[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / PowerPC / PPCPreEmitPeephole.cpp
blob1de01f9bcbc3c72ed21abb466adb6103df77d427
1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
12 //===----------------------------------------------------------------------===//
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Debug.h"
28 using namespace llvm;
30 #define DEBUG_TYPE "ppc-pre-emit-peephole"
32 STATISTIC(NumRRConvertedInPreEmit,
33 "Number of r+r instructions converted to r+i in pre-emit peephole");
34 STATISTIC(NumRemovedInPreEmit,
35 "Number of instructions deleted in pre-emit peephole");
36 STATISTIC(NumberOfSelfCopies,
37 "Number of self copy instructions eliminated");
39 static cl::opt<bool>
40 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
41 cl::desc("Run pre-emit peephole optimizations."));
43 namespace {
44 class PPCPreEmitPeephole : public MachineFunctionPass {
45 public:
46 static char ID;
47 PPCPreEmitPeephole() : MachineFunctionPass(ID) {
48 initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
51 void getAnalysisUsage(AnalysisUsage &AU) const override {
52 MachineFunctionPass::getAnalysisUsage(AU);
55 MachineFunctionProperties getRequiredProperties() const override {
56 return MachineFunctionProperties().set(
57 MachineFunctionProperties::Property::NoVRegs);
60 // This function removes any redundant load immediates. It has two level
61 // loops - The outer loop finds the load immediates BBI that could be used
62 // to replace following redundancy. The inner loop scans instructions that
63 // after BBI to find redundancy and update kill/dead flags accordingly. If
64 // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
65 // that modify the def register of BBI would break the scanning.
66 // DeadOrKillToUnset is a pointer to the previous operand that had the
67 // kill/dead flag set. It keeps track of the def register of BBI, the use
68 // registers of AfterBBIs and the def registers of AfterBBIs.
69 bool removeRedundantLIs(MachineBasicBlock &MBB,
70 const TargetRegisterInfo *TRI) {
71 LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
72 MBB.dump(); dbgs() << "\n");
74 DenseSet<MachineInstr *> InstrsToErase;
75 for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
76 // Skip load immediate that is marked to be erased later because it
77 // cannot be used to replace any other instructions.
78 if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
79 continue;
80 // Skip non-load immediate.
81 unsigned Opc = BBI->getOpcode();
82 if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
83 Opc != PPC::LIS8)
84 continue;
85 // Skip load immediate, where the operand is a relocation (e.g., $r3 =
86 // LI target-flags(ppc-lo) %const.0).
87 if (!BBI->getOperand(1).isImm())
88 continue;
89 assert(BBI->getOperand(0).isReg() &&
90 "Expected a register for the first operand");
92 LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
94 Register Reg = BBI->getOperand(0).getReg();
95 int64_t Imm = BBI->getOperand(1).getImm();
96 MachineOperand *DeadOrKillToUnset = nullptr;
97 if (BBI->getOperand(0).isDead()) {
98 DeadOrKillToUnset = &BBI->getOperand(0);
99 LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
100 << " from load immediate " << *BBI
101 << " is a unsetting candidate\n");
103 // This loop scans instructions after BBI to see if there is any
104 // redundant load immediate.
105 for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
106 ++AfterBBI) {
107 // Track the operand that kill Reg. We would unset the kill flag of
108 // the operand if there is a following redundant load immediate.
109 int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
110 if (KillIdx != -1) {
111 assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
112 DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
113 LLVM_DEBUG(dbgs()
114 << " Kill flag of " << *DeadOrKillToUnset << " from "
115 << *AfterBBI << " is a unsetting candidate\n");
118 if (!AfterBBI->modifiesRegister(Reg, TRI))
119 continue;
120 assert(DeadOrKillToUnset &&
121 "Shouldn't overwrite a register before it is killed");
122 // Finish scanning because Reg is overwritten by a non-load
123 // instruction.
124 if (AfterBBI->getOpcode() != Opc)
125 break;
126 assert(AfterBBI->getOperand(0).isReg() &&
127 "Expected a register for the first operand");
128 // Finish scanning because Reg is overwritten by a relocation or a
129 // different value.
130 if (!AfterBBI->getOperand(1).isImm() ||
131 AfterBBI->getOperand(1).getImm() != Imm)
132 break;
134 // It loads same immediate value to the same Reg, which is redundant.
135 // We would unset kill flag in previous Reg usage to extend live range
136 // of Reg first, then remove the redundancy.
