RVLocs;
711 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
712 return CCInfo.CheckReturn(Outs, RetCC_MSP430);
715 SDValue
716 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
717 bool isVarArg,
718 const SmallVectorImpl<ISD::OutputArg> &Outs,
719 const SmallVectorImpl<SDValue> &OutVals,
720 const SDLoc &dl, SelectionDAG &DAG) const {
722 MachineFunction &MF = DAG.getMachineFunction();
724 // CCValAssign - represent the assignment of the return value to a location
725 SmallVector<CCValAssign, 16> RVLocs;
727 // ISRs cannot return any value.
728 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
729 report_fatal_error("ISRs cannot return any value");
731 // CCState - Info about the registers and stack slot.
732 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
733 *DAG.getContext());
735 // Analize return values.
736 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
738 SDValue Flag;
739 SmallVector<SDValue, 4> RetOps(1, Chain);
741 // Copy the result values into the output registers.
742 for (unsigned i = 0; i != RVLocs.size(); ++i) {
743 CCValAssign &VA = RVLocs[i];
744 assert(VA.isRegLoc() && "Can only return in registers!");
746 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
747 OutVals[i], Flag);
749 // Guarantee that all emitted copies are stuck together,
750 // avoiding something bad.
751 Flag = Chain.getValue(1);
752 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
755 if (MF.getFunction().hasStructRetAttr()) {
756 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
757 unsigned Reg = FuncInfo->getSRetReturnReg();
759 if (!Reg)
760 llvm_unreachable("sret virtual register not created in entry block");
762 SDValue Val =
763 DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
764 unsigned R12 = MSP430::R12;
766 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
767 Flag = Chain.getValue(1);
768 RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
771 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
772 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
774 RetOps[0] = Chain; // Update chain.
776 // Add the flag if we have it.
777 if (Flag.getNode())
778 RetOps.push_back(Flag);
780 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
783 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
784 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
785 SDValue MSP430TargetLowering::LowerCCCCallTo(
786 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
787 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
788 const SmallVectorImpl<SDValue> &OutVals,
789 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
790 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
791 // Analyze operands of the call, assigning locations to each operand.
792 SmallVector<CCValAssign, 16> ArgLocs;
793 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
794 *DAG.getContext());
795 AnalyzeArguments(CCInfo, ArgLocs, Outs);
797 // Get a count of how many bytes are to be pushed on the stack.
798 unsigned NumBytes = CCInfo.getNextStackOffset();
799 auto PtrVT = getPointerTy(DAG.getDataLayout());
801 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
803 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
804 SmallVector<SDValue, 12> MemOpChains;
805 SDValue StackPtr;
807 // Walk the register/memloc assignments, inserting copies/loads.
808 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
809 CCValAssign &VA = ArgLocs[i];
811 SDValue Arg = OutVals[i];
813 // Promote the value if needed.
814 switch (VA.getLocInfo()) {
815 default: llvm_unreachable("Unknown loc info!");
816 case CCValAssign::Full: break;
817 case CCValAssign::SExt:
818 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
819 break;
820 case CCValAssign::ZExt:
821 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
822 break;
823 case CCValAssign::AExt:
824 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
825 break;
828 // Arguments that can be passed on register must be kept at RegsToPass
829 // vector
830 if (VA.isRegLoc()) {
831 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
832 } else {
833 assert(VA.isMemLoc());
835 if (!StackPtr.getNode())
836 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
838 SDValue PtrOff =
839 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
840 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
842 SDValue MemOp;
843 ISD::ArgFlagsTy Flags = Outs[i].Flags;
845 if (Flags.isByVal()) {
846 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
847 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
848 Flags.getByValAlign(),
849 /*isVolatile*/false,
850 /*AlwaysInline=*/true,
851 /*isTailCall=*/false,
852 MachinePointerInfo(),
853 MachinePointerInfo());
854 } else {
855 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
858 MemOpChains.push_back(MemOp);
862 // Transform all store nodes into one single node because all store nodes are
863 // independent of each other.
