1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MSP430TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "MSP430ISelLowering.h"
15 #include "MSP430MachineFunctionInfo.h"
16 #include "MSP430Subtarget.h"
17 #include "MSP430TargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAGISel.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
38 #define DEBUG_TYPE "msp430-lower"
40 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine
&TM
,
41 const MSP430Subtarget
&STI
)
42 : TargetLowering(TM
) {
44 // Set up the register classes.
45 addRegisterClass(MVT::i8
, &MSP430::GR8RegClass
);
46 addRegisterClass(MVT::i16
, &MSP430::GR16RegClass
);
48 // Compute derived properties from the register classes
49 computeRegisterProperties(STI
.getRegisterInfo());
51 // Provide all sorts of operation actions
52 setStackPointerRegisterToSaveRestore(MSP430::SP
);
53 setBooleanContents(ZeroOrOneBooleanContent
);
54 setBooleanVectorContents(ZeroOrOneBooleanContent
); // FIXME: Is this correct?
56 // We have post-incremented loads / stores.
57 setIndexedLoadAction(ISD::POST_INC
, MVT::i8
, Legal
);
58 setIndexedLoadAction(ISD::POST_INC
, MVT::i16
, Legal
);
60 for (MVT VT
: MVT::integer_valuetypes()) {
61 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
62 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
63 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
64 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Expand
);
65 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Expand
);
68 // We don't have any truncstores
69 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
71 setOperationAction(ISD::SRA
, MVT::i8
, Custom
);
72 setOperationAction(ISD::SHL
, MVT::i8
, Custom
);
73 setOperationAction(ISD::SRL
, MVT::i8
, Custom
);
74 setOperationAction(ISD::SRA
, MVT::i16
, Custom
);
75 setOperationAction(ISD::SHL
, MVT::i16
, Custom
);
76 setOperationAction(ISD::SRL
, MVT::i16
, Custom
);
77 setOperationAction(ISD::ROTL
, MVT::i8
, Expand
);
78 setOperationAction(ISD::ROTR
, MVT::i8
, Expand
);
79 setOperationAction(ISD::ROTL
, MVT::i16
, Expand
);
80 setOperationAction(ISD::ROTR
, MVT::i16
, Expand
);
81 setOperationAction(ISD::GlobalAddress
, MVT::i16
, Custom
);
82 setOperationAction(ISD::ExternalSymbol
, MVT::i16
, Custom
);
83 setOperationAction(ISD::BlockAddress
, MVT::i16
, Custom
);
84 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
85 setOperationAction(ISD::BR_CC
, MVT::i8
, Custom
);
86 setOperationAction(ISD::BR_CC
, MVT::i16
, Custom
);
87 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
88 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
89 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
90 setOperationAction(ISD::SELECT
, MVT::i8
, Expand
);
91 setOperationAction(ISD::SELECT
, MVT::i16
, Expand
);
92 setOperationAction(ISD::SELECT_CC
, MVT::i8
, Custom
);
93 setOperationAction(ISD::SELECT_CC
, MVT::i16
, Custom
);
94 setOperationAction(ISD::SIGN_EXTEND
, MVT::i16
, Custom
);
95 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i8
, Expand
);
96 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i16
, Expand
);
97 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
98 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
100 setOperationAction(ISD::CTTZ
, MVT::i8
, Expand
);
101 setOperationAction(ISD::CTTZ
, MVT::i16
, Expand
);
102 setOperationAction(ISD::CTLZ
, MVT::i8
, Expand
);
103 setOperationAction(ISD::CTLZ
, MVT::i16
, Expand
);
104 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
105 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
107 setOperationAction(ISD::SHL_PARTS
, MVT::i8
, Expand
);
108 setOperationAction(ISD::SHL_PARTS
, MVT::i16
, Expand
);
109 setOperationAction(ISD::SRL_PARTS
, MVT::i8
, Expand
);
110 setOperationAction(ISD::SRL_PARTS
, MVT::i16
, Expand
);
111 setOperationAction(ISD::SRA_PARTS
, MVT::i8
, Expand
);
112 setOperationAction(ISD::SRA_PARTS
, MVT::i16
, Expand
);
114 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
116 // FIXME: Implement efficiently multiplication by a constant
117 setOperationAction(ISD::MUL
, MVT::i8
, Promote
);
118 setOperationAction(ISD::MULHS
, MVT::i8
, Promote
);
119 setOperationAction(ISD::MULHU
, MVT::i8
, Promote
);
120 setOperationAction(ISD::SMUL_LOHI
, MVT::i8
, Promote
);
121 setOperationAction(ISD::UMUL_LOHI
, MVT::i8
, Promote
);
122 setOperationAction(ISD::MUL
, MVT::i16
, LibCall
);
123 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
124 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
125 setOperationAction(ISD::SMUL_LOHI
, MVT::i16
, Expand
);
126 setOperationAction(ISD::UMUL_LOHI
, MVT::i16
, Expand
);
128 setOperationAction(ISD::UDIV
, MVT::i8
, Promote
);
129 setOperationAction(ISD::UDIVREM
, MVT::i8
, Promote
);
130 setOperationAction(ISD::UREM
, MVT::i8
, Promote
);
131 setOperationAction(ISD::SDIV
, MVT::i8
, Promote
);
132 setOperationAction(ISD::SDIVREM
, MVT::i8
, Promote
);
133 setOperationAction(ISD::SREM
, MVT::i8
, Promote
);
134 setOperationAction(ISD::UDIV
, MVT::i16
, LibCall
);
135 setOperationAction(ISD::UDIVREM
, MVT::i16
, Expand
);
136 setOperationAction(ISD::UREM
, MVT::i16
, LibCall
);
137 setOperationAction(ISD::SDIV
, MVT::i16
, LibCall
);
138 setOperationAction(ISD::SDIVREM
, MVT::i16
, Expand
);
139 setOperationAction(ISD::SREM
, MVT::i16
, LibCall
);
142 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
143 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
144 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
145 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
146 setOperationAction(ISD::JumpTable
, MVT::i16
, Custom
);
148 // EABI Libcalls - EABI Section 6.2
150 const RTLIB::Libcall Op
;
151 const char * const Name
;
152 const ISD::CondCode Cond
;
154 // Floating point conversions - EABI Table 6
155 { RTLIB::FPROUND_F64_F32
