[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / Mips / MipsSEISelLowering.cpp
blobbf7e7b6c30bd7b240f7f010f0dd8d77885e78535
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
50 using namespace llvm;
52 #define DEBUG_TYPE "mips-isel"
54 static cl::opt<bool>
55 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
56 cl::desc("MIPS: permit tail calls."), cl::init(false));
58 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
59 cl::desc("Expand double precision loads and "
60 "stores to their single precision "
61 "counterparts"));
63 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
64 const MipsSubtarget &STI)
65 : MipsTargetLowering(TM, STI) {
66 // Set up the register classes
67 addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
69 if (Subtarget.isGP64bit())
70 addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
72 if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
73 // Expand all truncating stores and extending loads.
74 for (MVT VT0 : MVT::vector_valuetypes()) {
75 for (MVT VT1 : MVT::vector_valuetypes()) {
76 setTruncStoreAction(VT0, VT1, Expand);
77 setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
78 setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
79 setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
84 if (Subtarget.hasDSP()) {
85 MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
87 for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
88 addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
90 // Expand all builtin opcodes.
91 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
92 setOperationAction(Opc, VecTys[i], Expand);
94 setOperationAction(ISD::ADD, VecTys[i], Legal);
95 setOperationAction(ISD::SUB, VecTys[i], Legal);
96 setOperationAction(ISD::LOAD, VecTys[i], Legal);
97 setOperationAction(ISD::STORE, VecTys[i], Legal);
98 setOperationAction(ISD::BITCAST, VecTys[i], Legal);
101 setTargetDAGCombine(ISD::SHL);
102 setTargetDAGCombine(ISD::SRA);
103 setTargetDAGCombine(ISD::SRL);
104 setTargetDAGCombine(ISD::SETCC);
105 setTargetDAGCombine(ISD::VSELECT);
107 if (Subtarget.hasMips32r2()) {
108 setOperationAction(ISD::ADDC, MVT::i32, Legal);
109 setOperationAction(ISD::ADDE, MVT::i32, Legal);
113 if (Subtarget.hasDSPR2())
114 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
116 if (Subtarget.hasMSA()) {
117 addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
118 addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
119 addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
120 addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
121 addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
122 addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
123 addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
125 // f16 is a storage-only type, always promote it to f32.
126 addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
127 setOperationAction(ISD::SETCC, MVT::f16, Promote);
128 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
129 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
130 setOperationAction(ISD::SELECT, MVT::f16, Promote);
131 setOperationAction(ISD::FADD, MVT::f16, Promote);
132 setOperationAction(ISD::FSUB, MVT::f16, Promote);
133 setOperationAction(ISD::FMUL, MVT::f16, Promote);
134 setOperationAction(ISD::FDIV, MVT::f16, Promote);
135 setOperationAction(ISD::FREM, MVT::f16, Promote);
136 setOperationAction(ISD::FMA, MVT::f16, Promote);
137 setOperationAction(ISD::FNEG, MVT::f16, Promote);
138 setOperationAction(ISD::FABS, MVT::f16, Promote);
139 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
140 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
141 setOperationAction(ISD::FCOS, MVT::f16, Promote);
142 setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
143 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
144 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
145 setOperationAction(ISD::FPOW, MVT::f16, Promote);
146 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
147 setOperationAction(ISD::FRINT, MVT::f16, Promote);
148 setOperationAction(ISD::FSIN, MVT::f16, Promote);
149 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
150 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
151 setOperationAction(ISD::FEXP, MVT::f16, Promote);
152 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
153 setOperationAction(ISD::FLOG, MVT::f16, Promote);
154 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
155 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
156 setOperationAction(ISD::FROUND, MVT::f16, Promote);
157 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
158 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
159 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
160 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
161 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
163 setTargetDAGCombine(ISD::AND);
164 setTargetDAGCombine(ISD::OR);
165 setTargetDAGCombine(ISD::SRA);
166 setTargetDAGCombine(ISD::VSELECT);
167 setTargetDAGCombine(ISD::XOR);
170 if (!Subtarget.useSoftFloat()) {
171 addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
173 // When dealing with single precision only, use libcalls
174 if (!Subtarget.isSingleFloat()) {
175 if (Subtarget.isFP64bit())
176 addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
177 else
178 addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
182 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
183 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
184 setOperationAction(ISD::MULHS, MVT::i32, Custom);
185 setOperationAction(ISD::MULHU, MVT::i32, Custom);
187 if (Subtarget.hasCnMips())
188 setOperationAction(ISD::MUL, MVT::i64, Legal);
189 else if (Subtarget.isGP64bit())
190 setOperationAction(ISD::MUL, MVT::i64, Custom);
192 if (Subtarget.isGP64bit()) {
193 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom);
194 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
195 setOperationAction(ISD::MULHS, MVT::i64, Custom);
196 setOperationAction(ISD::MULHU, MVT::i64, Custom);
197 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
198 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
201 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
202 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
204 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
205 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
206 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
207 setOperationAction(ISD::LOAD, MVT::i32, Custom);
208 setOperationAction(ISD::STORE, MVT::i32, Custom);
210 setTargetDAGCombine(ISD::MUL);
212 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
213 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
214 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
216 if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
217 !Subtarget.hasMips64()) {
218 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
221 if (NoDPLoadStore) {
222 setOperationAction(ISD::LOAD, MVT::f64, Custom);
223 setOperationAction(ISD::STORE, MVT::f64, Custom);
226 if (Subtarget.hasMips32r6()) {
227 // MIPS32r6 replaces the accumulator-based multiplies with a three register
228 // instruction
229 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
230 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
231 setOperationAction(ISD::MUL, MVT::i32, Legal);
232 setOperationAction(ISD::MULHS, MVT::i32, Legal);
233 setOperationAction(ISD::MULHU, MVT::i32, Legal);
235 // MIPS32r6 replaces the accumulator-based division/remainder with separate
236 // three register division and remainder instructions.
237 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
238 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
239 setOperationAction(ISD::SDIV, MVT::i32, Legal);
240 setOperationAction(ISD::UDIV, MVT::i32, Legal);
241 setOperationAction(ISD::SREM, MVT::i32, Legal);
242 setOperationAction(ISD::UREM, MVT::i32, Legal);
244 // MIPS32r6 replaces conditional moves with an equivalent that removes the
245 // need for three GPR read ports.
246 setOperationAction(ISD::SETCC, MVT::i32, Legal);
247 setOperationAction(ISD::SELECT, MVT::i32, Legal);
248 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
250 setOperationAction(ISD::SETCC, MVT::f32, Legal);
251 setOperationAction(ISD::SELECT, MVT::f32, Legal);
252 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
254 assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
255 setOperationAction(ISD::SETCC, MVT::f64, Legal);
256 setOperationAction(ISD::SELECT, MVT::f64, Custom);
257 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
259 setOperationAction(ISD::BRCOND, MVT::Other, Legal);
261 // Floating point > and >= are supported via < and <=
262 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
263 setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
264 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
265 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
267 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
268 setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
269 setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
270 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
273 if (Subtarget.hasMips64r6()) {
274 // MIPS64r6 replaces the accumulator-based multiplies with a three register
275 // instruction
276 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
277 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
278 setOperationAction(ISD::MUL, MVT::i64, Legal);
279 setOperationAction(ISD::MULHS, MVT::i64, Legal);
280 setOperationAction(ISD::MULHU, MVT::i64, Legal);
282 // MIPS32r6 replaces the accumulator-based division/remainder with separate
283 // three register division and remainder instructions.
284 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
285 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
286 setOperationAction(ISD::SDIV, MVT::i64, Legal);
287 setOperationAction(ISD::UDIV, MVT::i64, Legal);
288 setOperationAction(ISD::SREM, MVT::i64, Legal);
289 setOperationAction(ISD::UREM, MVT::i64, Legal);
291 // MIPS64r6 replaces conditional moves with an equivalent that removes the
292 // need for three GPR read ports.
293 setOperationAction(ISD::SETCC, MVT::i64, Legal);
294 setOperationAction(ISD::SELECT, MVT::i64, Legal);
295 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
298 computeRegisterProperties(Subtarget.getRegisterInfo());
301 const MipsTargetLowering *
302 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
303 const MipsSubtarget &STI) {
304 return new MipsSETargetLowering(TM, STI);
307 const TargetRegisterClass *
308 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
309 if (VT == MVT::Untyped)
310 return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
312 return TargetLowering::getRepRegClassFor(VT);
315 // Enable MSA support for the given integer type and Register class.
316 void MipsSETargetLowering::
317 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
318 addRegisterClass(Ty, RC);
320 // Expand all builtin opcodes.
321 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
322 setOperationAction(Opc, Ty, Expand);
324 setOperationAction(ISD::BITCAST, Ty, Legal);
325 setOperationAction(ISD::LOAD, Ty, Legal);
326 setOperationAction(ISD::STORE, Ty, Legal);
327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
328 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
329 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
331 setOperationAction(ISD::ADD, Ty, Legal);
332 setOperationAction(ISD::AND, Ty, Legal);
333 setOperationAction(ISD::CTLZ, Ty, Legal);
334 setOperationAction(ISD::CTPOP, Ty, Legal);
335 setOperationAction(ISD::MUL, Ty, Legal);
336 setOperationAction(ISD::OR, Ty, Legal);
337 setOperationAction(ISD::SDIV, Ty, Legal);
338 setOperationAction(ISD::SREM, Ty, Legal);
339 setOperationAction(ISD::SHL, Ty, Legal);
340 setOperationAction(ISD::SRA, Ty, Legal);
341 setOperationAction(ISD::SRL, Ty, Legal);
342 setOperationAction(ISD::SUB, Ty, Legal);
343 setOperationAction(ISD::SMAX, Ty, Legal);
344 setOperationAction(ISD::SMIN, Ty, Legal);
345 setOperationAction(ISD::UDIV, Ty, Legal);
346 setOperationAction(ISD::UREM, Ty, Legal);
347 setOperationAction(ISD::UMAX, Ty, Legal);
348 setOperationAction(ISD::UMIN, Ty, Legal);
349 setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
350 setOperationAction(ISD::VSELECT, Ty, Legal);
351 setOperationAction(ISD::XOR, Ty, Legal);
353 if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
354 setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
355 setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
356 setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
357 setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
360 setOperationAction(ISD::SETCC, Ty, Legal);
361 setCondCodeAction(ISD::SETNE, Ty, Expand);
362 setCondCodeAction(ISD::SETGE, Ty, Expand);
363 setCondCodeAction(ISD::SETGT, Ty, Expand);
364 setCondCodeAction(ISD::SETUGE, Ty, Expand);
365 setCondCodeAction(ISD::SETUGT, Ty, Expand);
368 // Enable MSA support for the given floating-point type and Register class.
369 void MipsSETargetLowering::
370 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
371 addRegisterClass(Ty, RC);
373 // Expand all builtin opcodes.
374 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
375 setOperationAction(Opc, Ty, Expand);
377 setOperationAction(ISD::LOAD, Ty, Legal);
378 setOperationAction(ISD::STORE, Ty, Legal);
379 setOperationAction(ISD::BITCAST, Ty, Legal);
380 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
381 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
382 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
384 if (Ty != MVT::v8f16) {
385 setOperationAction(ISD::FABS, Ty, Legal);
386 setOperationAction(ISD::FADD, Ty, Legal);
387 setOperationAction(ISD::FDIV, Ty, Legal);
388 setOperationAction(ISD::FEXP2, Ty, Legal);
389 setOperationAction(ISD::FLOG2, Ty, Legal);
390 setOperationAction(ISD::FMA, Ty, Legal);
391 setOperationAction(ISD::FMUL, Ty, Legal);
392 setOperationAction(ISD::FRINT, Ty, Legal);
393 setOperationAction(ISD::FSQRT, Ty, Legal);
394 setOperationAction(ISD::FSUB, Ty, Legal);
395 setOperationAction(ISD::VSELECT, Ty, Legal);
397 setOperationAction(ISD::SETCC, Ty, Legal);
398 setCondCodeAction(ISD::SETOGE, Ty, Expand);
399 setCondCodeAction(ISD::SETOGT, Ty, Expand);
400 setCondCodeAction(ISD::SETUGE, Ty, Expand);
401 setCondCodeAction(ISD::SETUGT, Ty, Expand);
402 setCondCodeAction(ISD::SETGE, Ty, Expand);
403 setCondCodeAction(ISD::SETGT, Ty, Expand);
407 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
408 if(!Subtarget.hasMips32r6())
409 return MipsTargetLowering::LowerOperation(Op, DAG);
411 EVT ResTy = Op->getValueType(0);
412 SDLoc DL(Op);
414 // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
415 // floating point register are undefined. Not really an issue as sel.d, which
416 // is produced from an FSELECT node, only looks at bit 0.
417 SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
418 return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
419 Op->getOperand(2));
422 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
423 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
424 MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
426 if (Subtarget.systemSupportsUnalignedAccess()) {
427 // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
428 // implementation defined whether this is handled by hardware, software, or
429 // a hybrid of the two but it's expected that most implementations will
430 // handle the majority of cases in hardware.
431 if (Fast)
432 *Fast = true;
433 return true;
436 switch (SVT) {
437 case MVT::i64:
438 case MVT::i32:
439 if (Fast)
440 *Fast = true;
441 return true;
442 default:
443 return false;
447 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
448 SelectionDAG &DAG) const {
449 switch(Op.getOpcode()) {
450 case ISD::LOAD: return lowerLOAD(Op, DAG);
451 case ISD::STORE: return lowerSTORE(Op, DAG);
452 case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
453 case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
454 case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
455 case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
456 case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
457 case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
458 case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
459 DAG);
460 case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
461 case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
462 case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
463 case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
464 case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
465 case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
466 case ISD::SELECT: return lowerSELECT(Op, DAG);
467 case ISD::BITCAST: return lowerBITCAST(Op, DAG);
470 return MipsTargetLowering::LowerOperation(Op, DAG);
473 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
475 // Performs the following transformations:
476 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
477 // sign/zero-extension is completely overwritten by the new one performed by
478 // the ISD::AND.
479 // - Removes redundant zero extensions performed by an ISD::AND.
480 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
481 TargetLowering::DAGCombinerInfo &DCI,
482 const MipsSubtarget &Subtarget) {
483 if (!Subtarget.hasMSA())
484 return SDValue();
486 SDValue Op0 = N->getOperand(0);
487 SDValue Op1 = N->getOperand(1);
488 unsigned Op0Opcode = Op0->getOpcode();
490 // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
491 // where $d + 1 == 2^n and n == 32
492 // or $d + 1 == 2^n and n <= 32 and ZExt
493 // -> (MipsVExtractZExt $a, $b, $c)
494 if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
495 Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
496 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
498 if (!Mask)
499 return SDValue();
501 int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
503 if (Log2IfPositive <= 0)
504 return SDValue(); // Mask+1 is not a power of 2
506 SDValue Op0Op2 = Op0->getOperand(2);
507 EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
508 unsigned ExtendTySize = ExtendTy.getSizeInBits();
509 unsigned Log2 = Log2IfPositive;
511 if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
512 Log2 == ExtendTySize) {
513 SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
514 return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
515 Op0->getVTList(),
516 makeArrayRef(Ops, Op0->getNumOperands()));
520 return SDValue();
523 // Determine if the specified node is a constant vector splat.