864 if (!MemOpChains.empty())
865 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
867 // Build a sequence of copy-to-reg nodes chained together with token chain and
868 // flag operands which copy the outgoing args into registers. The InFlag in
869 // necessary since all emitted instructions must be stuck together.
870 SDValue InFlag;
871 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
872 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
873 RegsToPass[i].second, InFlag);
874 InFlag = Chain.getValue(1);
877 // If the callee is a GlobalAddress node (quite common, every direct call is)
878 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
879 // Likewise ExternalSymbol -> TargetExternalSymbol.
880 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
881 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
882 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
883 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
885 // Returns a chain & a flag for retval copy to use.
886 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
887 SmallVector<SDValue, 8> Ops;
888 Ops.push_back(Chain);
889 Ops.push_back(Callee);
891 // Add argument registers to the end of the list so that they are
892 // known live into the call.
893 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
894 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
895 RegsToPass[i].second.getValueType()));
897 if (InFlag.getNode())
898 Ops.push_back(InFlag);
900 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
901 InFlag = Chain.getValue(1);
903 // Create the CALLSEQ_END node.
904 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
905 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
906 InFlag = Chain.getValue(1);
908 // Handle result values, copying them out of physregs into vregs that we
909 // return.
910 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
911 DAG, InVals);
914 /// LowerCallResult - Lower the result values of a call into the
915 /// appropriate copies out of appropriate physical registers.
917 SDValue MSP430TargetLowering::LowerCallResult(
918 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
919 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
920 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
922 // Assign locations to each value returned by this call.
923 SmallVector<CCValAssign, 16> RVLocs;
924 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
925 *DAG.getContext());
927 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
929 // Copy all of the result registers out of their specified physreg.
930 for (unsigned i = 0; i != RVLocs.size(); ++i) {
931 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
932 RVLocs[i].getValVT(), InFlag).getValue(1);
933 InFlag = Chain.getValue(2);
934 InVals.push_back(Chain.getValue(0));
937 return Chain;
940 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
941 SelectionDAG &DAG) const {
942 unsigned Opc = Op.getOpcode();
943 SDNode* N = Op.getNode();
944 EVT VT = Op.getValueType();
945 SDLoc dl(N);
947 // Expand non-constant shifts to loops:
948 if (!isa<ConstantSDNode>(N->getOperand(1)))
949 return Op;
951 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
953 // Expand the stuff into sequence of shifts.
954 SDValue Victim = N->getOperand(0);
956 if (ShiftAmount >= 8) {
957 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
958 switch(Opc) {
959 default:
960 llvm_unreachable("Unknown shift");
961 case ISD::SHL:
962 // foo << (8 + N) => swpb(zext(foo)) << N
963 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
964 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
965 break;
966 case ISD::SRA:
967 case ISD::SRL:
968 // foo >> (8 + N) => sxt(swpb(foo)) >> N
969 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
970 Victim = (Opc == ISD::SRA)
971 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
972 DAG.getValueType(MVT::i8))
973 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
974 break;
976 ShiftAmount -= 8;
979 if (Opc == ISD::SRL && ShiftAmount) {
980 // Emit a special goodness here:
981 // srl A, 1 => clrc; rrc A
982 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
983 ShiftAmount -= 1;
986 while (ShiftAmount--)
987 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
988 dl, VT, Victim);
990 return Victim;
993 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
994 SelectionDAG &DAG) const {
995 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
996 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
997 auto PtrVT = getPointerTy(DAG.getDataLayout());
999 // Create the TargetGlobalAddress node, folding in the constant offset.
1000 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1001 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1004 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
1005 SelectionDAG &DAG) const {
1006 SDLoc dl(Op);
1007 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1008 auto PtrVT = getPointerTy(DAG.getDataLayout());
1009 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1011 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1014 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
1015 SelectionDAG &DAG) const {
1016 SDLoc dl(Op);
1017 auto PtrVT = getPointerTy(DAG.getDataLayout());
1018 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1019 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1021 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1024 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1025 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1026 // FIXME: Handle bittests someday
1027 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1029 // FIXME: Handle jump negative someday
1030 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
1031 switch (CC) {
1032 default: llvm_unreachable("Invalid integer condition!");
1033 case ISD::SETEQ:
1034 TCC = MSP430CC::COND_E; // aka COND_Z
1035 // Minor optimization: if LHS is a constant, swap operands, then the
1036 // constant can be folded into comparison.