, "__mspabi_cvtdf", ISD::SETCC_INVALID
},
156 { RTLIB::FPEXT_F32_F64
, "__mspabi_cvtfd", ISD::SETCC_INVALID
},
157 // The following is NOT implemented in libgcc
158 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
159 { RTLIB::FPTOSINT_F64_I32
, "__mspabi_fixdli", ISD::SETCC_INVALID
},
160 { RTLIB::FPTOSINT_F64_I64
, "__mspabi_fixdlli", ISD::SETCC_INVALID
},
161 // The following is NOT implemented in libgcc
162 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
163 { RTLIB::FPTOUINT_F64_I32
, "__mspabi_fixdul", ISD::SETCC_INVALID
},
164 { RTLIB::FPTOUINT_F64_I64
, "__mspabi_fixdull", ISD::SETCC_INVALID
},
165 // The following is NOT implemented in libgcc
166 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
167 { RTLIB::FPTOSINT_F32_I32
, "__mspabi_fixfli", ISD::SETCC_INVALID
},
168 { RTLIB::FPTOSINT_F32_I64
, "__mspabi_fixflli", ISD::SETCC_INVALID
},
169 // The following is NOT implemented in libgcc
170 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
171 { RTLIB::FPTOUINT_F32_I32
, "__mspabi_fixful", ISD::SETCC_INVALID
},
172 { RTLIB::FPTOUINT_F32_I64
, "__mspabi_fixfull", ISD::SETCC_INVALID
},
173 // TODO The following IS implemented in libgcc
174 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
175 { RTLIB::SINTTOFP_I32_F64
, "__mspabi_fltlid", ISD::SETCC_INVALID
},
176 // TODO The following IS implemented in libgcc but is not in the EABI
177 { RTLIB::SINTTOFP_I64_F64
, "__mspabi_fltllid", ISD::SETCC_INVALID
},
178 // TODO The following IS implemented in libgcc
179 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
180 { RTLIB::UINTTOFP_I32_F64
, "__mspabi_fltuld", ISD::SETCC_INVALID
},
181 // The following IS implemented in libgcc but is not in the EABI
182 { RTLIB::UINTTOFP_I64_F64
, "__mspabi_fltulld", ISD::SETCC_INVALID
},
183 // TODO The following IS implemented in libgcc
184 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
185 { RTLIB::SINTTOFP_I32_F32
, "__mspabi_fltlif", ISD::SETCC_INVALID
},
186 // TODO The following IS implemented in libgcc but is not in the EABI
187 { RTLIB::SINTTOFP_I64_F32
, "__mspabi_fltllif", ISD::SETCC_INVALID
},
188 // TODO The following IS implemented in libgcc
189 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
190 { RTLIB::UINTTOFP_I32_F32
, "__mspabi_fltulf", ISD::SETCC_INVALID
},
191 // The following IS implemented in libgcc but is not in the EABI
192 { RTLIB::UINTTOFP_I64_F32
, "__mspabi_fltullf", ISD::SETCC_INVALID
},
194 // Floating point comparisons - EABI Table 7
195 { RTLIB::OEQ_F64
, "__mspabi_cmpd", ISD::SETEQ
},
196 { RTLIB::UNE_F64
, "__mspabi_cmpd", ISD::SETNE
},
197 { RTLIB::OGE_F64
, "__mspabi_cmpd", ISD::SETGE
},
198 { RTLIB::OLT_F64
, "__mspabi_cmpd", ISD::SETLT
},
199 { RTLIB::OLE_F64
, "__mspabi_cmpd", ISD::SETLE
},
200 { RTLIB::OGT_F64
, "__mspabi_cmpd", ISD::SETGT
},
201 { RTLIB::OEQ_F32
, "__mspabi_cmpf", ISD::SETEQ
},
202 { RTLIB::UNE_F32
, "__mspabi_cmpf", ISD::SETNE
},
203 { RTLIB::OGE_F32
, "__mspabi_cmpf", ISD::SETGE
},
204 { RTLIB::OLT_F32
, "__mspabi_cmpf", ISD::SETLT
},
205 { RTLIB::OLE_F32
, "__mspabi_cmpf", ISD::SETLE
},
206 { RTLIB::OGT_F32
, "__mspabi_cmpf", ISD::SETGT
},
208 // Floating point arithmetic - EABI Table 8
209 { RTLIB::ADD_F64
, "__mspabi_addd", ISD::SETCC_INVALID
},
210 { RTLIB::ADD_F32
, "__mspabi_addf", ISD::SETCC_INVALID
},
211 { RTLIB::DIV_F64
, "__mspabi_divd", ISD::SETCC_INVALID
},
212 { RTLIB::DIV_F32
, "__mspabi_divf", ISD::SETCC_INVALID
},
213 { RTLIB::MUL_F64
, "__mspabi_mpyd", ISD::SETCC_INVALID
},
214 { RTLIB::MUL_F32
, "__mspabi_mpyf", ISD::SETCC_INVALID
},
215 { RTLIB::SUB_F64
, "__mspabi_subd", ISD::SETCC_INVALID
},
216 { RTLIB::SUB_F32
, "__mspabi_subf", ISD::SETCC_INVALID
},
217 // The following are NOT implemented in libgcc
218 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
219 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
221 // Universal Integer Operations - EABI Table 9
222 { RTLIB::SDIV_I16
, "__mspabi_divi", ISD::SETCC_INVALID
},
223 { RTLIB::SDIV_I32
, "__mspabi_divli", ISD::SETCC_INVALID
},
224 { RTLIB::SDIV_I64
, "__mspabi_divlli", ISD::SETCC_INVALID
},
225 { RTLIB::UDIV_I16
, "__mspabi_divu", ISD::SETCC_INVALID
},
226 { RTLIB::UDIV_I32
, "__mspabi_divul", ISD::SETCC_INVALID
},
227 { RTLIB::UDIV_I64
, "__mspabi_divull", ISD::SETCC_INVALID
},
228 { RTLIB::SREM_I16
, "__mspabi_remi", ISD::SETCC_INVALID
},
229 { RTLIB::SREM_I32
, "__mspabi_remli", ISD::SETCC_INVALID
},
230 { RTLIB::SREM_I64
, "__mspabi_remlli", ISD::SETCC_INVALID
},
231 { RTLIB::UREM_I16
, "__mspabi_remu", ISD::SETCC_INVALID
},
232 { RTLIB::UREM_I32
, "__mspabi_remul", ISD::SETCC_INVALID
},
233 { RTLIB::UREM_I64
, "__mspabi_remull", ISD::SETCC_INVALID
},
235 // Bitwise Operations - EABI Table 10
236 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
237 { RTLIB::SRL_I32
, "__mspabi_srll", ISD::SETCC_INVALID
},
238 { RTLIB::SRA_I32
, "__mspabi_sral", ISD::SETCC_INVALID
},
239 { RTLIB::SHL_I32
, "__mspabi_slll", ISD::SETCC_INVALID
},
240 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
244 for (const auto &LC
: LibraryCalls
) {
245 setLibcallName(LC
.Op
, LC
.Name
);
246 if (LC
.Cond
!= ISD::SETCC_INVALID
)
247 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
250 if (STI
.hasHWMult16()) {
252 const RTLIB::Libcall Op
;
253 const char * const Name
;
255 // Integer Multiply - EABI Table 9
256 { RTLIB::MUL_I16
, "__mspabi_mpyi_hw" },
257 { RTLIB::MUL_I32
, "__mspabi_mpyl_hw" },
258 { RTLIB::MUL_I64
, "__mspabi_mpyll_hw" },
259 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
260 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
262 for (const auto &LC
: LibraryCalls
) {
263 setLibcallName(LC
.Op
, LC
.Name
);
265 } else if (STI
.hasHWMult32()) {
267 const RTLIB::Libcall Op
;
268 const char * const Name
;
270 // Integer Multiply - EABI Table 9
271 { RTLIB::MUL_I16
, "__mspabi_mpyi_hw" },