525 // Returns true and sets Imm if:
526 // * N is a ISD::BUILD_VECTOR representing a constant splat
528 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
529 // differences are that it assumes the MSA has already been checked and the
530 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
531 // must not be in order for binsri.d to be selectable).
532 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
533 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
535 if (!Node)
536 return false;
538 APInt SplatValue, SplatUndef;
539 unsigned SplatBitSize;
540 bool HasAnyUndefs;
542 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
543 8, !IsLittleEndian))
544 return false;
546 Imm = SplatValue;
548 return true;
551 // Test whether the given node is an all-ones build_vector.
552 static bool isVectorAllOnes(SDValue N) {
553 // Look through bitcasts. Endianness doesn't matter because we are looking
554 // for an all-ones value.
555 if (N->getOpcode() == ISD::BITCAST)
556 N = N->getOperand(0);
558 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
560 if (!BVN)
561 return false;
563 APInt SplatValue, SplatUndef;
564 unsigned SplatBitSize;
565 bool HasAnyUndefs;
567 // Endianness doesn't matter in this context because we are looking for
568 // an all-ones value.
569 if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
570 return SplatValue.isAllOnesValue();
572 return false;
575 // Test whether N is the bitwise inverse of OfNode.
576 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
577 if (N->getOpcode() != ISD::XOR)
578 return false;
580 if (isVectorAllOnes(N->getOperand(0)))
581 return N->getOperand(1) == OfNode;
583 if (isVectorAllOnes(N->getOperand(1)))
584 return N->getOperand(0) == OfNode;
586 return false;
589 // Perform combines where ISD::OR is the root node.
591 // Performs the following transformations:
592 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
593 // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
594 // vector type.
595 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
596 TargetLowering::DAGCombinerInfo &DCI,
597 const MipsSubtarget &Subtarget) {
598 if (!Subtarget.hasMSA())
599 return SDValue();
601 EVT Ty = N->getValueType(0);
603 if (!Ty.is128BitVector())
604 return SDValue();
606 SDValue Op0 = N->getOperand(0);
607 SDValue Op1 = N->getOperand(1);
609 if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
610 SDValue Op0Op0 = Op0->getOperand(0);
611 SDValue Op0Op1 = Op0->getOperand(1);
612 SDValue Op1Op0 = Op1->getOperand(0);
613 SDValue Op1Op1 = Op1->getOperand(1);
614 bool IsLittleEndian = !Subtarget.isLittle();
616 SDValue IfSet, IfClr, Cond;
617 bool IsConstantMask = false;
618 APInt Mask, InvMask;
620 // If Op0Op0 is an appropriate mask, try to find it's inverse in either
621 // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
622 // looking.
623 // IfClr will be set if we find a valid match.
624 if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
625 Cond = Op0Op0;
626 IfSet = Op0Op1;
628 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
629 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
630 IfClr = Op1Op1;
631 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
632 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
633 IfClr = Op1Op0;
635 IsConstantMask = true;
638 // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
639 // thing again using this mask.
640 // IfClr will be set if we find a valid match.
641 if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
642 Cond = Op0Op1;
643 IfSet = Op0Op0;
645 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
646 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
647 IfClr = Op1Op1;
648 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
649 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
650 IfClr = Op1Op0;
652 IsConstantMask = true;
655 // If IfClr is not yet set, try looking for a non-constant match.
656 // IfClr will be set if we find a valid match amongst the eight
657 // possibilities.
658 if (!IfClr.getNode()) {
659 if (isBitwiseInverse(Op0Op0, Op1Op0)) {
660 Cond = Op1Op0;
661 IfSet = Op1Op1;
662 IfClr = Op0Op1;
663 } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
664 Cond = Op1Op0;
665 IfSet = Op1Op1;
666 IfClr = Op0Op0;
667 } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
668 Cond = Op1Op1;
669 IfSet = Op1Op0;
670 IfClr = Op0Op1;
671 } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
672 Cond = Op1Op1;
673 IfSet = Op1Op0;
674 IfClr = Op0Op0;
675 } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
676 Cond = Op0Op0;
677 IfSet = Op0Op1;
678 IfClr = Op1Op1;
679 } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
680 Cond = Op0Op0;
681 IfSet = Op0Op1;
682 IfClr = Op1Op0;
683 } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
684 Cond = Op0Op1;
685 IfSet = Op0Op0;
686 IfClr = Op1Op1;
687 } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
688 Cond = Op0Op1;
689 IfSet = Op0Op0;
690 IfClr = Op1Op0;
694 // At this point, IfClr will be set if we have a valid match.
695 if (!IfClr.getNode())
696 return SDValue();
698 assert(Cond.getNode() && IfSet.getNode());
700 // Fold degenerate cases.
701 if (IsConstantMask) {
702 if (Mask.isAllOnesValue())
703 return IfSet;
704 else if (Mask == 0)
705 return IfClr;
708 // Transform the DAG into an equivalent VSELECT.
709 return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
712 return SDValue();
715 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
716 SelectionDAG &DAG,
717 const MipsSubtarget &Subtarget) {
718 // Estimate the number of operations the below transform will turn a
719 // constant multiply into. The number is approximately equal to the minimal
720 // number of powers of two that constant can be broken down to by adding
721 // or subtracting them.
723 // If we have taken more than 12[1] / 8[2] steps to attempt the
724 // optimization for a native sized value, it is more than likely that this
725 // optimization will make things worse.
727 // [1] MIPS64 requires 6 instructions at most to materialize any constant,
728 // multiplication requires at least 4 cycles, but another cycle (or two)
729 // to retrieve the result from the HI/LO registers.
731 // [2] For MIPS32, more than 8 steps is expensive as the constant could be
732 // materialized in 2 instructions, multiplication requires at least 4
733 // cycles, but another cycle (or two) to retrieve the result from the
734 // HI/LO registers.
736 // TODO:
737 // - MaxSteps needs to consider the `VT` of the constant for the current
738 // target.
739 // - Consider to perform this optimization after type legalization.
740 // That allows to remove a workaround for types not supported natively.
741 // - Take in account `-Os, -Oz` flags because this optimization
742 // increases code size.
743 unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
745 SmallVector<APInt, 16> WorkStack(1, C);
746 unsigned Steps = 0;
747 unsigned BitWidth = C.getBitWidth();
749 while (!WorkStack.empty()) {
750 APInt Val = WorkStack.pop_back_val();
752 if (Val == 0 || Val == 1)
753 continue;
755 if (Steps >= MaxSteps)
756 return false;
758 if (Val.isPowerOf2()) {
759 ++Steps;
760 continue;
763 APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
764 APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
765 : APInt(BitWidth, 1) << C.ceilLogBase2();
766 if ((Val - Floor).ule(Ceil - Val)) {
767 WorkStack.push_back(Floor);
768 WorkStack.push_back(Val - Floor);
769 } else {
770 WorkStack.push_back(Ceil);
771 WorkStack.push_back(Ceil - Val);
774 ++Steps;
777 // If the value being multiplied is not supported natively, we have to pay
778 // an additional legalization cost, conservatively assume an increase in the
779 // cost of 3 instructions per step. This values for this heuristic were
780 // determined experimentally.
781 unsigned RegisterSize = DAG.getTargetLoweringInfo()
782 .getRegisterType(*DAG.getContext(), VT)
783 .getSizeInBits();
784 Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
785 if (Steps > 27)
786 return false;
788 return true;
791 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
792 EVT ShiftTy, SelectionDAG &DAG) {
793 // Return 0.
794 if (C == 0)
795 return DAG.getConstant(0, DL, VT);
797 // Return x.
798 if (C == 1)
799 return X;
801 // If c is power of 2, return (shl x, log2(c)).
802 if (C.isPowerOf2())
803 return DAG.getNode(ISD::SHL, DL, VT, X,
804 DAG.getConstant(C.logBase2(), DL, ShiftTy));
806 unsigned BitWidth = C.getBitWidth();
807 APInt Floor = APInt(BitWidth, 1) << C.logBase2();
808 APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
809 APInt(BitWidth, 1) << C.ceilLogBase2();
811 // If |c - floor_c| <= |c - ceil_c|,
812 // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
813 // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
814 if ((C - Floor).ule(Ceil - C)) {
815 SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
816 SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
817 return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
820 // If |c - floor_c| > |c - ceil_c|,
821 // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
822 SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
823 SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
824 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
827 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
828 const TargetLowering::DAGCombinerInfo &DCI,
829 const MipsSETargetLowering *TL,
830 const MipsSubtarget &Subtarget) {
831 EVT VT = N->getValueType(0);
833 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
834 if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
835 C->getAPIntValue(), VT, DAG, Subtarget))
836 return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
837 TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
838 DAG);
840 return SDValue(N, 0);
843 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
844 SelectionDAG &DAG,
845 const MipsSubtarget &Subtarget) {
846 // See if this is a vector splat immediate node.
847 APInt SplatValue, SplatUndef;
848 unsigned SplatBitSize;
849 bool HasAnyUndefs;
850 unsigned EltSize = Ty.getScalarSizeInBits();
851 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
853 if (!Subtarget.hasDSP())
854 return SDValue();
856 if (!BV ||
857 !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
858 EltSize, !Subtarget.isLittle()) ||
859 (SplatBitSize != EltSize) ||
860 (SplatValue.getZExtValue() >= EltSize))
861 return SDValue();
863 SDLoc DL(N);
864 return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
865 DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
868 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
869 TargetLowering::DAGCombinerInfo &DCI,
870 const MipsSubtarget &Subtarget) {
871 EVT Ty = N->getValueType(0);
873 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
874 return SDValue();
876 return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
879 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
880 // constant splats into MipsISD::SHRA_DSP for DSPr2.
882 // Performs the following transformations:
883 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
884 // sign/zero-extension is completely overwritten by the new one performed by
885 // the ISD::SRA and ISD::SHL nodes.
886 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
887 // sequence.
889 // See performDSPShiftCombine for more information about the transformation
890 // used for DSPr2.
891 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
892 TargetLowering::DAGCombinerInfo &DCI,
893 const MipsSubtarget &Subtarget) {
894 EVT Ty = N->getValueType(0);
896 if (Subtarget.hasMSA()) {
897 SDValue Op0 = N->getOperand(0);
898 SDValue Op1 = N->getOperand(1);
900 // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
901 // where $d + sizeof($c) == 32
902 // or $d + sizeof($c) <= 32 and SExt
903 // -> (MipsVExtractSExt $a, $b, $c)
904 if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
905 SDValue Op0Op0 = Op0->getOperand(0);
906 ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
908 if (!ShAmount)
909 return SDValue();
911 if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
912 Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
913 return SDValue();
915 EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
916 unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
918 if (TotalBits == 32 ||
919 (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
920 TotalBits <= 32)) {
921 SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
922 Op0Op0->getOperand(2) };
923 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
924 Op0Op0->getVTList(),
925 makeArrayRef(Ops, Op0Op0->getNumOperands()));
930 if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
931 return SDValue();
933 return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
937 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
938 TargetLowering::DAGCombinerInfo &DCI,
939 const MipsSubtarget &Subtarget) {
940 EVT Ty = N->getValueType(0);
942 if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
943 return SDValue();
945 return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
948 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
949 bool IsV216 = (Ty == MVT::v2i16);
951 switch (CC) {
952 case ISD::SETEQ:
953 case ISD::SETNE: return true;
954 case ISD::SETLT:
955 case ISD::SETLE:
956 case ISD::SETGT:
957 case ISD::SETGE: return IsV216;
958 case ISD::SETULT:
959 case ISD::SETULE:
960 case ISD::SETUGT:
961 case ISD::SETUGE: return !IsV216;
962 default: return false;
966 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
967 EVT Ty = N->getValueType(0);
969 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
970 return SDValue();
972 if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
973 return SDValue();
975 return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
976 N->getOperand(1), N->getOperand(2));
979 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
980 EVT Ty = N->getValueType(0);
982 if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
983 SDValue SetCC = N->getOperand(0);
985 if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
986 return SDValue();
988 return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
989 SetCC.getOperand(0), SetCC.getOperand(1),
990 N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
993 return SDValue();
996 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
997 const MipsSubtarget &Subtarget) {
998 EVT Ty = N->getValueType(0);
1000 if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1001 // Try the following combines:
1002 // (xor (or $a, $b), (build_vector allones))
1003 // (xor (or $a, $b), (bitcast (build_vector allones)))
1004 SDValue Op0 = N->getOperand(0);
1005 SDValue Op1 = N->getOperand(1);
1006 SDValue NotOp;
1008 if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1009 NotOp = Op1;
1010 else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1011 NotOp = Op0;
1012 else
1013 return SDValue();
1015 if (NotOp->getOpcode() == ISD::OR)
1016 return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1017 NotOp->getOperand(1));
1020 return SDValue();
1023 SDValue
1024 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1025 SelectionDAG &DAG = DCI.DAG;
1026 SDValue Val;
1028 switch (N->getOpcode()) {
1029 case ISD::AND:
1030 Val = performANDCombine(N, DAG, DCI, Subtarget);
1031 break;
1032 case ISD::OR:
1033 Val = performORCombine(N, DAG, DCI, Subtarget);
1034 break;
1035 case ISD::MUL:
1036 return performMULCombine(N, DAG, DCI, this, Subtarget);
1037 case ISD::SHL:
1038 Val = performSHLCombine(N, DAG, DCI, Subtarget);
1039 break;
1040 case ISD::SRA:
1041 return performSRACombine(N, DAG, DCI, Subtarget);
1042 case ISD::SRL:
1043 return performSRLCombine(N, DAG, DCI, Subtarget);
1044 case ISD::VSELECT:
1045 return performVSELECTCombine(N, DAG);
1046 case ISD::XOR:
1047 Val = performXORCombine(N, DAG, Subtarget);
1048 break;
1049 case ISD::SETCC:
1050 Val = performSETCCCombine(N, DAG);
1051 break;
1054 if (Val.getNode()) {
1055 LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1056 N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1057 Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1058 return Val;
1061 return MipsTargetLowering::PerformDAGCombine(N, DCI);
1064 MachineBasicBlock *
1065 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1066 MachineBasicBlock *BB) const {
1067 switch (MI.getOpcode()) {
1068 default:
1069 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1070 case Mips::BPOSGE32_PSEUDO:
1071 return emitBPOSGE32(MI, BB);
1072 case Mips::SNZ_B_PSEUDO:
1073 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1074 case Mips::SNZ_H_PSEUDO:
1075 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1076 case Mips::SNZ_W_PSEUDO:
1077 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1078 case Mips::SNZ_D_PSEUDO:
1079 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1080 case Mips::SNZ_V_PSEUDO:
1081 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1082 case Mips::SZ_B_PSEUDO:
1083 return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1084 case Mips::SZ_H_PSEUDO:
1085 return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1086 case Mips::SZ_W_PSEUDO:
1087 return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1088 case Mips::SZ_D_PSEUDO:
1089 return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1090 case Mips::SZ_V_PSEUDO:
1091 return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1092 case Mips::COPY_FW_PSEUDO:
1093 return emitCOPY_FW(MI, BB);
1094 case Mips::COPY_FD_PSEUDO:
1095 return emitCOPY_FD(MI, BB);
1096 case Mips::INSERT_FW_PSEUDO:
1097 return emitINSERT_FW(MI, BB);
1098 case Mips::INSERT_FD_PSEUDO:
1099 return emitINSERT_FD(MI, BB);
1100 case Mips::INSERT_B_VIDX_PSEUDO:
1101 case Mips::INSERT_B_VIDX64_PSEUDO:
1102 return emitINSERT_DF_VIDX(MI, BB, 1, false);
1103 case Mips::INSERT_H_VIDX_PSEUDO:
1104 case Mips::INSERT_H_VIDX64_PSEUDO:
1105 return emitINSERT_DF_VIDX(MI, BB, 2, false);
1106 case Mips::INSERT_W_VIDX_PSEUDO:
1107 case Mips::INSERT_W_VIDX64_PSEUDO:
1108 return emitINSERT_DF_VIDX(MI, BB, 4, false);
1109 case Mips::INSERT_D_VIDX_PSEUDO:
1110 case Mips::INSERT_D_VIDX64_PSEUDO:
1111 return emitINSERT_DF_VIDX(MI, BB, 8, false);
1112 case Mips::INSERT_FW_VIDX_PSEUDO:
1113 case Mips::INSERT_FW_VIDX64_PSEUDO:
1114 return emitINSERT_DF_VIDX(MI, BB, 4, true);
1115 case Mips::INSERT_FD_VIDX_PSEUDO:
1116 case Mips::INSERT_FD_VIDX64_PSEUDO:
1117 return emitINSERT_DF_VIDX(MI, BB, 8, true);
1118 case Mips::FILL_FW_PSEUDO:
1119 return emitFILL_FW(MI, BB);
1120 case Mips::FILL_FD_PSEUDO:
1121 return emitFILL_FD(MI, BB);
1122 case Mips::FEXP2_W_1_PSEUDO:
1123 return emitFEXP2_W_1(MI, BB);
1124 case Mips::FEXP2_D_1_PSEUDO:
1125 return emitFEXP2_D_1(MI, BB);
1126 case Mips::ST_F16:
1127 return emitST_F16_PSEUDO(MI, BB);
1128 case Mips::LD_F16:
1129 return emitLD_F16_PSEUDO(MI, BB);
1130 case Mips::MSA_FP_EXTEND_W_PSEUDO:
1131 return emitFPEXTEND_PSEUDO(MI, BB, false);
1132 case Mips::MSA_FP_ROUND_W_PSEUDO:
1133 return emitFPROUND_PSEUDO(MI, BB, false);
1134 case Mips::MSA_FP_EXTEND_D_PSEUDO:
1135 return emitFPEXTEND_PSEUDO(MI, BB, true);
1136 case Mips::MSA_FP_ROUND_D_PSEUDO:
1137 return emitFPROUND_PSEUDO(MI, BB, true);
1141 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1142 const CCState &CCInfo, unsigned NextStackOffset,
1143 const MipsFunctionInfo &FI) const {
1144 if (!UseMipsTailCalls)
1145 return false;
1147 // Exception has to be cleared with eret.