1037 if (LHS.getOpcode() == ISD::Constant)
1038 std::swap(LHS, RHS);
1039 break;
1040 case ISD::SETNE:
1041 TCC = MSP430CC::COND_NE; // aka COND_NZ
1042 // Minor optimization: if LHS is a constant, swap operands, then the
1043 // constant can be folded into comparison.
1044 if (LHS.getOpcode() == ISD::Constant)
1045 std::swap(LHS, RHS);
1046 break;
1047 case ISD::SETULE:
1048 std::swap(LHS, RHS);
1049 LLVM_FALLTHROUGH;
1050 case ISD::SETUGE:
1051 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1052 // fold constant into instruction.
1053 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1054 LHS = RHS;
1055 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1056 TCC = MSP430CC::COND_LO;
1057 break;
1059 TCC = MSP430CC::COND_HS; // aka COND_C
1060 break;
1061 case ISD::SETUGT:
1062 std::swap(LHS, RHS);
1063 LLVM_FALLTHROUGH;
1064 case ISD::SETULT:
1065 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1066 // fold constant into instruction.
1067 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1068 LHS = RHS;
1069 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1070 TCC = MSP430CC::COND_HS;
1071 break;
1073 TCC = MSP430CC::COND_LO; // aka COND_NC
1074 break;
1075 case ISD::SETLE:
1076 std::swap(LHS, RHS);
1077 LLVM_FALLTHROUGH;
1078 case ISD::SETGE:
1079 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1080 // fold constant into instruction.
1081 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1082 LHS = RHS;
1083 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1084 TCC = MSP430CC::COND_L;
1085 break;
1087 TCC = MSP430CC::COND_GE;
1088 break;
1089 case ISD::SETGT:
1090 std::swap(LHS, RHS);
1091 LLVM_FALLTHROUGH;
1092 case ISD::SETLT:
1093 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1094 // fold constant into instruction.
1095 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1096 LHS = RHS;
1097 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1098 TCC = MSP430CC::COND_GE;
1099 break;
1101 TCC = MSP430CC::COND_L;
1102 break;
1105 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1106 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1110 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1111 SDValue Chain = Op.getOperand(0);
1112 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1113 SDValue LHS = Op.getOperand(2);
1114 SDValue RHS = Op.getOperand(3);
1115 SDValue Dest = Op.getOperand(4);
1116 SDLoc dl (Op);
1118 SDValue TargetCC;
1119 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1121 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1122 Chain, Dest, TargetCC, Flag);
1125 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1126 SDValue LHS = Op.getOperand(0);
1127 SDValue RHS = Op.getOperand(1);
1128 SDLoc dl (Op);
1130 // If we are doing an AND and testing against zero, then the CMP
1131 // will not be generated. The AND (or BIT) will generate the condition codes,
1132 // but they are different from CMP.
1133 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1134 // lowering & isel wouldn't diverge.
1135 bool andCC = false;
1136 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1137 if (RHSC->isNullValue() && LHS.hasOneUse() &&
1138 (LHS.getOpcode() == ISD::AND ||
1139 (LHS.getOpcode() == ISD::TRUNCATE &&
1140 LHS.getOperand(0).getOpcode() == ISD::AND))) {
1141 andCC = true;
1144 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1145 SDValue TargetCC;
1146 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1148 // Get the condition codes directly from the status register, if its easy.
1149 // Otherwise a branch will be generated. Note that the AND and BIT
1150 // instructions generate different flags than CMP, the carry bit can be used
1151 // for NE/EQ.