272 { RTLIB::MUL_I32
, "__mspabi_mpyl_hw32" },
273 { RTLIB::MUL_I64
, "__mspabi_mpyll_hw32" },
274 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
275 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
277 for (const auto &LC
: LibraryCalls
) {
278 setLibcallName(LC
.Op
, LC
.Name
);
280 } else if (STI
.hasHWMultF5()) {
282 const RTLIB::Libcall Op
;
283 const char * const Name
;
285 // Integer Multiply - EABI Table 9
286 { RTLIB::MUL_I16
, "__mspabi_mpyi_f5hw" },
287 { RTLIB::MUL_I32
, "__mspabi_mpyl_f5hw" },
288 { RTLIB::MUL_I64
, "__mspabi_mpyll_f5hw" },
289 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
290 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
292 for (const auto &LC
: LibraryCalls
) {
293 setLibcallName(LC
.Op
, LC
.Name
);
297 const RTLIB::Libcall Op
;
298 const char * const Name
;
300 // Integer Multiply - EABI Table 9
301 { RTLIB::MUL_I16
, "__mspabi_mpyi" },
302 { RTLIB::MUL_I32
, "__mspabi_mpyl" },
303 { RTLIB::MUL_I64
, "__mspabi_mpyll" },
304 // The __mspabi_mpysl* functions are NOT implemented in libgcc
305 // The __mspabi_mpyul* functions are NOT implemented in libgcc
307 for (const auto &LC
: LibraryCalls
) {
308 setLibcallName(LC
.Op
, LC
.Name
);
310 setLibcallCallingConv(RTLIB::MUL_I64
, CallingConv::MSP430_BUILTIN
);
313 // Several of the runtime library functions use a special calling conv
314 setLibcallCallingConv(RTLIB::UDIV_I64
, CallingConv::MSP430_BUILTIN
);
315 setLibcallCallingConv(RTLIB::UREM_I64
, CallingConv::MSP430_BUILTIN
);
316 setLibcallCallingConv(RTLIB::SDIV_I64
, CallingConv::MSP430_BUILTIN
);
317 setLibcallCallingConv(RTLIB::SREM_I64
, CallingConv::MSP430_BUILTIN
);
318 setLibcallCallingConv(RTLIB::ADD_F64
, CallingConv::MSP430_BUILTIN
);
319 setLibcallCallingConv(RTLIB::SUB_F64
, CallingConv::MSP430_BUILTIN
);
320 setLibcallCallingConv(RTLIB::MUL_F64
, CallingConv::MSP430_BUILTIN
);
321 setLibcallCallingConv(RTLIB::DIV_F64
, CallingConv::MSP430_BUILTIN
);
322 setLibcallCallingConv(RTLIB::OEQ_F64
, CallingConv::MSP430_BUILTIN
);
323 setLibcallCallingConv(RTLIB::UNE_F64
, CallingConv::MSP430_BUILTIN
);
324 setLibcallCallingConv(RTLIB::OGE_F64
, CallingConv::MSP430_BUILTIN
);
325 setLibcallCallingConv(RTLIB::OLT_F64
, CallingConv::MSP430_BUILTIN
);
326 setLibcallCallingConv(RTLIB::OLE_F64
, CallingConv::MSP430_BUILTIN
);
327 setLibcallCallingConv(RTLIB::OGT_F64
, CallingConv::MSP430_BUILTIN
);
328 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
330 setMinFunctionAlignment(1);
331 setPrefFunctionAlignment(1);
334 SDValue
MSP430TargetLowering::LowerOperation(SDValue Op
,
335 SelectionDAG
&DAG
) const {
336 switch (Op
.getOpcode()) {
337 case ISD::SHL
: // FALLTHROUGH
339 case ISD::SRA
: return LowerShifts(Op
, DAG
);
340 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
341 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
342 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
343 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
344 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
345 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
346 case ISD::SIGN_EXTEND
: return LowerSIGN_EXTEND(Op
, DAG
);
347 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
348 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
349 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
350 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
352 llvm_unreachable("unimplemented operand");
356 //===----------------------------------------------------------------------===//
357 // MSP430 Inline Assembly Support
358 //===----------------------------------------------------------------------===//
360 /// getConstraintType - Given a constraint letter, return the type of
361 /// constraint it is for this target.
362 TargetLowering::ConstraintType
363 MSP430TargetLowering::getConstraintType(StringRef Constraint
) const {
364 if (Constraint
.size() == 1) {
365 switch (Constraint
[0]) {
367 return C_RegisterClass
;
372 return TargetLowering::getConstraintType(Constraint
);
375 std::pair
<unsigned, const TargetRegisterClass
*>
376 MSP430TargetLowering::getRegForInlineAsmConstraint(
377 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
378 if (Constraint
.size() == 1) {
379 // GCC Constraint Letters
380 switch (Constraint
[0]) {
382 case 'r': // GENERAL_REGS
384 return std::make_pair(0U, &MSP430::GR8RegClass
);
386 return std::make_pair(0U, &MSP430::GR16RegClass
);
390 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
393 //===----------------------------------------------------------------------===//
394 // Calling Convention Implementation
395 //===----------------------------------------------------------------------===//
397 #include "MSP430GenCallingConv.inc"
399 /// For each argument in a function store the number of pieces it is composed
401 template<typename ArgT
>
402 static void ParseFunctionArgs(const SmallVectorImpl
<ArgT
> &Args
,
403 SmallVectorImpl
<unsigned> &Out
) {
404 unsigned CurrentArgIndex
;
409 CurrentArgIndex
= Args
[0].OrigArgIndex
;
412 for (auto &Arg
: Args
) {
413 if (CurrentArgIndex
== Arg
.OrigArgIndex
) {
417 CurrentArgIndex
= Arg
.OrigArgIndex
;
422 static void AnalyzeVarArgs(CCState
&State
,
423 const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
424 State
.AnalyzeCallOperands(Outs
, CC_MSP430_AssignStack
);
427 static void AnalyzeVarArgs(CCState
&State
,
428 const SmallVectorImpl
<ISD::InputArg
> &Ins
) {
429 State
.AnalyzeFormalArguments(Ins
, CC_MSP430_AssignStack
);
432 /// Analyze incoming and outgoing function arguments. We need custom C++ code
433 /// to handle special constraints in the ABI like reversing the order of the
434 /// pieces of splitted arguments. In addition, all pieces of a certain argument
435 /// have to be passed either using registers or the stack but never mixing both.
