[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / Target / SystemZ / SystemZISelLowering.cpp
blob50a03d538d97ee1f8fb295b454fdac91e47cffea
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include <cctype>
28 using namespace llvm;
30 #define DEBUG_TYPE "systemz-lower"
32 namespace {
33 // Represents information about a comparison.
34 struct Comparison {
35 Comparison(SDValue Op0In, SDValue Op1In)
36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 // The operands to the comparison.
39 SDValue Op0, Op1;
41 // The opcode that should be used to compare Op0 and Op1.
42 unsigned Opcode;
44 // A SystemZICMP value. Only used for integer comparisons.
45 unsigned ICmpType;
47 // The mask of CC values that Opcode can produce.
48 unsigned CCValid;
50 // The mask of CC values for which the original condition is true.
51 unsigned CCMask;
53 } // end anonymous namespace
55 // Classify VT as either 32 or 64 bit.
56 static bool is32Bit(EVT VT) {
57 switch (VT.getSimpleVT().SimpleTy) {
58 case MVT::i32:
59 return true;
60 case MVT::i64:
61 return false;
62 default:
63 llvm_unreachable("Unsupported type");
67 // Return a version of MachineOperand that can be safely used before the
68 // final use.
69 static MachineOperand earlyUseOperand(MachineOperand Op) {
70 if (Op.isReg())
71 Op.setIsKill(false);
72 return Op;
75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
76 const SystemZSubtarget &STI)
77 : TargetLowering(TM), Subtarget(STI) {
78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
80 // Set up the register classes.
81 if (Subtarget.hasHighWord())
82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
83 else
84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
86 if (Subtarget.hasVector()) {
87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
89 } else {
90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93 if (Subtarget.hasVectorEnhancements1())
94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
95 else
96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 if (Subtarget.hasVector()) {
99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
107 // Compute derived properties from the register classes
108 computeRegisterProperties(Subtarget.getRegisterInfo());
110 // Set up special registers.
111 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 // TODO: It may be better to default to latency-oriented scheduling, however
114 // LLVM's current latency-oriented scheduler can't handle physreg definitions
115 // such as SystemZ has with CC, so set this to the register-pressure
116 // scheduler, because it can.
117 setSchedulingPreference(Sched::RegPressure);
119 setBooleanContents(ZeroOrOneBooleanContent);
120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 // Instructions are strings of 2-byte aligned 2-byte values.
123 setMinFunctionAlignment(2);
124 // For performance reasons we prefer 16-byte alignment.
125 setPrefFunctionAlignment(4);
127 // Handle operations that are handled in a similar way for all types.
128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
129 I <= MVT::LAST_FP_VALUETYPE;
130 ++I) {
131 MVT VT = MVT::SimpleValueType(I);
132 if (isTypeLegal(VT)) {
133 // Lower SET_CC into an IPM-based sequence.
134 setOperationAction(ISD::SETCC, VT, Custom);
136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
137 setOperationAction(ISD::SELECT, VT, Expand);
139 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
140 setOperationAction(ISD::SELECT_CC, VT, Custom);
141 setOperationAction(ISD::BR_CC, VT, Custom);
145 // Expand jump table branches as address arithmetic followed by an
146 // indirect jump.
147 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
149 // Expand BRCOND into a BR_CC (see above).
150 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
152 // Handle integer types.
153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154 I <= MVT::LAST_INTEGER_VALUETYPE;
155 ++I) {
156 MVT VT = MVT::SimpleValueType(I);
157 if (isTypeLegal(VT)) {
158 // Expand individual DIV and REMs into DIVREMs.
159 setOperationAction(ISD::SDIV, VT, Expand);
160 setOperationAction(ISD::UDIV, VT, Expand);
161 setOperationAction(ISD::SREM, VT, Expand);
162 setOperationAction(ISD::UREM, VT, Expand);
163 setOperationAction(ISD::SDIVREM, VT, Custom);
164 setOperationAction(ISD::UDIVREM, VT, Custom);
166 // Support addition/subtraction with overflow.
167 setOperationAction(ISD::SADDO, VT, Custom);
168 setOperationAction(ISD::SSUBO, VT, Custom);
170 // Support addition/subtraction with carry.
171 setOperationAction(ISD::UADDO, VT, Custom);
172 setOperationAction(ISD::USUBO, VT, Custom);
174 // Support carry in as value rather than glue.
175 setOperationAction(ISD::ADDCARRY, VT, Custom);
176 setOperationAction(ISD::SUBCARRY, VT, Custom);
178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
179 // stores, putting a serialization instruction after the stores.
180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
184 // available, or if the operand is constant.
185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
187 // Use POPCNT on z196 and above.
188 if (Subtarget.hasPopulationCount())
189 setOperationAction(ISD::CTPOP, VT, Custom);
190 else
191 setOperationAction(ISD::CTPOP, VT, Expand);
193 // No special instructions for these.
194 setOperationAction(ISD::CTTZ, VT, Expand);
195 setOperationAction(ISD::ROTR, VT, Expand);
197 // Use *MUL_LOHI where possible instead of MULH*.
198 setOperationAction(ISD::MULHS, VT, Expand);
199 setOperationAction(ISD::MULHU, VT, Expand);
200 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
201 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
203 // Only z196 and above have native support for conversions to unsigned.
204 // On z10, promoting to i64 doesn't generate an inexact condition for
205 // values that are outside the i32 range but in the i64 range, so use
206 // the default expansion.
207 if (!Subtarget.hasFPExtension())
208 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
212 // Type legalization will convert 8- and 16-bit atomic operations into
213 // forms that operate on i32s (but still keeping the original memory VT).
214 // Lower them into full i32 operations.
215 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
216 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
217 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
218 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
219 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
220 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
221 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
222 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
223 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
224 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
225 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
227 // Even though i128 is not a legal type, we still need to custom lower
228 // the atomic operations in order to exploit SystemZ instructions.
229 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
230 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
232 // We can use the CC result of compare-and-swap to implement
233 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
234 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
238 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
240 // Traps are legal, as we will convert them to "j .+2".
241 setOperationAction(ISD::TRAP, MVT::Other, Legal);
243 // z10 has instructions for signed but not unsigned FP conversion.
244 // Handle unsigned 32-bit types as signed 64-bit types.
245 if (!Subtarget.hasFPExtension()) {
246 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
247 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
250 // We have native support for a 64-bit CTLZ, via FLOGR.
251 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
252 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
253 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
255 // On arch13 we have native support for a 64-bit CTPOP.
256 if (Subtarget.hasMiscellaneousExtensions3()) {
257 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
258 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
261 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
262 setOperationAction(ISD::OR, MVT::i64, Custom);
264 // FIXME: Can we support these natively?
265 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
266 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
267 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
269 // We have native instructions for i8, i16 and i32 extensions, but not i1.
270 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
271 for (MVT VT : MVT::integer_valuetypes()) {
272 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
273 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
274 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
277 // Handle the various types of symbolic address.
278 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
279 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
280 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
281 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
282 setOperationAction(ISD::JumpTable, PtrVT, Custom);
284 // We need to handle dynamic allocations specially because of the
285 // 160-byte area at the bottom of the stack.
286 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
287 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
289 // Use custom expanders so that we can force the function to use
290 // a frame pointer.
291 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
292 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
294 // Handle prefetches with PFD or PFDRL.
295 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
297 for (MVT VT : MVT::vector_valuetypes()) {
298 // Assume by default that all vector operations need to be expanded.
299 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
300 if (getOperationAction(Opcode, VT) == Legal)
301 setOperationAction(Opcode, VT, Expand);
303 // Likewise all truncating stores and extending loads.
304 for (MVT InnerVT : MVT::vector_valuetypes()) {
305 setTruncStoreAction(VT, InnerVT, Expand);
306 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
307 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
308 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
311 if (isTypeLegal(VT)) {
312 // These operations are legal for anything that can be stored in a
313 // vector register, even if there is no native support for the format
314 // as such. In particular, we can do these for v4f32 even though there
315 // are no specific instructions for that format.
316 setOperationAction(ISD::LOAD, VT, Legal);
317 setOperationAction(ISD::STORE, VT, Legal);
318 setOperationAction(ISD::VSELECT, VT, Legal);
319 setOperationAction(ISD::BITCAST, VT, Legal);
320 setOperationAction(ISD::UNDEF, VT, Legal);
322 // Likewise, except that we need to replace the nodes with something
323 // more specific.
324 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
325 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
329 // Handle integer vector types.
330 for (MVT VT : MVT::integer_vector_valuetypes()) {
331 if (isTypeLegal(VT)) {
332 // These operations have direct equivalents.
333 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
334 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
335 setOperationAction(ISD::ADD, VT, Legal);
336 setOperationAction(ISD::SUB, VT, Legal);
337 if (VT != MVT::v2i64)
338 setOperationAction(ISD::MUL, VT, Legal);
339 setOperationAction(ISD::AND, VT, Legal);
340 setOperationAction(ISD::OR, VT, Legal);
341 setOperationAction(ISD::XOR, VT, Legal);
342 if (Subtarget.hasVectorEnhancements1())
343 setOperationAction(ISD::CTPOP, VT, Legal);
344 else
345 setOperationAction(ISD::CTPOP, VT, Custom);
346 setOperationAction(ISD::CTTZ, VT, Legal);
347 setOperationAction(ISD::CTLZ, VT, Legal);
349 // Convert a GPR scalar to a vector by inserting it into element 0.
350 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
352 // Use a series of unpacks for extensions.
353 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
354 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
356 // Detect shifts by a scalar amount and convert them into
357 // V*_BY_SCALAR.
358 setOperationAction(ISD::SHL, VT, Custom);
359 setOperationAction(ISD::SRA, VT, Custom);
360 setOperationAction(ISD::SRL, VT, Custom);
362 // At present ROTL isn't matched by DAGCombiner. ROTR should be
363 // converted into ROTL.
364 setOperationAction(ISD::ROTL, VT, Expand);
365 setOperationAction(ISD::ROTR, VT, Expand);
367 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
368 // and inverting the result as necessary.
369 setOperationAction(ISD::SETCC, VT, Custom);
373 if (Subtarget.hasVector()) {
374 // There should be no need to check for float types other than v2f64
375 // since <2 x f32> isn't a legal type.
376 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
377 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
378 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
379 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
380 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
381 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
382 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
383 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
386 if (Subtarget.hasVectorEnhancements2()) {
387 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
388 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
389 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
390 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
391 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
392 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
393 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
394 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
397 // Handle floating-point types.
398 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
399 I <= MVT::LAST_FP_VALUETYPE;
400 ++I) {
401 MVT VT = MVT::SimpleValueType(I);
402 if (isTypeLegal(VT)) {
403 // We can use FI for FRINT.
404 setOperationAction(ISD::FRINT, VT, Legal);
406 // We can use the extended form of FI for other rounding operations.
407 if (Subtarget.hasFPExtension()) {
408 setOperationAction(ISD::FNEARBYINT, VT, Legal);
409 setOperationAction(ISD::FFLOOR, VT, Legal);
410 setOperationAction(ISD::FCEIL, VT, Legal);
411 setOperationAction(ISD::FTRUNC, VT, Legal);
412 setOperationAction(ISD::FROUND, VT, Legal);
415 // No special instructions for these.
416 setOperationAction(ISD::FSIN, VT, Expand);
417 setOperationAction(ISD::FCOS, VT, Expand);
418 setOperationAction(ISD::FSINCOS, VT, Expand);
419 setOperationAction(ISD::FREM, VT, Expand);
420 setOperationAction(ISD::FPOW, VT, Expand);
422 // Handle constrained floating-point operations.
423 setOperationAction(ISD::STRICT_FADD, VT, Legal);
424 setOperationAction(ISD::STRICT_FSUB, VT, Legal);
425 setOperationAction(ISD::STRICT_FMUL, VT, Legal);
426 setOperationAction(ISD::STRICT_FDIV, VT, Legal);
427 setOperationAction(ISD::STRICT_FMA, VT, Legal);
428 setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
429 setOperationAction(ISD::STRICT_FRINT, VT, Legal);
430 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
431 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
432 if (Subtarget.hasFPExtension()) {
433 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
434 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
435 setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
436 setOperationAction(ISD::STRICT_FROUND, VT, Legal);
437 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
442 // Handle floating-point vector types.
443 if (Subtarget.hasVector()) {
444 // Scalar-to-vector conversion is just a subreg.
445 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
446 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
448 // Some insertions and extractions can be done directly but others
449 // need to go via integers.
450 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
451 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
452 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
453 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
455 // These operations have direct equivalents.
456 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
457 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
458 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
459 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
460 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
461 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
462 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
463 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
464 setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
465 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
466 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
467 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
468 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
469 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
471 // Handle constrained floating-point operations.
472 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
473 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
474 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
475 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
476 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
477 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
478 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
479 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
480 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
481 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
482 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
483 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
486 // The vector enhancements facility 1 has instructions for these.
487 if (Subtarget.hasVectorEnhancements1()) {
488 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
489 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
490 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
491 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
492 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
493 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
494 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
495 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
496 setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
497 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
498 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
499 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
500 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
501 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
503 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
504 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
505 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
506 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
508 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
509 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
510 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
511 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
513 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
514 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
515 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
516 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
518 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
519 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
520 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
521 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
523 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
524 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
525 setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
526 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
528 // Handle constrained floating-point operations.
529 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
530 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
531 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
532 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
533 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
534 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
535 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
536 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
537 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
538 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
539 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
540 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
541 for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
542 MVT::v4f32, MVT::v2f64 }) {
543 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
544 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
548 // We have fused multiply-addition for f32 and f64 but not f128.
549 setOperationAction(ISD::FMA, MVT::f32, Legal);
550 setOperationAction(ISD::FMA, MVT::f64, Legal);
551 if (Subtarget.hasVectorEnhancements1())
552 setOperationAction(ISD::FMA, MVT::f128, Legal);
553 else
554 setOperationAction(ISD::FMA, MVT::f128, Expand);
556 // We don't have a copysign instruction on vector registers.
557 if (Subtarget.hasVectorEnhancements1())
558 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
560 // Needed so that we don't try to implement f128 constant loads using
561 // a load-and-extend of a f80 constant (in cases where the constant
562 // would fit in an f80).
563 for (MVT VT : MVT::fp_valuetypes())
564 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
566 // We don't have extending load instruction on vector registers.
567 if (Subtarget.hasVectorEnhancements1()) {
568 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
569 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
572 // Floating-point truncation and stores need to be done separately.
573 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
574 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
575 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
577 // We have 64-bit FPR<->GPR moves, but need special handling for
578 // 32-bit forms.
579 if (!Subtarget.hasVector()) {
580 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
581 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
584 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
585 // structure, but VAEND is a no-op.
586 setOperationAction(ISD::VASTART, MVT::Other, Custom);
587 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
588 setOperationAction(ISD::VAEND, MVT::Other, Expand);
590 // Codes for which we want to perform some z-specific combinations.
591 setTargetDAGCombine(ISD::ZERO_EXTEND);
592 setTargetDAGCombine(ISD::SIGN_EXTEND);
593 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
594 setTargetDAGCombine(ISD::LOAD);
595 setTargetDAGCombine(ISD::STORE);
596 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
597 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
598 setTargetDAGCombine(ISD::FP_ROUND);
599 setTargetDAGCombine(ISD::FP_EXTEND);
600 setTargetDAGCombine(ISD::BSWAP);
601 setTargetDAGCombine(ISD::SDIV);
602 setTargetDAGCombine(ISD::UDIV);
603 setTargetDAGCombine(ISD::SREM);
604 setTargetDAGCombine(ISD::UREM);
606 // Handle intrinsics.
607 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
608 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
610 // We want to use MVC in preference to even a single load/store pair.
611 MaxStoresPerMemcpy = 0;
612 MaxStoresPerMemcpyOptSize = 0;
614 // The main memset sequence is a byte store followed by an MVC.
615 // Two STC or MV..I stores win over that, but the kind of fused stores
616 // generated by target-independent code don't when the byte value is
617 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
618 // than "STC;MVC". Handle the choice in target-specific code instead.
619 MaxStoresPerMemset = 0;
620 MaxStoresPerMemsetOptSize = 0;
623 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
624 LLVMContext &, EVT VT) const {
625 if (!VT.isVector())
626 return MVT::i32;
627 return VT.changeVectorElementTypeToInteger();
630 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
631 VT = VT.getScalarType();
633 if (!VT.isSimple())
634 return false;
636 switch (VT.getSimpleVT().SimpleTy) {
637 case MVT::f32:
638 case MVT::f64:
639 return true;
640 case MVT::f128:
641 return Subtarget.hasVectorEnhancements1();
642 default:
643 break;
646 return false;
649 // Return true if the constant can be generated with a vector instruction,
650 // such as VGM, VGMB or VREPI.
651 bool SystemZVectorConstantInfo::isVectorConstantLegal(
652 const SystemZSubtarget &Subtarget) {
653 const SystemZInstrInfo *TII =
654 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
655 if (!Subtarget.hasVector() ||
656 (isFP128 && !Subtarget.hasVectorEnhancements1()))
657 return false;
659 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
660 // preferred way of creating all-zero and all-one vectors so give it
661 // priority over other methods below.
662 unsigned Mask = 0;
663 unsigned I = 0;
664 for (; I < SystemZ::VectorBytes; ++I) {
665 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
666 if (Byte == 0xff)
667 Mask |= 1ULL << I;
668 else if (Byte != 0)
669 break;
671 if (I == SystemZ::VectorBytes) {
672 Opcode = SystemZISD::BYTE_MASK;
673 OpVals.push_back(Mask);
674 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
675 return true;
678 if (SplatBitSize > 64)
679 return false;
681 auto tryValue = [&](uint64_t Value) -> bool {
682 // Try VECTOR REPLICATE IMMEDIATE
683 int64_t SignedValue = SignExtend64(Value, SplatBitSize);
684 if (isInt<16>(SignedValue)) {
685 OpVals.push_back(((unsigned) SignedValue));
686 Opcode = SystemZISD::REPLICATE;
687 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
688 SystemZ::VectorBits / SplatBitSize);
689 return true;
691 // Try VECTOR GENERATE MASK
692 unsigned Start, End;
693 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
694 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
695 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for
696 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
697 OpVals.push_back(Start - (64 - SplatBitSize));
698 OpVals.push_back(End - (64 - SplatBitSize));
699 Opcode = SystemZISD::ROTATE_MASK;
700 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
701 SystemZ::VectorBits / SplatBitSize);
702 return true;
704 return false;
707 // First try assuming that any undefined bits above the highest set bit
708 // and below the lowest set bit are 1s. This increases the likelihood of
709 // being able to use a sign-extended element value in VECTOR REPLICATE
710 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
711 uint64_t SplatBitsZ = SplatBits.getZExtValue();
712 uint64_t SplatUndefZ = SplatUndef.getZExtValue();
713 uint64_t Lower =
714 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
715 uint64_t Upper =
716 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
717 if (tryValue(SplatBitsZ | Upper | Lower))
718 return true;
720 // Now try assuming that any undefined bits between the first and
721 // last defined set bits are set. This increases the chances of
722 // using a non-wraparound mask.
723 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
724 return tryValue(SplatBitsZ | Middle);
727 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
728 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
729 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
731 // Find the smallest splat.
732 SplatBits = FPImm.bitcastToAPInt();
733 unsigned Width = SplatBits.getBitWidth();
734 while (Width > 8) {
735 unsigned HalfSize = Width / 2;
736 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
737 APInt LowValue = SplatBits.trunc(HalfSize);
739 // If the two halves do not match, stop here.
740 if (HighValue != LowValue || 8 > HalfSize)
741 break;
743 SplatBits = HighValue;
744 Width = HalfSize;
746 SplatUndef = 0;
747 SplatBitSize = Width;
750 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
751 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
752 bool HasAnyUndefs;
754 // Get IntBits by finding the 128 bit splat.
755 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
756 true);
758 // Get SplatBits by finding the 8 bit or greater splat.
759 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
760 true);
763 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
764 bool ForCodeSize) const {
765 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
766 if (Imm.isZero() || Imm.isNegZero())
767 return true;
769 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
772 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
773 // We can use CGFI or CLGFI.
774 return isInt<32>(Imm) || isUInt<32>(Imm);
777 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
778 // We can use ALGFI or SLGFI.
779 return isUInt<32>(Imm) || isUInt<32>(-Imm);
782 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
783 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
784 // Unaligned accesses should never be slower than the expanded version.
785 // We check specifically for aligned accesses in the few cases where
786 // they are required.
787 if (Fast)
788 *Fast = true;
789 return true;
792 // Information about the addressing mode for a memory access.
793 struct AddressingMode {
794 // True if a long displacement is supported.
795 bool LongDisplacement;
797 // True if use of index register is supported.
798 bool IndexReg;
800 AddressingMode(bool LongDispl, bool IdxReg) :
801 LongDisplacement(LongDispl), IndexReg(IdxReg) {}
804 // Return the desired addressing mode for a Load which has only one use (in
805 // the same block) which is a Store.
806 static AddressingMode getLoadStoreAddrMode(bool HasVector,
807 Type *Ty) {
808 // With vector support a Load->Store combination may be combined to either
809 // an MVC or vector operations and it seems to work best to allow the
810 // vector addressing mode.
811 if (HasVector)
812 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
814 // Otherwise only the MVC case is special.
815 bool MVC = Ty->isIntegerTy(8);
816 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
819 // Return the addressing mode which seems most desirable given an LLVM
820 // Instruction pointer.
821 static AddressingMode
822 supportedAddressingMode(Instruction *I, bool HasVector) {
823 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
824 switch (II->getIntrinsicID()) {
825 default: break;
826 case Intrinsic::memset:
827 case Intrinsic::memmove:
828 case Intrinsic::memcpy:
829 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
833 if (isa<LoadInst>(I) && I->hasOneUse()) {
834 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
835 if (SingleUser->getParent() == I->getParent()) {
836 if (isa<ICmpInst>(SingleUser)) {
837 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
838 if (C->getBitWidth() <= 64 &&
839 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
840 // Comparison of memory with 16 bit signed / unsigned immediate
841 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
842 } else if (isa<StoreInst>(SingleUser))
843 // Load->Store
844 return getLoadStoreAddrMode(HasVector, I->getType());
846 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
847 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
848 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
849 // Load->Store
850 return getLoadStoreAddrMode(HasVector, LoadI->getType());
853 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
855 // * Use LDE instead of LE/LEY for z13 to avoid partial register
856 // dependencies (LDE only supports small offsets).
857 // * Utilize the vector registers to hold floating point
858 // values (vector load / store instructions only support small
859 // offsets).