1152 bool Invert = false;
1153 bool Shift = false;
1154 bool Convert = true;
1155 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
1156 default:
1157 Convert = false;
1158 break;
1159 case MSP430CC::COND_HS:
1160 // Res = SR & 1, no processing is required
1161 break;
1162 case MSP430CC::COND_LO:
1163 // Res = ~(SR & 1)
1164 Invert = true;
1165 break;
1166 case MSP430CC::COND_NE:
1167 if (andCC) {
1168 // C = ~Z, thus Res = SR & 1, no processing is required
1169 } else {
1170 // Res = ~((SR >> 1) & 1)
1171 Shift = true;
1172 Invert = true;
1174 break;
1175 case MSP430CC::COND_E:
1176 Shift = true;
1177 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1178 // Res = (SR >> 1) & 1 is 1 word shorter.
1179 break;
1181 EVT VT = Op.getValueType();
1182 SDValue One = DAG.getConstant(1, dl, VT);
1183 if (Convert) {
1184 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1185 MVT::i16, Flag);
1186 if (Shift)
1187 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1188 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1189 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1190 if (Invert)
1191 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1192 return SR;
1193 } else {
1194 SDValue Zero = DAG.getConstant(0, dl, VT);
1195 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1196 SDValue Ops[] = {One, Zero, TargetCC, Flag};
1197 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1201 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
1202 SelectionDAG &DAG) const {
1203 SDValue LHS = Op.getOperand(0);
1204 SDValue RHS = Op.getOperand(1);
1205 SDValue TrueV = Op.getOperand(2);
1206 SDValue FalseV = Op.getOperand(3);
1207 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1208 SDLoc dl (Op);
1210 SDValue TargetCC;
1211 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1213 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1214 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1216 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
1219 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1220 SelectionDAG &DAG) const {
1221 SDValue Val = Op.getOperand(0);
1222 EVT VT = Op.getValueType();
1223 SDLoc dl(Op);
1225 assert(VT == MVT::i16 && "Only support i16 for now!");
1227 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1228 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1229 DAG.getValueType(Val.getValueType()));
1232 SDValue
1233 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1234 MachineFunction &MF = DAG.getMachineFunction();
1235 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1236 int ReturnAddrIndex = FuncInfo->getRAIndex();
1237 auto PtrVT = getPointerTy(MF.getDataLayout());
1239 if (ReturnAddrIndex == 0) {
1240 // Set up a frame object for the return address.
1241 uint64_t SlotSize = MF.getDataLayout().getPointerSize();
1242 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1243 true);
1244 FuncInfo->setRAIndex(ReturnAddrIndex);
1247 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1250 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1251 SelectionDAG &DAG) const {
1252 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1253 MFI.setReturnAddressIsTaken(true);
1255 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1256 return SDValue();
1258 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1259 SDLoc dl(Op);
1260 auto PtrVT = getPointerTy(DAG.getDataLayout());
1262 if (Depth > 0) {
1263 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1264 SDValue Offset =
1265 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
1266 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1267 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1268 MachinePointerInfo());
1271 // Just load the return address.
1272 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1273 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1274 MachinePointerInfo());
1277 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1278 SelectionDAG &DAG) const {
1279 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1280 MFI.setFrameAddressIsTaken(true);
1282 EVT VT = Op.getValueType();
1283 SDLoc dl(Op); // FIXME probably not meaningful
1284 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1285 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1286 MSP430::FP, VT);
1287 while (Depth--)
1288 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1289 MachinePointerInfo());
1290 return FrameAddr;
1293 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1294 SelectionDAG &DAG) const {
1295 MachineFunction &MF = DAG.getMachineFunction();
1296 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1297 auto PtrVT = getPointerTy(DAG.getDataLayout());
1299 // Frame index of first vararg argument
1300 SDValue FrameIndex =
1301 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1302 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1304 // Create a store of the frame index to the location operand
1305 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
1306 MachinePointerInfo(SV));
1309 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1310 SelectionDAG &DAG) const {
1311 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1312 auto PtrVT = getPointerTy(DAG.getDataLayout());
1313 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1314 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1317 /// getPostIndexedAddressParts - returns true by value, base pointer and
1318 /// offset pointer and addressing mode by reference if this node can be
1319 /// combined with a load / store to form a post-indexed load / store.