436 template<typename ArgT
>
437 static void AnalyzeArguments(CCState
&State
,
438 SmallVectorImpl
<CCValAssign
> &ArgLocs
,
439 const SmallVectorImpl
<ArgT
> &Args
) {
440 static const MCPhysReg CRegList
[] = {
441 MSP430::R12
, MSP430::R13
, MSP430::R14
, MSP430::R15
443 static const unsigned CNbRegs
= array_lengthof(CRegList
);
444 static const MCPhysReg BuiltinRegList
[] = {
445 MSP430::R8
, MSP430::R9
, MSP430::R10
, MSP430::R11
,
446 MSP430::R12
, MSP430::R13
, MSP430::R14
, MSP430::R15
448 static const unsigned BuiltinNbRegs
= array_lengthof(BuiltinRegList
);
450 ArrayRef
<MCPhysReg
> RegList
;
453 bool Builtin
= (State
.getCallingConv() == CallingConv::MSP430_BUILTIN
);
455 RegList
= BuiltinRegList
;
456 NbRegs
= BuiltinNbRegs
;
462 if (State
.isVarArg()) {
463 AnalyzeVarArgs(State
, Args
);
467 SmallVector
<unsigned, 4> ArgsParts
;
468 ParseFunctionArgs(Args
, ArgsParts
);
471 assert(ArgsParts
.size() == 2 &&
472 "Builtin calling convention requires two arguments");
475 unsigned RegsLeft
= NbRegs
;
476 bool UsedStack
= false;
479 for (unsigned i
= 0, e
= ArgsParts
.size(); i
!= e
; i
++) {
480 MVT ArgVT
= Args
[ValNo
].VT
;
481 ISD::ArgFlagsTy ArgFlags
= Args
[ValNo
].Flags
;
483 CCValAssign::LocInfo LocInfo
= CCValAssign::Full
;
486 if (LocVT
== MVT::i8
) {
488 if (ArgFlags
.isSExt())
489 LocInfo
= CCValAssign::SExt
;
490 else if (ArgFlags
.isZExt())
491 LocInfo
= CCValAssign::ZExt
;
493 LocInfo
= CCValAssign::AExt
;
496 // Handle byval arguments
497 if (ArgFlags
.isByVal()) {
498 State
.HandleByVal(ValNo
++, ArgVT
, LocVT
, LocInfo
, 2, 2, ArgFlags
);
502 unsigned Parts
= ArgsParts
[i
];
506 "Builtin calling convention requires 64-bit arguments");
509 if (!UsedStack
&& Parts
== 2 && RegsLeft
== 1) {
510 // Special case for 32-bit register split, see EABI section 3.3.3
511 unsigned Reg
= State
.AllocateReg(RegList
);
512 State
.addLoc(CCValAssign::getReg(ValNo
++, ArgVT
, Reg
, LocVT
, LocInfo
));
516 CC_MSP430_AssignStack(ValNo
++, ArgVT
, LocVT
, LocInfo
, ArgFlags
, State
);
517 } else if (Parts
<= RegsLeft
) {
518 for (unsigned j
= 0; j
< Parts
; j
++) {
519 unsigned Reg
= State
.AllocateReg(RegList
);
520 State
.addLoc(CCValAssign::getReg(ValNo
++, ArgVT
, Reg
, LocVT
, LocInfo
));
525 for (unsigned j
= 0; j
< Parts
; j
++)
526 CC_MSP430_AssignStack(ValNo
++, ArgVT
, LocVT
, LocInfo
, ArgFlags
, State
);
531 static void AnalyzeRetResult(CCState
&State
,
532 const SmallVectorImpl
<ISD::InputArg
> &Ins
) {
533 State
.AnalyzeCallResult(Ins
, RetCC_MSP430
);
536 static void AnalyzeRetResult(CCState
&State
,
537 const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
538 State
.AnalyzeReturn(Outs
, RetCC_MSP430
);
541 template<typename ArgT
>
542 static void AnalyzeReturnValues(CCState
&State
,
543 SmallVectorImpl
<CCValAssign
> &RVLocs
,
544 const SmallVectorImpl
<ArgT
> &Args
) {
545 AnalyzeRetResult(State
, Args
);
548 SDValue
MSP430TargetLowering::LowerFormalArguments(
549 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
550 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
551 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
555 report_fatal_error("Unsupported calling convention");
557 case CallingConv::Fast
:
558 return LowerCCCArguments(Chain
, CallConv
, isVarArg
, Ins
, dl
, DAG
, InVals
);
559 case CallingConv::MSP430_INTR
:
562 report_fatal_error("ISRs cannot have arguments");
567 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
568 SmallVectorImpl
<SDValue
> &InVals
) const {
569 SelectionDAG
&DAG
= CLI
.DAG
;
571 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
572 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
573 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
574 SDValue Chain
= CLI
.Chain
;
575 SDValue Callee
= CLI
.Callee
;
576 bool &isTailCall
= CLI
.IsTailCall
;
577 CallingConv::ID CallConv
= CLI
.CallConv
;
578 bool isVarArg
= CLI
.IsVarArg
;
580 // MSP430 target does not yet support tail call optimization.
585 report_fatal_error("Unsupported calling convention");
586 case CallingConv::MSP430_BUILTIN
:
587 case CallingConv::Fast
:
589 return LowerCCCCallTo(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
590 Outs
, OutVals
, Ins
, dl
, DAG
, InVals
);
591 case CallingConv::MSP430_INTR
:
592 report_fatal_error("ISRs cannot be called directly");
596 /// LowerCCCArguments - transform physical registers into virtual registers and
597 /// generate load operations for arguments places on the stack.
598 // FIXME: struct return stuff
599 SDValue
MSP430TargetLowering::LowerCCCArguments(
600 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
601 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
602 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
603 MachineFunction
&MF
= DAG
.getMachineFunction();
604 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
605 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
606 MSP430MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<MSP430MachineFunctionInfo
>();
608 // Assign locations to all of the incoming arguments.
609 SmallVector
<CCValAssign
, 16> ArgLocs
;
610 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
612 AnalyzeArguments(CCInfo
, ArgLocs
, Ins
);
614 // Create frame index for the start of the first vararg value
616 unsigned Offset
= CCInfo
.getNextStackOffset();
617 FuncInfo
->setVarArgsFrameIndex(MFI
.CreateFixedObject(1, Offset
, true));
620 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
621 CCValAssign
&VA
= ArgLocs
[i
];
623 // Arguments passed in registers
624 EVT RegVT
= VA
.getLocVT();
625 switch (RegVT
.getSimpleVT().SimpleTy
) {
629 errs() << "LowerFormalArguments Unhandled argument type: "
630 << RegVT
.getEVTString() << "\n";
632 llvm_unreachable(nullptr);
635 Register VReg
= RegInfo
.createVirtualRegister(&MSP430::GR16RegClass
);
636 RegInfo
.addLiveIn(VA
.getLocReg(), VReg
);
637 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, RegVT
);
639 // If this is an 8-bit value, it is really passed promoted to 16
640 // bits. Insert an assert[sz]ext to capture this, then truncate to the
642 if (VA
.getLocInfo() == CCValAssign::SExt
)
643 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
644 DAG
.getValueType(VA
.getValVT()));
645 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
646 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
647 DAG
.getValueType(VA
.getValVT()));
649 if (VA
.getLocInfo() != CCValAssign::Full
)
650 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
652 InVals
.push_back(ArgValue
);
656 assert(VA
.isMemLoc());
659 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
661 if (Flags
.isByVal()) {
662 int FI
= MFI
.CreateFixedObject(Flags
.getByValSize(),
663 VA
.getLocMemOffset(), true);
664 InVal
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
666 // Load the argument to a virtual register
667 unsigned ObjSize
= VA
.getLocVT().getSizeInBits()/8;
669 errs() << "LowerFormalArguments Unhandled argument type: "
670 << EVT(VA
.getLocVT()).getEVTString()
673 // Create the frame index object for this incoming parameter...
674 int FI
= MFI
.CreateFixedObject(ObjSize
, VA
.getLocMemOffset(), true);
676 // Create the SelectionDAG nodes corresponding to a load
677 //from this parameter
678 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i16
);
680 VA
.getLocVT(), dl
, Chain
, FIN
,
681 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
684 InVals
.push_back(InVal
);
688 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
689 if (Ins
[i
].Flags
.isSRet()) {
690 unsigned Reg
= FuncInfo
->getSRetReturnReg();
692 Reg
= MF
.getRegInfo().createVirtualRegister(
693 getRegClassFor(MVT::i16
));
694 FuncInfo
->setSRetReturnReg(Reg
);
696 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, InVals
[i
]);
697 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Chain
);
705 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
708 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
709 LLVMContext
&Context
) const {
710 SmallVector
<CCValAssign
, 16> RVLocs
;
711 CCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
712 return CCInfo
.CheckReturn(Outs
, RetCC_MSP430
);
716 MSP430TargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
718 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
719 const SmallVectorImpl
<SDValue
> &OutVals
,
720 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
722 MachineFunction
&MF
= DAG
.getMachineFunction();
724 // CCValAssign - represent the assignment of the return value to a location
725 SmallVector
<CCValAssign
, 16> RVLocs
;
727 // ISRs cannot return any value.
728 if (CallConv
== CallingConv::MSP430_INTR
&& !Outs
.empty())
729 report_fatal_error("ISRs cannot return any value");
731 // CCState - Info about the registers and stack slot.
732 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
735 // Analize return values.