861 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
862 I->getOperand(0)->getType());
863 bool IsFPAccess = MemAccessTy->isFloatingPointTy();
864 bool IsVectorAccess = MemAccessTy->isVectorTy();
866 // A store of an extracted vector element will be combined into a VSTE type
867 // instruction.
868 if (!IsVectorAccess && isa<StoreInst>(I)) {
869 Value *DataOp = I->getOperand(0);
870 if (isa<ExtractElementInst>(DataOp))
871 IsVectorAccess = true;
874 // A load which gets inserted into a vector element will be combined into a
875 // VLE type instruction.
876 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
877 User *LoadUser = *I->user_begin();
878 if (isa<InsertElementInst>(LoadUser))
879 IsVectorAccess = true;
882 if (IsFPAccess || IsVectorAccess)
883 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
886 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
889 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
890 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
891 // Punt on globals for now, although they can be used in limited
892 // RELATIVE LONG cases.
893 if (AM.BaseGV)
894 return false;
896 // Require a 20-bit signed offset.
897 if (!isInt<20>(AM.BaseOffs))
898 return false;
900 AddressingMode SupportedAM(true, true);
901 if (I != nullptr)
902 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
904 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
905 return false;
907 if (!SupportedAM.IndexReg)
908 // No indexing allowed.
909 return AM.Scale == 0;
910 else
911 // Indexing is OK but no scale factor can be applied.
912 return AM.Scale == 0 || AM.Scale == 1;
915 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
916 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
917 return false;
918 unsigned FromBits = FromType->getPrimitiveSizeInBits();
919 unsigned ToBits = ToType->getPrimitiveSizeInBits();
920 return FromBits > ToBits;
923 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
924 if (!FromVT.isInteger() || !ToVT.isInteger())
925 return false;
926 unsigned FromBits = FromVT.getSizeInBits();
927 unsigned ToBits = ToVT.getSizeInBits();
928 return FromBits > ToBits;
931 //===----------------------------------------------------------------------===//
932 // Inline asm support
933 //===----------------------------------------------------------------------===//
935 TargetLowering::ConstraintType
936 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
937 if (Constraint.size() == 1) {
938 switch (Constraint[0]) {
939 case 'a': // Address register
940 case 'd': // Data register (equivalent to 'r')
941 case 'f': // Floating-point register
942 case 'h': // High-part register
943 case 'r': // General-purpose register
944 case 'v': // Vector register
945 return C_RegisterClass;
947 case 'Q': // Memory with base and unsigned 12-bit displacement
948 case 'R': // Likewise, plus an index
949 case 'S': // Memory with base and signed 20-bit displacement
950 case 'T': // Likewise, plus an index
951 case 'm': // Equivalent to 'T'.
952 return C_Memory;
954 case 'I': // Unsigned 8-bit constant
955 case 'J': // Unsigned 12-bit constant
956 case 'K': // Signed 16-bit constant
957 case 'L': // Signed 20-bit displacement (on all targets we support)
958 case 'M': // 0x7fffffff
959 return C_Immediate;
961 default:
962 break;
965 return TargetLowering::getConstraintType(Constraint);
968 TargetLowering::ConstraintWeight SystemZTargetLowering::
969 getSingleConstraintMatchWeight(AsmOperandInfo &info,
970 const char *constraint) const {
971 ConstraintWeight weight = CW_Invalid;
972 Value *CallOperandVal = info.CallOperandVal;
973 // If we don't have a value, we can't do a match,
974 // but allow it at the lowest weight.
975 if (!CallOperandVal)
976 return CW_Default;
977 Type *type = CallOperandVal->getType();
978 // Look at the constraint type.
979 switch (*constraint) {
980 default:
981 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
982 break;
984 case 'a': // Address register
985 case 'd': // Data register (equivalent to 'r')
986 case 'h': // High-part register
987 case 'r': // General-purpose register
988 if (CallOperandVal->getType()->isIntegerTy())
989 weight = CW_Register;
990 break;
992 case 'f': // Floating-point register
993 if (type->isFloatingPointTy())
994 weight = CW_Register;
995 break;
997 case 'v': // Vector register
998 if ((type->isVectorTy() || type->isFloatingPointTy()) &&
999 Subtarget.hasVector())
1000 weight = CW_Register;
1001 break;
1003 case 'I': // Unsigned 8-bit constant
1004 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1005 if (isUInt<8>(C->getZExtValue()))
1006 weight = CW_Constant;
1007 break;
1009 case 'J': // Unsigned 12-bit constant
1010 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1011 if (isUInt<12>(C->getZExtValue()))
1012 weight = CW_Constant;
1013 break;
1015 case 'K': // Signed 16-bit constant
1016 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1017 if (isInt<16>(C->getSExtValue()))
1018 weight = CW_Constant;
1019 break;
1021 case 'L': // Signed 20-bit displacement (on all targets we support)
1022 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1023 if (isInt<20>(C->getSExtValue()))
1024 weight = CW_Constant;
1025 break;
1027 case 'M': // 0x7fffffff
1028 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1029 if (C->getZExtValue() == 0x7fffffff)
1030 weight = CW_Constant;
1031 break;
1033 return weight;
1036 // Parse a "{tNNN}" register constraint for which the register type "t"
1037 // has already been verified. MC is the class associated with "t" and
1038 // Map maps 0-based register numbers to LLVM register numbers.
1039 static std::pair<unsigned, const TargetRegisterClass *>
1040 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1041 const unsigned *Map, unsigned Size) {
1042 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1043 if (isdigit(Constraint[2])) {
1044 unsigned Index;
1045 bool Failed =
1046 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1047 if (!Failed && Index < Size && Map[Index])
1048 return std::make_pair(Map[Index], RC);
1050 return std::make_pair(0U, nullptr);
1053 std::pair<unsigned, const TargetRegisterClass *>
1054 SystemZTargetLowering::getRegForInlineAsmConstraint(
1055 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1056 if (Constraint.size() == 1) {
1057 // GCC Constraint Letters
1058 switch (Constraint[0]) {
1059 default: break;
1060 case 'd': // Data register (equivalent to 'r')
1061 case 'r': // General-purpose register
1062 if (VT == MVT::i64)
1063 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1064 else if (VT == MVT::i128)
1065 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1066 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1068 case 'a': // Address register
1069 if (VT == MVT::i64)
1070 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1071 else if (VT == MVT::i128)
1072 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1073 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1075 case 'h': // High-part register (an LLVM extension)
1076 return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1078 case 'f': // Floating-point register
1079 if (VT == MVT::f64)
1080 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1081 else if (VT == MVT::f128)
1082 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1083 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1085 case 'v': // Vector register
1086 if (Subtarget.hasVector()) {
1087 if (VT == MVT::f32)
1088 return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1089 if (VT == MVT::f64)
1090 return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1091 return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1093 break;
1096 if (Constraint.size() > 0 && Constraint[0] == '{') {
1097 // We need to override the default register parsing for GPRs and FPRs
1098 // because the interpretation depends on VT. The internal names of
1099 // the registers are also different from the external names
1100 // (F0D and F0S instead of F0, etc.).
1101 if (Constraint[1] == 'r') {
1102 if (VT == MVT::i32)
1103 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1104 SystemZMC::GR32Regs, 16);
1105 if (VT == MVT::i128)
1106 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1107 SystemZMC::GR128Regs, 16);
1108 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1109 SystemZMC::GR64Regs, 16);
1111 if (Constraint[1] == 'f') {
1112 if (VT == MVT::f32)
1113 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1114 SystemZMC::FP32Regs, 16);
1115 if (VT == MVT::f128)
1116 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1117 SystemZMC::FP128Regs, 16);
1118 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1119 SystemZMC::FP64Regs, 16);
1121 if (Constraint[1] == 'v') {
1122 if (VT == MVT::f32)
1123 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1124 SystemZMC::VR32Regs, 32);
1125 if (VT == MVT::f64)
1126 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1127 SystemZMC::VR64Regs, 32);
1128 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1129 SystemZMC::VR128Regs, 32);
1132 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1135 void SystemZTargetLowering::
1136 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1137 std::vector<SDValue> &Ops,
1138 SelectionDAG &DAG) const {
1139 // Only support length 1 constraints for now.
1140 if (Constraint.length() == 1) {
1141 switch (Constraint[0]) {
1142 case 'I': // Unsigned 8-bit constant
1143 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1144 if (isUInt<8>(C->getZExtValue()))
1145 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1146 Op.getValueType()));
1147 return;
1149 case 'J': // Unsigned 12-bit constant
1150 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1151 if (isUInt<12>(C->getZExtValue()))
1152 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1153 Op.getValueType()));
1154 return;
1156 case 'K': // Signed 16-bit constant
1157 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1158 if (isInt<16>(C->getSExtValue()))
1159 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1160 Op.getValueType()));
1161 return;
1163 case 'L': // Signed 20-bit displacement (on all targets we support)
1164 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1165 if (isInt<20>(C->getSExtValue()))
1166 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1167 Op.getValueType()));
1168 return;
1170 case 'M': // 0x7fffffff
1171 if (auto *C = dyn_cast<ConstantSDNode>(Op))
1172 if (C->getZExtValue() == 0x7fffffff)
1173 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1174 Op.getValueType()));
1175 return;
1178 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1181 //===----------------------------------------------------------------------===//
1182 // Calling conventions
1183 //===----------------------------------------------------------------------===//
1185 #include "SystemZGenCallingConv.inc"
1187 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1188 CallingConv::ID) const {
1189 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1190 SystemZ::R14D, 0 };
1191 return ScratchRegs;
1194 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1195 Type *ToType) const {
1196 return isTruncateFree(FromType, ToType);
1199 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1200 return CI->isTailCall();
1203 // We do not yet support 128-bit single-element vector types. If the user
1204 // attempts to use such types as function argument or return type, prefer
1205 // to error out instead of emitting code violating the ABI.
1206 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1207 if (ArgVT.isVector() && !VT.isVector())
1208 report_fatal_error("Unsupported vector argument or return type");
1211 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1212 for (unsigned i = 0; i < Ins.size(); ++i)
1213 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1216 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1217 for (unsigned i = 0; i < Outs.size(); ++i)
1218 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1221 // Value is a value that has been passed to us in the location described by VA
1222 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1223 // any loads onto Chain.
1224 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1225 CCValAssign &VA, SDValue Chain,
1226 SDValue Value) {
1227 // If the argument has been promoted from a smaller type, insert an
1228 // assertion to capture this.
1229 if (VA.getLocInfo() == CCValAssign::SExt)
1230 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1231 DAG.getValueType(VA.getValVT()));
1232 else if (VA.getLocInfo() == CCValAssign::ZExt)
1233 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1234 DAG.getValueType(VA.getValVT()));
1236 if (VA.isExtInLoc())
1237 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1238 else if (VA.getLocInfo() == CCValAssign::BCvt) {
1239 // If this is a short vector argument loaded from the stack,
1240 // extend from i64 to full vector size and then bitcast.
1241 assert(VA.getLocVT() == MVT::i64);
1242 assert(VA.getValVT().isVector());
1243 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1244 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1245 } else
1246 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1247 return Value;
1250 // Value is a value of type VA.getValVT() that we need to copy into
1251 // the location described by VA. Return a copy of Value converted to
1252 // VA.getValVT(). The caller is responsible for handling indirect values.
1253 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1254 CCValAssign &VA, SDValue Value) {
1255 switch (VA.getLocInfo()) {
1256 case CCValAssign::SExt:
1257 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1258 case CCValAssign::ZExt:
1259 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1260 case CCValAssign::AExt:
1261 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1262 case CCValAssign::BCvt:
1263 // If this is a short vector argument to be stored to the stack,
1264 // bitcast to v2i64 and then extract first element.
1265 assert(VA.getLocVT() == MVT::i64);
1266 assert(VA.getValVT().isVector());
1267 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1268 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1269 DAG.getConstant(0, DL, MVT::i32));
1270 case CCValAssign::Full:
1271 return Value;
1272 default:
1273 llvm_unreachable("Unhandled getLocInfo()");
1277 SDValue SystemZTargetLowering::LowerFormalArguments(
1278 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1279 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1280 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1281 MachineFunction &MF = DAG.getMachineFunction();
1282 MachineFrameInfo &MFI = MF.getFrameInfo();
1283 MachineRegisterInfo &MRI = MF.getRegInfo();
1284 SystemZMachineFunctionInfo *FuncInfo =
1285 MF.getInfo<SystemZMachineFunctionInfo>();
1286 auto *TFL =
1287 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1288 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1290 // Detect unsupported vector argument types.
1291 if (Subtarget.hasVector())
1292 VerifyVectorTypes(Ins);
1294 // Assign locations to all of the incoming arguments.
1295 SmallVector<CCValAssign, 16> ArgLocs;
1296 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1297 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1299 unsigned NumFixedGPRs = 0;
1300 unsigned NumFixedFPRs = 0;
1301 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1302 SDValue ArgValue;
1303 CCValAssign &VA = ArgLocs[I];
1304 EVT LocVT = VA.getLocVT();
1305 if (VA.isRegLoc()) {
1306 // Arguments passed in registers
1307 const TargetRegisterClass *RC;
1308 switch (LocVT.getSimpleVT().SimpleTy) {
1309 default:
1310 // Integers smaller than i64 should be promoted to i64.
1311 llvm_unreachable("Unexpected argument type");
1312 case MVT::i32:
1313 NumFixedGPRs += 1;
1314 RC = &SystemZ::GR32BitRegClass;
1315 break;
1316 case MVT::i64:
1317 NumFixedGPRs += 1;
1318 RC = &SystemZ::GR64BitRegClass;
1319 break;
1320 case MVT::f32:
1321 NumFixedFPRs += 1;
1322 RC = &SystemZ::FP32BitRegClass;
1323 break;
1324 case MVT::f64:
1325 NumFixedFPRs += 1;
1326 RC = &SystemZ::FP64BitRegClass;
1327 break;
1328 case MVT::v16i8:
1329 case MVT::v8i16:
1330 case MVT::v4i32:
1331 case MVT::v2i64:
1332 case MVT::v4f32:
1333 case MVT::v2f64:
1334 RC = &SystemZ::VR128BitRegClass;
1335 break;
1338 Register VReg = MRI.createVirtualRegister(RC);
1339 MRI.addLiveIn(VA.getLocReg(), VReg);
1340 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1341 } else {
1342 assert(VA.isMemLoc() && "Argument not register or memory");
1344 // Create the frame index object for this incoming parameter.
1345 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1346 VA.getLocMemOffset(), true);
1348 // Create the SelectionDAG nodes corresponding to a load
1349 // from this parameter. Unpromoted ints and floats are
1350 // passed as right-justified 8-byte values.
1351 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1352 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1353 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1354 DAG.getIntPtrConstant(4, DL));
1355 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1356 MachinePointerInfo::getFixedStack(MF, FI));
1359 // Convert the value of the argument register into the value that's
1360 // being passed.
1361 if (VA.getLocInfo() == CCValAssign::Indirect) {
1362 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1363 MachinePointerInfo()));
1364 // If the original argument was split (e.g. i128), we need
1365 // to load all parts of it here (using the same address).
1366 unsigned ArgIndex = Ins[I].OrigArgIndex;
1367 assert (Ins[I].PartOffset == 0);
1368 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1369 CCValAssign &PartVA = ArgLocs[I + 1];
1370 unsigned PartOffset = Ins[I + 1].PartOffset;
1371 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1372 DAG.getIntPtrConstant(PartOffset, DL));
1373 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1374 MachinePointerInfo()));
1375 ++I;
1377 } else
1378 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1381 if (IsVarArg) {
1382 // Save the number of non-varargs registers for later use by va_start, etc.
1383 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1384 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1386 // Likewise the address (in the form of a frame index) of where the
1387 // first stack vararg would be. The 1-byte size here is arbitrary.
1388 int64_t StackSize = CCInfo.getNextStackOffset();
1389 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1391 // ...and a similar frame index for the caller-allocated save area
1392 // that will be used to store the incoming registers.
1393 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1394 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1395 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1397 // Store the FPR varargs in the reserved frame slots. (We store the
1398 // GPRs as part of the prologue.)
1399 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1400 SDValue MemOps[SystemZ::NumArgFPRs];
1401 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1402 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1403 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1404 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1405 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1406 &SystemZ::FP64BitRegClass);
1407 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1408 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1409 MachinePointerInfo::getFixedStack(MF, FI));
1411 // Join the stores, which are independent of one another.
1412 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1413 makeArrayRef(&MemOps[NumFixedFPRs],
1414 SystemZ::NumArgFPRs-NumFixedFPRs));
1418 return Chain;
1421 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1422 SmallVectorImpl<CCValAssign> &ArgLocs,
1423 SmallVectorImpl<ISD::OutputArg> &Outs) {
1424 // Punt if there are any indirect or stack arguments, or if the call
1425 // needs the callee-saved argument register R6, or if the call uses
1426 // the callee-saved register arguments SwiftSelf and SwiftError.
1427 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1428 CCValAssign &VA = ArgLocs[I];
1429 if (VA.getLocInfo() == CCValAssign::Indirect)
1430 return false;
1431 if (!VA.isRegLoc())
1432 return false;
1433 Register Reg = VA.getLocReg();
1434 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1435 return false;
1436 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1437 return false;
1439 return true;
1442 SDValue
1443 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1444 SmallVectorImpl<SDValue> &InVals) const {
1445 SelectionDAG &DAG = CLI.DAG;
1446 SDLoc &DL = CLI.DL;
1447 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1448 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1449 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1450 SDValue Chain = CLI.Chain;
1451 SDValue Callee = CLI.Callee;
1452 bool &IsTailCall = CLI.IsTailCall;
1453 CallingConv::ID CallConv = CLI.CallConv;
1454 bool IsVarArg = CLI.IsVarArg;
1455 MachineFunction &MF = DAG.getMachineFunction();
1456 EVT PtrVT = getPointerTy(MF.getDataLayout());
1458 // Detect unsupported vector argument and return types.
1459 if (Subtarget.hasVector()) {
1460 VerifyVectorTypes(Outs);
1461 VerifyVectorTypes(Ins);
1464 // Analyze the operands of the call, assigning locations to each operand.
1465 SmallVector<CCValAssign, 16> ArgLocs;
1466 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1467 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1469 // We don't support GuaranteedTailCallOpt, only automatically-detected
1470 // sibling calls.
1471 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1472 IsTailCall = false;
1474 // Get a count of how many bytes are to be pushed on the stack.
1475 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1477 // Mark the start of the call.
1478 if (!IsTailCall)
1479 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1481 // Copy argument values to their designated locations.
1482 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1483 SmallVector<SDValue, 8> MemOpChains;
1484 SDValue StackPtr;
1485 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1486 CCValAssign &VA = ArgLocs[I];
1487 SDValue ArgValue = OutVals[I];
1489 if (VA.getLocInfo() == CCValAssign::Indirect) {
1490 // Store the argument in a stack slot and pass its address.
1491 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1492 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1493 MemOpChains.push_back(
1494 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1495 MachinePointerInfo::getFixedStack(MF, FI)));
1496 // If the original argument was split (e.g. i128), we need
1497 // to store all parts of it here (and pass just one address).
1498 unsigned ArgIndex = Outs[I].OrigArgIndex;
1499 assert (Outs[I].PartOffset == 0);
1500 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1501 SDValue PartValue = OutVals[I + 1];
1502 unsigned PartOffset = Outs[I + 1].PartOffset;
1503 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1504 DAG.getIntPtrConstant(PartOffset, DL));
1505 MemOpChains.push_back(
1506 DAG.getStore(Chain, DL, PartValue, Address,
1507 MachinePointerInfo::getFixedStack(MF, FI)));
1508 ++I;
1510 ArgValue = SpillSlot;
1511 } else
1512 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1514 if (VA.isRegLoc())
1515 // Queue up the argument copies and emit them at the end.
1516 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1517 else {
1518 assert(VA.isMemLoc() && "Argument not register or memory");
1520 // Work out the address of the stack slot. Unpromoted ints and
1521 // floats are passed as right-justified 8-byte values.
1522 if (!StackPtr.getNode())
1523 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1524 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1525 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1526 Offset += 4;
1527 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1528 DAG.getIntPtrConstant(Offset, DL));
1530 // Emit the store.
1531 MemOpChains.push_back(
1532 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1536 // Join the stores, which are independent of one another.
1537 if (!MemOpChains.empty())
1538 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1540 // Accept direct calls by converting symbolic call addresses to the
1541 // associated Target* opcodes. Force %r1 to be used for indirect
1542 // tail calls.
1543 SDValue Glue;
1544 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1545 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1546 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1547 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1548 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1549 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1550 } else if (IsTailCall) {
1551 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1552 Glue = Chain.getValue(1);
1553 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1556 // Build a sequence of copy-to-reg nodes, chained and glued together.
1557 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1558 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1559 RegsToPass[I].second, Glue);
1560 Glue = Chain.getValue(1);
1563 // The first call operand is the chain and the second is the target address.
1564 SmallVector<SDValue, 8> Ops;
1565 Ops.push_back(Chain);
1566 Ops.push_back(Callee);
1568 // Add argument registers to the end of the list so that they are
1569 // known live into the call.
1570 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1571 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1572 RegsToPass[I].second.getValueType()));
1574 // Add a register mask operand representing the call-preserved registers.
1575 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1576 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1577 assert(Mask && "Missing call preserved mask for calling convention");
1578 Ops.push_back(DAG.getRegisterMask(Mask));
1580 // Glue the call to the argument copies, if any.
1581 if (Glue.getNode())
1582 Ops.push_back(Glue);
1584 // Emit the call.
1585 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1586 if (IsTailCall)
1587 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1588 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1589 Glue = Chain.getValue(1);
1591 // Mark the end of the call, which is glued to the call itself.
1592 Chain = DAG.getCALLSEQ_END(Chain,
1593 DAG.getConstant(NumBytes, DL, PtrVT, true),
1594 DAG.getConstant(0, DL, PtrVT, true),
1595 Glue, DL);
1596 Glue = Chain.getValue(1);
1598 // Assign locations to each value returned by this call.
1599 SmallVector<CCValAssign, 16> RetLocs;
1600 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1601 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1603 // Copy all of the result registers out of their specified physreg.
1604 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1605 CCValAssign &VA = RetLocs[I];
1607 // Copy the value out, gluing the copy to the end of the call sequence.
1608 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1609 VA.getLocVT(), Glue);
1610 Chain = RetValue.getValue(1);
1611 Glue = RetValue.getValue(2);
1613 // Convert the value of the return register into the value that's
1614 // being returned.
1615 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1618 return Chain;
1621 bool SystemZTargetLowering::
1622 CanLowerReturn(CallingConv::ID CallConv,
1623 MachineFunction &MF, bool isVarArg,
1624 const SmallVectorImpl<ISD::OutputArg> &Outs,
1625 LLVMContext &Context) const {
1626 // Detect unsupported vector return types.