1148 if (FI.isISR())
1149 return false;
1151 // Return false if either the callee or caller has a byval argument.
1152 if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1153 return false;
1155 // Return true if the callee's argument area is no larger than the
1156 // caller's.
1157 return NextStackOffset <= FI.getIncomingArgSize();
1160 void MipsSETargetLowering::
1161 getOpndList(SmallVectorImpl<SDValue> &Ops,
1162 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1163 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1164 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1165 SDValue Chain) const {
1166 Ops.push_back(Callee);
1167 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1168 InternalLinkage, IsCallReloc, CLI, Callee,
1169 Chain);
1172 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1173 LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1175 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1176 return MipsTargetLowering::lowerLOAD(Op, DAG);
1178 // Replace a double precision load with two i32 loads and a buildpair64.
1179 SDLoc DL(Op);
1180 SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1181 EVT PtrVT = Ptr.getValueType();
1183 // i32 load from lower address.
1184 SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1185 Nd.getAlignment(), Nd.getMemOperand()->getFlags());
1187 // i32 load from higher address.
1188 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1189 SDValue Hi = DAG.getLoad(
1190 MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1191 std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags());
1193 if (!Subtarget.isLittle())
1194 std::swap(Lo, Hi);
1196 SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1197 SDValue Ops[2] = {BP, Hi.getValue(1)};
1198 return DAG.getMergeValues(Ops, DL);
1201 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1202 StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1204 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1205 return MipsTargetLowering::lowerSTORE(Op, DAG);
1207 // Replace a double precision store with two extractelement64s and i32 stores.
1208 SDLoc DL(Op);
1209 SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1210 EVT PtrVT = Ptr.getValueType();
1211 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1212 Val, DAG.getConstant(0, DL, MVT::i32));
1213 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1214 Val, DAG.getConstant(1, DL, MVT::i32));
1216 if (!Subtarget.isLittle())
1217 std::swap(Lo, Hi);
1219 // i32 store to lower address.
1220 Chain =
1221 DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(),
1222 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1224 // i32 store to higher address.
1225 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1226 return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1227 std::min(Nd.getAlignment(), 4U),
1228 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1231 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1232 SelectionDAG &DAG) const {
1233 SDLoc DL(Op);
1234 MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1235 MVT Dest = Op.getValueType().getSimpleVT();
1237 // Bitcast i64 to double.
1238 if (Src == MVT::i64 && Dest == MVT::f64) {
1239 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1240 Op.getOperand(0), DAG.getIntPtrConstant(0, DL));
1241 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
1242 Op.getOperand(0), DAG.getIntPtrConstant(1, DL));
1243 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1246 // Bitcast double to i64.
1247 if (Src == MVT::f64 && Dest == MVT::i64) {
1248 SDValue Lo =
1249 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1250 DAG.getConstant(0, DL, MVT::i32));
1251 SDValue Hi =
1252 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1253 DAG.getConstant(1, DL, MVT::i32));
1254 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1257 // Skip other cases of bitcast and use default lowering.
1258 return SDValue();
1261 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1262 bool HasLo, bool HasHi,
1263 SelectionDAG &DAG) const {
1264 // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1265 assert(!Subtarget.hasMips32r6());
1267 EVT Ty = Op.getOperand(0).getValueType();
1268 SDLoc DL(Op);
1269 SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1270 Op.getOperand(0), Op.getOperand(1));
1271 SDValue Lo, Hi;
1273 if (HasLo)
1274 Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1275 if (HasHi)
1276 Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1278 if (!HasLo || !HasHi)
1279 return HasLo ? Lo : Hi;
1281 SDValue Vals[] = { Lo, Hi };
1282 return DAG.getMergeValues(Vals, DL);
1285 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1286 SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1287 DAG.getConstant(0, DL, MVT::i32));
1288 SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1289 DAG.getConstant(1, DL, MVT::i32));
1290 return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1293 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1294 SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1295 SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1296 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1299 // This function expands mips intrinsic nodes which have 64-bit input operands
1300 // or output values.
1302 // out64 = intrinsic-node in64
1303 // =>
1304 // lo = copy (extract-element (in64, 0))
1305 // hi = copy (extract-element (in64, 1))
1306 // mips-specific-node
1307 // v0 = copy lo
1308 // v1 = copy hi
1309 // out64 = merge-values (v0, v1)
1311 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1312 SDLoc DL(Op);
1313 bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1314 SmallVector<SDValue, 3> Ops;
1315 unsigned OpNo = 0;
1317 // See if Op has a chain input.
1318 if (HasChainIn)
1319 Ops.push_back(Op->getOperand(OpNo++));
1321 // The next operand is the intrinsic opcode.
1322 assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1324 // See if the next operand has type i64.
1325 SDValue Opnd = Op->getOperand(++OpNo), In64;
1327 if (Opnd.getValueType() == MVT::i64)
1328 In64 = initAccumulator(Opnd, DL, DAG);
1329 else
1330 Ops.push_back(Opnd);
1332 // Push the remaining operands.
1333 for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1334 Ops.push_back(Op->getOperand(OpNo));
1336 // Add In64 to the end of the list.
1337 if (In64.getNode())
1338 Ops.push_back(In64);
1340 // Scan output.
1341 SmallVector<EVT, 2> ResTys;
1343 for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1344 I != E; ++I)
1345 ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1347 // Create node.
1348 SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1349 SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1351 if (!HasChainIn)
1352 return Out;
1354 assert(Val->getValueType(1) == MVT::Other);
1355 SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1356 return DAG.getMergeValues(Vals, DL);
1359 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1360 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1361 SDLoc DL(Op);
1362 SDValue Vec = Op->getOperand(1);
1363 SDValue Idx = Op->getOperand(2);
1364 EVT ResTy = Op->getValueType(0);
1365 EVT EltTy = Vec->getValueType(0).getVectorElementType();
1367 SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1368 DAG.getValueType(EltTy));
1370 return Result;
1373 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1374 EVT ResVecTy = Op->getValueType(0);
1375 EVT ViaVecTy = ResVecTy;
1376 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1377 SDLoc DL(Op);
1379 // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1380 // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1381 // lanes.
1382 SDValue LaneA = Op->getOperand(OpNr);
1383 SDValue LaneB;
1385 if (ResVecTy == MVT::v2i64) {
1386 // In case of the index being passed as an immediate value, set the upper
1387 // lane to 0 so that the splati.d instruction can be matched.
1388 if (isa<ConstantSDNode>(LaneA))
1389 LaneB = DAG.getConstant(0, DL, MVT::i32);
1390 // Having the index passed in a register, set the upper lane to the same
1391 // value as the lower - this results in the BUILD_VECTOR node not being
1392 // expanded through stack. This way we are able to pattern match the set of
1393 // nodes created here to splat.d.
1394 else
1395 LaneB = LaneA;
1396 ViaVecTy = MVT::v4i32;
1397 if(BigEndian)
1398 std::swap(LaneA, LaneB);
1399 } else
1400 LaneB = LaneA;
1402 SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1403 LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1405 SDValue Result = DAG.getBuildVector(
1406 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1408 if (ViaVecTy != ResVecTy) {
1409 SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1410 Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1411 DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1414 return Result;
1417 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1418 bool IsSigned = false) {
1419 auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1420 return DAG.getConstant(
1421 APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1422 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1423 SDLoc(Op), Op->getValueType(0));
1426 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1427 bool BigEndian, SelectionDAG &DAG) {
1428 EVT ViaVecTy = VecTy;
1429 SDValue SplatValueA = SplatValue;
1430 SDValue SplatValueB = SplatValue;
1431 SDLoc DL(SplatValue);
1433 if (VecTy == MVT::v2i64) {
1434 // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1435 ViaVecTy = MVT::v4i32;
1437 SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1438 SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1439 DAG.getConstant(32, DL, MVT::i32));
1440 SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1443 // We currently hold the parts in little endian order. Swap them if
1444 // necessary.
1445 if (BigEndian)
1446 std::swap(SplatValueA, SplatValueB);
1448 SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1449 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1450 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1451 SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1453 SDValue Result = DAG.getBuildVector(
1454 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1456 if (VecTy != ViaVecTy)
1457 Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1459 return Result;
1462 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1463 unsigned Opc, SDValue Imm,
1464 bool BigEndian) {
1465 EVT VecTy = Op->getValueType(0);
1466 SDValue Exp2Imm;
1467 SDLoc DL(Op);
1469 // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1470 // here for now.
1471 if (VecTy == MVT::v2i64) {
1472 if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1473 APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1475 SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1476 MVT::i32);
1477 SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1479 if (BigEndian)
1480 std::swap(BitImmLoOp, BitImmHiOp);
1482 Exp2Imm = DAG.getNode(
1483 ISD::BITCAST, DL, MVT::v2i64,
1484 DAG.getBuildVector(MVT::v4i32, DL,
1485 {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1489 if (!Exp2Imm.getNode()) {
1490 // We couldnt constant fold, do a vector shift instead
1492 // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1493 // only values 0-63 are valid.