1320 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1321 SDValue &Base,
1322 SDValue &Offset,
1323 ISD::MemIndexedMode &AM,
1324 SelectionDAG &DAG) const {
1326 LoadSDNode *LD = cast<LoadSDNode>(N);
1327 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1328 return false;
1330 EVT VT = LD->getMemoryVT();
1331 if (VT != MVT::i8 && VT != MVT::i16)
1332 return false;
1334 if (Op->getOpcode() != ISD::ADD)
1335 return false;
1337 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1338 uint64_t RHSC = RHS->getZExtValue();
1339 if ((VT == MVT::i16 && RHSC != 2) ||
1340 (VT == MVT::i8 && RHSC != 1))
1341 return false;
1343 Base = Op->getOperand(0);
1344 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1345 AM = ISD::POST_INC;
1346 return true;
1349 return false;
1353 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1354 switch ((MSP430ISD::NodeType)Opcode) {
1355 case MSP430ISD::FIRST_NUMBER: break;
1356 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
1357 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
1358 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1359 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1360 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1361 case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1362 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1363 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1364 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1365 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1366 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1367 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1368 case MSP430ISD::DADD: return "MSP430ISD::DADD";
1370 return nullptr;
1373 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1374 Type *Ty2) const {
1375 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1376 return false;
1378 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
1381 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1382 if (!VT1.isInteger() || !VT2.isInteger())
1383 return false;
1385 return (VT1.getSizeInBits() > VT2.getSizeInBits());
1388 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1389 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1390 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1393 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1394 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1395 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
1398 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1399 return isZExtFree(Val.getValueType(), VT2);
1402 //===----------------------------------------------------------------------===//
1403 // Other Lowering Code
1404 //===----------------------------------------------------------------------===//
1406 MachineBasicBlock *
1407 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
1408 MachineBasicBlock *BB) const {
1409 MachineFunction *F = BB->getParent();
1410 MachineRegisterInfo &RI = F->getRegInfo();
1411 DebugLoc dl = MI.getDebugLoc();
1412 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1414 unsigned Opc;
1415 bool ClearCarry = false;
1416 const TargetRegisterClass * RC;
1417 switch (MI.getOpcode()) {
1418 default: llvm_unreachable("Invalid shift opcode!");
1419 case MSP430::Shl8:
1420 Opc = MSP430::ADD8rr;
1421 RC = &MSP430::GR8RegClass;
1422 break;
1423 case MSP430::Shl16:
1424 Opc = MSP430::ADD16rr;
1425 RC = &MSP430::GR16RegClass;
1426 break;
1427 case MSP430::Sra8:
1428 Opc = MSP430::RRA8r;
1429 RC = &MSP430::GR8RegClass;
1430 break;
1431 case MSP430::Sra16:
1432 Opc = MSP430::RRA16r;
1433 RC = &MSP430::GR16RegClass;
1434 break;
1435 case MSP430::Srl8:
1436 ClearCarry = true;
1437 Opc = MSP430::RRC8r;
1438 RC = &MSP430::GR8RegClass;
1439 break;
1440 case MSP430::Srl16:
1441 ClearCarry = true;
1442 Opc = MSP430::RRC16r;
1443 RC = &MSP430::GR16RegClass;
1444 break;
1445 case MSP430::Rrcl8:
1446 case MSP430::Rrcl16: {
1447 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1448 .addReg(MSP430::SR).addImm(1);
1449 Register SrcReg = MI.getOperand(1).getReg();
1450 Register DstReg = MI.getOperand(0).getReg();
1451 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1452 ? MSP430::RRC16r : MSP430::RRC8r;
1453 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1454 .addReg(SrcReg);
1455 MI.eraseFromParent(); // The pseudo instruction is gone now.
1456 return BB;
1460 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1461 MachineFunction::iterator I = ++BB->getIterator();
1463 // Create loop block
1464 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1465 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1467 F->insert(I, LoopBB);
1468 F->insert(I, RemBB);
1470 // Update machine-CFG edges by transferring all successors of the current
1471 // block to the block containing instructions after shift.