1627 if (Subtarget.hasVector())
1628 VerifyVectorTypes(Outs);
1630 // Special case that we cannot easily detect in RetCC_SystemZ since
1631 // i128 is not a legal type.
1632 for (auto &Out : Outs)
1633 if (Out.ArgVT == MVT::i128)
1634 return false;
1636 SmallVector<CCValAssign, 16> RetLocs;
1637 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1638 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1641 SDValue
1642 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1643 bool IsVarArg,
1644 const SmallVectorImpl<ISD::OutputArg> &Outs,
1645 const SmallVectorImpl<SDValue> &OutVals,
1646 const SDLoc &DL, SelectionDAG &DAG) const {
1647 MachineFunction &MF = DAG.getMachineFunction();
1649 // Detect unsupported vector return types.
1650 if (Subtarget.hasVector())
1651 VerifyVectorTypes(Outs);
1653 // Assign locations to each returned value.
1654 SmallVector<CCValAssign, 16> RetLocs;
1655 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1656 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1658 // Quick exit for void returns
1659 if (RetLocs.empty())
1660 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1662 // Copy the result values into the output registers.
1663 SDValue Glue;
1664 SmallVector<SDValue, 4> RetOps;
1665 RetOps.push_back(Chain);
1666 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1667 CCValAssign &VA = RetLocs[I];
1668 SDValue RetValue = OutVals[I];
1670 // Make the return register live on exit.
1671 assert(VA.isRegLoc() && "Can only return in registers!");
1673 // Promote the value as required.
1674 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1676 // Chain and glue the copies together.
1677 Register Reg = VA.getLocReg();
1678 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1679 Glue = Chain.getValue(1);
1680 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1683 // Update chain and glue.
1684 RetOps[0] = Chain;
1685 if (Glue.getNode())
1686 RetOps.push_back(Glue);
1688 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1691 // Return true if Op is an intrinsic node with chain that returns the CC value
1692 // as its only (other) argument. Provide the associated SystemZISD opcode and
1693 // the mask of valid CC values if so.
1694 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1695 unsigned &CCValid) {
1696 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1697 switch (Id) {
1698 case Intrinsic::s390_tbegin:
1699 Opcode = SystemZISD::TBEGIN;
1700 CCValid = SystemZ::CCMASK_TBEGIN;
1701 return true;
1703 case Intrinsic::s390_tbegin_nofloat:
1704 Opcode = SystemZISD::TBEGIN_NOFLOAT;
1705 CCValid = SystemZ::CCMASK_TBEGIN;
1706 return true;
1708 case Intrinsic::s390_tend:
1709 Opcode = SystemZISD::TEND;
1710 CCValid = SystemZ::CCMASK_TEND;
1711 return true;
1713 default:
1714 return false;
1718 // Return true if Op is an intrinsic node without chain that returns the
1719 // CC value as its final argument. Provide the associated SystemZISD
1720 // opcode and the mask of valid CC values if so.
1721 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1722 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1723 switch (Id) {
1724 case Intrinsic::s390_vpkshs:
1725 case Intrinsic::s390_vpksfs:
1726 case Intrinsic::s390_vpksgs:
1727 Opcode = SystemZISD::PACKS_CC;
1728 CCValid = SystemZ::CCMASK_VCMP;
1729 return true;
1731 case Intrinsic::s390_vpklshs:
1732 case Intrinsic::s390_vpklsfs:
1733 case Intrinsic::s390_vpklsgs:
1734 Opcode = SystemZISD::PACKLS_CC;
1735 CCValid = SystemZ::CCMASK_VCMP;
1736 return true;
1738 case Intrinsic::s390_vceqbs:
1739 case Intrinsic::s390_vceqhs:
1740 case Intrinsic::s390_vceqfs:
1741 case Intrinsic::s390_vceqgs:
1742 Opcode = SystemZISD::VICMPES;
1743 CCValid = SystemZ::CCMASK_VCMP;
1744 return true;
1746 case Intrinsic::s390_vchbs:
1747 case Intrinsic::s390_vchhs:
1748 case Intrinsic::s390_vchfs:
1749 case Intrinsic::s390_vchgs:
1750 Opcode = SystemZISD::VICMPHS;
1751 CCValid = SystemZ::CCMASK_VCMP;
1752 return true;
1754 case Intrinsic::s390_vchlbs:
1755 case Intrinsic::s390_vchlhs:
1756 case Intrinsic::s390_vchlfs:
1757 case Intrinsic::s390_vchlgs:
1758 Opcode = SystemZISD::VICMPHLS;
1759 CCValid = SystemZ::CCMASK_VCMP;
1760 return true;
1762 case Intrinsic::s390_vtm:
1763 Opcode = SystemZISD::VTM;
1764 CCValid = SystemZ::CCMASK_VCMP;
1765 return true;
1767 case Intrinsic::s390_vfaebs:
1768 case Intrinsic::s390_vfaehs:
1769 case Intrinsic::s390_vfaefs:
1770 Opcode = SystemZISD::VFAE_CC;
1771 CCValid = SystemZ::CCMASK_ANY;
1772 return true;
1774 case Intrinsic::s390_vfaezbs:
1775 case Intrinsic::s390_vfaezhs:
1776 case Intrinsic::s390_vfaezfs:
1777 Opcode = SystemZISD::VFAEZ_CC;
1778 CCValid = SystemZ::CCMASK_ANY;
1779 return true;
1781 case Intrinsic::s390_vfeebs:
1782 case Intrinsic::s390_vfeehs:
1783 case Intrinsic::s390_vfeefs:
1784 Opcode = SystemZISD::VFEE_CC;
1785 CCValid = SystemZ::CCMASK_ANY;
1786 return true;
1788 case Intrinsic::s390_vfeezbs:
1789 case Intrinsic::s390_vfeezhs:
1790 case Intrinsic::s390_vfeezfs:
1791 Opcode = SystemZISD::VFEEZ_CC;
1792 CCValid = SystemZ::CCMASK_ANY;
1793 return true;
1795 case Intrinsic::s390_vfenebs:
1796 case Intrinsic::s390_vfenehs:
1797 case Intrinsic::s390_vfenefs:
1798 Opcode = SystemZISD::VFENE_CC;
1799 CCValid = SystemZ::CCMASK_ANY;
1800 return true;
1802 case Intrinsic::s390_vfenezbs:
1803 case Intrinsic::s390_vfenezhs:
1804 case Intrinsic::s390_vfenezfs:
1805 Opcode = SystemZISD::VFENEZ_CC;
1806 CCValid = SystemZ::CCMASK_ANY;
1807 return true;
1809 case Intrinsic::s390_vistrbs:
1810 case Intrinsic::s390_vistrhs:
1811 case Intrinsic::s390_vistrfs:
1812 Opcode = SystemZISD::VISTR_CC;
1813 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1814 return true;
1816 case Intrinsic::s390_vstrcbs:
1817 case Intrinsic::s390_vstrchs:
1818 case Intrinsic::s390_vstrcfs:
1819 Opcode = SystemZISD::VSTRC_CC;
1820 CCValid = SystemZ::CCMASK_ANY;
1821 return true;
1823 case Intrinsic::s390_vstrczbs:
1824 case Intrinsic::s390_vstrczhs:
1825 case Intrinsic::s390_vstrczfs:
1826 Opcode = SystemZISD::VSTRCZ_CC;
1827 CCValid = SystemZ::CCMASK_ANY;
1828 return true;
1830 case Intrinsic::s390_vstrsb:
1831 case Intrinsic::s390_vstrsh:
1832 case Intrinsic::s390_vstrsf:
1833 Opcode = SystemZISD::VSTRS_CC;
1834 CCValid = SystemZ::CCMASK_ANY;
1835 return true;
1837 case Intrinsic::s390_vstrszb:
1838 case Intrinsic::s390_vstrszh:
1839 case Intrinsic::s390_vstrszf:
1840 Opcode = SystemZISD::VSTRSZ_CC;
1841 CCValid = SystemZ::CCMASK_ANY;
1842 return true;
1844 case Intrinsic::s390_vfcedbs:
1845 case Intrinsic::s390_vfcesbs:
1846 Opcode = SystemZISD::VFCMPES;
1847 CCValid = SystemZ::CCMASK_VCMP;
1848 return true;
1850 case Intrinsic::s390_vfchdbs:
1851 case Intrinsic::s390_vfchsbs:
1852 Opcode = SystemZISD::VFCMPHS;
1853 CCValid = SystemZ::CCMASK_VCMP;
1854 return true;
1856 case Intrinsic::s390_vfchedbs:
1857 case Intrinsic::s390_vfchesbs:
1858 Opcode = SystemZISD::VFCMPHES;
1859 CCValid = SystemZ::CCMASK_VCMP;
1860 return true;
1862 case Intrinsic::s390_vftcidb:
1863 case Intrinsic::s390_vftcisb:
1864 Opcode = SystemZISD::VFTCI;
1865 CCValid = SystemZ::CCMASK_VCMP;
1866 return true;
1868 case Intrinsic::s390_tdc:
1869 Opcode = SystemZISD::TDC;
1870 CCValid = SystemZ::CCMASK_TDC;
1871 return true;
1873 default:
1874 return false;
1878 // Emit an intrinsic with chain and an explicit CC register result.
1879 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1880 unsigned Opcode) {
1881 // Copy all operands except the intrinsic ID.
1882 unsigned NumOps = Op.getNumOperands();
1883 SmallVector<SDValue, 6> Ops;
1884 Ops.reserve(NumOps - 1);
1885 Ops.push_back(Op.getOperand(0));
1886 for (unsigned I = 2; I < NumOps; ++I)
1887 Ops.push_back(Op.getOperand(I));
1889 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1890 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1891 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1892 SDValue OldChain = SDValue(Op.getNode(), 1);
1893 SDValue NewChain = SDValue(Intr.getNode(), 1);
1894 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1895 return Intr.getNode();
1898 // Emit an intrinsic with an explicit CC register result.
1899 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1900 unsigned Opcode) {
1901 // Copy all operands except the intrinsic ID.
1902 unsigned NumOps = Op.getNumOperands();
1903 SmallVector<SDValue, 6> Ops;
1904 Ops.reserve(NumOps - 1);
1905 for (unsigned I = 1; I < NumOps; ++I)
1906 Ops.push_back(Op.getOperand(I));
1908 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1909 return Intr.getNode();
1912 // CC is a comparison that will be implemented using an integer or
1913 // floating-point comparison. Return the condition code mask for
1914 // a branch on true. In the integer case, CCMASK_CMP_UO is set for
1915 // unsigned comparisons and clear for signed ones. In the floating-point
1916 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1917 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1918 #define CONV(X) \
1919 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1920 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1921 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1923 switch (CC) {
1924 default:
1925 llvm_unreachable("Invalid integer condition!");
1927 CONV(EQ);
1928 CONV(NE);
1929 CONV(GT);
1930 CONV(GE);
1931 CONV(LT);
1932 CONV(LE);
1934 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
1935 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1937 #undef CONV
1940 // If C can be converted to a comparison against zero, adjust the operands
1941 // as necessary.
1942 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1943 if (C.ICmpType == SystemZICMP::UnsignedOnly)
1944 return;
1946 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1947 if (!ConstOp1)
1948 return;
1950 int64_t Value = ConstOp1->getSExtValue();
1951 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1952 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1953 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1954 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1955 C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1956 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1960 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1961 // adjust the operands as necessary.
1962 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1963 Comparison &C) {
1964 // For us to make any changes, it must a comparison between a single-use
1965 // load and a constant.
1966 if (!C.Op0.hasOneUse() ||
1967 C.Op0.getOpcode() != ISD::LOAD ||
1968 C.Op1.getOpcode() != ISD::Constant)
1969 return;
1971 // We must have an 8- or 16-bit load.
1972 auto *Load = cast<LoadSDNode>(C.Op0);
1973 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1974 if (NumBits != 8 && NumBits != 16)
1975 return;
1977 // The load must be an extending one and the constant must be within the
1978 // range of the unextended value.
1979 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1980 uint64_t Value = ConstOp1->getZExtValue();
1981 uint64_t Mask = (1 << NumBits) - 1;
1982 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1983 // Make sure that ConstOp1 is in range of C.Op0.
1984 int64_t SignedValue = ConstOp1->getSExtValue();
1985 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1986 return;
1987 if (C.ICmpType != SystemZICMP::SignedOnly) {
1988 // Unsigned comparison between two sign-extended values is equivalent
1989 // to unsigned comparison between two zero-extended values.
1990 Value &= Mask;
1991 } else if (NumBits == 8) {
1992 // Try to treat the comparison as unsigned, so that we can use CLI.
1993 // Adjust CCMask and Value as necessary.
1994 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1995 // Test whether the high bit of the byte is set.
1996 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1997 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1998 // Test whether the high bit of the byte is clear.
1999 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2000 else
2001 // No instruction exists for this combination.
2002 return;
2003 C.ICmpType = SystemZICMP::UnsignedOnly;
2005 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2006 if (Value > Mask)
2007 return;
2008 // If the constant is in range, we can use any comparison.
2009 C.ICmpType = SystemZICMP::Any;
2010 } else
2011 return;
2013 // Make sure that the first operand is an i32 of the right extension type.
2014 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2015 ISD::SEXTLOAD :
2016 ISD::ZEXTLOAD);
2017 if (C.Op0.getValueType() != MVT::i32 ||
2018 Load->getExtensionType() != ExtType) {
2019 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2020 Load->getBasePtr(), Load->getPointerInfo(),
2021 Load->getMemoryVT(), Load->getAlignment(),
2022 Load->getMemOperand()->getFlags());
2023 // Update the chain uses.
2024 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2027 // Make sure that the second operand is an i32 with the right value.
2028 if (C.Op1.getValueType() != MVT::i32 ||
2029 Value != ConstOp1->getZExtValue())
2030 C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2033 // Return true if Op is either an unextended load, or a load suitable
2034 // for integer register-memory comparisons of type ICmpType.
2035 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2036 auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2037 if (Load) {
2038 // There are no instructions to compare a register with a memory byte.
2039 if (Load->getMemoryVT() == MVT::i8)
2040 return false;
2041 // Otherwise decide on extension type.
2042 switch (Load->getExtensionType()) {
2043 case ISD::NON_EXTLOAD:
2044 return true;
2045 case ISD::SEXTLOAD:
2046 return ICmpType != SystemZICMP::UnsignedOnly;
2047 case ISD::ZEXTLOAD:
2048 return ICmpType != SystemZICMP::SignedOnly;
2049 default:
2050 break;
2053 return false;
2056 // Return true if it is better to swap the operands of C.
2057 static bool shouldSwapCmpOperands(const Comparison &C) {
2058 // Leave f128 comparisons alone, since they have no memory forms.
2059 if (C.Op0.getValueType() == MVT::f128)
2060 return false;
2062 // Always keep a floating-point constant second, since comparisons with
2063 // zero can use LOAD TEST and comparisons with other constants make a
2064 // natural memory operand.
2065 if (isa<ConstantFPSDNode>(C.Op1))
2066 return false;
2068 // Never swap comparisons with zero since there are many ways to optimize
2069 // those later.
2070 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2071 if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2072 return false;
2074 // Also keep natural memory operands second if the loaded value is
2075 // only used here. Several comparisons have memory forms.
2076 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2077 return false;
2079 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2080 // In that case we generally prefer the memory to be second.
2081 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2082 // The only exceptions are when the second operand is a constant and
2083 // we can use things like CHHSI.
2084 if (!ConstOp1)
2085 return true;
2086 // The unsigned memory-immediate instructions can handle 16-bit
2087 // unsigned integers.
2088 if (C.ICmpType != SystemZICMP::SignedOnly &&
2089 isUInt<16>(ConstOp1->getZExtValue()))
2090 return false;
2091 // The signed memory-immediate instructions can handle 16-bit
2092 // signed integers.
2093 if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2094 isInt<16>(ConstOp1->getSExtValue()))
2095 return false;
2096 return true;
2099 // Try to promote the use of CGFR and CLGFR.
2100 unsigned Opcode0 = C.Op0.getOpcode();
2101 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2102 return true;
2103 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2104 return true;
2105 if (C.ICmpType != SystemZICMP::SignedOnly &&
2106 Opcode0 == ISD::AND &&
2107 C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2108 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2109 return true;
2111 return false;
2114 // Return a version of comparison CC mask CCMask in which the LT and GT
2115 // actions are swapped.
2116 static unsigned reverseCCMask(unsigned CCMask) {
2117 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2118 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2119 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2120 (CCMask & SystemZ::CCMASK_CMP_UO));
2123 // Check whether C tests for equality between X and Y and whether X - Y
2124 // or Y - X is also computed. In that case it's better to compare the
2125 // result of the subtraction against zero.
2126 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2127 Comparison &C) {
2128 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2129 C.CCMask == SystemZ::CCMASK_CMP_NE) {
2130 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2131 SDNode *N = *I;
2132 if (N->getOpcode() == ISD::SUB &&
2133 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2134 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2135 C.Op0 = SDValue(N, 0);
2136 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2137 return;
2143 // Check whether C compares a floating-point value with zero and if that
2144 // floating-point value is also negated. In this case we can use the
2145 // negation to set CC, so avoiding separate LOAD AND TEST and
2146 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2147 static void adjustForFNeg(Comparison &C) {
2148 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2149 if (C1 && C1->isZero()) {
2150 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2151 SDNode *N = *I;
2152 if (N->getOpcode() == ISD::FNEG) {
2153 C.Op0 = SDValue(N, 0);
2154 C.CCMask = reverseCCMask(C.CCMask);
2155 return;
2161 // Check whether C compares (shl X, 32) with 0 and whether X is
2162 // also sign-extended. In that case it is better to test the result
2163 // of the sign extension using LTGFR.
2165 // This case is important because InstCombine transforms a comparison
2166 // with (sext (trunc X)) into a comparison with (shl X, 32).
2167 static void adjustForLTGFR(Comparison &C) {
2168 // Check for a comparison between (shl X, 32) and 0.
2169 if (C.Op0.getOpcode() == ISD::SHL &&
2170 C.Op0.getValueType() == MVT::i64 &&
2171 C.Op1.getOpcode() == ISD::Constant &&
2172 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2173 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2174 if (C1 && C1->getZExtValue() == 32) {
2175 SDValue ShlOp0 = C.Op0.getOperand(0);
2176 // See whether X has any SIGN_EXTEND_INREG uses.
2177 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2178 SDNode *N = *I;
2179 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2180 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2181 C.Op0 = SDValue(N, 0);
2182 return;
2189 // If C compares the truncation of an extending load, try to compare
2190 // the untruncated value instead. This exposes more opportunities to
2191 // reuse CC.
2192 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2193 Comparison &C) {
2194 if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2195 C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2196 C.Op1.getOpcode() == ISD::Constant &&
2197 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2198 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2199 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2200 unsigned Type = L->getExtensionType();
2201 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2202 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2203 C.Op0 = C.Op0.getOperand(0);
2204 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2210 // Return true if shift operation N has an in-range constant shift value.
2211 // Store it in ShiftVal if so.
2212 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2213 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2214 if (!Shift)
2215 return false;
2217 uint64_t Amount = Shift->getZExtValue();
2218 if (Amount >= N.getValueSizeInBits())
2219 return false;
2221 ShiftVal = Amount;
2222 return true;
2225 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2226 // instruction and whether the CC value is descriptive enough to handle
2227 // a comparison of type Opcode between the AND result and CmpVal.
2228 // CCMask says which comparison result is being tested and BitSize is
2229 // the number of bits in the operands. If TEST UNDER MASK can be used,
2230 // return the corresponding CC mask, otherwise return 0.
2231 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2232 uint64_t Mask, uint64_t CmpVal,
2233 unsigned ICmpType) {
2234 assert(Mask != 0 && "ANDs with zero should have been removed by now");
2236 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2237 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2238 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2239 return 0;
2241 // Work out the masks for the lowest and highest bits.
2242 unsigned HighShift = 63 - countLeadingZeros(Mask);
2243 uint64_t High = uint64_t(1) << HighShift;
2244 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2246 // Signed ordered comparisons are effectively unsigned if the sign
2247 // bit is dropped.
2248 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2250 // Check for equality comparisons with 0, or the equivalent.
2251 if (CmpVal == 0) {
2252 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2253 return SystemZ::CCMASK_TM_ALL_0;
2254 if (CCMask == SystemZ::CCMASK_CMP_NE)
2255 return SystemZ::CCMASK_TM_SOME_1;
2257 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2258 if (CCMask == SystemZ::CCMASK_CMP_LT)
2259 return SystemZ::CCMASK_TM_ALL_0;
2260 if (CCMask == SystemZ::CCMASK_CMP_GE)
2261 return SystemZ::CCMASK_TM_SOME_1;
2263 if (EffectivelyUnsigned && CmpVal < Low) {
2264 if (CCMask == SystemZ::CCMASK_CMP_LE)
2265 return SystemZ::CCMASK_TM_ALL_0;
2266 if (CCMask == SystemZ::CCMASK_CMP_GT)
2267 return SystemZ::CCMASK_TM_SOME_1;
2270 // Check for equality comparisons with the mask, or the equivalent.
2271 if (CmpVal == Mask) {
2272 if (CCMask == SystemZ::CCMASK_CMP_EQ)
2273 return SystemZ::CCMASK_TM_ALL_1;
2274 if (CCMask == SystemZ::CCMASK_CMP_NE)
2275 return SystemZ::CCMASK_TM_SOME_0;
2277 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2278 if (CCMask == SystemZ::CCMASK_CMP_GT)
2279 return SystemZ::CCMASK_TM_ALL_1;
2280 if (CCMask == SystemZ::CCMASK_CMP_LE)
2281 return SystemZ::CCMASK_TM_SOME_0;
2283 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2284 if (CCMask == SystemZ::CCMASK_CMP_GE)
2285 return SystemZ::CCMASK_TM_ALL_1;
2286 if (CCMask == SystemZ::CCMASK_CMP_LT)
2287 return SystemZ::CCMASK_TM_SOME_0;
2290 // Check for ordered comparisons with the top bit.
2291 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2292 if (CCMask == SystemZ::CCMASK_CMP_LE)
2293 return SystemZ::CCMASK_TM_MSB_0;
2294 if (CCMask == SystemZ::CCMASK_CMP_GT)
2295 return SystemZ::CCMASK_TM_MSB_1;
2297 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2298 if (CCMask == SystemZ::CCMASK_CMP_LT)
2299 return SystemZ::CCMASK_TM_MSB_0;
2300 if (CCMask == SystemZ::CCMASK_CMP_GE)
2301 return SystemZ::CCMASK_TM_MSB_1;
2304 // If there are just two bits, we can do equality checks for Low and High
2305 // as well.