1494 if (VecTy == MVT::v2i64)
1495 Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1497 Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1499 Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1500 Exp2Imm);
1503 return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1506 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1507 SDLoc DL(Op);
1508 EVT ResTy = Op->getValueType(0);
1509 SDValue Vec = Op->getOperand(2);
1510 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1511 MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1512 SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1513 DL, ResEltTy);
1514 SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1516 return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1519 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1520 EVT ResTy = Op->getValueType(0);
1521 SDLoc DL(Op);
1522 SDValue One = DAG.getConstant(1, DL, ResTy);
1523 SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1525 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1526 DAG.getNOT(DL, Bit, ResTy));
1529 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1530 SDLoc DL(Op);
1531 EVT ResTy = Op->getValueType(0);
1532 APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1533 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1534 SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1536 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1539 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1540 SelectionDAG &DAG) const {
1541 SDLoc DL(Op);
1542 unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
1543 switch (Intrinsic) {
1544 default:
1545 return SDValue();
1546 case Intrinsic::mips_shilo:
1547 return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1548 case Intrinsic::mips_dpau_h_qbl:
1549 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1550 case Intrinsic::mips_dpau_h_qbr:
1551 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1552 case Intrinsic::mips_dpsu_h_qbl:
1553 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1554 case Intrinsic::mips_dpsu_h_qbr:
1555 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1556 case Intrinsic::mips_dpa_w_ph:
1557 return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1558 case Intrinsic::mips_dps_w_ph:
1559 return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1560 case Intrinsic::mips_dpax_w_ph:
1561 return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1562 case Intrinsic::mips_dpsx_w_ph:
1563 return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1564 case Intrinsic::mips_mulsa_w_ph:
1565 return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1566 case Intrinsic::mips_mult:
1567 return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1568 case Intrinsic::mips_multu:
1569 return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1570 case Intrinsic::mips_madd:
1571 return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1572 case Intrinsic::mips_maddu:
1573 return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1574 case Intrinsic::mips_msub:
1575 return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1576 case Intrinsic::mips_msubu:
1577 return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1578 case Intrinsic::mips_addv_b:
1579 case Intrinsic::mips_addv_h:
1580 case Intrinsic::mips_addv_w:
1581 case Intrinsic::mips_addv_d:
1582 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1583 Op->getOperand(2));
1584 case Intrinsic::mips_addvi_b:
1585 case Intrinsic::mips_addvi_h:
1586 case Intrinsic::mips_addvi_w:
1587 case Intrinsic::mips_addvi_d:
1588 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1589 lowerMSASplatImm(Op, 2, DAG));
1590 case Intrinsic::mips_and_v:
1591 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1592 Op->getOperand(2));
1593 case Intrinsic::mips_andi_b:
1594 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1595 lowerMSASplatImm(Op, 2, DAG));
1596 case Intrinsic::mips_bclr_b:
1597 case Intrinsic::mips_bclr_h:
1598 case Intrinsic::mips_bclr_w:
1599 case Intrinsic::mips_bclr_d:
1600 return lowerMSABitClear(Op, DAG);
1601 case Intrinsic::mips_bclri_b:
1602 case Intrinsic::mips_bclri_h:
1603 case Intrinsic::mips_bclri_w:
1604 case Intrinsic::mips_bclri_d:
1605 return lowerMSABitClearImm(Op, DAG);
1606 case Intrinsic::mips_binsli_b:
1607 case Intrinsic::mips_binsli_h:
1608 case Intrinsic::mips_binsli_w:
1609 case Intrinsic::mips_binsli_d: {
1610 // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1611 EVT VecTy = Op->getValueType(0);
1612 EVT EltTy = VecTy.getVectorElementType();
1613 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1614 report_fatal_error("Immediate out of range");
1615 APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1616 Op->getConstantOperandVal(3) + 1);
1617 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1618 DAG.getConstant(Mask, DL, VecTy, true),
1619 Op->getOperand(2), Op->getOperand(1));
1621 case Intrinsic::mips_binsri_b:
1622 case Intrinsic::mips_binsri_h:
1623 case Intrinsic::mips_binsri_w:
1624 case Intrinsic::mips_binsri_d: {
1625 // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1626 EVT VecTy = Op->getValueType(0);
1627 EVT EltTy = VecTy.getVectorElementType();
1628 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1629 report_fatal_error("Immediate out of range");
1630 APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1631 Op->getConstantOperandVal(3) + 1);
1632 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1633 DAG.getConstant(Mask, DL, VecTy, true),
1634 Op->getOperand(2), Op->getOperand(1));
1636 case Intrinsic::mips_bmnz_v:
1637 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1638 Op->getOperand(2), Op->getOperand(1));
1639 case Intrinsic::mips_bmnzi_b:
1640 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1641 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1642 Op->getOperand(1));
1643 case Intrinsic::mips_bmz_v:
1644 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1645 Op->getOperand(1), Op->getOperand(2));
1646 case Intrinsic::mips_bmzi_b:
1647 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1648 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1649 Op->getOperand(2));
1650 case Intrinsic::mips_bneg_b:
1651 case Intrinsic::mips_bneg_h:
1652 case Intrinsic::mips_bneg_w:
1653 case Intrinsic::mips_bneg_d: {
1654 EVT VecTy = Op->getValueType(0);
1655 SDValue One = DAG.getConstant(1, DL, VecTy);
1657 return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1658 DAG.getNode(ISD::SHL, DL, VecTy, One,
1659 truncateVecElts(Op, DAG)));
1661 case Intrinsic::mips_bnegi_b:
1662 case Intrinsic::mips_bnegi_h:
1663 case Intrinsic::mips_bnegi_w:
1664 case Intrinsic::mips_bnegi_d:
1665 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1666 !Subtarget.isLittle());
1667 case Intrinsic::mips_bnz_b:
1668 case Intrinsic::mips_bnz_h:
1669 case Intrinsic::mips_bnz_w:
1670 case Intrinsic::mips_bnz_d:
1671 return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1672 Op->getOperand(1));
1673 case Intrinsic::mips_bnz_v:
1674 return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1675 Op->getOperand(1));
1676 case Intrinsic::mips_bsel_v:
1677 // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1678 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1679 Op->getOperand(1), Op->getOperand(3),
1680 Op->getOperand(2));
1681 case Intrinsic::mips_bseli_b:
1682 // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1683 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1684 Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1685 Op->getOperand(2));
1686 case Intrinsic::mips_bset_b:
1687 case Intrinsic::mips_bset_h:
1688 case Intrinsic::mips_bset_w:
1689 case Intrinsic::mips_bset_d: {
1690 EVT VecTy = Op->getValueType(0);
1691 SDValue One = DAG.getConstant(1, DL, VecTy);
1693 return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1694 DAG.getNode(ISD::SHL, DL, VecTy, One,
1695 truncateVecElts(Op, DAG)));
1697 case Intrinsic::mips_bseti_b:
1698 case Intrinsic::mips_bseti_h:
1699 case Intrinsic::mips_bseti_w:
1700 case Intrinsic::mips_bseti_d:
1701 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1702 !Subtarget.isLittle());
1703 case Intrinsic::mips_bz_b:
1704 case Intrinsic::mips_bz_h:
1705 case Intrinsic::mips_bz_w:
1706 case Intrinsic::mips_bz_d:
1707 return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1708 Op->getOperand(1));
1709 case Intrinsic::mips_bz_v:
1710 return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1711 Op->getOperand(1));
1712 case Intrinsic::mips_ceq_b:
1713 case Intrinsic::mips_ceq_h:
1714 case Intrinsic::mips_ceq_w:
1715 case Intrinsic::mips_ceq_d:
1716 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1717 Op->getOperand(2), ISD::SETEQ);
1718 case Intrinsic::mips_ceqi_b:
1719 case Intrinsic::mips_ceqi_h:
1720 case Intrinsic::mips_ceqi_w:
1721 case Intrinsic::mips_ceqi_d:
1722 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1723 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1724 case Intrinsic::mips_cle_s_b:
1725 case Intrinsic::mips_cle_s_h:
1726 case Intrinsic::mips_cle_s_w:
1727 case Intrinsic::mips_cle_s_d:
1728 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1729 Op->getOperand(2), ISD::SETLE);
1730 case Intrinsic::mips_clei_s_b:
1731 case Intrinsic::mips_clei_s_h:
1732 case Intrinsic::mips_clei_s_w:
1733 case Intrinsic::mips_clei_s_d:
1734 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1735 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1736 case Intrinsic::mips_cle_u_b:
1737 case Intrinsic::mips_cle_u_h:
1738 case Intrinsic::mips_cle_u_w:
1739 case Intrinsic::mips_cle_u_d:
1740 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1741 Op->getOperand(2), ISD::SETULE);
1742 case Intrinsic::mips_clei_u_b:
1743 case Intrinsic::mips_clei_u_h:
1744 case Intrinsic::mips_clei_u_w:
1745 case Intrinsic::mips_clei_u_d:
1746 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1747 lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1748 case Intrinsic::mips_clt_s_b:
1749 case Intrinsic::mips_clt_s_h:
1750 case Intrinsic::mips_clt_s_w:
1751 case Intrinsic::mips_clt_s_d:
1752 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1753 Op->getOperand(2), ISD::SETLT);
1754 case Intrinsic::mips_clti_s_b:
1755 case Intrinsic::mips_clti_s_h:
1756 case Intrinsic::mips_clti_s_w:
1757 case Intrinsic::mips_clti_s_d:
1758 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1759 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1760 case Intrinsic::mips_clt_u_b:
1761 case Intrinsic::mips_clt_u_h:
1762 case Intrinsic::mips_clt_u_w:
1763 case Intrinsic::mips_clt_u_d:
1764 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1765 Op->getOperand(2), ISD::SETULT);
1766 case Intrinsic::mips_clti_u_b:
1767 case Intrinsic::mips_clti_u_h:
1768 case Intrinsic::mips_clti_u_w:
1769 case Intrinsic::mips_clti_u_d:
1770 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1771 lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1772 case Intrinsic::mips_copy_s_b:
1773 case Intrinsic::mips_copy_s_h:
1774 case Intrinsic::mips_copy_s_w:
1775 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1776 case Intrinsic::mips_copy_s_d:
1777 if (Subtarget.hasMips64())
1778 // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1779 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1780 else {
1781 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1782 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1783 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1784 Op->getValueType(0), Op->getOperand(1),
1785 Op->getOperand(2));
1787 case Intrinsic::mips_copy_u_b:
1788 case Intrinsic::mips_copy_u_h:
1789 case Intrinsic::mips_copy_u_w:
1790 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1791 case Intrinsic::mips_copy_u_d:
1792 if (Subtarget.hasMips64())
1793 // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1794 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1795 else {
1796 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1797 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1798 // Note: When i64 is illegal, this results in copy_s.w instructions
1799 // instead of copy_u.w instructions. This makes no difference to the
1800 // behaviour since i64 is only illegal when the register file is 32-bit.
1801 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1802 Op->getValueType(0), Op->getOperand(1),
1803 Op->getOperand(2));
1805 case Intrinsic::mips_div_s_b:
1806 case Intrinsic::mips_div_s_h:
1807 case Intrinsic::mips_div_s_w:
1808 case Intrinsic::mips_div_s_d:
1809 return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1810 Op->getOperand(2));
1811 case Intrinsic::mips_div_u_b:
1812 case Intrinsic::mips_div_u_h:
1813 case Intrinsic::mips_div_u_w:
1814 case Intrinsic::mips_div_u_d:
1815 return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1816 Op->getOperand(2));
1817 case Intrinsic::mips_fadd_w:
1818 case Intrinsic::mips_fadd_d:
1819 // TODO: If intrinsics have fast-math-flags, propagate them.
1820 return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1821 Op->getOperand(2));
1822 // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1823 case Intrinsic::mips_fceq_w:
1824 case Intrinsic::mips_fceq_d:
1825 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1826 Op->getOperand(2), ISD::SETOEQ);
1827 case Intrinsic::mips_fcle_w:
1828 case Intrinsic::mips_fcle_d:
1829 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1830 Op->getOperand(2), ISD::SETOLE);
1831 case Intrinsic::mips_fclt_w:
1832 case Intrinsic::mips_fclt_d:
1833 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1834 Op->getOperand(2), ISD::SETOLT);
1835 case Intrinsic::mips_fcne_w:
1836 case Intrinsic::mips_fcne_d:
1837 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1838 Op->getOperand(2), ISD::SETONE);
1839 case Intrinsic::mips_fcor_w:
1840 case Intrinsic::mips_fcor_d:
1841 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1842 Op->getOperand(2), ISD::SETO);
1843 case Intrinsic::mips_fcueq_w:
1844 case Intrinsic::mips_fcueq_d:
1845 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1846 Op->getOperand(2), ISD::SETUEQ);
1847 case Intrinsic::mips_fcule_w:
1848 case Intrinsic::mips_fcule_d:
1849 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1850 Op->getOperand(2), ISD::SETULE);
1851 case Intrinsic::mips_fcult_w:
1852 case Intrinsic::mips_fcult_d:
1853 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1854 Op->getOperand(2), ISD::SETULT);
1855 case Intrinsic::mips_fcun_w:
1856 case Intrinsic::mips_fcun_d:
1857 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1858 Op->getOperand(2), ISD::SETUO);
1859 case Intrinsic::mips_fcune_w:
1860 case Intrinsic::mips_fcune_d:
1861 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1862 Op->getOperand(2), ISD::SETUNE);
1863 case Intrinsic::mips_fdiv_w:
1864 case Intrinsic::mips_fdiv_d:
1865 // TODO: If intrinsics have fast-math-flags, propagate them.
1866 return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1867 Op->getOperand(2));
1868 case Intrinsic::mips_ffint_u_w:
1869 case Intrinsic::mips_ffint_u_d:
1870 return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1871 Op->getOperand(1));
1872 case Intrinsic::mips_ffint_s_w:
1873 case Intrinsic::mips_ffint_s_d:
1874 return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1875 Op->getOperand(1));
1876 case Intrinsic::mips_fill_b:
1877 case Intrinsic::mips_fill_h:
1878 case Intrinsic::mips_fill_w:
1879 case Intrinsic::mips_fill_d: {
1880 EVT ResTy = Op->getValueType(0);
1881 SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1882 Op->getOperand(1));
1884 // If ResTy is v2i64 then the type legalizer will break this node down into
1885 // an equivalent v4i32.
1886 return DAG.getBuildVector(ResTy, DL, Ops);
1888 case Intrinsic::mips_fexp2_w:
1889 case Intrinsic::mips_fexp2_d: {
1890 // TODO: If intrinsics have fast-math-flags, propagate them.
1891 EVT ResTy = Op->getValueType(0);
1892 return DAG.getNode(
1893 ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1894 DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1896 case Intrinsic::mips_flog2_w:
1897 case Intrinsic::mips_flog2_d:
1898 return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1899 case Intrinsic::mips_fmadd_w:
1900 case Intrinsic::mips_fmadd_d:
1901 return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1902 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1903 case Intrinsic::mips_fmul_w:
1904 case Intrinsic::mips_fmul_d:
1905 // TODO: If intrinsics have fast-math-flags, propagate them.
1906 return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1907 Op->getOperand(2));
1908 case Intrinsic::mips_fmsub_w:
1909 case Intrinsic::mips_fmsub_d: {
1910 // TODO: If intrinsics have fast-math-flags, propagate them.
1911 return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1912 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1914 case Intrinsic::mips_frint_w:
1915 case Intrinsic::mips_frint_d:
1916 return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1917 case Intrinsic::mips_fsqrt_w:
1918 case Intrinsic::mips_fsqrt_d:
1919 return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1920 case Intrinsic::mips_fsub_w:
1921 case Intrinsic::mips_fsub_d:
1922 // TODO: If intrinsics have fast-math-flags, propagate them.
1923 return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1924 Op->getOperand(2));
1925 case Intrinsic::mips_ftrunc_u_w:
1926 case Intrinsic::mips_ftrunc_u_d:
1927 return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1928 Op->getOperand(1));
1929 case Intrinsic::mips_ftrunc_s_w:
1930 case Intrinsic::mips_ftrunc_s_d:
1931 return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1932 Op->getOperand(1));
1933 case Intrinsic::mips_ilvev_b:
1934 case Intrinsic::mips_ilvev_h:
1935 case Intrinsic::mips_ilvev_w:
1936 case Intrinsic::mips_ilvev_d:
1937 return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1938 Op->getOperand(1), Op->getOperand(2));
1939 case Intrinsic::mips_ilvl_b:
1940 case Intrinsic::mips_ilvl_h:
1941 case Intrinsic::mips_ilvl_w:
1942 case Intrinsic::mips_ilvl_d:
1943 return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1944 Op->getOperand(1), Op->getOperand(2));
1945 case Intrinsic::mips_ilvod_b:
1946 case Intrinsic::mips_ilvod_h:
1947 case Intrinsic::mips_ilvod_w:
1948 case Intrinsic::mips_ilvod_d:
1949 return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1950 Op->getOperand(1), Op->getOperand(2));
1951 case Intrinsic::mips_ilvr_b:
1952 case Intrinsic::mips_ilvr_h:
1953 case Intrinsic::mips_ilvr_w:
1954 case Intrinsic::mips_ilvr_d:
1955 return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1956 Op->getOperand(1), Op->getOperand(2));
1957 case Intrinsic::mips_insert_b:
1958 case Intrinsic::mips_insert_h:
1959 case Intrinsic::mips_insert_w:
1960 case Intrinsic::mips_insert_d:
1961 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1962 Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1963 case Intrinsic::mips_insve_b:
1964 case Intrinsic::mips_insve_h:
1965 case Intrinsic::mips_insve_w:
1966 case Intrinsic::mips_insve_d: {
1967 // Report an error for out of range values.