1472 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1473 BB->end());
1474 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1476 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1477 BB->addSuccessor(LoopBB);
1478 BB->addSuccessor(RemBB);
1479 LoopBB->addSuccessor(RemBB);
1480 LoopBB->addSuccessor(LoopBB);
1482 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1483 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1484 Register ShiftReg = RI.createVirtualRegister(RC);
1485 Register ShiftReg2 = RI.createVirtualRegister(RC);
1486 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1487 Register SrcReg = MI.getOperand(1).getReg();
1488 Register DstReg = MI.getOperand(0).getReg();
1490 // BB:
1491 // cmp 0, N
1492 // je RemBB
1493 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1494 .addReg(ShiftAmtSrcReg).addImm(0);
1495 BuildMI(BB, dl, TII.get(MSP430::JCC))
1496 .addMBB(RemBB)
1497 .addImm(MSP430CC::COND_E);
1499 // LoopBB:
1500 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1501 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1502 // ShiftReg2 = shift ShiftReg
1503 // ShiftAmt2 = ShiftAmt - 1;
1504 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1505 .addReg(SrcReg).addMBB(BB)
1506 .addReg(ShiftReg2).addMBB(LoopBB);
1507 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1508 .addReg(ShiftAmtSrcReg).addMBB(BB)
1509 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1510 if (ClearCarry)
1511 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1512 .addReg(MSP430::SR).addImm(1);
1513 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1514 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1515 .addReg(ShiftReg)
1516 .addReg(ShiftReg);
1517 else
1518 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1519 .addReg(ShiftReg);
1520 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1521 .addReg(ShiftAmtReg).addImm(1);
1522 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1523 .addMBB(LoopBB)
1524 .addImm(MSP430CC::COND_NE);
1526 // RemBB:
1527 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1528 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1529 .addReg(SrcReg).addMBB(BB)
1530 .addReg(ShiftReg2).addMBB(LoopBB);
1532 MI.eraseFromParent(); // The pseudo instruction is gone now.
1533 return RemBB;
1536 MachineBasicBlock *
1537 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1538 MachineBasicBlock *BB) const {
1539 unsigned Opc = MI.getOpcode();
1541 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1542 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1543 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1544 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1545 return EmitShiftInstr(MI, BB);
1547 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1548 DebugLoc dl = MI.getDebugLoc();
1550 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1551 "Unexpected instr type to insert");
1553 // To "insert" a SELECT instruction, we actually have to insert the diamond
1554 // control-flow pattern. The incoming instruction knows the destination vreg
1555 // to set, the condition code register to branch on, the true/false values to
1556 // select between, and a branch opcode to use.
1557 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1558 MachineFunction::iterator I = ++BB->getIterator();
1560 // thisMBB:
1561 // ...
1562 // TrueVal = ...
1563 // cmpTY ccX, r1, r2
1564 // jCC copy1MBB
1565 // fallthrough --> copy0MBB
1566 MachineBasicBlock *thisMBB = BB;
1567 MachineFunction *F = BB->getParent();
1568 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1569 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1570 F->insert(I, copy0MBB);
1571 F->insert(I, copy1MBB);
1572 // Update machine-CFG edges by transferring all successors of the current
1573 // block to the new block which will contain the Phi node for the select.
1574 copy1MBB->splice(copy1MBB->begin(), BB,
1575 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1576 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1577 // Next, add the true and fallthrough blocks as its successors.
1578 BB->addSuccessor(copy0MBB);
1579 BB->addSuccessor(copy1MBB);
1581 BuildMI(BB, dl, TII.get(MSP430::JCC))
1582 .addMBB(copy1MBB)
1583 .addImm(MI.getOperand(3).getImm());
1585 // copy0MBB:
1586 // %FalseValue = ...
1587 // # fallthrough to copy1MBB
1588 BB = copy0MBB;
1590 // Update machine-CFG edges
1591 BB->addSuccessor(copy1MBB);
1593 // copy1MBB:
1594 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1595 // ...
1596 BB = copy1MBB;
1597 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1598 .addReg(MI.getOperand(2).getReg())
1599 .addMBB(copy0MBB)
1600 .addReg(MI.getOperand(1).getReg())
1601 .addMBB(thisMBB);
1603 MI.eraseFromParent(); // The pseudo instruction is gone now.
1604 return BB;