736 AnalyzeReturnValues(CCInfo
, RVLocs
, Outs
);
739 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
741 // Copy the result values into the output registers.
742 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
743 CCValAssign
&VA
= RVLocs
[i
];
744 assert(VA
.isRegLoc() && "Can only return in registers!");
746 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
749 // Guarantee that all emitted copies are stuck together,
750 // avoiding something bad.
751 Flag
= Chain
.getValue(1);
752 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
755 if (MF
.getFunction().hasStructRetAttr()) {
756 MSP430MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<MSP430MachineFunctionInfo
>();
757 unsigned Reg
= FuncInfo
->getSRetReturnReg();
760 llvm_unreachable("sret virtual register not created in entry block");
763 DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy(DAG
.getDataLayout()));
764 unsigned R12
= MSP430::R12
;
766 Chain
= DAG
.getCopyToReg(Chain
, dl
, R12
, Val
, Flag
);
767 Flag
= Chain
.getValue(1);
768 RetOps
.push_back(DAG
.getRegister(R12
, getPointerTy(DAG
.getDataLayout())));
771 unsigned Opc
= (CallConv
== CallingConv::MSP430_INTR
?
772 MSP430ISD::RETI_FLAG
: MSP430ISD::RET_FLAG
);
774 RetOps
[0] = Chain
; // Update chain.
776 // Add the flag if we have it.
778 RetOps
.push_back(Flag
);
780 return DAG
.getNode(Opc
, dl
, MVT::Other
, RetOps
);
783 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
784 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
785 SDValue
MSP430TargetLowering::LowerCCCCallTo(
786 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
787 bool isTailCall
, const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
788 const SmallVectorImpl
<SDValue
> &OutVals
,
789 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
790 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
791 // Analyze operands of the call, assigning locations to each operand.
792 SmallVector
<CCValAssign
, 16> ArgLocs
;
793 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
795 AnalyzeArguments(CCInfo
, ArgLocs
, Outs
);
797 // Get a count of how many bytes are to be pushed on the stack.
798 unsigned NumBytes
= CCInfo
.getNextStackOffset();
799 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
801 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
803 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RegsToPass
;
804 SmallVector
<SDValue
, 12> MemOpChains
;
807 // Walk the register/memloc assignments, inserting copies/loads.
808 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
809 CCValAssign
&VA
= ArgLocs
[i
];
811 SDValue Arg
= OutVals
[i
];
813 // Promote the value if needed.
814 switch (VA
.getLocInfo()) {
815 default: llvm_unreachable("Unknown loc info!");
816 case CCValAssign::Full
: break;
817 case CCValAssign::SExt
:
818 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
820 case CCValAssign::ZExt
:
821 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
823 case CCValAssign::AExt
:
824 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
828 // Arguments that can be passed on register must be kept at RegsToPass
831 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
833 assert(VA
.isMemLoc());
835 if (!StackPtr
.getNode())
836 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, MSP430::SP
, PtrVT
);
839 DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
840 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), dl
));
843 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
845 if (Flags
.isByVal()) {
846 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), dl
, MVT::i16
);
847 MemOp
= DAG
.getMemcpy(Chain
, dl
, PtrOff
, Arg
, SizeNode
,
848 Flags
.getByValAlign(),
850 /*AlwaysInline=*/true,
851 /*isTailCall=*/false,
852 MachinePointerInfo(),
853 MachinePointerInfo());
855 MemOp
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
858 MemOpChains
.push_back(MemOp
);
862 // Transform all store nodes into one single node because all store nodes are
863 // independent of each other.
864 if (!MemOpChains
.empty())
865 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
867 // Build a sequence of copy-to-reg nodes chained together with token chain and
868 // flag operands which copy the outgoing args into registers. The InFlag in
869 // necessary since all emitted instructions must be stuck together.
871 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
872 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
873 RegsToPass
[i
].second
, InFlag
);
874 InFlag
= Chain
.getValue(1);
877 // If the callee is a GlobalAddress node (quite common, every direct call is)
878 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
879 // Likewise ExternalSymbol -> TargetExternalSymbol.
880 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
881 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
, MVT::i16
);
882 else if (ExternalSymbolSDNode
*E
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
883 Callee
= DAG
.getTargetExternalSymbol(E
->getSymbol(), MVT::i16
);
885 // Returns a chain & a flag for retval copy to use.
886 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
887 SmallVector
<SDValue
, 8> Ops
;
888 Ops
.push_back(Chain
);
889 Ops
.push_back(Callee
);
891 // Add argument registers to the end of the list so that they are
892 // known live into the call.
893 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
894 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
895 RegsToPass
[i
].second
.getValueType()));
897 if (InFlag
.getNode())
898 Ops
.push_back(InFlag
);
900 Chain
= DAG
.getNode(MSP430ISD::CALL
, dl
, NodeTys
, Ops
);
901 InFlag
= Chain
.getValue(1);
903 // Create the CALLSEQ_END node.
904 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getConstant(NumBytes
, dl
, PtrVT
, true),
905 DAG
.getConstant(0, dl
, PtrVT
, true), InFlag
, dl
);
906 InFlag
= Chain
.getValue(1);
908 // Handle result values, copying them out of physregs into vregs that we
910 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
,
914 /// LowerCallResult - Lower the result values of a call into the
915 /// appropriate copies out of appropriate physical registers.
917 SDValue
MSP430TargetLowering::LowerCallResult(
918 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
919 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
920 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
922 // Assign locations to each value returned by this call.
923 SmallVector
<CCValAssign
, 16> RVLocs
;
924 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
927 AnalyzeReturnValues(CCInfo
, RVLocs
, Ins
);
929 // Copy all of the result registers out of their specified physreg.
930 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
931 Chain
= DAG
.getCopyFromReg(Chain
, dl
, RVLocs
[i
].getLocReg(),
932 RVLocs
[i
].getValVT(), InFlag
).getValue(1);
933 InFlag
= Chain
.getValue(2);
934 InVals
.push_back(Chain
.getValue(0));
940 SDValue
MSP430TargetLowering::LowerShifts(SDValue Op
,
941 SelectionDAG
&DAG
) const {
942 unsigned Opc
= Op
.getOpcode();
943 SDNode
* N
= Op
.getNode();
944 EVT VT
= Op
.getValueType();
947 // Expand non-constant shifts to loops:
948 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
951 uint64_t ShiftAmount
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
953 // Expand the stuff into sequence of shifts.
954 SDValue Victim
= N
->getOperand(0);
956 if (ShiftAmount
>= 8) {
957 assert(VT
== MVT::i16
&& "Can not shift i8 by 8 and more");
960 llvm_unreachable("Unknown shift");
962 // foo << (8 + N) => swpb(zext(foo)) << N
963 Victim
= DAG
.getZeroExtendInReg(Victim
, dl
, MVT::i8
);
964 Victim
= DAG
.getNode(ISD::BSWAP
, dl
, VT
, Victim
);
968 // foo >> (8 + N) => sxt(swpb(foo)) >> N
969 Victim
= DAG
.getNode(ISD::BSWAP
, dl
, VT
, Victim
);
970 Victim
= (Opc
== ISD::SRA
)
971 ? DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, VT
, Victim
,
972 DAG
.getValueType(MVT::i8
))
973 : DAG
.getZeroExtendInReg(Victim
, dl
, MVT::i8
);
979 if (Opc
== ISD::SRL
&& ShiftAmount
) {
980 // Emit a special goodness here:
981 // srl A, 1 => clrc; rrc A
982 Victim
= DAG
.getNode(MSP430ISD::RRCL
, dl
, VT
, Victim
);
986 while (ShiftAmount
--)
987 Victim
= DAG
.getNode((Opc
== ISD::SHL
? MSP430ISD::RLA
: MSP430ISD::RRA
),
993 SDValue
MSP430TargetLowering::LowerGlobalAddress(SDValue Op
,
994 SelectionDAG
&DAG
) const {
995 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
996 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
997 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
999 // Create the TargetGlobalAddress node, folding in the constant offset.