1968 int64_t Max;
1969 switch (Intrinsic) {
1970 case Intrinsic::mips_insve_b: Max = 15; break;
1971 case Intrinsic::mips_insve_h: Max = 7; break;
1972 case Intrinsic::mips_insve_w: Max = 3; break;
1973 case Intrinsic::mips_insve_d: Max = 1; break;
1974 default: llvm_unreachable("Unmatched intrinsic");
1976 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1977 if (Value < 0 || Value > Max)
1978 report_fatal_error("Immediate out of range");
1979 return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1980 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1981 DAG.getConstant(0, DL, MVT::i32));
1983 case Intrinsic::mips_ldi_b:
1984 case Intrinsic::mips_ldi_h:
1985 case Intrinsic::mips_ldi_w:
1986 case Intrinsic::mips_ldi_d:
1987 return lowerMSASplatImm(Op, 1, DAG, true);
1988 case Intrinsic::mips_lsa:
1989 case Intrinsic::mips_dlsa: {
1990 EVT ResTy = Op->getValueType(0);
1991 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1992 DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1993 Op->getOperand(2), Op->getOperand(3)));
1995 case Intrinsic::mips_maddv_b:
1996 case Intrinsic::mips_maddv_h:
1997 case Intrinsic::mips_maddv_w:
1998 case Intrinsic::mips_maddv_d: {
1999 EVT ResTy = Op->getValueType(0);
2000 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
2001 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2002 Op->getOperand(2), Op->getOperand(3)));
2004 case Intrinsic::mips_max_s_b:
2005 case Intrinsic::mips_max_s_h:
2006 case Intrinsic::mips_max_s_w:
2007 case Intrinsic::mips_max_s_d:
2008 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2009 Op->getOperand(1), Op->getOperand(2));
2010 case Intrinsic::mips_max_u_b:
2011 case Intrinsic::mips_max_u_h:
2012 case Intrinsic::mips_max_u_w:
2013 case Intrinsic::mips_max_u_d:
2014 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2015 Op->getOperand(1), Op->getOperand(2));
2016 case Intrinsic::mips_maxi_s_b:
2017 case Intrinsic::mips_maxi_s_h:
2018 case Intrinsic::mips_maxi_s_w:
2019 case Intrinsic::mips_maxi_s_d:
2020 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2021 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2022 case Intrinsic::mips_maxi_u_b:
2023 case Intrinsic::mips_maxi_u_h:
2024 case Intrinsic::mips_maxi_u_w:
2025 case Intrinsic::mips_maxi_u_d:
2026 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2027 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2028 case Intrinsic::mips_min_s_b:
2029 case Intrinsic::mips_min_s_h:
2030 case Intrinsic::mips_min_s_w:
2031 case Intrinsic::mips_min_s_d:
2032 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2033 Op->getOperand(1), Op->getOperand(2));
2034 case Intrinsic::mips_min_u_b:
2035 case Intrinsic::mips_min_u_h:
2036 case Intrinsic::mips_min_u_w:
2037 case Intrinsic::mips_min_u_d:
2038 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2039 Op->getOperand(1), Op->getOperand(2));
2040 case Intrinsic::mips_mini_s_b:
2041 case Intrinsic::mips_mini_s_h:
2042 case Intrinsic::mips_mini_s_w:
2043 case Intrinsic::mips_mini_s_d:
2044 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2045 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2046 case Intrinsic::mips_mini_u_b:
2047 case Intrinsic::mips_mini_u_h:
2048 case Intrinsic::mips_mini_u_w:
2049 case Intrinsic::mips_mini_u_d:
2050 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2051 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2052 case Intrinsic::mips_mod_s_b:
2053 case Intrinsic::mips_mod_s_h:
2054 case Intrinsic::mips_mod_s_w:
2055 case Intrinsic::mips_mod_s_d:
2056 return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2057 Op->getOperand(2));
2058 case Intrinsic::mips_mod_u_b:
2059 case Intrinsic::mips_mod_u_h:
2060 case Intrinsic::mips_mod_u_w:
2061 case Intrinsic::mips_mod_u_d:
2062 return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2063 Op->getOperand(2));
2064 case Intrinsic::mips_mulv_b:
2065 case Intrinsic::mips_mulv_h:
2066 case Intrinsic::mips_mulv_w:
2067 case Intrinsic::mips_mulv_d:
2068 return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2069 Op->getOperand(2));
2070 case Intrinsic::mips_msubv_b:
2071 case Intrinsic::mips_msubv_h:
2072 case Intrinsic::mips_msubv_w:
2073 case Intrinsic::mips_msubv_d: {
2074 EVT ResTy = Op->getValueType(0);
2075 return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2076 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2077 Op->getOperand(2), Op->getOperand(3)));
2079 case Intrinsic::mips_nlzc_b:
2080 case Intrinsic::mips_nlzc_h:
2081 case Intrinsic::mips_nlzc_w:
2082 case Intrinsic::mips_nlzc_d:
2083 return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2084 case Intrinsic::mips_nor_v: {
2085 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2086 Op->getOperand(1), Op->getOperand(2));
2087 return DAG.getNOT(DL, Res, Res->getValueType(0));
2089 case Intrinsic::mips_nori_b: {
2090 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2091 Op->getOperand(1),
2092 lowerMSASplatImm(Op, 2, DAG));
2093 return DAG.getNOT(DL, Res, Res->getValueType(0));
2095 case Intrinsic::mips_or_v:
2096 return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2097 Op->getOperand(2));
2098 case Intrinsic::mips_ori_b:
2099 return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2100 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2101 case Intrinsic::mips_pckev_b:
2102 case Intrinsic::mips_pckev_h:
2103 case Intrinsic::mips_pckev_w:
2104 case Intrinsic::mips_pckev_d:
2105 return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2106 Op->getOperand(1), Op->getOperand(2));
2107 case Intrinsic::mips_pckod_b:
2108 case Intrinsic::mips_pckod_h:
2109 case Intrinsic::mips_pckod_w:
2110 case Intrinsic::mips_pckod_d:
2111 return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2112 Op->getOperand(1), Op->getOperand(2));
2113 case Intrinsic::mips_pcnt_b:
2114 case Intrinsic::mips_pcnt_h:
2115 case Intrinsic::mips_pcnt_w:
2116 case Intrinsic::mips_pcnt_d:
2117 return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2118 case Intrinsic::mips_sat_s_b:
2119 case Intrinsic::mips_sat_s_h:
2120 case Intrinsic::mips_sat_s_w:
2121 case Intrinsic::mips_sat_s_d:
2122 case Intrinsic::mips_sat_u_b:
2123 case Intrinsic::mips_sat_u_h:
2124 case Intrinsic::mips_sat_u_w:
2125 case Intrinsic::mips_sat_u_d: {
2126 // Report an error for out of range values.
2127 int64_t Max;
2128 switch (Intrinsic) {
2129 case Intrinsic::mips_sat_s_b:
2130 case Intrinsic::mips_sat_u_b: Max = 7; break;
2131 case Intrinsic::mips_sat_s_h:
2132 case Intrinsic::mips_sat_u_h: Max = 15; break;
2133 case Intrinsic::mips_sat_s_w:
2134 case Intrinsic::mips_sat_u_w: Max = 31; break;
2135 case Intrinsic::mips_sat_s_d:
2136 case Intrinsic::mips_sat_u_d: Max = 63; break;
2137 default: llvm_unreachable("Unmatched intrinsic");
2139 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2140 if (Value < 0 || Value > Max)
2141 report_fatal_error("Immediate out of range");
2142 return SDValue();
2144 case Intrinsic::mips_shf_b:
2145 case Intrinsic::mips_shf_h:
2146 case Intrinsic::mips_shf_w: {
2147 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2148 if (Value < 0 || Value > 255)
2149 report_fatal_error("Immediate out of range");
2150 return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2151 Op->getOperand(2), Op->getOperand(1));
2153 case Intrinsic::mips_sldi_b:
2154 case Intrinsic::mips_sldi_h:
2155 case Intrinsic::mips_sldi_w:
2156 case Intrinsic::mips_sldi_d: {
2157 // Report an error for out of range values.
2158 int64_t Max;
2159 switch (Intrinsic) {
2160 case Intrinsic::mips_sldi_b: Max = 15; break;
2161 case Intrinsic::mips_sldi_h: Max = 7; break;
2162 case Intrinsic::mips_sldi_w: Max = 3; break;
2163 case Intrinsic::mips_sldi_d: Max = 1; break;
2164 default: llvm_unreachable("Unmatched intrinsic");
2166 int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2167 if (Value < 0 || Value > Max)
2168 report_fatal_error("Immediate out of range");
2169 return SDValue();
2171 case Intrinsic::mips_sll_b:
2172 case Intrinsic::mips_sll_h:
2173 case Intrinsic::mips_sll_w:
2174 case Intrinsic::mips_sll_d:
2175 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2176 truncateVecElts(Op, DAG));
2177 case Intrinsic::mips_slli_b:
2178 case Intrinsic::mips_slli_h:
2179 case Intrinsic::mips_slli_w:
2180 case Intrinsic::mips_slli_d:
2181 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2182 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2183 case Intrinsic::mips_splat_b:
2184 case Intrinsic::mips_splat_h:
2185 case Intrinsic::mips_splat_w:
2186 case Intrinsic::mips_splat_d:
2187 // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2188 // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2189 // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2190 // Instead we lower to MipsISD::VSHF and match from there.
2191 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2192 lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2193 Op->getOperand(1));
2194 case Intrinsic::mips_splati_b:
2195 case Intrinsic::mips_splati_h:
2196 case Intrinsic::mips_splati_w:
2197 case Intrinsic::mips_splati_d:
2198 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2199 lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2200 Op->getOperand(1));
2201 case Intrinsic::mips_sra_b:
2202 case Intrinsic::mips_sra_h:
2203 case Intrinsic::mips_sra_w:
2204 case Intrinsic::mips_sra_d:
2205 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2206 truncateVecElts(Op, DAG));
2207 case Intrinsic::mips_srai_b:
2208 case Intrinsic::mips_srai_h:
2209 case Intrinsic::mips_srai_w:
2210 case Intrinsic::mips_srai_d:
2211 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2212 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2213 case Intrinsic::mips_srari_b:
2214 case Intrinsic::mips_srari_h:
2215 case Intrinsic::mips_srari_w:
2216 case Intrinsic::mips_srari_d: {
2217 // Report an error for out of range values.
2218 int64_t Max;
2219 switch (Intrinsic) {
2220 case Intrinsic::mips_srari_b: Max = 7; break;
2221 case Intrinsic::mips_srari_h: Max = 15; break;
2222 case Intrinsic::mips_srari_w: Max = 31; break;
2223 case Intrinsic::mips_srari_d: Max = 63; break;
2224 default: llvm_unreachable("Unmatched intrinsic");
2226 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2227 if (Value < 0 || Value > Max)
2228 report_fatal_error("Immediate out of range");
2229 return SDValue();
2231 case Intrinsic::mips_srl_b:
2232 case Intrinsic::mips_srl_h:
2233 case Intrinsic::mips_srl_w:
2234 case Intrinsic::mips_srl_d:
2235 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2236 truncateVecElts(Op, DAG));
2237 case Intrinsic::mips_srli_b:
2238 case Intrinsic::mips_srli_h:
2239 case Intrinsic::mips_srli_w:
2240 case Intrinsic::mips_srli_d:
2241 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2242 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2243 case Intrinsic::mips_srlri_b:
2244 case Intrinsic::mips_srlri_h:
2245 case Intrinsic::mips_srlri_w:
2246 case Intrinsic::mips_srlri_d: {
2247 // Report an error for out of range values.
2248 int64_t Max;
2249 switch (Intrinsic) {
2250 case Intrinsic::mips_srlri_b: Max = 7; break;
2251 case Intrinsic::mips_srlri_h: Max = 15; break;
2252 case Intrinsic::mips_srlri_w: Max = 31; break;
2253 case Intrinsic::mips_srlri_d: Max = 63; break;
2254 default: llvm_unreachable("Unmatched intrinsic");
2256 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2257 if (Value < 0 || Value > Max)
2258 report_fatal_error("Immediate out of range");
2259 return SDValue();
2261 case Intrinsic::mips_subv_b:
2262 case Intrinsic::mips_subv_h:
2263 case Intrinsic::mips_subv_w:
2264 case Intrinsic::mips_subv_d:
2265 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2266 Op->getOperand(2));
2267 case Intrinsic::mips_subvi_b:
2268 case Intrinsic::mips_subvi_h:
2269 case Intrinsic::mips_subvi_w:
2270 case Intrinsic::mips_subvi_d:
2271 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2272 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2273 case Intrinsic::mips_vshf_b:
2274 case Intrinsic::mips_vshf_h:
2275 case Intrinsic::mips_vshf_w:
2276 case Intrinsic::mips_vshf_d:
2277 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2278 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2279 case Intrinsic::mips_xor_v:
2280 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2281 Op->getOperand(2));
2282 case Intrinsic::mips_xori_b:
2283 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2284 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2285 case Intrinsic::thread_pointer: {
2286 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2287 return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2292 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2293 const MipsSubtarget &Subtarget) {
2294 SDLoc DL(Op);
2295 SDValue ChainIn = Op->getOperand(0);
2296 SDValue Address = Op->getOperand(2);
2297 SDValue Offset = Op->getOperand(3);
2298 EVT ResTy = Op->getValueType(0);
2299 EVT PtrTy = Address->getValueType(0);
2301 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2302 // however takes an i32 signed constant offset. The actual type of the
2303 // intrinsic is a scaled signed i10.