2306 if (Mask == Low + High) {
2307 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2308 return SystemZ::CCMASK_TM_MIXED_MSB_0;
2309 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2310 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2311 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2312 return SystemZ::CCMASK_TM_MIXED_MSB_1;
2313 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2314 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2317 // Looks like we've exhausted our options.
2318 return 0;
2321 // See whether C can be implemented as a TEST UNDER MASK instruction.
2322 // Update the arguments with the TM version if so.
2323 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2324 Comparison &C) {
2325 // Check that we have a comparison with a constant.
2326 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2327 if (!ConstOp1)
2328 return;
2329 uint64_t CmpVal = ConstOp1->getZExtValue();
2331 // Check whether the nonconstant input is an AND with a constant mask.
2332 Comparison NewC(C);
2333 uint64_t MaskVal;
2334 ConstantSDNode *Mask = nullptr;
2335 if (C.Op0.getOpcode() == ISD::AND) {
2336 NewC.Op0 = C.Op0.getOperand(0);
2337 NewC.Op1 = C.Op0.getOperand(1);
2338 Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2339 if (!Mask)
2340 return;
2341 MaskVal = Mask->getZExtValue();
2342 } else {
2343 // There is no instruction to compare with a 64-bit immediate
2344 // so use TMHH instead if possible. We need an unsigned ordered
2345 // comparison with an i64 immediate.
2346 if (NewC.Op0.getValueType() != MVT::i64 ||
2347 NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2348 NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2349 NewC.ICmpType == SystemZICMP::SignedOnly)
2350 return;
2351 // Convert LE and GT comparisons into LT and GE.
2352 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2353 NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2354 if (CmpVal == uint64_t(-1))
2355 return;
2356 CmpVal += 1;
2357 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2359 // If the low N bits of Op1 are zero than the low N bits of Op0 can
2360 // be masked off without changing the result.
2361 MaskVal = -(CmpVal & -CmpVal);
2362 NewC.ICmpType = SystemZICMP::UnsignedOnly;
2364 if (!MaskVal)
2365 return;
2367 // Check whether the combination of mask, comparison value and comparison
2368 // type are suitable.
2369 unsigned BitSize = NewC.Op0.getValueSizeInBits();
2370 unsigned NewCCMask, ShiftVal;
2371 if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2372 NewC.Op0.getOpcode() == ISD::SHL &&
2373 isSimpleShift(NewC.Op0, ShiftVal) &&
2374 (MaskVal >> ShiftVal != 0) &&
2375 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2376 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2377 MaskVal >> ShiftVal,
2378 CmpVal >> ShiftVal,
2379 SystemZICMP::Any))) {
2380 NewC.Op0 = NewC.Op0.getOperand(0);
2381 MaskVal >>= ShiftVal;
2382 } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2383 NewC.Op0.getOpcode() == ISD::SRL &&
2384 isSimpleShift(NewC.Op0, ShiftVal) &&
2385 (MaskVal << ShiftVal != 0) &&
2386 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2387 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2388 MaskVal << ShiftVal,
2389 CmpVal << ShiftVal,
2390 SystemZICMP::UnsignedOnly))) {
2391 NewC.Op0 = NewC.Op0.getOperand(0);
2392 MaskVal <<= ShiftVal;
2393 } else {
2394 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2395 NewC.ICmpType);
2396 if (!NewCCMask)
2397 return;
2400 // Go ahead and make the change.
2401 C.Opcode = SystemZISD::TM;
2402 C.Op0 = NewC.Op0;
2403 if (Mask && Mask->getZExtValue() == MaskVal)
2404 C.Op1 = SDValue(Mask, 0);
2405 else
2406 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2407 C.CCValid = SystemZ::CCMASK_TM;
2408 C.CCMask = NewCCMask;
2411 // See whether the comparison argument contains a redundant AND
2412 // and remove it if so. This sometimes happens due to the generic
2413 // BRCOND expansion.
2414 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2415 Comparison &C) {
2416 if (C.Op0.getOpcode() != ISD::AND)
2417 return;
2418 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2419 if (!Mask)
2420 return;
2421 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2422 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2423 return;
2425 C.Op0 = C.Op0.getOperand(0);
2428 // Return a Comparison that tests the condition-code result of intrinsic
2429 // node Call against constant integer CC using comparison code Cond.
2430 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2431 // and CCValid is the set of possible condition-code results.
2432 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2433 SDValue Call, unsigned CCValid, uint64_t CC,
2434 ISD::CondCode Cond) {
2435 Comparison C(Call, SDValue());
2436 C.Opcode = Opcode;
2437 C.CCValid = CCValid;
2438 if (Cond == ISD::SETEQ)
2439 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2440 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2441 else if (Cond == ISD::SETNE)
2442 // ...and the inverse of that.
2443 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2444 else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2445 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2446 // always true for CC>3.
2447 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2448 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2449 // ...and the inverse of that.
2450 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2451 else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2452 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2453 // always true for CC>3.
2454 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2455 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2456 // ...and the inverse of that.
2457 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2458 else
2459 llvm_unreachable("Unexpected integer comparison type");
2460 C.CCMask &= CCValid;
2461 return C;
2464 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2465 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2466 ISD::CondCode Cond, const SDLoc &DL) {
2467 if (CmpOp1.getOpcode() == ISD::Constant) {
2468 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2469 unsigned Opcode, CCValid;
2470 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2471 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2472 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2473 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2474 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2475 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2476 isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2477 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2479 Comparison C(CmpOp0, CmpOp1);
2480 C.CCMask = CCMaskForCondCode(Cond);
2481 if (C.Op0.getValueType().isFloatingPoint()) {
2482 C.CCValid = SystemZ::CCMASK_FCMP;
2483 C.Opcode = SystemZISD::FCMP;
2484 adjustForFNeg(C);
2485 } else {
2486 C.CCValid = SystemZ::CCMASK_ICMP;
2487 C.Opcode = SystemZISD::ICMP;
2488 // Choose the type of comparison. Equality and inequality tests can
2489 // use either signed or unsigned comparisons. The choice also doesn't
2490 // matter if both sign bits are known to be clear. In those cases we
2491 // want to give the main isel code the freedom to choose whichever
2492 // form fits best.
2493 if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2494 C.CCMask == SystemZ::CCMASK_CMP_NE ||
2495 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2496 C.ICmpType = SystemZICMP::Any;
2497 else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2498 C.ICmpType = SystemZICMP::UnsignedOnly;
2499 else
2500 C.ICmpType = SystemZICMP::SignedOnly;
2501 C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2502 adjustForRedundantAnd(DAG, DL, C);
2503 adjustZeroCmp(DAG, DL, C);
2504 adjustSubwordCmp(DAG, DL, C);
2505 adjustForSubtraction(DAG, DL, C);
2506 adjustForLTGFR(C);
2507 adjustICmpTruncate(DAG, DL, C);
2510 if (shouldSwapCmpOperands(C)) {
2511 std::swap(C.Op0, C.Op1);
2512 C.CCMask = reverseCCMask(C.CCMask);
2515 adjustForTestUnderMask(DAG, DL, C);
2516 return C;
2519 // Emit the comparison instruction described by C.
2520 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2521 if (!C.Op1.getNode()) {
2522 SDNode *Node;
2523 switch (C.Op0.getOpcode()) {
2524 case ISD::INTRINSIC_W_CHAIN:
2525 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2526 return SDValue(Node, 0);
2527 case ISD::INTRINSIC_WO_CHAIN:
2528 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2529 return SDValue(Node, Node->getNumValues() - 1);
2530 default:
2531 llvm_unreachable("Invalid comparison operands");
2534 if (C.Opcode == SystemZISD::ICMP)
2535 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2536 DAG.getConstant(C.ICmpType, DL, MVT::i32));
2537 if (C.Opcode == SystemZISD::TM) {
2538 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2539 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2540 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2541 DAG.getConstant(RegisterOnly, DL, MVT::i32));
2543 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2546 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2547 // 64 bits. Extend is the extension type to use. Store the high part
2548 // in Hi and the low part in Lo.
2549 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2550 SDValue Op0, SDValue Op1, SDValue &Hi,
2551 SDValue &Lo) {
2552 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2553 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2554 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2555 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2556 DAG.getConstant(32, DL, MVT::i64));
2557 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2558 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2561 // Lower a binary operation that produces two VT results, one in each
2562 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
2563 // and Opcode performs the GR128 operation. Store the even register result
2564 // in Even and the odd register result in Odd.
2565 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2566 unsigned Opcode, SDValue Op0, SDValue Op1,
2567 SDValue &Even, SDValue &Odd) {
2568 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2569 bool Is32Bit = is32Bit(VT);
2570 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2571 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2574 // Return an i32 value that is 1 if the CC value produced by CCReg is
2575 // in the mask CCMask and 0 otherwise. CC is known to have a value
2576 // in CCValid, so other values can be ignored.
2577 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2578 unsigned CCValid, unsigned CCMask) {
2579 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2580 DAG.getConstant(0, DL, MVT::i32),
2581 DAG.getConstant(CCValid, DL, MVT::i32),
2582 DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2583 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2586 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2587 // be done directly. IsFP is true if CC is for a floating-point rather than
2588 // integer comparison.
2589 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2590 switch (CC) {
2591 case ISD::SETOEQ:
2592 case ISD::SETEQ:
2593 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2595 case ISD::SETOGE:
2596 case ISD::SETGE:
2597 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2599 case ISD::SETOGT:
2600 case ISD::SETGT:
2601 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2603 case ISD::SETUGT:
2604 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2606 default:
2607 return 0;
2611 // Return the SystemZISD vector comparison operation for CC or its inverse,
2612 // or 0 if neither can be done directly. Indicate in Invert whether the
2613 // result is for the inverse of CC. IsFP is true if CC is for a
2614 // floating-point rather than integer comparison.
2615 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2616 bool &Invert) {
2617 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2618 Invert = false;
2619 return Opcode;
2622 CC = ISD::getSetCCInverse(CC, !IsFP);
2623 if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2624 Invert = true;
2625 return Opcode;
2628 return 0;
2631 // Return a v2f64 that contains the extended form of elements Start and Start+1
2632 // of v4f32 value Op.
2633 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2634 SDValue Op) {
2635 int Mask[] = { Start, -1, Start + 1, -1 };
2636 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2637 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2640 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2641 // producing a result of type VT.
2642 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2643 const SDLoc &DL, EVT VT,
2644 SDValue CmpOp0,
2645 SDValue CmpOp1) const {
2646 // There is no hardware support for v4f32 (unless we have the vector
2647 // enhancements facility 1), so extend the vector into two v2f64s
2648 // and compare those.
2649 if (CmpOp0.getValueType() == MVT::v4f32 &&
2650 !Subtarget.hasVectorEnhancements1()) {
2651 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2652 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2653 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2654 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2655 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2656 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2657 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2659 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2662 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2663 // an integer mask of type VT.
2664 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2665 const SDLoc &DL, EVT VT,
2666 ISD::CondCode CC,
2667 SDValue CmpOp0,
2668 SDValue CmpOp1) const {
2669 bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2670 bool Invert = false;
2671 SDValue Cmp;
2672 switch (CC) {
2673 // Handle tests for order using (or (ogt y x) (oge x y)).
2674 case ISD::SETUO:
2675 Invert = true;
2676 LLVM_FALLTHROUGH;
2677 case ISD::SETO: {
2678 assert(IsFP && "Unexpected integer comparison");
2679 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2680 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2681 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2682 break;
2685 // Handle <> tests using (or (ogt y x) (ogt x y)).
2686 case ISD::SETUEQ:
2687 Invert = true;
2688 LLVM_FALLTHROUGH;
2689 case ISD::SETONE: {
2690 assert(IsFP && "Unexpected integer comparison");
2691 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2692 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2693 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2694 break;
2697 // Otherwise a single comparison is enough. It doesn't really
2698 // matter whether we try the inversion or the swap first, since
2699 // there are no cases where both work.
2700 default:
2701 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2702 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2703 else {
2704 CC = ISD::getSetCCSwappedOperands(CC);
2705 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2706 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2707 else
2708 llvm_unreachable("Unhandled comparison");
2710 break;
2712 if (Invert) {
2713 SDValue Mask =
2714 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2715 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2717 return Cmp;
2720 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2721 SelectionDAG &DAG) const {
2722 SDValue CmpOp0 = Op.getOperand(0);
2723 SDValue CmpOp1 = Op.getOperand(1);
2724 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2725 SDLoc DL(Op);
2726 EVT VT = Op.getValueType();
2727 if (VT.isVector())
2728 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2730 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2731 SDValue CCReg = emitCmp(DAG, DL, C);
2732 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2735 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2736 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2737 SDValue CmpOp0 = Op.getOperand(2);
2738 SDValue CmpOp1 = Op.getOperand(3);
2739 SDValue Dest = Op.getOperand(4);
2740 SDLoc DL(Op);
2742 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2743 SDValue CCReg = emitCmp(DAG, DL, C);
2744 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2745 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2746 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2749 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2750 // allowing Pos and Neg to be wider than CmpOp.
2751 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2752 return (Neg.getOpcode() == ISD::SUB &&
2753 Neg.getOperand(0).getOpcode() == ISD::Constant &&
2754 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2755 Neg.getOperand(1) == Pos &&
2756 (Pos == CmpOp ||
2757 (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2758 Pos.getOperand(0) == CmpOp)));
2761 // Return the absolute or negative absolute of Op; IsNegative decides which.
2762 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2763 bool IsNegative) {
2764 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2765 if (IsNegative)
2766 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2767 DAG.getConstant(0, DL, Op.getValueType()), Op);
2768 return Op;
2771 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2772 SelectionDAG &DAG) const {
2773 SDValue CmpOp0 = Op.getOperand(0);
2774 SDValue CmpOp1 = Op.getOperand(1);
2775 SDValue TrueOp = Op.getOperand(2);
2776 SDValue FalseOp = Op.getOperand(3);
2777 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2778 SDLoc DL(Op);
2780 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2782 // Check for absolute and negative-absolute selections, including those
2783 // where the comparison value is sign-extended (for LPGFR and LNGFR).
2784 // This check supplements the one in DAGCombiner.
2785 if (C.Opcode == SystemZISD::ICMP &&
2786 C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2787 C.CCMask != SystemZ::CCMASK_CMP_NE &&
2788 C.Op1.getOpcode() == ISD::Constant &&
2789 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2790 if (isAbsolute(C.Op0, TrueOp, FalseOp))
2791 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2792 if (isAbsolute(C.Op0, FalseOp, TrueOp))
2793 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2796 SDValue CCReg = emitCmp(DAG, DL, C);
2797 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2798 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2800 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2803 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2804 SelectionDAG &DAG) const {
2805 SDLoc DL(Node);
2806 const GlobalValue *GV = Node->getGlobal();
2807 int64_t Offset = Node->getOffset();
2808 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2809 CodeModel::Model CM = DAG.getTarget().getCodeModel();
2811 SDValue Result;
2812 if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2813 // Assign anchors at 1<<12 byte boundaries.
2814 uint64_t Anchor = Offset & ~uint64_t(0xfff);
2815 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2816 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2818 // The offset can be folded into the address if it is aligned to a halfword.
2819 Offset -= Anchor;
2820 if (Offset != 0 && (Offset & 1) == 0) {
2821 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2822 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2823 Offset = 0;
2825 } else {
2826 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2827 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2828 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2829 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2832 // If there was a non-zero offset that we didn't fold, create an explicit
2833 // addition for it.
2834 if (Offset != 0)
2835 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2836 DAG.getConstant(Offset, DL, PtrVT));
2838 return Result;
2841 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2842 SelectionDAG &DAG,
2843 unsigned Opcode,
2844 SDValue GOTOffset) const {
2845 SDLoc DL(Node);
2846 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2847 SDValue Chain = DAG.getEntryNode();
2848 SDValue Glue;
2850 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2851 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2852 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2853 Glue = Chain.getValue(1);
2854 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2855 Glue = Chain.getValue(1);
2857 // The first call operand is the chain and the second is the TLS symbol.
2858 SmallVector<SDValue, 8> Ops;
2859 Ops.push_back(Chain);
2860 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2861 Node->getValueType(0),
2862 0, 0));
2864 // Add argument registers to the end of the list so that they are
2865 // known live into the call.
2866 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2867 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2869 // Add a register mask operand representing the call-preserved registers.
2870 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2871 const uint32_t *Mask =
2872 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2873 assert(Mask && "Missing call preserved mask for calling convention");
2874 Ops.push_back(DAG.getRegisterMask(Mask));
2876 // Glue the call to the argument copies.
2877 Ops.push_back(Glue);
2879 // Emit the call.
2880 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2881 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2882 Glue = Chain.getValue(1);
2884 // Copy the return value from %r2.
2885 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2888 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2889 SelectionDAG &DAG) const {
2890 SDValue Chain = DAG.getEntryNode();
2891 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2893 // The high part of the thread pointer is in access register 0.
2894 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2895 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2897 // The low part of the thread pointer is in access register 1.
2898 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2899 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2901 // Merge them into a single 64-bit address.
2902 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2903 DAG.getConstant(32, DL, PtrVT));
2904 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2907 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2908 SelectionDAG &DAG) const {
2909 if (DAG.getTarget().useEmulatedTLS())
2910 return LowerToTLSEmulatedModel(Node, DAG);
2911 SDLoc DL(Node);
2912 const GlobalValue *GV = Node->getGlobal();
2913 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2914 TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2916 SDValue TP = lowerThreadPointer(DL, DAG);
2918 // Get the offset of GA from the thread pointer, based on the TLS model.
2919 SDValue Offset;
2920 switch (model) {
2921 case TLSModel::GeneralDynamic: {
2922 // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2923 SystemZConstantPoolValue *CPV =
2924 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2926 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2927 Offset = DAG.getLoad(
2928 PtrVT, DL, DAG.getEntryNode(), Offset,
2929 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2931 // Call __tls_get_offset to retrieve the offset.
2932 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2933 break;
2936 case TLSModel::LocalDynamic: {
2937 // Load the GOT offset of the module ID.
2938 SystemZConstantPoolValue *CPV =
2939 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2941 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2942 Offset = DAG.getLoad(
2943 PtrVT, DL, DAG.getEntryNode(), Offset,
2944 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2946 // Call __tls_get_offset to retrieve the module base offset.
2947 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2949 // Note: The SystemZLDCleanupPass will remove redundant computations
2950 // of the module base offset. Count total number of local-dynamic
2951 // accesses to trigger execution of that pass.
2952 SystemZMachineFunctionInfo* MFI =
2953 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2954 MFI->incNumLocalDynamicTLSAccesses();
2956 // Add the per-symbol offset.
2957 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2959 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2960 DTPOffset = DAG.getLoad(
2961 PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2962 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2964 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2965 break;
2968 case TLSModel::InitialExec: {
2969 // Load the offset from the GOT.
2970 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2971 SystemZII::MO_INDNTPOFF);
2972 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2973 Offset =
2974 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2975 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2976 break;
2979 case TLSModel::LocalExec: {
2980 // Force the offset into the constant pool and load it from there.
2981 SystemZConstantPoolValue *CPV =
2982 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2984 Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2985 Offset = DAG.getLoad(
2986 PtrVT, DL, DAG.getEntryNode(), Offset,
2987 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2988 break;
2992 // Add the base and offset together.
2993 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2996 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2997 SelectionDAG &DAG) const {
2998 SDLoc DL(Node);
2999 const BlockAddress *BA = Node->getBlockAddress();
3000 int64_t Offset = Node->getOffset();
3001 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3003 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3004 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3005 return Result;
3008 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3009 SelectionDAG &DAG) const {
3010 SDLoc DL(JT);
3011 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3012 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3014 // Use LARL to load the address of the table.
3015 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3018 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3019 SelectionDAG &DAG) const {
3020 SDLoc DL(CP);
3021 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3023 SDValue Result;
3024 if (CP->isMachineConstantPoolEntry())
3025 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3026 CP->getAlignment());
3027 else
3028 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3029 CP->getAlignment(), CP->getOffset());
3031 // Use LARL to load the address of the constant pool entry.
3032 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3035 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3036 SelectionDAG &DAG) const {
3037 MachineFunction &MF = DAG.getMachineFunction();
3038 MachineFrameInfo &MFI = MF.getFrameInfo();
3039 MFI.setFrameAddressIsTaken(true);
3041 SDLoc DL(Op);
3042 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3043 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3045 // If the back chain frame index has not been allocated yet, do so.
3046 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
3047 int BackChainIdx = FI->getFramePointerSaveIndex();
3048 if (!BackChainIdx) {
3049 // By definition, the frame address is the address of the back chain.
3050 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
3051 FI->setFramePointerSaveIndex(BackChainIdx);
3053 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3055 // FIXME The frontend should detect this case.
3056 if (Depth > 0) {
3057 report_fatal_error("Unsupported stack frame traversal count");
3060 return BackChain;
3063 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3064 SelectionDAG &DAG) const {
3065 MachineFunction &MF = DAG.getMachineFunction();
3066 MachineFrameInfo &MFI = MF.getFrameInfo();
3067 MFI.setReturnAddressIsTaken(true);
3069 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3070 return SDValue();
3072 SDLoc DL(Op);
3073 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3074 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3076 // FIXME The frontend should detect this case.
3077 if (Depth > 0) {
3078 report_fatal_error("Unsupported stack frame traversal count");
3081 // Return R14D, which has the return address. Mark it an implicit live-in.
3082 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3083 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3086 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3087 SelectionDAG &DAG) const {
3088 SDLoc DL(Op);
3089 SDValue In = Op.getOperand(0);
3090 EVT InVT = In.getValueType();
3091 EVT ResVT = Op.getValueType();
3093 // Convert loads directly. This is normally done by DAGCombiner,
3094 // but we need this case for bitcasts that are created during lowering
3095 // and which are then lowered themselves.
3096 if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3097 if (ISD::isNormalLoad(LoadN)) {
3098 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3099 LoadN->getBasePtr(), LoadN->getMemOperand());
3100 // Update the chain uses.