1000 SDValue Result
= DAG
.getTargetGlobalAddress(GV
, SDLoc(Op
), PtrVT
, Offset
);
1001 return DAG
.getNode(MSP430ISD::Wrapper
, SDLoc(Op
), PtrVT
, Result
);
1004 SDValue
MSP430TargetLowering::LowerExternalSymbol(SDValue Op
,
1005 SelectionDAG
&DAG
) const {
1007 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
1008 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1009 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
);
1011 return DAG
.getNode(MSP430ISD::Wrapper
, dl
, PtrVT
, Result
);
1014 SDValue
MSP430TargetLowering::LowerBlockAddress(SDValue Op
,
1015 SelectionDAG
&DAG
) const {
1017 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1018 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
1019 SDValue Result
= DAG
.getTargetBlockAddress(BA
, PtrVT
);
1021 return DAG
.getNode(MSP430ISD::Wrapper
, dl
, PtrVT
, Result
);
1024 static SDValue
EmitCMP(SDValue
&LHS
, SDValue
&RHS
, SDValue
&TargetCC
,
1025 ISD::CondCode CC
, const SDLoc
&dl
, SelectionDAG
&DAG
) {
1026 // FIXME: Handle bittests someday
1027 assert(!LHS
.getValueType().isFloatingPoint() && "We don't handle FP yet");
1029 // FIXME: Handle jump negative someday
1030 MSP430CC::CondCodes TCC
= MSP430CC::COND_INVALID
;
1032 default: llvm_unreachable("Invalid integer condition!");
1034 TCC
= MSP430CC::COND_E
; // aka COND_Z
1035 // Minor optimization: if LHS is a constant, swap operands, then the
1036 // constant can be folded into comparison.
1037 if (LHS
.getOpcode() == ISD::Constant
)
1038 std::swap(LHS
, RHS
);
1041 TCC
= MSP430CC::COND_NE
; // aka COND_NZ
1042 // Minor optimization: if LHS is a constant, swap operands, then the
1043 // constant can be folded into comparison.
1044 if (LHS
.getOpcode() == ISD::Constant
)
1045 std::swap(LHS
, RHS
);
1048 std::swap(LHS
, RHS
);
1051 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1052 // fold constant into instruction.
1053 if (const ConstantSDNode
* C
= dyn_cast
<ConstantSDNode
>(LHS
)) {
1055 RHS
= DAG
.getConstant(C
->getSExtValue() + 1, dl
, C
->getValueType(0));
1056 TCC
= MSP430CC::COND_LO
;
1059 TCC
= MSP430CC::COND_HS
; // aka COND_C
1062 std::swap(LHS
, RHS
);
1065 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1066 // fold constant into instruction.
1067 if (const ConstantSDNode
* C
= dyn_cast
<ConstantSDNode
>(LHS
)) {
1069 RHS
= DAG
.getConstant(C
->getSExtValue() + 1, dl
, C
->getValueType(0));
1070 TCC
= MSP430CC::COND_HS
;
1073 TCC
= MSP430CC::COND_LO
; // aka COND_NC
1076 std::swap(LHS
, RHS
);
1079 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1080 // fold constant into instruction.
1081 if (const ConstantSDNode
* C
= dyn_cast
<ConstantSDNode
>(LHS
)) {
1083 RHS
= DAG
.getConstant(C
->getSExtValue() + 1, dl
, C
->getValueType(0));
1084 TCC
= MSP430CC::COND_L
;
1087 TCC
= MSP430CC::COND_GE
;
1090 std::swap(LHS
, RHS
);
1093 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1094 // fold constant into instruction.
1095 if (const ConstantSDNode
* C
= dyn_cast
<ConstantSDNode
>(LHS
)) {
1097 RHS
= DAG
.getConstant(C
->getSExtValue() + 1, dl
, C
->getValueType(0));
1098 TCC
= MSP430CC::COND_GE
;
1101 TCC
= MSP430CC::COND_L
;
1105 TargetCC
= DAG
.getConstant(TCC
, dl
, MVT::i8
);
1106 return DAG
.getNode(MSP430ISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
1110 SDValue
MSP430TargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
1111 SDValue Chain
= Op
.getOperand(0);
1112 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
1113 SDValue LHS
= Op
.getOperand(2);
1114 SDValue RHS
= Op
.getOperand(3);
1115 SDValue Dest
= Op
.getOperand(4);
1119 SDValue Flag
= EmitCMP(LHS
, RHS
, TargetCC
, CC
, dl
, DAG
);
1121 return DAG
.getNode(MSP430ISD::BR_CC
, dl
, Op
.getValueType(),
1122 Chain
, Dest
, TargetCC
, Flag
);
1125 SDValue
MSP430TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1126 SDValue LHS
= Op
.getOperand(0);
1127 SDValue RHS
= Op
.getOperand(1);
1130 // If we are doing an AND and testing against zero, then the CMP
1131 // will not be generated. The AND (or BIT) will generate the condition codes,
1132 // but they are different from CMP.
1133 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1134 // lowering & isel wouldn't diverge.
1136 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
1137 if (RHSC
->isNullValue() && LHS
.hasOneUse() &&
1138 (LHS
.getOpcode() == ISD::AND
||
1139 (LHS
.getOpcode() == ISD::TRUNCATE
&&
1140 LHS
.getOperand(0).getOpcode() == ISD::AND
))) {
1144 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1146 SDValue Flag
= EmitCMP(LHS
, RHS
, TargetCC
, CC
, dl
, DAG
);
1148 // Get the condition codes directly from the status register, if its easy.
1149 // Otherwise a branch will be generated. Note that the AND and BIT
1150 // instructions generate different flags than CMP, the carry bit can be used
1152 bool Invert
= false;
1154 bool Convert
= true;
1155 switch (cast
<ConstantSDNode
>(TargetCC
)->getZExtValue()) {
1159 case MSP430CC::COND_HS
:
1160 // Res = SR & 1, no processing is required
1162 case MSP430CC::COND_LO
:
1166 case MSP430CC::COND_NE
:
1168 // C = ~Z, thus Res = SR & 1, no processing is required
1170 // Res = ~((SR >> 1) & 1)
1175 case MSP430CC::COND_E
:
1177 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1178 // Res = (SR >> 1) & 1 is 1 word shorter.