2304 if (Subtarget.isABI_N64())
2305 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2307 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2308 return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2309 /* Alignment = */ 16);
2312 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2313 SelectionDAG &DAG) const {
2314 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2315 switch (Intr) {
2316 default:
2317 return SDValue();
2318 case Intrinsic::mips_extp:
2319 return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2320 case Intrinsic::mips_extpdp:
2321 return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2322 case Intrinsic::mips_extr_w:
2323 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2324 case Intrinsic::mips_extr_r_w:
2325 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2326 case Intrinsic::mips_extr_rs_w:
2327 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2328 case Intrinsic::mips_extr_s_h:
2329 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2330 case Intrinsic::mips_mthlip:
2331 return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2332 case Intrinsic::mips_mulsaq_s_w_ph:
2333 return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2334 case Intrinsic::mips_maq_s_w_phl:
2335 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2336 case Intrinsic::mips_maq_s_w_phr:
2337 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2338 case Intrinsic::mips_maq_sa_w_phl:
2339 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2340 case Intrinsic::mips_maq_sa_w_phr:
2341 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2342 case Intrinsic::mips_dpaq_s_w_ph:
2343 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2344 case Intrinsic::mips_dpsq_s_w_ph:
2345 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2346 case Intrinsic::mips_dpaq_sa_l_w:
2347 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2348 case Intrinsic::mips_dpsq_sa_l_w:
2349 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2350 case Intrinsic::mips_dpaqx_s_w_ph:
2351 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2352 case Intrinsic::mips_dpaqx_sa_w_ph:
2353 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2354 case Intrinsic::mips_dpsqx_s_w_ph:
2355 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2356 case Intrinsic::mips_dpsqx_sa_w_ph:
2357 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2358 case Intrinsic::mips_ld_b:
2359 case Intrinsic::mips_ld_h:
2360 case Intrinsic::mips_ld_w:
2361 case Intrinsic::mips_ld_d:
2362 return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2366 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2367 const MipsSubtarget &Subtarget) {
2368 SDLoc DL(Op);
2369 SDValue ChainIn = Op->getOperand(0);
2370 SDValue Value = Op->getOperand(2);
2371 SDValue Address = Op->getOperand(3);
2372 SDValue Offset = Op->getOperand(4);
2373 EVT PtrTy = Address->getValueType(0);
2375 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2376 // however takes an i32 signed constant offset. The actual type of the
2377 // intrinsic is a scaled signed i10.
2378 if (Subtarget.isABI_N64())
2379 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2381 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2383 return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2384 /* Alignment = */ 16);
2387 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2388 SelectionDAG &DAG) const {
2389 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2390 switch (Intr) {
2391 default:
2392 return SDValue();
2393 case Intrinsic::mips_st_b:
2394 case Intrinsic::mips_st_h:
2395 case Intrinsic::mips_st_w:
2396 case Intrinsic::mips_st_d:
2397 return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2401 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2403 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2404 // choose to sign-extend but we could have equally chosen zero-extend. The
2405 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2406 // result into this node later (possibly changing it to a zero-extend in the
2407 // process).
2408 SDValue MipsSETargetLowering::
2409 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2410 SDLoc DL(Op);
2411 EVT ResTy = Op->getValueType(0);
2412 SDValue Op0 = Op->getOperand(0);
2413 EVT VecTy = Op0->getValueType(0);
2415 if (!VecTy.is128BitVector())
2416 return SDValue();
2418 if (ResTy.isInteger()) {
2419 SDValue Op1 = Op->getOperand(1);
2420 EVT EltTy = VecTy.getVectorElementType();
2421 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2422 DAG.getValueType(EltTy));
2425 return Op;
2428 static bool isConstantOrUndef(const SDValue Op) {
2429 if (Op->isUndef())
2430 return true;
2431 if (isa<ConstantSDNode>(Op))
2432 return true;
2433 if (isa<ConstantFPSDNode>(Op))
2434 return true;
2435 return false;
2438 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2439 for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2440 if (isConstantOrUndef(Op->getOperand(i)))
2441 return true;
2442 return false;
2445 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2446 // backend.
2448 // Lowers according to the following rules:
2449 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2450 // 2 less than or equal to 64 and the value fits into a signed 10-bit
2451 // immediate
2452 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2453 // is a power of 2 less than or equal to 64 and the value does not fit into a
2454 // signed 10-bit immediate
2455 // - Non-constant splats are legal as-is.
2456 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2457 // - All others are illegal and must be expanded.
2458 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2459 SelectionDAG &DAG) const {
2460 BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2461 EVT ResTy = Op->getValueType(0);
2462 SDLoc DL(Op);
2463 APInt SplatValue, SplatUndef;
2464 unsigned SplatBitSize;
2465 bool HasAnyUndefs;
2467 if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2468 return SDValue();
2470 if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2471 HasAnyUndefs, 8,
2472 !Subtarget.isLittle()) && SplatBitSize <= 64) {
2473 // We can only cope with 8, 16, 32, or 64-bit elements
2474 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2475 SplatBitSize != 64)
2476 return SDValue();
2478 // If the value isn't an integer type we will have to bitcast
2479 // from an integer type first. Also, if there are any undefs, we must
2480 // lower them to defined values first.
2481 if (ResTy.isInteger() && !HasAnyUndefs)
2482 return Op;
2484 EVT ViaVecTy;
2486 switch (SplatBitSize) {
2487 default:
2488 return SDValue();
2489 case 8:
2490 ViaVecTy = MVT::v16i8;
2491 break;
2492 case 16:
2493 ViaVecTy = MVT::v8i16;
2494 break;
2495 case 32:
2496 ViaVecTy = MVT::v4i32;
2497 break;
2498 case 64:
2499 // There's no fill.d to fall back on for 64-bit values
2500 return SDValue();
2503 // SelectionDAG::getConstant will promote SplatValue appropriately.
2504 SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2506 // Bitcast to the type we originally wanted
2507 if (ViaVecTy != ResTy)
2508 Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2510 return Result;
2511 } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2512 return Op;
2513 else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2514 // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2515 // The resulting code is the same length as the expansion, but it doesn't
2516 // use memory operations
2517 EVT ResTy = Node->getValueType(0);
2519 assert(ResTy.isVector());
2521 unsigned NumElts = ResTy.getVectorNumElements();
2522 SDValue Vector = DAG.getUNDEF(ResTy);
2523 for (unsigned i = 0; i < NumElts; ++i) {
2524 Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2525 Node->getOperand(i),
2526 DAG.getConstant(i, DL, MVT::i32));
2528 return Vector;
2531 return SDValue();
2534 // Lower VECTOR_SHUFFLE into SHF (if possible).
2536 // SHF splits the vector into blocks of four elements, then shuffles these
2537 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2539 // It is therefore possible to lower into SHF when the mask takes the form:
2540 // <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2541 // When undef's appear they are treated as if they were whatever value is
2542 // necessary in order to fit the above forms.
2544 // For example:
2545 // %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2546 // <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2547 // i32 7, i32 6, i32 5, i32 4>
2548 // is lowered to:
2549 // (SHF_H $w0, $w1, 27)
2550 // where the 27 comes from:
2551 // 3 + (2 << 2) + (1 << 4) + (0 << 6)
2552 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2553 SmallVector<int, 16> Indices,
2554 SelectionDAG &DAG) {
2555 int SHFIndices[4] = { -1, -1, -1, -1 };
2557 if (Indices.size() < 4)
2558 return SDValue();
2560 for (unsigned i = 0; i < 4; ++i) {
2561 for (unsigned j = i; j < Indices.size(); j += 4) {
2562 int Idx = Indices[j];
2564 // Convert from vector index to 4-element subvector index
2565 // If an index refers to an element outside of the subvector then give up
2566 if (Idx != -1) {
2567 Idx -= 4 * (j / 4);
2568 if (Idx < 0 || Idx >= 4)
2569 return SDValue();
2572 // If the mask has an undef, replace it with the current index.
2573 // Note that it might still be undef if the current index is also undef
2574 if (SHFIndices[i] == -1)
2575 SHFIndices[i] = Idx;
2577 // Check that non-undef values are the same as in the mask. If they
2578 // aren't then give up
2579 if (!(Idx == -1 || Idx == SHFIndices[i]))
2580 return SDValue();
2584 // Calculate the immediate. Replace any remaining undefs with zero
2585 APInt Imm(32, 0);
2586 for (int i = 3; i >= 0; --i) {
2587 int Idx = SHFIndices[i];
2589 if (Idx == -1)
2590 Idx = 0;
2592 Imm <<= 2;
2593 Imm |= Idx & 0x3;
2596 SDLoc DL(Op);
2597 return DAG.getNode(MipsISD::SHF, DL, ResTy,
2598 DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
2601 /// Determine whether a range fits a regular pattern of values.
2602 /// This function accounts for the possibility of jumping over the End iterator.
2603 template <typename ValType>
2604 static bool
2605 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2606 unsigned CheckStride,
2607 typename SmallVectorImpl<ValType>::const_iterator End,
2608 ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2609 auto &I = Begin;
2611 while (I != End) {
2612 if (*I != -1 && *I != ExpectedIndex)
2613 return false;
2614 ExpectedIndex += ExpectedIndexStride;
2616 // Incrementing past End is undefined behaviour so we must increment one
2617 // step at a time and check for End at each step.
2618 for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2619 ; // Empty loop body.
2621 return true;
2624 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2626 // It is a SPLATI when the mask is:
2627 // <x, x, x, ...>
2628 // where x is any valid index.
2630 // When undef's appear in the mask they are treated as if they were whatever
2631 // value is necessary in order to fit the above form.
2632 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2633 SmallVector<int, 16> Indices,
2634 SelectionDAG &DAG) {
2635 assert((Indices.size() % 2) == 0);
2637 int SplatIndex = -1;
2638 for (const auto &V : Indices) {
2639 if (V != -1) {
2640 SplatIndex = V;
2641 break;
2645 return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2649 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2651 // ILVEV interleaves the even elements from each vector.
2653 // It is possible to lower into ILVEV when the mask consists of two of the
2654 // following forms interleaved:
2655 // <0, 2, 4, ...>
2656 // <n, n+2, n+4, ...>
2657 // where n is the number of elements in the vector.
2658 // For example:
2659 // <0, 0, 2, 2, 4, 4, ...>
2660 // <0, n, 2, n+2, 4, n+4, ...>
2662 // When undef's appear in the mask they are treated as if they were whatever
2663 // value is necessary in order to fit the above forms.
2664 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2665 SmallVector<int, 16> Indices,
2666 SelectionDAG &DAG) {
2667 assert((Indices.size() % 2) == 0);
2669 SDValue Wt;
2670 SDValue Ws;
2671 const auto &Begin = Indices.begin();
2672 const auto &End = Indices.end();
2674 // Check even elements are taken from the even elements of one half or the
2675 // other and pick an operand accordingly.
2676 if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2677 Wt = Op->getOperand(0);
2678 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2679 Wt = Op->getOperand(1);
2680 else
2681 return SDValue();
2683 // Check odd elements are taken from the even elements of one half or the
2684 // other and pick an operand accordingly.
2685 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2686 Ws = Op->getOperand(0);
2687 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2688 Ws = Op->getOperand(1);
2689 else
2690 return SDValue();
2692 return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2695 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2697 // ILVOD interleaves the odd elements from each vector.
2699 // It is possible to lower into ILVOD when the mask consists of two of the
2700 // following forms interleaved:
2701 // <1, 3, 5, ...>
2702 // <n+1, n+3, n+5, ...>
2703 // where n is the number of elements in the vector.
2704 // For example:
2705 // <1, 1, 3, 3, 5, 5, ...>
2706 // <1, n+1, 3, n+3, 5, n+5, ...>
2708 // When undef's appear in the mask they are treated as if they were whatever
2709 // value is necessary in order to fit the above forms.
2710 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2711 SmallVector<int, 16> Indices,
2712 SelectionDAG &DAG) {
2713 assert((Indices.size() % 2) == 0);
2715 SDValue Wt;
2716 SDValue Ws;
2717 const auto &Begin = Indices.begin();
2718 const auto &End = Indices.end();
2720 // Check even elements are taken from the odd elements of one half or the
2721 // other and pick an operand accordingly.
2722 if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2723 Wt = Op->getOperand(0);
2724 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2725 Wt = Op->getOperand(1);
2726 else
2727 return SDValue();
2729 // Check odd elements are taken from the odd elements of one half or the
2730 // other and pick an operand accordingly.
2731 if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2732 Ws = Op->getOperand(0);
2733 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2734 Ws = Op->getOperand(1);
2735 else
2736 return SDValue();
2738 return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2741 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2743 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2744 // each vector.
2746 // It is possible to lower into ILVR when the mask consists of two of the
2747 // following forms interleaved:
2748 // <0, 1, 2, ...>
2749 // <n, n+1, n+2, ...>
2750 // where n is the number of elements in the vector.
2751 // For example:
2752 // <0, 0, 1, 1, 2, 2, ...>
2753 // <0, n, 1, n+1, 2, n+2, ...>
2755 // When undef's appear in the mask they are treated as if they were whatever
2756 // value is necessary in order to fit the above forms.
2757 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2758 SmallVector<int, 16> Indices,
2759 SelectionDAG &DAG) {
2760 assert((Indices.size() % 2) == 0);
2762 SDValue Wt;
2763 SDValue Ws;
2764 const auto &Begin = Indices.begin();
2765 const auto &End = Indices.end();
2767 // Check even elements are taken from the right (lowest-indexed) elements of
2768 // one half or the other and pick an operand accordingly.
2769 if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2770 Wt = Op->getOperand(0);
2771 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2772 Wt = Op->getOperand(1);
2773 else
2774 return SDValue();
2776 // Check odd elements are taken from the right (lowest-indexed) elements of
2777 // one half or the other and pick an operand accordingly.
2778 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2779 Ws = Op->getOperand(0);
2780 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2781 Ws = Op->getOperand(1);
2782 else
2783 return SDValue();
2785 return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2788 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2790 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2791 // of each vector.
2793 // It is possible to lower into ILVL when the mask consists of two of the
2794 // following forms interleaved:
2795 // <x, x+1, x+2, ...>
2796 // <n+x, n+x+1, n+x+2, ...>
2797 // where n is the number of elements in the vector and x is half n.
2798 // For example:
2799 // <x, x, x+1, x+1, x+2, x+2, ...>
2800 // <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2802 // When undef's appear in the mask they are treated as if they were whatever
2803 // value is necessary in order to fit the above forms.
2804 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2805 SmallVector<int, 16> Indices,
2806 SelectionDAG &DAG) {
2807 assert((Indices.size() % 2) == 0);
2809 unsigned HalfSize = Indices.size() / 2;
2810 SDValue Wt;
2811 SDValue Ws;
2812 const auto &Begin = Indices.begin();
2813 const auto &End = Indices.end();
2815 // Check even elements are taken from the left (highest-indexed) elements of
2816 // one half or the other and pick an operand accordingly.
2817 if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2818 Wt = Op->getOperand(0);
2819 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2820 Wt = Op->getOperand(1);
2821 else
2822 return SDValue();
2824 // Check odd elements are taken from the left (highest-indexed) elements of
2825 // one half or the other and pick an operand accordingly.