3101 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3102 return NewLoad;
3105 if (InVT == MVT::i32 && ResVT == MVT::f32) {
3106 SDValue In64;
3107 if (Subtarget.hasHighWord()) {
3108 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3109 MVT::i64);
3110 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3111 MVT::i64, SDValue(U64, 0), In);
3112 } else {
3113 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3114 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3115 DAG.getConstant(32, DL, MVT::i64));
3117 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3118 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3119 DL, MVT::f32, Out64);
3121 if (InVT == MVT::f32 && ResVT == MVT::i32) {
3122 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3123 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3124 MVT::f64, SDValue(U64, 0), In);
3125 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3126 if (Subtarget.hasHighWord())
3127 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3128 MVT::i32, Out64);
3129 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3130 DAG.getConstant(32, DL, MVT::i64));
3131 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3133 llvm_unreachable("Unexpected bitcast combination");
3136 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3137 SelectionDAG &DAG) const {
3138 MachineFunction &MF = DAG.getMachineFunction();
3139 SystemZMachineFunctionInfo *FuncInfo =
3140 MF.getInfo<SystemZMachineFunctionInfo>();
3141 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3143 SDValue Chain = Op.getOperand(0);
3144 SDValue Addr = Op.getOperand(1);
3145 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3146 SDLoc DL(Op);
3148 // The initial values of each field.
3149 const unsigned NumFields = 4;
3150 SDValue Fields[NumFields] = {
3151 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3152 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3153 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3154 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3157 // Store each field into its respective slot.
3158 SDValue MemOps[NumFields];
3159 unsigned Offset = 0;
3160 for (unsigned I = 0; I < NumFields; ++I) {
3161 SDValue FieldAddr = Addr;
3162 if (Offset != 0)
3163 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3164 DAG.getIntPtrConstant(Offset, DL));
3165 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3166 MachinePointerInfo(SV, Offset));
3167 Offset += 8;
3169 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3172 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3173 SelectionDAG &DAG) const {
3174 SDValue Chain = Op.getOperand(0);
3175 SDValue DstPtr = Op.getOperand(1);
3176 SDValue SrcPtr = Op.getOperand(2);
3177 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3178 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3179 SDLoc DL(Op);
3181 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3182 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3183 /*isTailCall*/false,
3184 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3187 SDValue SystemZTargetLowering::
3188 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3189 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3190 MachineFunction &MF = DAG.getMachineFunction();
3191 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3192 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3194 SDValue Chain = Op.getOperand(0);
3195 SDValue Size = Op.getOperand(1);
3196 SDValue Align = Op.getOperand(2);
3197 SDLoc DL(Op);
3199 // If user has set the no alignment function attribute, ignore
3200 // alloca alignments.
3201 uint64_t AlignVal = (RealignOpt ?
3202 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3204 uint64_t StackAlign = TFI->getStackAlignment();
3205 uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3206 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3208 unsigned SPReg = getStackPointerRegisterToSaveRestore();
3209 SDValue NeededSpace = Size;
3211 // Get a reference to the stack pointer.
3212 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3214 // If we need a backchain, save it now.
3215 SDValue Backchain;
3216 if (StoreBackchain)
3217 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3219 // Add extra space for alignment if needed.
3220 if (ExtraAlignSpace)
3221 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3222 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3224 // Get the new stack pointer value.
3225 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3227 // Copy the new stack pointer back.
3228 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3230 // The allocated data lives above the 160 bytes allocated for the standard
3231 // frame, plus any outgoing stack arguments. We don't know how much that
3232 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3233 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3234 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3236 // Dynamically realign if needed.
3237 if (RequiredAlign > StackAlign) {
3238 Result =
3239 DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3240 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3241 Result =
3242 DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3243 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3246 if (StoreBackchain)
3247 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3249 SDValue Ops[2] = { Result, Chain };
3250 return DAG.getMergeValues(Ops, DL);
3253 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3254 SDValue Op, SelectionDAG &DAG) const {
3255 SDLoc DL(Op);
3257 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3260 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3261 SelectionDAG &DAG) const {
3262 EVT VT = Op.getValueType();
3263 SDLoc DL(Op);
3264 SDValue Ops[2];
3265 if (is32Bit(VT))
3266 // Just do a normal 64-bit multiplication and extract the results.
3267 // We define this so that it can be used for constant division.
3268 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3269 Op.getOperand(1), Ops[1], Ops[0]);
3270 else if (Subtarget.hasMiscellaneousExtensions2())
3271 // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3272 // the high result in the even register. ISD::SMUL_LOHI is defined to
3273 // return the low half first, so the results are in reverse order.
3274 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3275 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3276 else {
3277 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3279 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3281 // but using the fact that the upper halves are either all zeros
3282 // or all ones:
3284 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3286 // and grouping the right terms together since they are quicker than the
3287 // multiplication:
3289 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3290 SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3291 SDValue LL = Op.getOperand(0);
3292 SDValue RL = Op.getOperand(1);
3293 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3294 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3295 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3296 // the high result in the even register. ISD::SMUL_LOHI is defined to
3297 // return the low half first, so the results are in reverse order.
3298 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3299 LL, RL, Ops[1], Ops[0]);
3300 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3301 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3302 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3303 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3305 return DAG.getMergeValues(Ops, DL);
3308 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3309 SelectionDAG &DAG) const {
3310 EVT VT = Op.getValueType();
3311 SDLoc DL(Op);
3312 SDValue Ops[2];
3313 if (is32Bit(VT))
3314 // Just do a normal 64-bit multiplication and extract the results.
3315 // We define this so that it can be used for constant division.
3316 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3317 Op.getOperand(1), Ops[1], Ops[0]);
3318 else
3319 // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3320 // the high result in the even register. ISD::UMUL_LOHI is defined to
3321 // return the low half first, so the results are in reverse order.
3322 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3323 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3324 return DAG.getMergeValues(Ops, DL);
3327 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3328 SelectionDAG &DAG) const {
3329 SDValue Op0 = Op.getOperand(0);
3330 SDValue Op1 = Op.getOperand(1);
3331 EVT VT = Op.getValueType();
3332 SDLoc DL(Op);
3334 // We use DSGF for 32-bit division. This means the first operand must
3335 // always be 64-bit, and the second operand should be 32-bit whenever
3336 // that is possible, to improve performance.
3337 if (is32Bit(VT))
3338 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3339 else if (DAG.ComputeNumSignBits(Op1) > 32)
3340 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3342 // DSG(F) returns the remainder in the even register and the
3343 // quotient in the odd register.
3344 SDValue Ops[2];
3345 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3346 return DAG.getMergeValues(Ops, DL);
3349 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3350 SelectionDAG &DAG) const {
3351 EVT VT = Op.getValueType();
3352 SDLoc DL(Op);
3354 // DL(G) returns the remainder in the even register and the
3355 // quotient in the odd register.
3356 SDValue Ops[2];
3357 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3358 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3359 return DAG.getMergeValues(Ops, DL);
3362 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3363 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3365 // Get the known-zero masks for each operand.
3366 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3367 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3368 DAG.computeKnownBits(Ops[1])};
3370 // See if the upper 32 bits of one operand and the lower 32 bits of the
3371 // other are known zero. They are the low and high operands respectively.
3372 uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3373 Known[1].Zero.getZExtValue() };
3374 unsigned High, Low;
3375 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3376 High = 1, Low = 0;
3377 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3378 High = 0, Low = 1;
3379 else
3380 return Op;
3382 SDValue LowOp = Ops[Low];
3383 SDValue HighOp = Ops[High];
3385 // If the high part is a constant, we're better off using IILH.
3386 if (HighOp.getOpcode() == ISD::Constant)
3387 return Op;
3389 // If the low part is a constant that is outside the range of LHI,
3390 // then we're better off using IILF.
3391 if (LowOp.getOpcode() == ISD::Constant) {
3392 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3393 if (!isInt<16>(Value))
3394 return Op;
3397 // Check whether the high part is an AND that doesn't change the
3398 // high 32 bits and just masks out low bits. We can skip it if so.
3399 if (HighOp.getOpcode() == ISD::AND &&
3400 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3401 SDValue HighOp0 = HighOp.getOperand(0);
3402 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3403 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3404 HighOp = HighOp0;
3407 // Take advantage of the fact that all GR32 operations only change the
3408 // low 32 bits by truncating Low to an i32 and inserting it directly
3409 // using a subreg. The interesting cases are those where the truncation
3410 // can be folded.
3411 SDLoc DL(Op);
3412 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3413 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3414 MVT::i64, HighOp, Low32);
3417 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3418 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3419 SelectionDAG &DAG) const {
3420 SDNode *N = Op.getNode();
3421 SDValue LHS = N->getOperand(0);
3422 SDValue RHS = N->getOperand(1);
3423 SDLoc DL(N);
3424 unsigned BaseOp = 0;
3425 unsigned CCValid = 0;
3426 unsigned CCMask = 0;
3428 switch (Op.getOpcode()) {
3429 default: llvm_unreachable("Unknown instruction!");
3430 case ISD::SADDO:
3431 BaseOp = SystemZISD::SADDO;
3432 CCValid = SystemZ::CCMASK_ARITH;
3433 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3434 break;
3435 case ISD::SSUBO:
3436 BaseOp = SystemZISD::SSUBO;
3437 CCValid = SystemZ::CCMASK_ARITH;
3438 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3439 break;
3440 case ISD::UADDO:
3441 BaseOp = SystemZISD::UADDO;
3442 CCValid = SystemZ::CCMASK_LOGICAL;
3443 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3444 break;
3445 case ISD::USUBO:
3446 BaseOp = SystemZISD::USUBO;
3447 CCValid = SystemZ::CCMASK_LOGICAL;
3448 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3449 break;
3452 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3453 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3455 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3456 if (N->getValueType(1) == MVT::i1)
3457 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3459 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3462 static bool isAddCarryChain(SDValue Carry) {
3463 while (Carry.getOpcode() == ISD::ADDCARRY)
3464 Carry = Carry.getOperand(2);
3465 return Carry.getOpcode() == ISD::UADDO;
3468 static bool isSubBorrowChain(SDValue Carry) {
3469 while (Carry.getOpcode() == ISD::SUBCARRY)
3470 Carry = Carry.getOperand(2);
3471 return Carry.getOpcode() == ISD::USUBO;
3474 // Lower ADDCARRY/SUBCARRY nodes.
3475 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3476 SelectionDAG &DAG) const {
3478 SDNode *N = Op.getNode();
3479 MVT VT = N->getSimpleValueType(0);
3481 // Let legalize expand this if it isn't a legal type yet.
3482 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3483 return SDValue();
3485 SDValue LHS = N->getOperand(0);
3486 SDValue RHS = N->getOperand(1);
3487 SDValue Carry = Op.getOperand(2);
3488 SDLoc DL(N);
3489 unsigned BaseOp = 0;
3490 unsigned CCValid = 0;
3491 unsigned CCMask = 0;
3493 switch (Op.getOpcode()) {
3494 default: llvm_unreachable("Unknown instruction!");
3495 case ISD::ADDCARRY:
3496 if (!isAddCarryChain(Carry))
3497 return SDValue();
3499 BaseOp = SystemZISD::ADDCARRY;
3500 CCValid = SystemZ::CCMASK_LOGICAL;
3501 CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3502 break;
3503 case ISD::SUBCARRY:
3504 if (!isSubBorrowChain(Carry))
3505 return SDValue();
3507 BaseOp = SystemZISD::SUBCARRY;
3508 CCValid = SystemZ::CCMASK_LOGICAL;
3509 CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3510 break;
3513 // Set the condition code from the carry flag.
3514 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3515 DAG.getConstant(CCValid, DL, MVT::i32),
3516 DAG.getConstant(CCMask, DL, MVT::i32));
3518 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3519 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3521 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3522 if (N->getValueType(1) == MVT::i1)
3523 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3525 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3528 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3529 SelectionDAG &DAG) const {
3530 EVT VT = Op.getValueType();
3531 SDLoc DL(Op);
3532 Op = Op.getOperand(0);
3534 // Handle vector types via VPOPCT.
3535 if (VT.isVector()) {
3536 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3537 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3538 switch (VT.getScalarSizeInBits()) {
3539 case 8:
3540 break;
3541 case 16: {
3542 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3543 SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3544 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3545 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3546 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3547 break;
3549 case 32: {
3550 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3551 DAG.getConstant(0, DL, MVT::i32));
3552 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3553 break;
3555 case 64: {
3556 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3557 DAG.getConstant(0, DL, MVT::i32));
3558 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3559 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3560 break;
3562 default:
3563 llvm_unreachable("Unexpected type");
3565 return Op;
3568 // Get the known-zero mask for the operand.
3569 KnownBits Known = DAG.computeKnownBits(Op);
3570 unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3571 if (NumSignificantBits == 0)
3572 return DAG.getConstant(0, DL, VT);
3574 // Skip known-zero high parts of the operand.
3575 int64_t OrigBitSize = VT.getSizeInBits();
3576 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3577 BitSize = std::min(BitSize, OrigBitSize);
3579 // The POPCNT instruction counts the number of bits in each byte.
3580 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3581 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3582 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3584 // Add up per-byte counts in a binary tree. All bits of Op at
3585 // position larger than BitSize remain zero throughout.
3586 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3587 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3588 if (BitSize != OrigBitSize)
3589 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3590 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3591 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3594 // Extract overall result from high byte.
3595 if (BitSize > 8)
3596 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3597 DAG.getConstant(BitSize - 8, DL, VT));
3599 return Op;
3602 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3603 SelectionDAG &DAG) const {
3604 SDLoc DL(Op);
3605 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3606 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3607 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3608 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3610 // The only fence that needs an instruction is a sequentially-consistent
3611 // cross-thread fence.
3612 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3613 FenceSSID == SyncScope::System) {
3614 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3615 Op.getOperand(0)),
3619 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3620 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3623 // Op is an atomic load. Lower it into a normal volatile load.
3624 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3625 SelectionDAG &DAG) const {
3626 auto *Node = cast<AtomicSDNode>(Op.getNode());
3627 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3628 Node->getChain(), Node->getBasePtr(),
3629 Node->getMemoryVT(), Node->getMemOperand());
3632 // Op is an atomic store. Lower it into a normal volatile store.
3633 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3634 SelectionDAG &DAG) const {
3635 auto *Node = cast<AtomicSDNode>(Op.getNode());
3636 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3637 Node->getBasePtr(), Node->getMemoryVT(),
3638 Node->getMemOperand());
3639 // We have to enforce sequential consistency by performing a
3640 // serialization operation after the store.
3641 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3642 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3643 MVT::Other, Chain), 0);
3644 return Chain;
3647 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
3648 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3649 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3650 SelectionDAG &DAG,
3651 unsigned Opcode) const {
3652 auto *Node = cast<AtomicSDNode>(Op.getNode());
3654 // 32-bit operations need no code outside the main loop.
3655 EVT NarrowVT = Node->getMemoryVT();
3656 EVT WideVT = MVT::i32;
3657 if (NarrowVT == WideVT)
3658 return Op;
3660 int64_t BitSize = NarrowVT.getSizeInBits();
3661 SDValue ChainIn = Node->getChain();
3662 SDValue Addr = Node->getBasePtr();
3663 SDValue Src2 = Node->getVal();
3664 MachineMemOperand *MMO = Node->getMemOperand();
3665 SDLoc DL(Node);
3666 EVT PtrVT = Addr.getValueType();
3668 // Convert atomic subtracts of constants into additions.
3669 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3670 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3671 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3672 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3675 // Get the address of the containing word.
3676 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3677 DAG.getConstant(-4, DL, PtrVT));
3679 // Get the number of bits that the word must be rotated left in order
3680 // to bring the field to the top bits of a GR32.
3681 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3682 DAG.getConstant(3, DL, PtrVT));
3683 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3685 // Get the complementing shift amount, for rotating a field in the top
3686 // bits back to its proper position.
3687 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3688 DAG.getConstant(0, DL, WideVT), BitShift);
3690 // Extend the source operand to 32 bits and prepare it for the inner loop.
3691 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3692 // operations require the source to be shifted in advance. (This shift
3693 // can be folded if the source is constant.) For AND and NAND, the lower
3694 // bits must be set, while for other opcodes they should be left clear.
3695 if (Opcode != SystemZISD::ATOMIC_SWAPW)
3696 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3697 DAG.getConstant(32 - BitSize, DL, WideVT));
3698 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3699 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3700 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3701 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3703 // Construct the ATOMIC_LOADW_* node.
3704 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3705 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3706 DAG.getConstant(BitSize, DL, WideVT) };
3707 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3708 NarrowVT, MMO);
3710 // Rotate the result of the final CS so that the field is in the lower
3711 // bits of a GR32, then truncate it.
3712 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3713 DAG.getConstant(BitSize, DL, WideVT));
3714 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3716 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3717 return DAG.getMergeValues(RetOps, DL);
3720 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
3721 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3722 // operations into additions.
3723 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3724 SelectionDAG &DAG) const {
3725 auto *Node = cast<AtomicSDNode>(Op.getNode());
3726 EVT MemVT = Node->getMemoryVT();
3727 if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3728 // A full-width operation.
3729 assert(Op.getValueType() == MemVT && "Mismatched VTs");
3730 SDValue Src2 = Node->getVal();
3731 SDValue NegSrc2;
3732 SDLoc DL(Src2);
3734 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3735 // Use an addition if the operand is constant and either LAA(G) is
3736 // available or the negative value is in the range of A(G)FHI.
3737 int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3738 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3739 NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3740 } else if (Subtarget.hasInterlockedAccess1())
3741 // Use LAA(G) if available.
3742 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3743 Src2);
3745 if (NegSrc2.getNode())
3746 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3747 Node->getChain(), Node->getBasePtr(), NegSrc2,
3748 Node->getMemOperand());
3750 // Use the node as-is.
3751 return Op;
3754 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3757 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3758 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3759 SelectionDAG &DAG) const {
3760 auto *Node = cast<AtomicSDNode>(Op.getNode());
3761 SDValue ChainIn = Node->getOperand(0);
3762 SDValue Addr = Node->getOperand(1);
3763 SDValue CmpVal = Node->getOperand(2);
3764 SDValue SwapVal = Node->getOperand(3);
3765 MachineMemOperand *MMO = Node->getMemOperand();
3766 SDLoc DL(Node);
3768 // We have native support for 32-bit and 64-bit compare and swap, but we
3769 // still need to expand extracting the "success" result from the CC.
3770 EVT NarrowVT = Node->getMemoryVT();
3771 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3772 if (NarrowVT == WideVT) {
3773 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3774 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3775 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3776 DL, Tys, Ops, NarrowVT, MMO);
3777 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3778 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3780 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3781 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3782 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3783 return SDValue();
3786 // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3787 // via a fullword ATOMIC_CMP_SWAPW operation.
3788 int64_t BitSize = NarrowVT.getSizeInBits();
3789 EVT PtrVT = Addr.getValueType();
3791 // Get the address of the containing word.
3792 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3793 DAG.getConstant(-4, DL, PtrVT));
3795 // Get the number of bits that the word must be rotated left in order
3796 // to bring the field to the top bits of a GR32.
3797 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3798 DAG.getConstant(3, DL, PtrVT));
3799 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3801 // Get the complementing shift amount, for rotating a field in the top
3802 // bits back to its proper position.
3803 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3804 DAG.getConstant(0, DL, WideVT), BitShift);
3806 // Construct the ATOMIC_CMP_SWAPW node.
3807 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3808 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3809 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3810 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3811 VTList, Ops, NarrowVT, MMO);
3812 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3813 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3815 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3816 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3817 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3818 return SDValue();
3821 MachineMemOperand::Flags
3822 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3823 // Because of how we convert atomic_load and atomic_store to normal loads and
3824 // stores in the DAG, we need to ensure that the MMOs are marked volatile
3825 // since DAGCombine hasn't been updated to account for atomic, but non
3826 // volatile loads. (See D57601)
3827 if (auto *SI = dyn_cast<StoreInst>(&I))
3828 if (SI->isAtomic())
3829 return MachineMemOperand::MOVolatile;
3830 if (auto *LI = dyn_cast<LoadInst>(&I))
3831 if (LI->isAtomic())
3832 return MachineMemOperand::MOVolatile;
3833 if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
3834 if (AI->isAtomic())
3835 return MachineMemOperand::MOVolatile;
3836 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
3837 if (AI->isAtomic())
3838 return MachineMemOperand::MOVolatile;
3839 return MachineMemOperand::MONone;
3842 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3843 SelectionDAG &DAG) const {
3844 MachineFunction &MF = DAG.getMachineFunction();
3845 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3846 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3847 SystemZ::R15D, Op.getValueType());
3850 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3851 SelectionDAG &DAG) const {
3852 MachineFunction &MF = DAG.getMachineFunction();
3853 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3854 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3856 SDValue Chain = Op.getOperand(0);
3857 SDValue NewSP = Op.getOperand(1);
3858 SDValue Backchain;
3859 SDLoc DL(Op);
3861 if (StoreBackchain) {
3862 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3863 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3866 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3868 if (StoreBackchain)
3869 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3871 return Chain;
3874 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3875 SelectionDAG &DAG) const {
3876 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3877 if (!IsData)
3878 // Just preserve the chain.
3879 return Op.getOperand(0);
3881 SDLoc DL(Op);
3882 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3883 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3884 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3885 SDValue Ops[] = {
3886 Op.getOperand(0),
3887 DAG.getConstant(Code, DL, MVT::i32),
3888 Op.getOperand(1)
3890 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3891 Node->getVTList(), Ops,
3892 Node->getMemoryVT(), Node->getMemOperand());
3895 // Convert condition code in CCReg to an i32 value.
3896 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3897 SDLoc DL(CCReg);
3898 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3899 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3900 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3903 SDValue
3904 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3905 SelectionDAG &DAG) const {
3906 unsigned Opcode, CCValid;
3907 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3908 assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3909 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3910 SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3911 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3912 return SDValue();
3915 return SDValue();
3918 SDValue
3919 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3920 SelectionDAG &DAG) const {
3921 unsigned Opcode, CCValid;
3922 if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3923 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3924 if (Op->getNumValues() == 1)
3925 return getCCResult(DAG, SDValue(Node, 0));
3926 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3927 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3928 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3931 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3932 switch (Id) {
3933 case Intrinsic::thread_pointer:
3934 return lowerThreadPointer(SDLoc(Op), DAG);
3936 case Intrinsic::s390_vpdi:
3937 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3938 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3940 case Intrinsic::s390_vperm:
3941 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3942 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3944 case Intrinsic::s390_vuphb:
3945 case Intrinsic::s390_vuphh:
3946 case Intrinsic::s390_vuphf:
3947 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3948 Op.getOperand(1));
3950 case Intrinsic::s390_vuplhb:
3951 case Intrinsic::s390_vuplhh:
3952 case Intrinsic::s390_vuplhf:
3953 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3954 Op.getOperand(1));
3956 case Intrinsic::s390_vuplb:
3957 case Intrinsic::s390_vuplhw:
3958 case Intrinsic::s390_vuplf:
3959 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3960 Op.getOperand(1));
3962 case Intrinsic::s390_vupllb:
3963 case Intrinsic::s390_vupllh:
3964 case Intrinsic::s390_vupllf:
3965 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3966 Op.getOperand(1));
3968 case Intrinsic::s390_vsumb:
3969 case Intrinsic::s390_vsumh:
3970 case Intrinsic::s390_vsumgh:
3971 case Intrinsic::s390_vsumgf:
3972 case Intrinsic::s390_vsumqf:
3973 case Intrinsic::s390_vsumqg:
3974 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3975 Op.getOperand(1), Op.getOperand(2));
3978 return SDValue();
3981 namespace {
3982 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3983 // of a VPERM with permute vector Bytes. If Opcode takes three operands,
3984 // Operand is the constant third operand, otherwise it is the number of
3985 // bytes in each element of the result.