1181 EVT VT
= Op
.getValueType();
1182 SDValue One
= DAG
.getConstant(1, dl
, VT
);
1184 SDValue SR
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, MSP430::SR
,
1187 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1188 SR
= DAG
.getNode(ISD::SRA
, dl
, MVT::i16
, SR
, One
);
1189 SR
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, SR
, One
);
1191 SR
= DAG
.getNode(ISD::XOR
, dl
, MVT::i16
, SR
, One
);
1194 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
1195 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Glue
);
1196 SDValue Ops
[] = {One
, Zero
, TargetCC
, Flag
};
1197 return DAG
.getNode(MSP430ISD::SELECT_CC
, dl
, VTs
, Ops
);
1201 SDValue
MSP430TargetLowering::LowerSELECT_CC(SDValue Op
,
1202 SelectionDAG
&DAG
) const {
1203 SDValue LHS
= Op
.getOperand(0);
1204 SDValue RHS
= Op
.getOperand(1);
1205 SDValue TrueV
= Op
.getOperand(2);
1206 SDValue FalseV
= Op
.getOperand(3);
1207 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
1211 SDValue Flag
= EmitCMP(LHS
, RHS
, TargetCC
, CC
, dl
, DAG
);
1213 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Glue
);
1214 SDValue Ops
[] = {TrueV
, FalseV
, TargetCC
, Flag
};
1216 return DAG
.getNode(MSP430ISD::SELECT_CC
, dl
, VTs
, Ops
);
1219 SDValue
MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op
,
1220 SelectionDAG
&DAG
) const {
1221 SDValue Val
= Op
.getOperand(0);
1222 EVT VT
= Op
.getValueType();
1225 assert(VT
== MVT::i16
&& "Only support i16 for now!");
1227 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, VT
,
1228 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Val
),
1229 DAG
.getValueType(Val
.getValueType()));
1233 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) const {
1234 MachineFunction
&MF
= DAG
.getMachineFunction();
1235 MSP430MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<MSP430MachineFunctionInfo
>();
1236 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
1237 auto PtrVT
= getPointerTy(MF
.getDataLayout());
1239 if (ReturnAddrIndex
== 0) {
1240 // Set up a frame object for the return address.
1241 uint64_t SlotSize
= MF
.getDataLayout().getPointerSize();
1242 ReturnAddrIndex
= MF
.getFrameInfo().CreateFixedObject(SlotSize
, -SlotSize
,
1244 FuncInfo
->setRAIndex(ReturnAddrIndex
);
1247 return DAG
.getFrameIndex(ReturnAddrIndex
, PtrVT
);
1250 SDValue
MSP430TargetLowering::LowerRETURNADDR(SDValue Op
,
1251 SelectionDAG
&DAG
) const {
1252 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
1253 MFI
.setReturnAddressIsTaken(true);
1255 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
1258 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
1260 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1263 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
1265 DAG
.getConstant(DAG
.getDataLayout().getPointerSize(), dl
, MVT::i16
);
1266 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(),
1267 DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FrameAddr
, Offset
),
1268 MachinePointerInfo());
1271 // Just load the return address.
1272 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
1273 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), RetAddrFI
,
1274 MachinePointerInfo());
1277 SDValue
MSP430TargetLowering::LowerFRAMEADDR(SDValue Op
,
1278 SelectionDAG
&DAG
) const {
1279 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
1280 MFI
.setFrameAddressIsTaken(true);
1282 EVT VT
= Op
.getValueType();
1283 SDLoc
dl(Op
); // FIXME probably not meaningful
1284 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
1285 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
1288 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
1289 MachinePointerInfo());
1293 SDValue
MSP430TargetLowering::LowerVASTART(SDValue Op
,
1294 SelectionDAG
&DAG
) const {
1295 MachineFunction
&MF
= DAG
.getMachineFunction();
1296 MSP430MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<MSP430MachineFunctionInfo
>();
1297 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1299 // Frame index of first vararg argument
1300 SDValue FrameIndex
=
1301 DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
1302 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1304 // Create a store of the frame index to the location operand
1305 return DAG
.getStore(Op
.getOperand(0), SDLoc(Op
), FrameIndex
, Op
.getOperand(1),
1306 MachinePointerInfo(SV
));
1309 SDValue
MSP430TargetLowering::LowerJumpTable(SDValue Op
,
1310 SelectionDAG
&DAG
) const {
1311 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
1312 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1313 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
1314 return DAG
.getNode(MSP430ISD::Wrapper
, SDLoc(JT
), PtrVT
, Result
);
1317 /// getPostIndexedAddressParts - returns true by value, base pointer and
1318 /// offset pointer and addressing mode by reference if this node can be
1319 /// combined with a load / store to form a post-indexed load / store.
1320 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
1323 ISD::MemIndexedMode
&AM
,
1324 SelectionDAG
&DAG
) const {
1326 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1327 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
)
1330 EVT VT
= LD
->getMemoryVT();
1331 if (VT
!= MVT::i8
&& VT
!= MVT::i16
)
1334 if (Op
->getOpcode() != ISD::ADD
)
1337 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1))) {
1338 uint64_t RHSC
= RHS
->getZExtValue();
1339 if ((VT
== MVT::i16
&& RHSC
!= 2) ||
1340 (VT
== MVT::i8
&& RHSC
!= 1))
1343 Base
= Op
->getOperand(0);
1344 Offset
= DAG
.getConstant(RHSC
, SDLoc(N
), VT
);
1353 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode
) const {
1354 switch ((MSP430ISD::NodeType
)Opcode
) {
1355 case MSP430ISD::FIRST_NUMBER
: break;
1356 case MSP430ISD::RET_FLAG
: return "MSP430ISD::RET_FLAG";
1357 case MSP430ISD::RETI_FLAG
: return "MSP430ISD::RETI_FLAG";
1358 case MSP430ISD::RRA
: return "MSP430ISD::RRA";
1359 case MSP430ISD::RLA
: return "MSP430ISD::RLA";
1360 case MSP430ISD::RRC
: return "MSP430ISD::RRC";
1361 case MSP430ISD::RRCL
: return "MSP430ISD::RRCL";
1362 case MSP430ISD::CALL
: return "MSP430ISD::CALL";
1363 case MSP430ISD::Wrapper
: return "MSP430ISD::Wrapper";
1364 case MSP430ISD::BR_CC
: return "MSP430ISD::BR_CC";
1365 case MSP430ISD::CMP
: return "MSP430ISD::CMP";
1366 case MSP430ISD::SETCC
: return "MSP430ISD::SETCC";
1367 case MSP430ISD::SELECT_CC
: return "MSP430ISD::SELECT_CC";
1368 case MSP430ISD::DADD
: return "MSP430ISD::DADD";
1373 bool MSP430TargetLowering::isTruncateFree(Type
*Ty1
,
1375 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
1378 return (Ty1
->getPrimitiveSizeInBits() > Ty2
->getPrimitiveSizeInBits());
1381 bool MSP430TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
1382 if (!VT1
.isInteger() || !VT2
.isInteger())
1385 return (VT1
.getSizeInBits() > VT2
.getSizeInBits());
1388 bool MSP430TargetLowering::isZExtFree(Type
*Ty1
, Type
*Ty2
) const {
1389 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1390 return 0 && Ty1
->isIntegerTy(8) && Ty2
->isIntegerTy(16);
1393 bool MSP430TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
1394 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1395 return 0 && VT1
== MVT::i8
&& VT2
== MVT::i16
;
1398 bool MSP430TargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
1399 return isZExtFree(Val
.getValueType(), VT2
);
1402 //===----------------------------------------------------------------------===//
1403 // Other Lowering Code
1404 //===----------------------------------------------------------------------===//
1407 MSP430TargetLowering::EmitShiftInstr(MachineInstr
&MI
,
1408 MachineBasicBlock
*BB
) const {
1409 MachineFunction
*F
= BB
->getParent();
1410 MachineRegisterInfo
&RI
= F
->getRegInfo();
1411 DebugLoc dl
= MI
.getDebugLoc();
1412 const TargetInstrInfo
&TII
= *F
->getSubtarget().getInstrInfo();
1415 bool ClearCarry
= false;
1416 const TargetRegisterClass
* RC
;
1417 switch (MI
.getOpcode()) {
1418 default: llvm_unreachable("Invalid shift opcode!");
1420 Opc
= MSP430::ADD8rr
;
1421 RC
= &MSP430::GR8RegClass
;
1424 Opc
= MSP430::ADD16rr
;
1425 RC
= &MSP430::GR16RegClass
;
1428 Opc
= MSP430::RRA8r
;
1429 RC
= &MSP430::GR8RegClass
;
1432 Opc
= MSP430::RRA16r
;
1433 RC
= &MSP430::GR16RegClass
;
1437 Opc
= MSP430::RRC8r
;
1438 RC
= &MSP430::GR8RegClass
;
1442 Opc
= MSP430::RRC16r
;
1443 RC
= &MSP430::GR16RegClass
;
1446 case MSP430::Rrcl16
: {
1447 BuildMI(*BB
, MI
, dl
, TII
.get(MSP430::BIC16rc
), MSP430::SR
)
1448 .addReg(MSP430::SR
).addImm(1);
1449 Register SrcReg
= MI
.getOperand(1).getReg();
1450 Register DstReg
= MI
.getOperand(0).getReg();
1451 unsigned RrcOpc
= MI
.getOpcode() == MSP430::Rrcl16
1452 ? MSP430::RRC16r
: MSP430::RRC8r
;
1453 BuildMI(*BB
, MI
, dl
, TII
.get(RrcOpc
), DstReg
)
1455 MI
.eraseFromParent(); // The pseudo instruction is gone now.