2826 if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2827 Ws = Op->getOperand(0);
2828 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2830 Ws = Op->getOperand(1);
2831 else
2832 return SDValue();
2834 return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2837 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2839 // PCKEV copies the even elements of each vector into the result vector.
2841 // It is possible to lower into PCKEV when the mask consists of two of the
2842 // following forms concatenated:
2843 // <0, 2, 4, ...>
2844 // <n, n+2, n+4, ...>
2845 // where n is the number of elements in the vector.
2846 // For example:
2847 // <0, 2, 4, ..., 0, 2, 4, ...>
2848 // <0, 2, 4, ..., n, n+2, n+4, ...>
2850 // When undef's appear in the mask they are treated as if they were whatever
2851 // value is necessary in order to fit the above forms.
2852 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2853 SmallVector<int, 16> Indices,
2854 SelectionDAG &DAG) {
2855 assert((Indices.size() % 2) == 0);
2857 SDValue Wt;
2858 SDValue Ws;
2859 const auto &Begin = Indices.begin();
2860 const auto &Mid = Indices.begin() + Indices.size() / 2;
2861 const auto &End = Indices.end();
2863 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2864 Wt = Op->getOperand(0);
2865 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2866 Wt = Op->getOperand(1);
2867 else
2868 return SDValue();
2870 if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2871 Ws = Op->getOperand(0);
2872 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2873 Ws = Op->getOperand(1);
2874 else
2875 return SDValue();
2877 return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2880 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2882 // PCKOD copies the odd elements of each vector into the result vector.
2884 // It is possible to lower into PCKOD when the mask consists of two of the
2885 // following forms concatenated:
2886 // <1, 3, 5, ...>
2887 // <n+1, n+3, n+5, ...>
2888 // where n is the number of elements in the vector.
2889 // For example:
2890 // <1, 3, 5, ..., 1, 3, 5, ...>
2891 // <1, 3, 5, ..., n+1, n+3, n+5, ...>
2893 // When undef's appear in the mask they are treated as if they were whatever
2894 // value is necessary in order to fit the above forms.
2895 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2896 SmallVector<int, 16> Indices,
2897 SelectionDAG &DAG) {
2898 assert((Indices.size() % 2) == 0);
2900 SDValue Wt;
2901 SDValue Ws;
2902 const auto &Begin = Indices.begin();
2903 const auto &Mid = Indices.begin() + Indices.size() / 2;
2904 const auto &End = Indices.end();
2906 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2907 Wt = Op->getOperand(0);
2908 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2909 Wt = Op->getOperand(1);
2910 else
2911 return SDValue();
2913 if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2914 Ws = Op->getOperand(0);
2915 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2916 Ws = Op->getOperand(1);
2917 else
2918 return SDValue();
2920 return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2923 // Lower VECTOR_SHUFFLE into VSHF.
2925 // This mostly consists of converting the shuffle indices in Indices into a
2926 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2927 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2928 // if the type is v8i16 and all the indices are less than 8 then the second
2929 // operand is unused and can be replaced with anything. We choose to replace it
2930 // with the used operand since this reduces the number of instructions overall.
2931 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2932 SmallVector<int, 16> Indices,
2933 SelectionDAG &DAG) {
2934 SmallVector<SDValue, 16> Ops;
2935 SDValue Op0;
2936 SDValue Op1;
2937 EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2938 EVT MaskEltTy = MaskVecTy.getVectorElementType();
2939 bool Using1stVec = false;
2940 bool Using2ndVec = false;
2941 SDLoc DL(Op);
2942 int ResTyNumElts = ResTy.getVectorNumElements();
2944 for (int i = 0; i < ResTyNumElts; ++i) {
2945 // Idx == -1 means UNDEF
2946 int Idx = Indices[i];
2948 if (0 <= Idx && Idx < ResTyNumElts)
2949 Using1stVec = true;
2950 if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2951 Using2ndVec = true;
2954 for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2955 ++I)
2956 Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2958 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2960 if (Using1stVec && Using2ndVec) {
2961 Op0 = Op->getOperand(0);
2962 Op1 = Op->getOperand(1);
2963 } else if (Using1stVec)
2964 Op0 = Op1 = Op->getOperand(0);
2965 else if (Using2ndVec)
2966 Op0 = Op1 = Op->getOperand(1);
2967 else
2968 llvm_unreachable("shuffle vector mask references neither vector operand?");
2970 // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2971 // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2972 // VSHF concatenates the vectors in a bitwise fashion:
2973 // <0b00, 0b01> + <0b10, 0b11> ->
2974 // 0b0100 + 0b1110 -> 0b01001110
2975 // <0b10, 0b11, 0b00, 0b01>
2976 // We must therefore swap the operands to get the correct result.
2977 return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2980 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2981 // indices in the shuffle.
2982 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2983 SelectionDAG &DAG) const {
2984 ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2985 EVT ResTy = Op->getValueType(0);
2987 if (!ResTy.is128BitVector())
2988 return SDValue();
2990 int ResTyNumElts = ResTy.getVectorNumElements();
2991 SmallVector<int, 16> Indices;
2993 for (int i = 0; i < ResTyNumElts; ++i)
2994 Indices.push_back(Node->getMaskElt(i));
2996 // splati.[bhwd] is preferable to the others but is matched from
2997 // MipsISD::VSHF.
2998 if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2999 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3000 SDValue Result;
3001 if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
3002 return Result;
3003 if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3004 return Result;
3005 if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3006 return Result;
3007 if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3008 return Result;
3009 if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3010 return Result;
3011 if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3012 return Result;
3013 if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3014 return Result;
3015 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3018 MachineBasicBlock *
3019 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3020 MachineBasicBlock *BB) const {
3021 // $bb:
3022 // bposge32_pseudo $vr0
3023 // =>
3024 // $bb:
3025 // bposge32 $tbb
3026 // $fbb:
3027 // li $vr2, 0
3028 // b $sink
3029 // $tbb:
3030 // li $vr1, 1
3031 // $sink:
3032 // $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3034 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3035 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3036 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3037 DebugLoc DL = MI.getDebugLoc();
3038 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3039 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3040 MachineFunction *F = BB->getParent();
3041 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3042 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3043 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3044 F->insert(It, FBB);
3045 F->insert(It, TBB);
3046 F->insert(It, Sink);
3048 // Transfer the remainder of BB and its successor edges to Sink.
3049 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3050 BB->end());
3051 Sink->transferSuccessorsAndUpdatePHIs(BB);
3053 // Add successors.
3054 BB->addSuccessor(FBB);
3055 BB->addSuccessor(TBB);
3056 FBB->addSuccessor(Sink);
3057 TBB->addSuccessor(Sink);
3059 // Insert the real bposge32 instruction to $BB.
3060 BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3061 // Insert the real bposge32c instruction to $BB.
3062 BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3064 // Fill $FBB.
3065 Register VR2 = RegInfo.createVirtualRegister(RC);
3066 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3067 .addReg(Mips::ZERO).addImm(0);
3068 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3070 // Fill $TBB.
3071 Register VR1 = RegInfo.createVirtualRegister(RC);
3072 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3073 .addReg(Mips::ZERO).addImm(1);
3075 // Insert phi function to $Sink.
3076 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3077 MI.getOperand(0).getReg())
3078 .addReg(VR2)
3079 .addMBB(FBB)
3080 .addReg(VR1)
3081 .addMBB(TBB);
3083 MI.eraseFromParent(); // The pseudo instruction is gone now.
3084 return Sink;
3087 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3088 MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3089 // $bb:
3090 // vany_nonzero $rd, $ws
3091 // =>
3092 // $bb:
3093 // bnz.b $ws, $tbb
3094 // b $fbb
3095 // $fbb:
3096 // li $rd1, 0
3097 // b $sink
3098 // $tbb:
3099 // li $rd2, 1
3100 // $sink:
3101 // $rd = phi($rd1, $fbb, $rd2, $tbb)
3103 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3104 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3105 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3106 DebugLoc DL = MI.getDebugLoc();
3107 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3108 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3109 MachineFunction *F = BB->getParent();
3110 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3111 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3112 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3113 F->insert(It, FBB);
3114 F->insert(It, TBB);
3115 F->insert(It, Sink);
3117 // Transfer the remainder of BB and its successor edges to Sink.
3118 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3119 BB->end());
3120 Sink->transferSuccessorsAndUpdatePHIs(BB);
3122 // Add successors.
3123 BB->addSuccessor(FBB);
3124 BB->addSuccessor(TBB);
3125 FBB->addSuccessor(Sink);
3126 TBB->addSuccessor(Sink);
3128 // Insert the real bnz.b instruction to $BB.
3129 BuildMI(BB, DL, TII->get(BranchOp))
3130 .addReg(MI.getOperand(1).getReg())
3131 .addMBB(TBB);
3133 // Fill $FBB.
3134 Register RD1 = RegInfo.createVirtualRegister(RC);
3135 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3136 .addReg(Mips::ZERO).addImm(0);
3137 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3139 // Fill $TBB.
3140 Register RD2 = RegInfo.createVirtualRegister(RC);
3141 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3142 .addReg(Mips::ZERO).addImm(1);
3144 // Insert phi function to $Sink.
3145 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3146 MI.getOperand(0).getReg())
3147 .addReg(RD1)
3148 .addMBB(FBB)
3149 .addReg(RD2)
3150 .addMBB(TBB);
3152 MI.eraseFromParent(); // The pseudo instruction is gone now.
3153 return Sink;
3156 // Emit the COPY_FW pseudo instruction.
3158 // copy_fw_pseudo $fd, $ws, n
3159 // =>
3160 // copy_u_w $rt, $ws, $n
3161 // mtc1 $rt, $fd
3163 // When n is zero, the equivalent operation can be performed with (potentially)
3164 // zero instructions due to register overlaps. This optimization is never valid
3165 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3166 MachineBasicBlock *
3167 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3168 MachineBasicBlock *BB) const {
3169 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3170 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3171 DebugLoc DL = MI.getDebugLoc();
3172 Register Fd = MI.getOperand(0).getReg();
3173 Register Ws = MI.getOperand(1).getReg();
3174 unsigned Lane = MI.getOperand(2).getImm();
3176 if (Lane == 0) {
3177 unsigned Wt = Ws;
3178 if (!Subtarget.useOddSPReg()) {
3179 // We must copy to an even-numbered MSA register so that the
3180 // single-precision sub-register is also guaranteed to be even-numbered.
3181 Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3183 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3186 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3187 } else {
3188 Register Wt = RegInfo.createVirtualRegister(
3189 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3190 : &Mips::MSA128WEvensRegClass);
3192 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3193 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3196 MI.eraseFromParent(); // The pseudo instruction is gone now.
3197 return BB;
3200 // Emit the COPY_FD pseudo instruction.
3202 // copy_fd_pseudo $fd, $ws, n
3203 // =>
3204 // splati.d $wt, $ws, $n
3205 // copy $fd, $wt:sub_64
3207 // When n is zero, the equivalent operation can be performed with (potentially)
3208 // zero instructions due to register overlaps. This optimization is always
3209 // valid because FR=1 mode which is the only supported mode in MSA.
3210 MachineBasicBlock *
3211 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3212 MachineBasicBlock *BB) const {
3213 assert(Subtarget.isFP64bit());
3215 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3216 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3217 Register Fd = MI.getOperand(0).getReg();
3218 Register Ws = MI.getOperand(1).getReg();
3219 unsigned Lane = MI.getOperand(2).getImm() * 2;
3220 DebugLoc DL = MI.getDebugLoc();
3222 if (Lane == 0)
3223 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3224 else {
3225 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3227 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3228 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3231 MI.eraseFromParent(); // The pseudo instruction is gone now.
3232 return BB;
3235 // Emit the INSERT_FW pseudo instruction.
3237 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3238 // =>
3239 // subreg_to_reg $wt:sub_lo, $fs
3240 // insve_w $wd[$n], $wd_in, $wt[0]
3241 MachineBasicBlock *
3242 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3243 MachineBasicBlock *BB) const {
3244 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3245 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3246 DebugLoc DL = MI.getDebugLoc();
3247 Register Wd = MI.getOperand(0).getReg();
3248 Register Wd_in = MI.getOperand(1).getReg();
3249 unsigned Lane = MI.getOperand(2).getImm();
3250 Register Fs = MI.getOperand(3).getReg();
3251 Register Wt = RegInfo.createVirtualRegister(
3252 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3253 : &Mips::MSA128WEvensRegClass);
3255 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3256 .addImm(0)
3257 .addReg(Fs)
3258 .addImm(Mips::sub_lo);
3259 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3260 .addReg(Wd_in)
3261 .addImm(Lane)
3262 .addReg(Wt)
3263 .addImm(0);
3265 MI.eraseFromParent(); // The pseudo instruction is gone now.
3266 return BB;
3269 // Emit the INSERT_FD pseudo instruction.
3271 // insert_fd_pseudo $wd, $fs, n
3272 // =>
3273 // subreg_to_reg $wt:sub_64, $fs
3274 // insve_d $wd[$n], $wd_in, $wt[0]
3275 MachineBasicBlock *
3276 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3277 MachineBasicBlock *BB) const {
3278 assert(Subtarget.isFP64bit());
3280 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3281 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3282 DebugLoc DL = MI.getDebugLoc();
3283 Register Wd = MI.getOperand(0).getReg();
3284 Register Wd_in = MI.getOperand(1).getReg();
3285 unsigned Lane = MI.getOperand(2).getImm();
3286 Register Fs = MI.getOperand(3).getReg();
3287 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3289 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3290 .addImm(0)
3291 .addReg(Fs)
3292 .addImm(Mips::sub_64);
3293 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3294 .addReg(Wd_in)
3295 .addImm(Lane)
3296 .addReg(Wt)
3297 .addImm(0);
3299 MI.eraseFromParent(); // The pseudo instruction is gone now.
3300 return BB;
3303 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3305 // For integer:
3306 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3307 // =>
3308 // (SLL $lanetmp1, $lane, <log2size)
3309 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3310 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3311 // (NEG $lanetmp2, $lanetmp1)
3312 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
3314 // For floating point:
3315 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3316 // =>
3317 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3318 // (SLL $lanetmp1, $lane, <log2size)
3319 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3320 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3321 // (NEG $lanetmp2, $lanetmp1)
3322 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
3323 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3324 MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3325 bool IsFP) const {
3326 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3327 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3328 DebugLoc DL = MI.getDebugLoc();
3329 Register Wd = MI.getOperand(0).getReg();
3330 Register SrcVecReg = MI.getOperand(1).getReg();
3331 Register LaneReg = MI.getOperand(2).getReg();
3332 Register SrcValReg = MI.getOperand(3).getReg();
3334 const TargetRegisterClass *VecRC = nullptr;
3335 // FIXME: This should be true for N32 too.