3986 struct Permute {
3987 unsigned Opcode;
3988 unsigned Operand;
3989 unsigned char Bytes[SystemZ::VectorBytes];
3993 static const Permute PermuteForms[] = {
3994 // VMRHG
3995 { SystemZISD::MERGE_HIGH, 8,
3996 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3997 // VMRHF
3998 { SystemZISD::MERGE_HIGH, 4,
3999 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4000 // VMRHH
4001 { SystemZISD::MERGE_HIGH, 2,
4002 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4003 // VMRHB
4004 { SystemZISD::MERGE_HIGH, 1,
4005 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4006 // VMRLG
4007 { SystemZISD::MERGE_LOW, 8,
4008 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4009 // VMRLF
4010 { SystemZISD::MERGE_LOW, 4,
4011 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4012 // VMRLH
4013 { SystemZISD::MERGE_LOW, 2,
4014 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4015 // VMRLB
4016 { SystemZISD::MERGE_LOW, 1,
4017 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4018 // VPKG
4019 { SystemZISD::PACK, 4,
4020 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4021 // VPKF
4022 { SystemZISD::PACK, 2,
4023 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4024 // VPKH
4025 { SystemZISD::PACK, 1,
4026 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4027 // VPDI V1, V2, 4 (low half of V1, high half of V2)
4028 { SystemZISD::PERMUTE_DWORDS, 4,
4029 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4030 // VPDI V1, V2, 1 (high half of V1, low half of V2)
4031 { SystemZISD::PERMUTE_DWORDS, 1,
4032 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4035 // Called after matching a vector shuffle against a particular pattern.
4036 // Both the original shuffle and the pattern have two vector operands.
4037 // OpNos[0] is the operand of the original shuffle that should be used for
4038 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4039 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
4040 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4041 // for operands 0 and 1 of the pattern.
4042 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4043 if (OpNos[0] < 0) {
4044 if (OpNos[1] < 0)
4045 return false;
4046 OpNo0 = OpNo1 = OpNos[1];
4047 } else if (OpNos[1] < 0) {
4048 OpNo0 = OpNo1 = OpNos[0];
4049 } else {
4050 OpNo0 = OpNos[0];
4051 OpNo1 = OpNos[1];
4053 return true;
4056 // Bytes is a VPERM-like permute vector, except that -1 is used for
4057 // undefined bytes. Return true if the VPERM can be implemented using P.
4058 // When returning true set OpNo0 to the VPERM operand that should be
4059 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4061 // For example, if swapping the VPERM operands allows P to match, OpNo0
4062 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
4063 // operand, but rewriting it to use two duplicated operands allows it to
4064 // match P, then OpNo0 and OpNo1 will be the same.
4065 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4066 unsigned &OpNo0, unsigned &OpNo1) {
4067 int OpNos[] = { -1, -1 };
4068 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4069 int Elt = Bytes[I];
4070 if (Elt >= 0) {
4071 // Make sure that the two permute vectors use the same suboperand
4072 // byte number. Only the operand numbers (the high bits) are
4073 // allowed to differ.
4074 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4075 return false;
4076 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4077 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4078 // Make sure that the operand mappings are consistent with previous
4079 // elements.
4080 if (OpNos[ModelOpNo] == 1 - RealOpNo)
4081 return false;
4082 OpNos[ModelOpNo] = RealOpNo;
4085 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4088 // As above, but search for a matching permute.
4089 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4090 unsigned &OpNo0, unsigned &OpNo1) {
4091 for (auto &P : PermuteForms)
4092 if (matchPermute(Bytes, P, OpNo0, OpNo1))
4093 return &P;
4094 return nullptr;
4097 // Bytes is a VPERM-like permute vector, except that -1 is used for
4098 // undefined bytes. This permute is an operand of an outer permute.
4099 // See whether redistributing the -1 bytes gives a shuffle that can be
4100 // implemented using P. If so, set Transform to a VPERM-like permute vector
4101 // that, when applied to the result of P, gives the original permute in Bytes.
4102 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4103 const Permute &P,
4104 SmallVectorImpl<int> &Transform) {
4105 unsigned To = 0;
4106 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4107 int Elt = Bytes[From];
4108 if (Elt < 0)
4109 // Byte number From of the result is undefined.
4110 Transform[From] = -1;
4111 else {
4112 while (P.Bytes[To] != Elt) {
4113 To += 1;
4114 if (To == SystemZ::VectorBytes)
4115 return false;
4117 Transform[From] = To;
4120 return true;
4123 // As above, but search for a matching permute.
4124 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4125 SmallVectorImpl<int> &Transform) {
4126 for (auto &P : PermuteForms)
4127 if (matchDoublePermute(Bytes, P, Transform))
4128 return &P;
4129 return nullptr;
4132 // Convert the mask of the given shuffle op into a byte-level mask,
4133 // as if it had type vNi8.
4134 static bool getVPermMask(SDValue ShuffleOp,
4135 SmallVectorImpl<int> &Bytes) {
4136 EVT VT = ShuffleOp.getValueType();
4137 unsigned NumElements = VT.getVectorNumElements();
4138 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4140 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4141 Bytes.resize(NumElements * BytesPerElement, -1);
4142 for (unsigned I = 0; I < NumElements; ++I) {
4143 int Index = VSN->getMaskElt(I);
4144 if (Index >= 0)
4145 for (unsigned J = 0; J < BytesPerElement; ++J)
4146 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4148 return true;
4150 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4151 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4152 unsigned Index = ShuffleOp.getConstantOperandVal(1);
4153 Bytes.resize(NumElements * BytesPerElement, -1);
4154 for (unsigned I = 0; I < NumElements; ++I)
4155 for (unsigned J = 0; J < BytesPerElement; ++J)
4156 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4157 return true;
4159 return false;
4162 // Bytes is a VPERM-like permute vector, except that -1 is used for
4163 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
4164 // the result come from a contiguous sequence of bytes from one input.
4165 // Set Base to the selector for the first byte if so.
4166 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4167 unsigned BytesPerElement, int &Base) {
4168 Base = -1;
4169 for (unsigned I = 0; I < BytesPerElement; ++I) {
4170 if (Bytes[Start + I] >= 0) {
4171 unsigned Elem = Bytes[Start + I];
4172 if (Base < 0) {
4173 Base = Elem - I;
4174 // Make sure the bytes would come from one input operand.
4175 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4176 return false;
4177 } else if (unsigned(Base) != Elem - I)
4178 return false;
4181 return true;
4184 // Bytes is a VPERM-like permute vector, except that -1 is used for
4185 // undefined bytes. Return true if it can be performed using VSLDI.
4186 // When returning true, set StartIndex to the shift amount and OpNo0
4187 // and OpNo1 to the VPERM operands that should be used as the first
4188 // and second shift operand respectively.
4189 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4190 unsigned &StartIndex, unsigned &OpNo0,
4191 unsigned &OpNo1) {
4192 int OpNos[] = { -1, -1 };
4193 int Shift = -1;
4194 for (unsigned I = 0; I < 16; ++I) {
4195 int Index = Bytes[I];
4196 if (Index >= 0) {
4197 int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4198 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4199 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4200 if (Shift < 0)
4201 Shift = ExpectedShift;
4202 else if (Shift != ExpectedShift)
4203 return false;
4204 // Make sure that the operand mappings are consistent with previous
4205 // elements.
4206 if (OpNos[ModelOpNo] == 1 - RealOpNo)
4207 return false;
4208 OpNos[ModelOpNo] = RealOpNo;
4211 StartIndex = Shift;
4212 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4215 // Create a node that performs P on operands Op0 and Op1, casting the
4216 // operands to the appropriate type. The type of the result is determined by P.
4217 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4218 const Permute &P, SDValue Op0, SDValue Op1) {
4219 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
4220 // elements of a PACK are twice as wide as the outputs.
4221 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4222 P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4223 P.Operand);
4224 // Cast both operands to the appropriate type.
4225 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4226 SystemZ::VectorBytes / InBytes);
4227 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4228 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4229 SDValue Op;
4230 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4231 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
4232 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4233 } else if (P.Opcode == SystemZISD::PACK) {
4234 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4235 SystemZ::VectorBytes / P.Operand);
4236 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4237 } else {
4238 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4240 return Op;
4243 // Bytes is a VPERM-like permute vector, except that -1 is used for
4244 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using
4245 // VSLDI or VPERM.
4246 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4247 SDValue *Ops,
4248 const SmallVectorImpl<int> &Bytes) {
4249 for (unsigned I = 0; I < 2; ++I)
4250 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4252 // First see whether VSLDI can be used.
4253 unsigned StartIndex, OpNo0, OpNo1;
4254 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4255 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4256 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4258 // Fall back on VPERM. Construct an SDNode for the permute vector.
4259 SDValue IndexNodes[SystemZ::VectorBytes];
4260 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4261 if (Bytes[I] >= 0)
4262 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4263 else
4264 IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4265 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4266 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4269 namespace {
4270 // Describes a general N-operand vector shuffle.
4271 struct GeneralShuffle {
4272 GeneralShuffle(EVT vt) : VT(vt) {}
4273 void addUndef();
4274 bool add(SDValue, unsigned);
4275 SDValue getNode(SelectionDAG &, const SDLoc &);
4277 // The operands of the shuffle.
4278 SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4280 // Index I is -1 if byte I of the result is undefined. Otherwise the
4281 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4282 // Bytes[I] / SystemZ::VectorBytes.
4283 SmallVector<int, SystemZ::VectorBytes> Bytes;
4285 // The type of the shuffle result.
4286 EVT VT;
4290 // Add an extra undefined element to the shuffle.
4291 void GeneralShuffle::addUndef() {
4292 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4293 for (unsigned I = 0; I < BytesPerElement; ++I)
4294 Bytes.push_back(-1);
4297 // Add an extra element to the shuffle, taking it from element Elem of Op.
4298 // A null Op indicates a vector input whose value will be calculated later;
4299 // there is at most one such input per shuffle and it always has the same
4300 // type as the result. Aborts and returns false if the source vector elements
4301 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4302 // LLVM they become implicitly extended, but this is rare and not optimized.
4303 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4304 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4306 // The source vector can have wider elements than the result,
4307 // either through an explicit TRUNCATE or because of type legalization.
4308 // We want the least significant part.
4309 EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4310 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4312 // Return false if the source elements are smaller than their destination
4313 // elements.
4314 if (FromBytesPerElement < BytesPerElement)
4315 return false;
4317 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4318 (FromBytesPerElement - BytesPerElement));
4320 // Look through things like shuffles and bitcasts.
4321 while (Op.getNode()) {
4322 if (Op.getOpcode() == ISD::BITCAST)
4323 Op = Op.getOperand(0);
4324 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4325 // See whether the bytes we need come from a contiguous part of one
4326 // operand.
4327 SmallVector<int, SystemZ::VectorBytes> OpBytes;
4328 if (!getVPermMask(Op, OpBytes))
4329 break;
4330 int NewByte;
4331 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4332 break;
4333 if (NewByte < 0) {
4334 addUndef();
4335 return true;
4337 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4338 Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4339 } else if (Op.isUndef()) {
4340 addUndef();
4341 return true;
4342 } else
4343 break;
4346 // Make sure that the source of the extraction is in Ops.
4347 unsigned OpNo = 0;
4348 for (; OpNo < Ops.size(); ++OpNo)
4349 if (Ops[OpNo] == Op)
4350 break;
4351 if (OpNo == Ops.size())
4352 Ops.push_back(Op);
4354 // Add the element to Bytes.
4355 unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4356 for (unsigned I = 0; I < BytesPerElement; ++I)
4357 Bytes.push_back(Base + I);
4359 return true;
4362 // Return SDNodes for the completed shuffle.
4363 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4364 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4366 if (Ops.size() == 0)
4367 return DAG.getUNDEF(VT);
4369 // Make sure that there are at least two shuffle operands.
4370 if (Ops.size() == 1)
4371 Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4373 // Create a tree of shuffles, deferring root node until after the loop.
4374 // Try to redistribute the undefined elements of non-root nodes so that
4375 // the non-root shuffles match something like a pack or merge, then adjust
4376 // the parent node's permute vector to compensate for the new order.
4377 // Among other things, this copes with vectors like <2 x i16> that were
4378 // padded with undefined elements during type legalization.
4380 // In the best case this redistribution will lead to the whole tree
4381 // using packs and merges. It should rarely be a loss in other cases.
4382 unsigned Stride = 1;
4383 for (; Stride * 2 < Ops.size(); Stride *= 2) {
4384 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4385 SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4387 // Create a mask for just these two operands.
4388 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4389 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4390 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4391 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4392 if (OpNo == I)
4393 NewBytes[J] = Byte;
4394 else if (OpNo == I + Stride)
4395 NewBytes[J] = SystemZ::VectorBytes + Byte;
4396 else
4397 NewBytes[J] = -1;
4399 // See if it would be better to reorganize NewMask to avoid using VPERM.
4400 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4401 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4402 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4403 // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4404 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4405 if (NewBytes[J] >= 0) {
4406 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4407 "Invalid double permute");
4408 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4409 } else
4410 assert(NewBytesMap[J] < 0 && "Invalid double permute");
4412 } else {
4413 // Just use NewBytes on the operands.
4414 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4415 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4416 if (NewBytes[J] >= 0)
4417 Bytes[J] = I * SystemZ::VectorBytes + J;
4422 // Now we just have 2 inputs. Put the second operand in Ops[1].
4423 if (Stride > 1) {
4424 Ops[1] = Ops[Stride];
4425 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4426 if (Bytes[I] >= int(SystemZ::VectorBytes))
4427 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4430 // Look for an instruction that can do the permute without resorting
4431 // to VPERM.
4432 unsigned OpNo0, OpNo1;
4433 SDValue Op;
4434 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4435 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4436 else
4437 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4438 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4441 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4442 static bool isScalarToVector(SDValue Op) {
4443 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4444 if (!Op.getOperand(I).isUndef())
4445 return false;
4446 return true;
4449 // Return a vector of type VT that contains Value in the first element.
4450 // The other elements don't matter.
4451 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4452 SDValue Value) {
4453 // If we have a constant, replicate it to all elements and let the
4454 // BUILD_VECTOR lowering take care of it.
4455 if (Value.getOpcode() == ISD::Constant ||
4456 Value.getOpcode() == ISD::ConstantFP) {
4457 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4458 return DAG.getBuildVector(VT, DL, Ops);
4460 if (Value.isUndef())
4461 return DAG.getUNDEF(VT);
4462 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4465 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4466 // element 1. Used for cases in which replication is cheap.
4467 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4468 SDValue Op0, SDValue Op1) {
4469 if (Op0.isUndef()) {
4470 if (Op1.isUndef())
4471 return DAG.getUNDEF(VT);
4472 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4474 if (Op1.isUndef())
4475 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4476 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4477 buildScalarToVector(DAG, DL, VT, Op0),
4478 buildScalarToVector(DAG, DL, VT, Op1));
4481 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4482 // vector for them.
4483 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4484 SDValue Op1) {
4485 if (Op0.isUndef() && Op1.isUndef())
4486 return DAG.getUNDEF(MVT::v2i64);
4487 // If one of the two inputs is undefined then replicate the other one,
4488 // in order to avoid using another register unnecessarily.
4489 if (Op0.isUndef())
4490 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4491 else if (Op1.isUndef())
4492 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4493 else {
4494 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4495 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4497 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4500 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4501 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4502 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
4503 // would benefit from this representation and return it if so.
4504 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4505 BuildVectorSDNode *BVN) {
4506 EVT VT = BVN->getValueType(0);
4507 unsigned NumElements = VT.getVectorNumElements();
4509 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4510 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
4511 // need a BUILD_VECTOR, add an additional placeholder operand for that
4512 // BUILD_VECTOR and store its operands in ResidueOps.
4513 GeneralShuffle GS(VT);
4514 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4515 bool FoundOne = false;
4516 for (unsigned I = 0; I < NumElements; ++I) {
4517 SDValue Op = BVN->getOperand(I);
4518 if (Op.getOpcode() == ISD::TRUNCATE)
4519 Op = Op.getOperand(0);
4520 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4521 Op.getOperand(1).getOpcode() == ISD::Constant) {
4522 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4523 if (!GS.add(Op.getOperand(0), Elem))
4524 return SDValue();
4525 FoundOne = true;
4526 } else if (Op.isUndef()) {
4527 GS.addUndef();
4528 } else {
4529 if (!GS.add(SDValue(), ResidueOps.size()))
4530 return SDValue();
4531 ResidueOps.push_back(BVN->getOperand(I));
4535 // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4536 if (!FoundOne)
4537 return SDValue();
4539 // Create the BUILD_VECTOR for the remaining elements, if any.
4540 if (!ResidueOps.empty()) {
4541 while (ResidueOps.size() < NumElements)
4542 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4543 for (auto &Op : GS.Ops) {
4544 if (!Op.getNode()) {
4545 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4546 break;
4550 return GS.getNode(DAG, SDLoc(BVN));
4553 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4554 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4555 return true;
4556 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4557 return true;
4558 return false;
4561 // Combine GPR scalar values Elems into a vector of type VT.
4562 SDValue
4563 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4564 SmallVectorImpl<SDValue> &Elems) const {
4565 // See whether there is a single replicated value.
4566 SDValue Single;
4567 unsigned int NumElements = Elems.size();
4568 unsigned int Count = 0;
4569 for (auto Elem : Elems) {
4570 if (!Elem.isUndef()) {
4571 if (!Single.getNode())
4572 Single = Elem;
4573 else if (Elem != Single) {
4574 Single = SDValue();
4575 break;
4577 Count += 1;
4580 // There are three cases here:
4582 // - if the only defined element is a loaded one, the best sequence
4583 // is a replicating load.
4585 // - otherwise, if the only defined element is an i64 value, we will
4586 // end up with the same VLVGP sequence regardless of whether we short-cut
4587 // for replication or fall through to the later code.
4589 // - otherwise, if the only defined element is an i32 or smaller value,
4590 // we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4591 // This is only a win if the single defined element is used more than once.
4592 // In other cases we're better off using a single VLVGx.
4593 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4594 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4596 // If all elements are loads, use VLREP/VLEs (below).
4597 bool AllLoads = true;
4598 for (auto Elem : Elems)
4599 if (!isVectorElementLoad(Elem)) {
4600 AllLoads = false;
4601 break;
4604 // The best way of building a v2i64 from two i64s is to use VLVGP.
4605 if (VT == MVT::v2i64 && !AllLoads)
4606 return joinDwords(DAG, DL, Elems[0], Elems[1]);
4608 // Use a 64-bit merge high to combine two doubles.
4609 if (VT == MVT::v2f64 && !AllLoads)
4610 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4612 // Build v4f32 values directly from the FPRs:
4614 // <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4615 // V V VMRHF
4616 // <ABxx> <CDxx>
4617 // V VMRHG
4618 // <ABCD>
4619 if (VT == MVT::v4f32 && !AllLoads) {
4620 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4621 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4622 // Avoid unnecessary undefs by reusing the other operand.
4623 if (Op01.isUndef())
4624 Op01 = Op23;
4625 else if (Op23.isUndef())
4626 Op23 = Op01;
4627 // Merging identical replications is a no-op.
4628 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4629 return Op01;
4630 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4631 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4632 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4633 DL, MVT::v2i64, Op01, Op23);
4634 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4637 // Collect the constant terms.
4638 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4639 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4641 unsigned NumConstants = 0;
4642 for (unsigned I = 0; I < NumElements; ++I) {
4643 SDValue Elem = Elems[I];
4644 if (Elem.getOpcode() == ISD::Constant ||
4645 Elem.getOpcode() == ISD::ConstantFP) {
4646 NumConstants += 1;
4647 Constants[I] = Elem;
4648 Done[I] = true;
4651 // If there was at least one constant, fill in the other elements of
4652 // Constants with undefs to get a full vector constant and use that
4653 // as the starting point.
4654 SDValue Result;
4655 SDValue ReplicatedVal;
4656 if (NumConstants > 0) {
4657 for (unsigned I = 0; I < NumElements; ++I)
4658 if (!Constants[I].getNode())
4659 Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4660 Result = DAG.getBuildVector(VT, DL, Constants);
4661 } else {
4662 // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4663 // avoid a false dependency on any previous contents of the vector
4664 // register.
4666 // Use a VLREP if at least one element is a load. Make sure to replicate
4667 // the load with the most elements having its value.
4668 std::map<const SDNode*, unsigned> UseCounts;
4669 SDNode *LoadMaxUses = nullptr;
4670 for (unsigned I = 0; I < NumElements; ++I)
4671 if (isVectorElementLoad(Elems[I])) {
4672 SDNode *Ld = Elems[I].getNode();
4673 UseCounts[Ld]++;
4674 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4675 LoadMaxUses = Ld;
4677 if (LoadMaxUses != nullptr) {
4678 ReplicatedVal = SDValue(LoadMaxUses, 0);
4679 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4680 } else {
4681 // Try to use VLVGP.
4682 unsigned I1 = NumElements / 2 - 1;
4683 unsigned I2 = NumElements - 1;
4684 bool Def1 = !Elems[I1].isUndef();
4685 bool Def2 = !Elems[I2].isUndef();
4686 if (Def1 || Def2) {
4687 SDValue Elem1 = Elems[Def1 ? I1 : I2];
4688 SDValue Elem2 = Elems[Def2 ? I2 : I1];
4689 Result = DAG.getNode(ISD::BITCAST, DL, VT,
4690 joinDwords(DAG, DL, Elem1, Elem2));
4691 Done[I1] = true;
4692 Done[I2] = true;
4693 } else
4694 Result = DAG.getUNDEF(VT);
4698 // Use VLVGx to insert the other elements.
4699 for (unsigned I = 0; I < NumElements; ++I)
4700 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4701 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4702 DAG.getConstant(I, DL, MVT::i32));
4703 return Result;
4706 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4707 SelectionDAG &DAG) const {
4708 auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4709 SDLoc DL(Op);
4710 EVT VT = Op.getValueType();
4712 if (BVN->isConstant()) {
4713 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4714 return Op;
4716 // Fall back to loading it from memory.