137 LLVM_DEBUG(dbgs() << " Unset dead/kill flag of " << *DeadOrKillToUnset
138 << " from " << *DeadOrKillToUnset->getParent());
139 if (DeadOrKillToUnset->isDef())
140 DeadOrKillToUnset->setIsDead(false);
141 else
142 DeadOrKillToUnset->setIsKill(false);
143 DeadOrKillToUnset =
144 AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
145 if (DeadOrKillToUnset)
146 LLVM_DEBUG(dbgs()
147 << " Dead flag of " << *DeadOrKillToUnset << " from "
148 << *AfterBBI << " is a unsetting candidate\n");
149 InstrsToErase.insert(&*AfterBBI);
150 LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
151 AfterBBI->dump());
155 for (MachineInstr *MI : InstrsToErase) {
156 MI->eraseFromParent();
158 NumRemovedInPreEmit += InstrsToErase.size();
159 return !InstrsToErase.empty();
162 bool runOnMachineFunction(MachineFunction &MF) override {
163 if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole)
164 return false;
165 bool Changed = false;
166 const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
167 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
168 SmallVector<MachineInstr *, 4> InstrsToErase;
169 for (MachineBasicBlock &MBB : MF) {
170 Changed |= removeRedundantLIs(MBB, TRI);
171 for (MachineInstr &MI : MBB) {
172 unsigned Opc = MI.getOpcode();
173 // Detect self copies - these can result from running AADB.
174 if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
175 const MCInstrDesc &MCID = TII->get(Opc);
176 if (MCID.getNumOperands() == 3 &&
177 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
178 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
179 NumberOfSelfCopies++;
180 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
181 LLVM_DEBUG(MI.dump());
182 InstrsToErase.push_back(&MI);
183 continue;
185 else if (MCID.getNumOperands() == 2 &&
186 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
187 NumberOfSelfCopies++;
188 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
189 LLVM_DEBUG(MI.dump());
190 InstrsToErase.push_back(&MI);
191 continue;
194 MachineInstr *DefMIToErase = nullptr;
195 if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
196 Changed = true;
197 NumRRConvertedInPreEmit++;
198 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
199 LLVM_DEBUG(MI.dump());
200 if (DefMIToErase) {
201 InstrsToErase.push_back(DefMIToErase);
206 // Eliminate conditional branch based on a constant CR bit by
207 // CRSET or CRUNSET. We eliminate the conditional branch or
208 // convert it into an unconditional branch. Also, if the CR bit
209 // is not used by other instructions, we eliminate CRSET as well.
210 auto I = MBB.getFirstInstrTerminator();
211 if (I == MBB.instr_end())
212 continue;
213 MachineInstr *Br = &*I;
214 if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
215 continue;
216 MachineInstr *CRSetMI = nullptr;
217 Register CRBit = Br->getOperand(0).getReg();
218 unsigned CRReg = getCRFromCRBit(CRBit);
219 bool SeenUse = false;
220 MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
221 for (It++; It != Er; It++) {
222 if (It->modifiesRegister(CRBit, TRI)) {
223 if ((It->getOpcode() == PPC::CRUNSET ||
224 It->getOpcode() == PPC::CRSET) &&
225 It->getOperand(0).getReg() == CRBit)
226 CRSetMI = &*It;
227 break;
229 if (It->readsRegister(CRBit, TRI))
230 SeenUse = true;
232 if (!CRSetMI) continue;
234 unsigned CRSetOp = CRSetMI->getOpcode();
235 if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
236 (Br->getOpcode() == PPC::BC && CRSetOp == PPC::CRUNSET)) {
237 // Remove this branch since it cannot be taken.
238 InstrsToErase.push_back(Br);
239 MBB.removeSuccessor(Br->getOperand(1).getMBB());
241 else {
242 // This conditional branch is always taken. So, remove all branches
243 // and insert an unconditional branch to the destination of this.
244 MachineBasicBlock::iterator It = Br, Er = MBB.end();
245 for (; It != Er; It++) {
246 if (It->isDebugInstr()) continue;
247 assert(It->isTerminator() && "Non-terminator after a terminator");
248 InstrsToErase.push_back(&*It);
250 if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
251 ArrayRef<MachineOperand> NoCond;
252 TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
253 NoCond, Br->getDebugLoc());
255 for (auto &Succ : MBB.successors())
256 if (Succ != Br->getOperand(1).getMBB()) {
257 MBB.removeSuccessor(Succ);
258 break;
262 // If the CRBit is not used by another instruction, we can eliminate
263 // CRSET/CRUNSET instruction.
264 if (!SeenUse) {
265 // We need to check use of the CRBit in successors.
266 for (auto &SuccMBB : MBB.successors())
267 if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
268 SeenUse = true;
269 break;
271 if (!SeenUse)
272 InstrsToErase.push_back(CRSetMI);
275 for (MachineInstr *MI : InstrsToErase) {
276 LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
277 LLVM_DEBUG(MI->dump());
278 MI->eraseFromParent();
279 NumRemovedInPreEmit++;
281 return Changed;
286 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
287 false, false)
288 char PPCPreEmitPeephole::ID = 0;
290 FunctionPass *llvm::createPPCPreEmitPeepholePass() {
291 return new PPCPreEmitPeephole();