3336 const TargetRegisterClass *GPRRC =
3337 Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3338 unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3339 unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3340 unsigned EltLog2Size;
3341 unsigned InsertOp = 0;
3342 unsigned InsveOp = 0;
3343 switch (EltSizeInBytes) {
3344 default:
3345 llvm_unreachable("Unexpected size");
3346 case 1:
3347 EltLog2Size = 0;
3348 InsertOp = Mips::INSERT_B;
3349 InsveOp = Mips::INSVE_B;
3350 VecRC = &Mips::MSA128BRegClass;
3351 break;
3352 case 2:
3353 EltLog2Size = 1;
3354 InsertOp = Mips::INSERT_H;
3355 InsveOp = Mips::INSVE_H;
3356 VecRC = &Mips::MSA128HRegClass;
3357 break;
3358 case 4:
3359 EltLog2Size = 2;
3360 InsertOp = Mips::INSERT_W;
3361 InsveOp = Mips::INSVE_W;
3362 VecRC = &Mips::MSA128WRegClass;
3363 break;
3364 case 8:
3365 EltLog2Size = 3;
3366 InsertOp = Mips::INSERT_D;
3367 InsveOp = Mips::INSVE_D;
3368 VecRC = &Mips::MSA128DRegClass;
3369 break;
3372 if (IsFP) {
3373 Register Wt = RegInfo.createVirtualRegister(VecRC);
3374 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3375 .addImm(0)
3376 .addReg(SrcValReg)
3377 .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3378 SrcValReg = Wt;
3381 // Convert the lane index into a byte index
3382 if (EltSizeInBytes != 1) {
3383 Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3384 BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3385 .addReg(LaneReg)
3386 .addImm(EltLog2Size);
3387 LaneReg = LaneTmp1;
3390 // Rotate bytes around so that the desired lane is element zero
3391 Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3392 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3393 .addReg(SrcVecReg)
3394 .addReg(SrcVecReg)
3395 .addReg(LaneReg, 0, SubRegIdx);
3397 Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3398 if (IsFP) {
3399 // Use insve.df to insert to element zero
3400 BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3401 .addReg(WdTmp1)
3402 .addImm(0)
3403 .addReg(SrcValReg)
3404 .addImm(0);
3405 } else {
3406 // Use insert.df to insert to element zero
3407 BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3408 .addReg(WdTmp1)
3409 .addReg(SrcValReg)
3410 .addImm(0);
3413 // Rotate elements the rest of the way for a full rotation.
3414 // sld.df inteprets $rt modulo the number of columns so we only need to negate
3415 // the lane index to do this.
3416 Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3417 BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3418 LaneTmp2)
3419 .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3420 .addReg(LaneReg);
3421 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3422 .addReg(WdTmp2)
3423 .addReg(WdTmp2)
3424 .addReg(LaneTmp2, 0, SubRegIdx);
3426 MI.eraseFromParent(); // The pseudo instruction is gone now.
3427 return BB;
3430 // Emit the FILL_FW pseudo instruction.
3432 // fill_fw_pseudo $wd, $fs
3433 // =>
3434 // implicit_def $wt1
3435 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3436 // splati.w $wd, $wt2[0]
3437 MachineBasicBlock *
3438 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3439 MachineBasicBlock *BB) const {
3440 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3441 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3442 DebugLoc DL = MI.getDebugLoc();
3443 Register Wd = MI.getOperand(0).getReg();
3444 Register Fs = MI.getOperand(1).getReg();
3445 Register Wt1 = RegInfo.createVirtualRegister(
3446 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3447 : &Mips::MSA128WEvensRegClass);
3448 Register Wt2 = RegInfo.createVirtualRegister(
3449 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3450 : &Mips::MSA128WEvensRegClass);
3452 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3453 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3454 .addReg(Wt1)
3455 .addReg(Fs)
3456 .addImm(Mips::sub_lo);
3457 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3459 MI.eraseFromParent(); // The pseudo instruction is gone now.
3460 return BB;
3463 // Emit the FILL_FD pseudo instruction.
3465 // fill_fd_pseudo $wd, $fs
3466 // =>
3467 // implicit_def $wt1
3468 // insert_subreg $wt2:subreg_64, $wt1, $fs
3469 // splati.d $wd, $wt2[0]
3470 MachineBasicBlock *
3471 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3472 MachineBasicBlock *BB) const {
3473 assert(Subtarget.isFP64bit());
3475 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3476 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3477 DebugLoc DL = MI.getDebugLoc();
3478 Register Wd = MI.getOperand(0).getReg();
3479 Register Fs = MI.getOperand(1).getReg();
3480 Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3481 Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3483 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3484 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3485 .addReg(Wt1)
3486 .addReg(Fs)
3487 .addImm(Mips::sub_64);
3488 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3490 MI.eraseFromParent(); // The pseudo instruction is gone now.
3491 return BB;
3494 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3495 // register.
3497 // STF16 MSA128F16:$wd, mem_simm10:$addr
3498 // =>
3499 // copy_u.h $rtemp,$wd[0]
3500 // sh $rtemp, $addr
3502 // Safety: We can't use st.h & co as they would over write the memory after
3503 // the destination. It would require half floats be allocated 16 bytes(!) of
3504 // space.
3505 MachineBasicBlock *
3506 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3507 MachineBasicBlock *BB) const {
3509 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3510 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3511 DebugLoc DL = MI.getDebugLoc();
3512 Register Ws = MI.getOperand(0).getReg();
3513 Register Rt = MI.getOperand(1).getReg();
3514 const MachineMemOperand &MMO = **MI.memoperands_begin();
3515 unsigned Imm = MMO.getOffset();
3517 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3518 // spill and reload can expand as a GPR64 operand. Examine the
3519 // operand in detail and default to ABI.
3520 const TargetRegisterClass *RC =
3521 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3522 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3523 : &Mips::GPR64RegClass);
3524 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3525 Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3527 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3528 if(!UsingMips32) {
3529 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3530 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3531 .addImm(0)
3532 .addReg(Rs)
3533 .addImm(Mips::sub_32);
3534 Rs = Tmp;
3536 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3537 .addReg(Rs)
3538 .addReg(Rt)
3539 .addImm(Imm)
3540 .addMemOperand(BB->getParent()->getMachineMemOperand(
3541 &MMO, MMO.getOffset(), MMO.getSize()));
3543 MI.eraseFromParent();
3544 return BB;
3547 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3549 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3550 // =>
3551 // lh $rtemp, $addr
3552 // fill.h $wd, $rtemp
3554 // Safety: We can't use ld.h & co as they over-read from the source.
3555 // Additionally, if the address is not modulo 16, 2 cases can occur:
3556 // a) Segmentation fault as the load instruction reads from a memory page
3557 // memory it's not supposed to.
3558 // b) The load crosses an implementation specific boundary, requiring OS
3559 // intervention.
3560 MachineBasicBlock *
3561 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3562 MachineBasicBlock *BB) const {
3564 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3565 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3566 DebugLoc DL = MI.getDebugLoc();
3567 Register Wd = MI.getOperand(0).getReg();
3569 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3570 // spill and reload can expand as a GPR64 operand. Examine the
3571 // operand in detail and default to ABI.
3572 const TargetRegisterClass *RC =
3573 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3574 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3575 : &Mips::GPR64RegClass);
3577 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3578 Register Rt = RegInfo.createVirtualRegister(RC);
3580 MachineInstrBuilder MIB =
3581 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3582 for (unsigned i = 1; i < MI.getNumOperands(); i++)
3583 MIB.add(MI.getOperand(i));
3585 if(!UsingMips32) {
3586 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3587 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3588 Rt = Tmp;
3591 BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3593 MI.eraseFromParent();
3594 return BB;
3597 // Emit the FPROUND_PSEUDO instruction.
3599 // Round an FGR64Opnd, FGR32Opnd to an f16.
3601 // Safety: Cycle the operand through the GPRs so the result always ends up
3602 // the correct MSA register.
3604 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3605 // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3606 // (which they can be, as the MSA registers are defined to alias the
3607 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3608 // the correct register class. That requires operands be tie-able across
3609 // register classes which have a sub/super register class relationship.
3611 // For FPG32Opnd:
3613 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3614 // =>
3615 // mfc1 $rtemp, $fs
3616 // fill.w $rtemp, $wtemp
3617 // fexdo.w $wd, $wtemp, $wtemp
3619 // For FPG64Opnd on mips32r2+:
3621 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3622 // =>
3623 // mfc1 $rtemp, $fs
3624 // fill.w $rtemp, $wtemp
3625 // mfhc1 $rtemp2, $fs
3626 // insert.w $wtemp[1], $rtemp2
3627 // insert.w $wtemp[3], $rtemp2
3628 // fexdo.w $wtemp2, $wtemp, $wtemp
3629 // fexdo.h $wd, $temp2, $temp2
3631 // For FGR64Opnd on mips64r2+:
3633 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3634 // =>
3635 // dmfc1 $rtemp, $fs
3636 // fill.d $rtemp, $wtemp
3637 // fexdo.w $wtemp2, $wtemp, $wtemp
3638 // fexdo.h $wd, $wtemp2, $wtemp2
3640 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3641 // undef bits are "just right" and the exception enable bits are
3642 // set. By using fill.w to replicate $fs into all elements over
3643 // insert.w for one element, we avoid that potiential case. If
3644 // fexdo.[hw] causes an exception in, the exception is valid and it
3645 // occurs for all elements.
3646 MachineBasicBlock *
3647 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3648 MachineBasicBlock *BB,
3649 bool IsFGR64) const {
3651 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3652 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3653 // it.
3654 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3656 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3657 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3659 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3660 DebugLoc DL = MI.getDebugLoc();
3661 Register Wd = MI.getOperand(0).getReg();
3662 Register Fs = MI.getOperand(1).getReg();
3664 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3665 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3666 const TargetRegisterClass *GPRRC =
3667 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3668 unsigned MFC1Opc = IsFGR64onMips64
3669 ? Mips::DMFC1
3670 : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3671 unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3673 // Perform the register class copy as mentioned above.
3674 Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3675 BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3676 BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3677 unsigned WPHI = Wtemp;
3679 if (IsFGR64onMips32) {
3680 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3681 BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3682 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3683 Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3684 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3685 .addReg(Wtemp)
3686 .addReg(Rtemp2)
3687 .addImm(1);
3688 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3689 .addReg(Wtemp2)
3690 .addReg(Rtemp2)
3691 .addImm(3);
3692 WPHI = Wtemp3;
3695 if (IsFGR64) {
3696 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3697 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3698 .addReg(WPHI)
3699 .addReg(WPHI);
3700 WPHI = Wtemp2;
3703 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3705 MI.eraseFromParent();
3706 return BB;
3709 // Emit the FPEXTEND_PSEUDO instruction.
3711 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3713 // Safety: Cycle the result through the GPRs so the result always ends up
3714 // the correct floating point register.
3716 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3717 // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3718 // (which they can be, as the MSA registers are defined to alias the
3719 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3720 // the correct register class. That requires operands be tie-able across
3721 // register classes which have a sub/super register class relationship. I
3722 // haven't checked.
3724 // For FGR32Opnd:
3726 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3727 // =>
3728 // fexupr.w $wtemp, $ws
3729 // copy_s.w $rtemp, $ws[0]
3730 // mtc1 $rtemp, $fd
3732 // For FGR64Opnd on Mips64:
3734 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3735 // =>
3736 // fexupr.w $wtemp, $ws
3737 // fexupr.d $wtemp2, $wtemp
3738 // copy_s.d $rtemp, $wtemp2s[0]
3739 // dmtc1 $rtemp, $fd
3741 // For FGR64Opnd on Mips32:
3743 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3744 // =>
3745 // fexupr.w $wtemp, $ws
3746 // fexupr.d $wtemp2, $wtemp
3747 // copy_s.w $rtemp, $wtemp2[0]
3748 // mtc1 $rtemp, $ftemp
3749 // copy_s.w $rtemp2, $wtemp2[1]
3750 // $fd = mthc1 $rtemp2, $ftemp
3751 MachineBasicBlock *
3752 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3753 MachineBasicBlock *BB,
3754 bool IsFGR64) const {
3756 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3757 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3758 // it.
3759 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3761 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3762 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3764 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3765 DebugLoc DL = MI.getDebugLoc();
3766 Register Fd = MI.getOperand(0).getReg();
3767 Register Ws = MI.getOperand(1).getReg();
3769 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3770 const TargetRegisterClass *GPRRC =
3771 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3772 unsigned MTC1Opc = IsFGR64onMips64
3773 ? Mips::DMTC1
3774 : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3775 Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3777 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3778 Register WPHI = Wtemp;
3780 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3781 if (IsFGR64) {
3782 WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3783 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3786 // Perform the safety regclass copy mentioned above.
3787 Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3788 Register FPRPHI = IsFGR64onMips32
3789 ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3790 : Fd;
3791 BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3792 BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3794 if (IsFGR64onMips32) {
3795 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3796 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3797 .addReg(WPHI)
3798 .addImm(1);
3799 BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3800 .addReg(FPRPHI)
3801 .addReg(Rtemp2);
3804 MI.eraseFromParent();
3805 return BB;
3808 // Emit the FEXP2_W_1 pseudo instructions.
3810 // fexp2_w_1_pseudo $wd, $wt
3811 // =>
3812 // ldi.w $ws, 1
3813 // fexp2.w $wd, $ws, $wt
3814 MachineBasicBlock *
3815 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3816 MachineBasicBlock *BB) const {
3817 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3818 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3819 const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3820 Register Ws1 = RegInfo.createVirtualRegister(RC);
3821 Register Ws2 = RegInfo.createVirtualRegister(RC);
3822 DebugLoc DL = MI.getDebugLoc();
3824 // Splat 1.0 into a vector
3825 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3826 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3828 // Emit 1.0 * fexp2(Wt)
3829 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3830 .addReg(Ws2)
3831 .addReg(MI.getOperand(1).getReg());
3833 MI.eraseFromParent(); // The pseudo instruction is gone now.
3834 return BB;
3837 // Emit the FEXP2_D_1 pseudo instructions.
3839 // fexp2_d_1_pseudo $wd, $wt
3840 // =>
3841 // ldi.d $ws, 1
3842 // fexp2.d $wd, $ws, $wt
3843 MachineBasicBlock *
3844 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3845 MachineBasicBlock *BB) const {
3846 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3847 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3848 const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3849 Register Ws1 = RegInfo.createVirtualRegister(RC);
3850 Register Ws2 = RegInfo.createVirtualRegister(RC);
3851 DebugLoc DL = MI.getDebugLoc();
3853 // Splat 1.0 into a vector
3854 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3855 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3857 // Emit 1.0 * fexp2(Wt)
3858 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3859 .addReg(Ws2)
3860 .addReg(MI.getOperand(1).getReg());
3862 MI.eraseFromParent(); // The pseudo instruction is gone now.
3863 return BB;