4717 return SDValue();
4720 // See if we should use shuffles to construct the vector from other vectors.
4721 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4722 return Res;
4724 // Detect SCALAR_TO_VECTOR conversions.
4725 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4726 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4728 // Otherwise use buildVector to build the vector up from GPRs.
4729 unsigned NumElements = Op.getNumOperands();
4730 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4731 for (unsigned I = 0; I < NumElements; ++I)
4732 Ops[I] = Op.getOperand(I);
4733 return buildVector(DAG, DL, VT, Ops);
4736 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4737 SelectionDAG &DAG) const {
4738 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4739 SDLoc DL(Op);
4740 EVT VT = Op.getValueType();
4741 unsigned NumElements = VT.getVectorNumElements();
4743 if (VSN->isSplat()) {
4744 SDValue Op0 = Op.getOperand(0);
4745 unsigned Index = VSN->getSplatIndex();
4746 assert(Index < VT.getVectorNumElements() &&
4747 "Splat index should be defined and in first operand");
4748 // See whether the value we're splatting is directly available as a scalar.
4749 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4750 Op0.getOpcode() == ISD::BUILD_VECTOR)
4751 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4752 // Otherwise keep it as a vector-to-vector operation.
4753 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4754 DAG.getConstant(Index, DL, MVT::i32));
4757 GeneralShuffle GS(VT);
4758 for (unsigned I = 0; I < NumElements; ++I) {
4759 int Elt = VSN->getMaskElt(I);
4760 if (Elt < 0)
4761 GS.addUndef();
4762 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4763 unsigned(Elt) % NumElements))
4764 return SDValue();
4766 return GS.getNode(DAG, SDLoc(VSN));
4769 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4770 SelectionDAG &DAG) const {
4771 SDLoc DL(Op);
4772 // Just insert the scalar into element 0 of an undefined vector.
4773 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4774 Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4775 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4778 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4779 SelectionDAG &DAG) const {
4780 // Handle insertions of floating-point values.
4781 SDLoc DL(Op);
4782 SDValue Op0 = Op.getOperand(0);
4783 SDValue Op1 = Op.getOperand(1);
4784 SDValue Op2 = Op.getOperand(2);
4785 EVT VT = Op.getValueType();
4787 // Insertions into constant indices of a v2f64 can be done using VPDI.
4788 // However, if the inserted value is a bitcast or a constant then it's
4789 // better to use GPRs, as below.
4790 if (VT == MVT::v2f64 &&
4791 Op1.getOpcode() != ISD::BITCAST &&
4792 Op1.getOpcode() != ISD::ConstantFP &&
4793 Op2.getOpcode() == ISD::Constant) {
4794 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4795 unsigned Mask = VT.getVectorNumElements() - 1;
4796 if (Index <= Mask)
4797 return Op;
4800 // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4801 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4802 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4803 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4804 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4805 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4806 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4809 SDValue
4810 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4811 SelectionDAG &DAG) const {
4812 // Handle extractions of floating-point values.
4813 SDLoc DL(Op);
4814 SDValue Op0 = Op.getOperand(0);
4815 SDValue Op1 = Op.getOperand(1);
4816 EVT VT = Op.getValueType();
4817 EVT VecVT = Op0.getValueType();
4819 // Extractions of constant indices can be done directly.
4820 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4821 uint64_t Index = CIndexN->getZExtValue();
4822 unsigned Mask = VecVT.getVectorNumElements() - 1;
4823 if (Index <= Mask)
4824 return Op;
4827 // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4828 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4829 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4830 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4831 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4832 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4835 SDValue
4836 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4837 unsigned UnpackHigh) const {
4838 SDValue PackedOp = Op.getOperand(0);
4839 EVT OutVT = Op.getValueType();
4840 EVT InVT = PackedOp.getValueType();
4841 unsigned ToBits = OutVT.getScalarSizeInBits();
4842 unsigned FromBits = InVT.getScalarSizeInBits();
4843 do {
4844 FromBits *= 2;
4845 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4846 SystemZ::VectorBits / FromBits);
4847 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4848 } while (FromBits != ToBits);
4849 return PackedOp;
4852 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4853 unsigned ByScalar) const {
4854 // Look for cases where a vector shift can use the *_BY_SCALAR form.
4855 SDValue Op0 = Op.getOperand(0);
4856 SDValue Op1 = Op.getOperand(1);
4857 SDLoc DL(Op);
4858 EVT VT = Op.getValueType();
4859 unsigned ElemBitSize = VT.getScalarSizeInBits();
4861 // See whether the shift vector is a splat represented as BUILD_VECTOR.
4862 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4863 APInt SplatBits, SplatUndef;
4864 unsigned SplatBitSize;
4865 bool HasAnyUndefs;
4866 // Check for constant splats. Use ElemBitSize as the minimum element
4867 // width and reject splats that need wider elements.
4868 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4869 ElemBitSize, true) &&
4870 SplatBitSize == ElemBitSize) {
4871 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4872 DL, MVT::i32);
4873 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4875 // Check for variable splats.
4876 BitVector UndefElements;
4877 SDValue Splat = BVN->getSplatValue(&UndefElements);
4878 if (Splat) {
4879 // Since i32 is the smallest legal type, we either need a no-op
4880 // or a truncation.
4881 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4882 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4886 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4887 // and the shift amount is directly available in a GPR.
4888 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4889 if (VSN->isSplat()) {
4890 SDValue VSNOp0 = VSN->getOperand(0);
4891 unsigned Index = VSN->getSplatIndex();
4892 assert(Index < VT.getVectorNumElements() &&
4893 "Splat index should be defined and in first operand");
4894 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4895 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4896 // Since i32 is the smallest legal type, we either need a no-op
4897 // or a truncation.
4898 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4899 VSNOp0.getOperand(Index));
4900 return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4905 // Otherwise just treat the current form as legal.
4906 return Op;
4909 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4910 SelectionDAG &DAG) const {
4911 switch (Op.getOpcode()) {
4912 case ISD::FRAMEADDR:
4913 return lowerFRAMEADDR(Op, DAG);
4914 case ISD::RETURNADDR:
4915 return lowerRETURNADDR(Op, DAG);
4916 case ISD::BR_CC:
4917 return lowerBR_CC(Op, DAG);
4918 case ISD::SELECT_CC:
4919 return lowerSELECT_CC(Op, DAG);
4920 case ISD::SETCC:
4921 return lowerSETCC(Op, DAG);
4922 case ISD::GlobalAddress:
4923 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4924 case ISD::GlobalTLSAddress:
4925 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4926 case ISD::BlockAddress:
4927 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4928 case ISD::JumpTable:
4929 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4930 case ISD::ConstantPool:
4931 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4932 case ISD::BITCAST:
4933 return lowerBITCAST(Op, DAG);
4934 case ISD::VASTART:
4935 return lowerVASTART(Op, DAG);
4936 case ISD::VACOPY:
4937 return lowerVACOPY(Op, DAG);
4938 case ISD::DYNAMIC_STACKALLOC:
4939 return lowerDYNAMIC_STACKALLOC(Op, DAG);
4940 case ISD::GET_DYNAMIC_AREA_OFFSET:
4941 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4942 case ISD::SMUL_LOHI:
4943 return lowerSMUL_LOHI(Op, DAG);
4944 case ISD::UMUL_LOHI:
4945 return lowerUMUL_LOHI(Op, DAG);
4946 case ISD::SDIVREM:
4947 return lowerSDIVREM(Op, DAG);
4948 case ISD::UDIVREM:
4949 return lowerUDIVREM(Op, DAG);
4950 case ISD::SADDO:
4951 case ISD::SSUBO:
4952 case ISD::UADDO:
4953 case ISD::USUBO:
4954 return lowerXALUO(Op, DAG);
4955 case ISD::ADDCARRY:
4956 case ISD::SUBCARRY:
4957 return lowerADDSUBCARRY(Op, DAG);
4958 case ISD::OR:
4959 return lowerOR(Op, DAG);
4960 case ISD::CTPOP:
4961 return lowerCTPOP(Op, DAG);
4962 case ISD::ATOMIC_FENCE:
4963 return lowerATOMIC_FENCE(Op, DAG);
4964 case ISD::ATOMIC_SWAP:
4965 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4966 case ISD::ATOMIC_STORE:
4967 return lowerATOMIC_STORE(Op, DAG);
4968 case ISD::ATOMIC_LOAD:
4969 return lowerATOMIC_LOAD(Op, DAG);
4970 case ISD::ATOMIC_LOAD_ADD:
4971 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4972 case ISD::ATOMIC_LOAD_SUB:
4973 return lowerATOMIC_LOAD_SUB(Op, DAG);
4974 case ISD::ATOMIC_LOAD_AND:
4975 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4976 case ISD::ATOMIC_LOAD_OR:
4977 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4978 case ISD::ATOMIC_LOAD_XOR:
4979 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4980 case ISD::ATOMIC_LOAD_NAND:
4981 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4982 case ISD::ATOMIC_LOAD_MIN:
4983 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4984 case ISD::ATOMIC_LOAD_MAX:
4985 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4986 case ISD::ATOMIC_LOAD_UMIN:
4987 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4988 case ISD::ATOMIC_LOAD_UMAX:
4989 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4990 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4991 return lowerATOMIC_CMP_SWAP(Op, DAG);
4992 case ISD::STACKSAVE:
4993 return lowerSTACKSAVE(Op, DAG);
4994 case ISD::STACKRESTORE:
4995 return lowerSTACKRESTORE(Op, DAG);
4996 case ISD::PREFETCH:
4997 return lowerPREFETCH(Op, DAG);
4998 case ISD::INTRINSIC_W_CHAIN:
4999 return lowerINTRINSIC_W_CHAIN(Op, DAG);
5000 case ISD::INTRINSIC_WO_CHAIN:
5001 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5002 case ISD::BUILD_VECTOR:
5003 return lowerBUILD_VECTOR(Op, DAG);
5004 case ISD::VECTOR_SHUFFLE:
5005 return lowerVECTOR_SHUFFLE(Op, DAG);
5006 case ISD::SCALAR_TO_VECTOR:
5007 return lowerSCALAR_TO_VECTOR(Op, DAG);
5008 case ISD::INSERT_VECTOR_ELT:
5009 return lowerINSERT_VECTOR_ELT(Op, DAG);
5010 case ISD::EXTRACT_VECTOR_ELT:
5011 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5012 case ISD::SIGN_EXTEND_VECTOR_INREG:
5013 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5014 case ISD::ZERO_EXTEND_VECTOR_INREG:
5015 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5016 case ISD::SHL:
5017 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5018 case ISD::SRL:
5019 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5020 case ISD::SRA:
5021 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5022 default:
5023 llvm_unreachable("Unexpected node to lower");
5027 // Lower operations with invalid operand or result types (currently used
5028 // only for 128-bit integer types).
5030 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5031 SDLoc DL(In);
5032 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5033 DAG.getIntPtrConstant(0, DL));
5034 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5035 DAG.getIntPtrConstant(1, DL));
5036 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5037 MVT::Untyped, Hi, Lo);
5038 return SDValue(Pair, 0);
5041 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5042 SDLoc DL(In);
5043 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5044 DL, MVT::i64, In);
5045 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5046 DL, MVT::i64, In);
5047 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5050 void
5051 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5052 SmallVectorImpl<SDValue> &Results,
5053 SelectionDAG &DAG) const {
5054 switch (N->getOpcode()) {
5055 case ISD::ATOMIC_LOAD: {
5056 SDLoc DL(N);
5057 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5058 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5059 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5060 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5061 DL, Tys, Ops, MVT::i128, MMO);
5062 Results.push_back(lowerGR128ToI128(DAG, Res));
5063 Results.push_back(Res.getValue(1));
5064 break;
5066 case ISD::ATOMIC_STORE: {
5067 SDLoc DL(N);
5068 SDVTList Tys = DAG.getVTList(MVT::Other);
5069 SDValue Ops[] = { N->getOperand(0),
5070 lowerI128ToGR128(DAG, N->getOperand(2)),
5071 N->getOperand(1) };
5072 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5073 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5074 DL, Tys, Ops, MVT::i128, MMO);
5075 // We have to enforce sequential consistency by performing a
5076 // serialization operation after the store.
5077 if (cast<AtomicSDNode>(N)->getOrdering() ==
5078 AtomicOrdering::SequentiallyConsistent)
5079 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5080 MVT::Other, Res), 0);
5081 Results.push_back(Res);
5082 break;
5084 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5085 SDLoc DL(N);
5086 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5087 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5088 lowerI128ToGR128(DAG, N->getOperand(2)),
5089 lowerI128ToGR128(DAG, N->getOperand(3)) };
5090 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5091 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5092 DL, Tys, Ops, MVT::i128, MMO);
5093 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5094 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5095 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5096 Results.push_back(lowerGR128ToI128(DAG, Res));
5097 Results.push_back(Success);
5098 Results.push_back(Res.getValue(2));
5099 break;
5101 default:
5102 llvm_unreachable("Unexpected node to lower");
5106 void
5107 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5108 SmallVectorImpl<SDValue> &Results,
5109 SelectionDAG &DAG) const {
5110 return LowerOperationWrapper(N, Results, DAG);
5113 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5114 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5115 switch ((SystemZISD::NodeType)Opcode) {
5116 case SystemZISD::FIRST_NUMBER: break;
5117 OPCODE(RET_FLAG);
5118 OPCODE(CALL);
5119 OPCODE(SIBCALL);
5120 OPCODE(TLS_GDCALL);
5121 OPCODE(TLS_LDCALL);
5122 OPCODE(PCREL_WRAPPER);
5123 OPCODE(PCREL_OFFSET);
5124 OPCODE(IABS);
5125 OPCODE(ICMP);
5126 OPCODE(FCMP);
5127 OPCODE(TM);
5128 OPCODE(BR_CCMASK);
5129 OPCODE(SELECT_CCMASK);
5130 OPCODE(ADJDYNALLOC);
5131 OPCODE(POPCNT);
5132 OPCODE(SMUL_LOHI);
5133 OPCODE(UMUL_LOHI);
5134 OPCODE(SDIVREM);
5135 OPCODE(UDIVREM);
5136 OPCODE(SADDO);
5137 OPCODE(SSUBO);
5138 OPCODE(UADDO);
5139 OPCODE(USUBO);
5140 OPCODE(ADDCARRY);
5141 OPCODE(SUBCARRY);
5142 OPCODE(GET_CCMASK);
5143 OPCODE(MVC);
5144 OPCODE(MVC_LOOP);
5145 OPCODE(NC);
5146 OPCODE(NC_LOOP);
5147 OPCODE(OC);
5148 OPCODE(OC_LOOP);
5149 OPCODE(XC);
5150 OPCODE(XC_LOOP);
5151 OPCODE(CLC);
5152 OPCODE(CLC_LOOP);
5153 OPCODE(STPCPY);
5154 OPCODE(STRCMP);
5155 OPCODE(SEARCH_STRING);
5156 OPCODE(IPM);
5157 OPCODE(MEMBARRIER);
5158 OPCODE(TBEGIN);
5159 OPCODE(TBEGIN_NOFLOAT);
5160 OPCODE(TEND);
5161 OPCODE(BYTE_MASK);
5162 OPCODE(ROTATE_MASK);
5163 OPCODE(REPLICATE);
5164 OPCODE(JOIN_DWORDS);
5165 OPCODE(SPLAT);
5166 OPCODE(MERGE_HIGH);
5167 OPCODE(MERGE_LOW);
5168 OPCODE(SHL_DOUBLE);
5169 OPCODE(PERMUTE_DWORDS);
5170 OPCODE(PERMUTE);
5171 OPCODE(PACK);
5172 OPCODE(PACKS_CC);
5173 OPCODE(PACKLS_CC);
5174 OPCODE(UNPACK_HIGH);
5175 OPCODE(UNPACKL_HIGH);
5176 OPCODE(UNPACK_LOW);
5177 OPCODE(UNPACKL_LOW);
5178 OPCODE(VSHL_BY_SCALAR);
5179 OPCODE(VSRL_BY_SCALAR);
5180 OPCODE(VSRA_BY_SCALAR);
5181 OPCODE(VSUM);
5182 OPCODE(VICMPE);
5183 OPCODE(VICMPH);
5184 OPCODE(VICMPHL);
5185 OPCODE(VICMPES);
5186 OPCODE(VICMPHS);
5187 OPCODE(VICMPHLS);
5188 OPCODE(VFCMPE);
5189 OPCODE(VFCMPH);
5190 OPCODE(VFCMPHE);
5191 OPCODE(VFCMPES);
5192 OPCODE(VFCMPHS);
5193 OPCODE(VFCMPHES);
5194 OPCODE(VFTCI);
5195 OPCODE(VEXTEND);
5196 OPCODE(VROUND);
5197 OPCODE(VTM);
5198 OPCODE(VFAE_CC);
5199 OPCODE(VFAEZ_CC);
5200 OPCODE(VFEE_CC);
5201 OPCODE(VFEEZ_CC);
5202 OPCODE(VFENE_CC);
5203 OPCODE(VFENEZ_CC);
5204 OPCODE(VISTR_CC);
5205 OPCODE(VSTRC_CC);
5206 OPCODE(VSTRCZ_CC);
5207 OPCODE(VSTRS_CC);
5208 OPCODE(VSTRSZ_CC);
5209 OPCODE(TDC);
5210 OPCODE(ATOMIC_SWAPW);
5211 OPCODE(ATOMIC_LOADW_ADD);
5212 OPCODE(ATOMIC_LOADW_SUB);
5213 OPCODE(ATOMIC_LOADW_AND);
5214 OPCODE(ATOMIC_LOADW_OR);
5215 OPCODE(ATOMIC_LOADW_XOR);
5216 OPCODE(ATOMIC_LOADW_NAND);
5217 OPCODE(ATOMIC_LOADW_MIN);
5218 OPCODE(ATOMIC_LOADW_MAX);
5219 OPCODE(ATOMIC_LOADW_UMIN);
5220 OPCODE(ATOMIC_LOADW_UMAX);
5221 OPCODE(ATOMIC_CMP_SWAPW);
5222 OPCODE(ATOMIC_CMP_SWAP);
5223 OPCODE(ATOMIC_LOAD_128);
5224 OPCODE(ATOMIC_STORE_128);
5225 OPCODE(ATOMIC_CMP_SWAP_128);
5226 OPCODE(LRV);
5227 OPCODE(STRV);
5228 OPCODE(VLER);
5229 OPCODE(VSTER);
5230 OPCODE(PREFETCH);
5232 return nullptr;
5233 #undef OPCODE
5236 // Return true if VT is a vector whose elements are a whole number of bytes
5237 // in width. Also check for presence of vector support.
5238 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5239 if (!Subtarget.hasVector())
5240 return false;
5242 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5245 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5246 // producing a result of type ResVT. Op is a possibly bitcast version
5247 // of the input vector and Index is the index (based on type VecVT) that
5248 // should be extracted. Return the new extraction if a simplification
5249 // was possible or if Force is true.
5250 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5251 EVT VecVT, SDValue Op,
5252 unsigned Index,
5253 DAGCombinerInfo &DCI,
5254 bool Force) const {
5255 SelectionDAG &DAG = DCI.DAG;
5257 // The number of bytes being extracted.
5258 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5260 for (;;) {
5261 unsigned Opcode = Op.getOpcode();
5262 if (Opcode == ISD::BITCAST)
5263 // Look through bitcasts.
5264 Op = Op.getOperand(0);
5265 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5266 canTreatAsByteVector(Op.getValueType())) {
5267 // Get a VPERM-like permute mask and see whether the bytes covered
5268 // by the extracted element are a contiguous sequence from one
5269 // source operand.
5270 SmallVector<int, SystemZ::VectorBytes> Bytes;
5271 if (!getVPermMask(Op, Bytes))
5272 break;
5273 int First;
5274 if (!getShuffleInput(Bytes, Index * BytesPerElement,
5275 BytesPerElement, First))
5276 break;
5277 if (First < 0)
5278 return DAG.getUNDEF(ResVT);
5279 // Make sure the contiguous sequence starts at a multiple of the
5280 // original element size.
5281 unsigned Byte = unsigned(First) % Bytes.size();
5282 if (Byte % BytesPerElement != 0)
5283 break;
5284 // We can get the extracted value directly from an input.
5285 Index = Byte / BytesPerElement;
5286 Op = Op.getOperand(unsigned(First) / Bytes.size());
5287 Force = true;
5288 } else if (Opcode == ISD::BUILD_VECTOR &&
5289 canTreatAsByteVector(Op.getValueType())) {
5290 // We can only optimize this case if the BUILD_VECTOR elements are
5291 // at least as wide as the extracted value.
5292 EVT OpVT = Op.getValueType();
5293 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5294 if (OpBytesPerElement < BytesPerElement)
5295 break;
5296 // Make sure that the least-significant bit of the extracted value
5297 // is the least significant bit of an input.
5298 unsigned End = (Index + 1) * BytesPerElement;
5299 if (End % OpBytesPerElement != 0)
5300 break;
5301 // We're extracting the low part of one operand of the BUILD_VECTOR.
5302 Op = Op.getOperand(End / OpBytesPerElement - 1);
5303 if (!Op.getValueType().isInteger()) {
5304 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5305 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5306 DCI.AddToWorklist(Op.getNode());
5308 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5309 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5310 if (VT != ResVT) {
5311 DCI.AddToWorklist(Op.getNode());
5312 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5314 return Op;
5315 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5316 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5317 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5318 canTreatAsByteVector(Op.getValueType()) &&
5319 canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5320 // Make sure that only the unextended bits are significant.
5321 EVT ExtVT = Op.getValueType();
5322 EVT OpVT = Op.getOperand(0).getValueType();
5323 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5324 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5325 unsigned Byte = Index * BytesPerElement;
5326 unsigned SubByte = Byte % ExtBytesPerElement;
5327 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5328 if (SubByte < MinSubByte ||
5329 SubByte + BytesPerElement > ExtBytesPerElement)
5330 break;
5331 // Get the byte offset of the unextended element
5332 Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5333 // ...then add the byte offset relative to that element.
5334 Byte += SubByte - MinSubByte;
5335 if (Byte % BytesPerElement != 0)
5336 break;
5337 Op = Op.getOperand(0);
5338 Index = Byte / BytesPerElement;
5339 Force = true;
5340 } else
5341 break;
5343 if (Force) {
5344 if (Op.getValueType() != VecVT) {
5345 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5346 DCI.AddToWorklist(Op.getNode());
5348 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5349 DAG.getConstant(Index, DL, MVT::i32));
5351 return SDValue();
5354 // Optimize vector operations in scalar value Op on the basis that Op
5355 // is truncated to TruncVT.