1460 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1461 MachineFunction::iterator I
= ++BB
->getIterator();
1463 // Create loop block
1464 MachineBasicBlock
*LoopBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1465 MachineBasicBlock
*RemBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1467 F
->insert(I
, LoopBB
);
1468 F
->insert(I
, RemBB
);
1470 // Update machine-CFG edges by transferring all successors of the current
1471 // block to the block containing instructions after shift.
1472 RemBB
->splice(RemBB
->begin(), BB
, std::next(MachineBasicBlock::iterator(MI
)),
1474 RemBB
->transferSuccessorsAndUpdatePHIs(BB
);
1476 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1477 BB
->addSuccessor(LoopBB
);
1478 BB
->addSuccessor(RemBB
);
1479 LoopBB
->addSuccessor(RemBB
);
1480 LoopBB
->addSuccessor(LoopBB
);
1482 Register ShiftAmtReg
= RI
.createVirtualRegister(&MSP430::GR8RegClass
);
1483 Register ShiftAmtReg2
= RI
.createVirtualRegister(&MSP430::GR8RegClass
);
1484 Register ShiftReg
= RI
.createVirtualRegister(RC
);
1485 Register ShiftReg2
= RI
.createVirtualRegister(RC
);
1486 Register ShiftAmtSrcReg
= MI
.getOperand(2).getReg();
1487 Register SrcReg
= MI
.getOperand(1).getReg();
1488 Register DstReg
= MI
.getOperand(0).getReg();
1493 BuildMI(BB
, dl
, TII
.get(MSP430::CMP8ri
))
1494 .addReg(ShiftAmtSrcReg
).addImm(0);
1495 BuildMI(BB
, dl
, TII
.get(MSP430::JCC
))
1497 .addImm(MSP430CC::COND_E
);
1500 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1501 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1502 // ShiftReg2 = shift ShiftReg
1503 // ShiftAmt2 = ShiftAmt - 1;
1504 BuildMI(LoopBB
, dl
, TII
.get(MSP430::PHI
), ShiftReg
)
1505 .addReg(SrcReg
).addMBB(BB
)
1506 .addReg(ShiftReg2
).addMBB(LoopBB
);
1507 BuildMI(LoopBB
, dl
, TII
.get(MSP430::PHI
), ShiftAmtReg
)
1508 .addReg(ShiftAmtSrcReg
).addMBB(BB
)
1509 .addReg(ShiftAmtReg2
).addMBB(LoopBB
);
1511 BuildMI(LoopBB
, dl
, TII
.get(MSP430::BIC16rc
), MSP430::SR
)
1512 .addReg(MSP430::SR
).addImm(1);
1513 if (Opc
== MSP430::ADD8rr
|| Opc
== MSP430::ADD16rr
)
1514 BuildMI(LoopBB
, dl
, TII
.get(Opc
), ShiftReg2
)
1518 BuildMI(LoopBB
, dl
, TII
.get(Opc
), ShiftReg2
)
1520 BuildMI(LoopBB
, dl
, TII
.get(MSP430::SUB8ri
), ShiftAmtReg2
)
1521 .addReg(ShiftAmtReg
).addImm(1);
1522 BuildMI(LoopBB
, dl
, TII
.get(MSP430::JCC
))
1524 .addImm(MSP430CC::COND_NE
);
1527 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1528 BuildMI(*RemBB
, RemBB
->begin(), dl
, TII
.get(MSP430::PHI
), DstReg
)
1529 .addReg(SrcReg
).addMBB(BB
)
1530 .addReg(ShiftReg2
).addMBB(LoopBB
);
1532 MI
.eraseFromParent(); // The pseudo instruction is gone now.
1537 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1538 MachineBasicBlock
*BB
) const {
1539 unsigned Opc
= MI
.getOpcode();
1541 if (Opc
== MSP430::Shl8
|| Opc
== MSP430::Shl16
||
1542 Opc
== MSP430::Sra8
|| Opc
== MSP430::Sra16
||
1543 Opc
== MSP430::Srl8
|| Opc
== MSP430::Srl16
||
1544 Opc
== MSP430::Rrcl8
|| Opc
== MSP430::Rrcl16
)
1545 return EmitShiftInstr(MI
, BB
);
1547 const TargetInstrInfo
&TII
= *BB
->getParent()->getSubtarget().getInstrInfo();
1548 DebugLoc dl
= MI
.getDebugLoc();
1550 assert((Opc
== MSP430::Select16
|| Opc
== MSP430::Select8
) &&
1551 "Unexpected instr type to insert");
1553 // To "insert" a SELECT instruction, we actually have to insert the diamond
1554 // control-flow pattern. The incoming instruction knows the destination vreg
1555 // to set, the condition code register to branch on, the true/false values to
1556 // select between, and a branch opcode to use.
1557 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1558 MachineFunction::iterator I
= ++BB
->getIterator();
1563 // cmpTY ccX, r1, r2
1565 // fallthrough --> copy0MBB
1566 MachineBasicBlock
*thisMBB
= BB
;
1567 MachineFunction
*F
= BB
->getParent();
1568 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1569 MachineBasicBlock
*copy1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1570 F
->insert(I
, copy0MBB
);
1571 F
->insert(I
, copy1MBB
);
1572 // Update machine-CFG edges by transferring all successors of the current
1573 // block to the new block which will contain the Phi node for the select.
1574 copy1MBB
->splice(copy1MBB
->begin(), BB
,
1575 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1576 copy1MBB
->transferSuccessorsAndUpdatePHIs(BB
);
1577 // Next, add the true and fallthrough blocks as its successors.
1578 BB
->addSuccessor(copy0MBB
);
1579 BB
->addSuccessor(copy1MBB
);
1581 BuildMI(BB
, dl
, TII
.get(MSP430::JCC
))
1583 .addImm(MI
.getOperand(3).getImm());
1586 // %FalseValue = ...
1587 // # fallthrough to copy1MBB
1590 // Update machine-CFG edges
1591 BB
->addSuccessor(copy1MBB
);
1594 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1597 BuildMI(*BB
, BB
->begin(), dl
, TII
.get(MSP430::PHI
), MI
.getOperand(0).getReg())
1598 .addReg(MI
.getOperand(2).getReg())
1600 .addReg(MI
.getOperand(1).getReg())
1603 MI
.eraseFromParent(); // The pseudo instruction is gone now.