5356 SDValue SystemZTargetLowering::combineTruncateExtract(
5357 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5358 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5359 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5360 // of type TruncVT.
5361 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5362 TruncVT.getSizeInBits() % 8 == 0) {
5363 SDValue Vec = Op.getOperand(0);
5364 EVT VecVT = Vec.getValueType();
5365 if (canTreatAsByteVector(VecVT)) {
5366 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5367 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5368 unsigned TruncBytes = TruncVT.getStoreSize();
5369 if (BytesPerElement % TruncBytes == 0) {
5370 // Calculate the value of Y' in the above description. We are
5371 // splitting the original elements into Scale equal-sized pieces
5372 // and for truncation purposes want the last (least-significant)
5373 // of these pieces for IndexN. This is easiest to do by calculating
5374 // the start index of the following element and then subtracting 1.
5375 unsigned Scale = BytesPerElement / TruncBytes;
5376 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5378 // Defer the creation of the bitcast from X to combineExtract,
5379 // which might be able to optimize the extraction.
5380 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5381 VecVT.getStoreSize() / TruncBytes);
5382 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5383 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5388 return SDValue();
5391 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5392 SDNode *N, DAGCombinerInfo &DCI) const {
5393 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5394 SelectionDAG &DAG = DCI.DAG;
5395 SDValue N0 = N->getOperand(0);
5396 EVT VT = N->getValueType(0);
5397 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5398 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5399 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5400 if (TrueOp && FalseOp) {
5401 SDLoc DL(N0);
5402 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5403 DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5404 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5405 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5406 // If N0 has multiple uses, change other uses as well.
5407 if (!N0.hasOneUse()) {
5408 SDValue TruncSelect =
5409 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5410 DCI.CombineTo(N0.getNode(), TruncSelect);
5412 return NewSelect;
5415 return SDValue();
5418 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5419 SDNode *N, DAGCombinerInfo &DCI) const {
5420 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5421 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5422 // into (select_cc LHS, RHS, -1, 0, COND)
5423 SelectionDAG &DAG = DCI.DAG;
5424 SDValue N0 = N->getOperand(0);
5425 EVT VT = N->getValueType(0);
5426 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5427 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5428 N0 = N0.getOperand(0);
5429 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5430 SDLoc DL(N0);
5431 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5432 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5433 N0.getOperand(2) };
5434 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5436 return SDValue();
5439 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5440 SDNode *N, DAGCombinerInfo &DCI) const {
5441 // Convert (sext (ashr (shl X, C1), C2)) to
5442 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5443 // cheap as narrower ones.
5444 SelectionDAG &DAG = DCI.DAG;
5445 SDValue N0 = N->getOperand(0);
5446 EVT VT = N->getValueType(0);
5447 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5448 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5449 SDValue Inner = N0.getOperand(0);
5450 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5451 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5452 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5453 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5454 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5455 EVT ShiftVT = N0.getOperand(1).getValueType();
5456 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5457 Inner.getOperand(0));
5458 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5459 DAG.getConstant(NewShlAmt, SDLoc(Inner),
5460 ShiftVT));
5461 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5462 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5466 return SDValue();
5469 SDValue SystemZTargetLowering::combineMERGE(
5470 SDNode *N, DAGCombinerInfo &DCI) const {
5471 SelectionDAG &DAG = DCI.DAG;
5472 unsigned Opcode = N->getOpcode();
5473 SDValue Op0 = N->getOperand(0);
5474 SDValue Op1 = N->getOperand(1);
5475 if (Op0.getOpcode() == ISD::BITCAST)
5476 Op0 = Op0.getOperand(0);
5477 if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5478 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
5479 // for v4f32.
5480 if (Op1 == N->getOperand(0))
5481 return Op1;
5482 // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5483 EVT VT = Op1.getValueType();
5484 unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5485 if (ElemBytes <= 4) {
5486 Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5487 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5488 EVT InVT = VT.changeVectorElementTypeToInteger();
5489 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5490 SystemZ::VectorBytes / ElemBytes / 2);
5491 if (VT != InVT) {
5492 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5493 DCI.AddToWorklist(Op1.getNode());
5495 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5496 DCI.AddToWorklist(Op.getNode());
5497 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5500 return SDValue();
5503 SDValue SystemZTargetLowering::combineLOAD(
5504 SDNode *N, DAGCombinerInfo &DCI) const {
5505 SelectionDAG &DAG = DCI.DAG;
5506 EVT LdVT = N->getValueType(0);
5507 if (LdVT.isVector() || LdVT.isInteger())
5508 return SDValue();
5509 // Transform a scalar load that is REPLICATEd as well as having other
5510 // use(s) to the form where the other use(s) use the first element of the
5511 // REPLICATE instead of the load. Otherwise instruction selection will not
5512 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5513 // point loads.
5515 SDValue Replicate;
5516 SmallVector<SDNode*, 8> OtherUses;
5517 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5518 UI != UE; ++UI) {
5519 if (UI->getOpcode() == SystemZISD::REPLICATE) {
5520 if (Replicate)
5521 return SDValue(); // Should never happen
5522 Replicate = SDValue(*UI, 0);
5524 else if (UI.getUse().getResNo() == 0)
5525 OtherUses.push_back(*UI);
5527 if (!Replicate || OtherUses.empty())
5528 return SDValue();
5530 SDLoc DL(N);
5531 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5532 Replicate, DAG.getConstant(0, DL, MVT::i32));
5533 // Update uses of the loaded Value while preserving old chains.
5534 for (SDNode *U : OtherUses) {
5535 SmallVector<SDValue, 8> Ops;
5536 for (SDValue Op : U->ops())
5537 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5538 DAG.UpdateNodeOperands(U, Ops);
5540 return SDValue(N, 0);
5543 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5544 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5545 return true;
5546 if (Subtarget.hasVectorEnhancements2())
5547 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5548 return true;
5549 return false;
5552 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5553 if (!VT.isVector() || !VT.isSimple() ||
5554 VT.getSizeInBits() != 128 ||
5555 VT.getScalarSizeInBits() % 8 != 0)
5556 return false;
5558 unsigned NumElts = VT.getVectorNumElements();
5559 for (unsigned i = 0; i < NumElts; ++i) {
5560 if (M[i] < 0) continue; // ignore UNDEF indices
5561 if ((unsigned) M[i] != NumElts - 1 - i)
5562 return false;
5565 return true;
5568 SDValue SystemZTargetLowering::combineSTORE(
5569 SDNode *N, DAGCombinerInfo &DCI) const {
5570 SelectionDAG &DAG = DCI.DAG;
5571 auto *SN = cast<StoreSDNode>(N);
5572 auto &Op1 = N->getOperand(1);
5573 EVT MemVT = SN->getMemoryVT();
5574 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5575 // for the extraction to be done on a vMiN value, so that we can use VSTE.
5576 // If X has wider elements then convert it to:
5577 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5578 if (MemVT.isInteger() && SN->isTruncatingStore()) {
5579 if (SDValue Value =
5580 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5581 DCI.AddToWorklist(Value.getNode());
5583 // Rewrite the store with the new form of stored value.
5584 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5585 SN->getBasePtr(), SN->getMemoryVT(),
5586 SN->getMemOperand());
5589 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5590 if (!SN->isTruncatingStore() &&
5591 Op1.getOpcode() == ISD::BSWAP &&
5592 Op1.getNode()->hasOneUse() &&
5593 canLoadStoreByteSwapped(Op1.getValueType())) {
5595 SDValue BSwapOp = Op1.getOperand(0);
5597 if (BSwapOp.getValueType() == MVT::i16)
5598 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5600 SDValue Ops[] = {
5601 N->getOperand(0), BSwapOp, N->getOperand(2)
5604 return
5605 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5606 Ops, MemVT, SN->getMemOperand());
5608 // Combine STORE (element-swap) into VSTER
5609 if (!SN->isTruncatingStore() &&
5610 Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5611 Op1.getNode()->hasOneUse() &&
5612 Subtarget.hasVectorEnhancements2()) {
5613 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5614 ArrayRef<int> ShuffleMask = SVN->getMask();
5615 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5616 SDValue Ops[] = {
5617 N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5620 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5621 DAG.getVTList(MVT::Other),
5622 Ops, MemVT, SN->getMemOperand());
5626 return SDValue();
5629 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5630 SDNode *N, DAGCombinerInfo &DCI) const {
5631 SelectionDAG &DAG = DCI.DAG;
5632 // Combine element-swap (LOAD) into VLER
5633 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5634 N->getOperand(0).hasOneUse() &&
5635 Subtarget.hasVectorEnhancements2()) {
5636 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5637 ArrayRef<int> ShuffleMask = SVN->getMask();
5638 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5639 SDValue Load = N->getOperand(0);
5640 LoadSDNode *LD = cast<LoadSDNode>(Load);
5642 // Create the element-swapping load.
5643 SDValue Ops[] = {
5644 LD->getChain(), // Chain
5645 LD->getBasePtr() // Ptr
5647 SDValue ESLoad =
5648 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5649 DAG.getVTList(LD->getValueType(0), MVT::Other),
5650 Ops, LD->getMemoryVT(), LD->getMemOperand());
5652 // First, combine the VECTOR_SHUFFLE away. This makes the value produced
5653 // by the load dead.
5654 DCI.CombineTo(N, ESLoad);
5656 // Next, combine the load away, we give it a bogus result value but a real
5657 // chain result. The result value is dead because the shuffle is dead.
5658 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5660 // Return N so it doesn't get rechecked!
5661 return SDValue(N, 0);
5665 return SDValue();
5668 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5669 SDNode *N, DAGCombinerInfo &DCI) const {
5670 SelectionDAG &DAG = DCI.DAG;
5672 if (!Subtarget.hasVector())
5673 return SDValue();
5675 // Look through bitcasts that retain the number of vector elements.
5676 SDValue Op = N->getOperand(0);
5677 if (Op.getOpcode() == ISD::BITCAST &&
5678 Op.getValueType().isVector() &&
5679 Op.getOperand(0).getValueType().isVector() &&
5680 Op.getValueType().getVectorNumElements() ==
5681 Op.getOperand(0).getValueType().getVectorNumElements())
5682 Op = Op.getOperand(0);
5684 // Pull BSWAP out of a vector extraction.
5685 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5686 EVT VecVT = Op.getValueType();
5687 EVT EltVT = VecVT.getVectorElementType();
5688 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5689 Op.getOperand(0), N->getOperand(1));
5690 DCI.AddToWorklist(Op.getNode());
5691 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5692 if (EltVT != N->getValueType(0)) {
5693 DCI.AddToWorklist(Op.getNode());
5694 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5696 return Op;
5699 // Try to simplify a vector extraction.
5700 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5701 SDValue Op0 = N->getOperand(0);
5702 EVT VecVT = Op0.getValueType();
5703 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5704 IndexN->getZExtValue(), DCI, false);
5706 return SDValue();
5709 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5710 SDNode *N, DAGCombinerInfo &DCI) const {
5711 SelectionDAG &DAG = DCI.DAG;
5712 // (join_dwords X, X) == (replicate X)
5713 if (N->getOperand(0) == N->getOperand(1))
5714 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5715 N->getOperand(0));
5716 return SDValue();
5719 SDValue SystemZTargetLowering::combineFP_ROUND(
5720 SDNode *N, DAGCombinerInfo &DCI) const {
5722 if (!Subtarget.hasVector())
5723 return SDValue();
5725 // (fpround (extract_vector_elt X 0))
5726 // (fpround (extract_vector_elt X 1)) ->
5727 // (extract_vector_elt (VROUND X) 0)
5728 // (extract_vector_elt (VROUND X) 2)
5730 // This is a special case since the target doesn't really support v2f32s.
5731 SelectionDAG &DAG = DCI.DAG;
5732 SDValue Op0 = N->getOperand(0);
5733 if (N->getValueType(0) == MVT::f32 &&
5734 Op0.hasOneUse() &&
5735 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5736 Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5737 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5738 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5739 SDValue Vec = Op0.getOperand(0);
5740 for (auto *U : Vec->uses()) {
5741 if (U != Op0.getNode() &&
5742 U->hasOneUse() &&
5743 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5744 U->getOperand(0) == Vec &&
5745 U->getOperand(1).getOpcode() == ISD::Constant &&
5746 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5747 SDValue OtherRound = SDValue(*U->use_begin(), 0);
5748 if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5749 OtherRound.getOperand(0) == SDValue(U, 0) &&
5750 OtherRound.getValueType() == MVT::f32) {
5751 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5752 MVT::v4f32, Vec);
5753 DCI.AddToWorklist(VRound.getNode());
5754 SDValue Extract1 =
5755 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5756 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5757 DCI.AddToWorklist(Extract1.getNode());
5758 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5759 SDValue Extract0 =
5760 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5761 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5762 return Extract0;
5767 return SDValue();
5770 SDValue SystemZTargetLowering::combineFP_EXTEND(
5771 SDNode *N, DAGCombinerInfo &DCI) const {
5773 if (!Subtarget.hasVector())
5774 return SDValue();
5776 // (fpextend (extract_vector_elt X 0))
5777 // (fpextend (extract_vector_elt X 2)) ->
5778 // (extract_vector_elt (VEXTEND X) 0)
5779 // (extract_vector_elt (VEXTEND X) 1)
5781 // This is a special case since the target doesn't really support v2f32s.
5782 SelectionDAG &DAG = DCI.DAG;
5783 SDValue Op0 = N->getOperand(0);
5784 if (N->getValueType(0) == MVT::f64 &&
5785 Op0.hasOneUse() &&
5786 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5787 Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5788 Op0.getOperand(1).getOpcode() == ISD::Constant &&
5789 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5790 SDValue Vec = Op0.getOperand(0);
5791 for (auto *U : Vec->uses()) {
5792 if (U != Op0.getNode() &&
5793 U->hasOneUse() &&
5794 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5795 U->getOperand(0) == Vec &&
5796 U->getOperand(1).getOpcode() == ISD::Constant &&
5797 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5798 SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5799 if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5800 OtherExtend.getOperand(0) == SDValue(U, 0) &&
5801 OtherExtend.getValueType() == MVT::f64) {
5802 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5803 MVT::v2f64, Vec);
5804 DCI.AddToWorklist(VExtend.getNode());
5805 SDValue Extract1 =
5806 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5807 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5808 DCI.AddToWorklist(Extract1.getNode());
5809 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5810 SDValue Extract0 =
5811 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5812 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5813 return Extract0;
5818 return SDValue();
5821 SDValue SystemZTargetLowering::combineBSWAP(
5822 SDNode *N, DAGCombinerInfo &DCI) const {
5823 SelectionDAG &DAG = DCI.DAG;
5824 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
5825 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5826 N->getOperand(0).hasOneUse() &&
5827 canLoadStoreByteSwapped(N->getValueType(0))) {
5828 SDValue Load = N->getOperand(0);
5829 LoadSDNode *LD = cast<LoadSDNode>(Load);
5831 // Create the byte-swapping load.
5832 SDValue Ops[] = {
5833 LD->getChain(), // Chain
5834 LD->getBasePtr() // Ptr
5836 EVT LoadVT = N->getValueType(0);
5837 if (LoadVT == MVT::i16)
5838 LoadVT = MVT::i32;
5839 SDValue BSLoad =
5840 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5841 DAG.getVTList(LoadVT, MVT::Other),
5842 Ops, LD->getMemoryVT(), LD->getMemOperand());
5844 // If this is an i16 load, insert the truncate.
5845 SDValue ResVal = BSLoad;
5846 if (N->getValueType(0) == MVT::i16)
5847 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5849 // First, combine the bswap away. This makes the value produced by the
5850 // load dead.
5851 DCI.CombineTo(N, ResVal);
5853 // Next, combine the load away, we give it a bogus result value but a real
5854 // chain result. The result value is dead because the bswap is dead.
5855 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5857 // Return N so it doesn't get rechecked!
5858 return SDValue(N, 0);
5861 // Look through bitcasts that retain the number of vector elements.
5862 SDValue Op = N->getOperand(0);
5863 if (Op.getOpcode() == ISD::BITCAST &&
5864 Op.getValueType().isVector() &&
5865 Op.getOperand(0).getValueType().isVector() &&
5866 Op.getValueType().getVectorNumElements() ==
5867 Op.getOperand(0).getValueType().getVectorNumElements())
5868 Op = Op.getOperand(0);
5870 // Push BSWAP into a vector insertion if at least one side then simplifies.
5871 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
5872 SDValue Vec = Op.getOperand(0);
5873 SDValue Elt = Op.getOperand(1);
5874 SDValue Idx = Op.getOperand(2);
5876 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
5877 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
5878 DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
5879 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
5880 (canLoadStoreByteSwapped(N->getValueType(0)) &&
5881 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
5882 EVT VecVT = N->getValueType(0);
5883 EVT EltVT = N->getValueType(0).getVectorElementType();
5884 if (VecVT != Vec.getValueType()) {
5885 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
5886 DCI.AddToWorklist(Vec.getNode());
5888 if (EltVT != Elt.getValueType()) {
5889 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
5890 DCI.AddToWorklist(Elt.getNode());
5892 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
5893 DCI.AddToWorklist(Vec.getNode());
5894 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
5895 DCI.AddToWorklist(Elt.getNode());
5896 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
5897 Vec, Elt, Idx);
5901 // Push BSWAP into a vector shuffle if at least one side then simplifies.
5902 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
5903 if (SV && Op.hasOneUse()) {
5904 SDValue Op0 = Op.getOperand(0);
5905 SDValue Op1 = Op.getOperand(1);
5907 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
5908 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
5909 DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
5910 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
5911 EVT VecVT = N->getValueType(0);
5912 if (VecVT != Op0.getValueType()) {
5913 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
5914 DCI.AddToWorklist(Op0.getNode());
5916 if (VecVT != Op1.getValueType()) {
5917 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
5918 DCI.AddToWorklist(Op1.getNode());
5920 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
5921 DCI.AddToWorklist(Op0.getNode());
5922 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
5923 DCI.AddToWorklist(Op1.getNode());
5924 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
5928 return SDValue();
5931 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5932 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5933 // set by the CCReg instruction using the CCValid / CCMask masks,
5934 // If the CCReg instruction is itself a ICMP testing the condition
5935 // code set by some other instruction, see whether we can directly
5936 // use that condition code.
5938 // Verify that we have an ICMP against some constant.
5939 if (CCValid != SystemZ::CCMASK_ICMP)
5940 return false;
5941 auto *ICmp = CCReg.getNode();
5942 if (ICmp->getOpcode() != SystemZISD::ICMP)
5943 return false;
5944 auto *CompareLHS = ICmp->getOperand(0).getNode();
5945 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5946 if (!CompareRHS)
5947 return false;
5949 // Optimize the case where CompareLHS is a SELECT_CCMASK.
5950 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5951 // Verify that we have an appropriate mask for a EQ or NE comparison.
5952 bool Invert = false;
5953 if (CCMask == SystemZ::CCMASK_CMP_NE)
5954 Invert = !Invert;
5955 else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5956 return false;
5958 // Verify that the ICMP compares against one of select values.
5959 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
5960 if (!TrueVal)
5961 return false;
5962 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5963 if (!FalseVal)
5964 return false;
5965 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
5966 Invert = !Invert;
5967 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
5968 return false;
5970 // Compute the effective CC mask for the new branch or select.
5971 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
5972 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
5973 if (!NewCCValid || !NewCCMask)
5974 return false;
5975 CCValid = NewCCValid->getZExtValue();
5976 CCMask = NewCCMask->getZExtValue();
5977 if (Invert)
5978 CCMask ^= CCValid;
5980 // Return the updated CCReg link.
5981 CCReg = CompareLHS->getOperand(4);
5982 return true;
5985 // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
5986 if (CompareLHS->getOpcode() == ISD::SRA) {
5987 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5988 if (!SRACount || SRACount->getZExtValue() != 30)
5989 return false;
5990 auto *SHL = CompareLHS->getOperand(0).getNode();
5991 if (SHL->getOpcode() != ISD::SHL)
5992 return false;
5993 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
5994 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
5995 return false;
5996 auto *IPM = SHL->getOperand(0).getNode();
5997 if (IPM->getOpcode() != SystemZISD::IPM)
5998 return false;
6000 // Avoid introducing CC spills (because SRA would clobber CC).
6001 if (!CompareLHS->hasOneUse())
6002 return false;
6003 // Verify that the ICMP compares against zero.
6004 if (CompareRHS->getZExtValue() != 0)
6005 return false;
6007 // Compute the effective CC mask for the new branch or select.
6008 switch (CCMask) {
6009 case SystemZ::CCMASK_CMP_EQ: break;
6010 case SystemZ::CCMASK_CMP_NE: break;
6011 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6012 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6013 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6014 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6015 default: return false;
6018 // Return the updated CCReg link.
6019 CCReg = IPM->getOperand(0);
6020 return true;
6023 return false;
6026 SDValue SystemZTargetLowering::combineBR_CCMASK(
6027 SDNode *N, DAGCombinerInfo &DCI) const {
6028 SelectionDAG &DAG = DCI.DAG;
6030 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6031 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6032 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6033 if (!CCValid || !CCMask)
6034 return SDValue();
6036 int CCValidVal = CCValid->getZExtValue();
6037 int CCMaskVal = CCMask->getZExtValue();
6038 SDValue Chain = N->getOperand(0);
6039 SDValue CCReg = N->getOperand(4);
6041 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6042 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6043 Chain,
6044 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
6045 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
6046 N->getOperand(3), CCReg);
6047 return SDValue();
6050 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6051 SDNode *N, DAGCombinerInfo &DCI) const {
6052 SelectionDAG &DAG = DCI.DAG;
6054 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6055 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6056 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6057 if (!CCValid || !CCMask)
6058 return SDValue();
6060 int CCValidVal = CCValid->getZExtValue();
6061 int CCMaskVal = CCMask->getZExtValue();
6062 SDValue CCReg = N->getOperand(4);
6064 if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6065 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6066 N->getOperand(0),
6067 N->getOperand(1),
6068 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
6069 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
6070 CCReg);
6071 return SDValue();
6075 SDValue SystemZTargetLowering::combineGET_CCMASK(
6076 SDNode *N, DAGCombinerInfo &DCI) const {
6078 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6079 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6080 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6081 if (!CCValid || !CCMask)
6082 return SDValue();
6083 int CCValidVal = CCValid->getZExtValue();
6084 int CCMaskVal = CCMask->getZExtValue();
6086 SDValue Select = N->getOperand(0);
6087 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6088 return SDValue();
6090 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6091 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6092 if (!SelectCCValid || !SelectCCMask)
6093 return SDValue();
6094 int SelectCCValidVal = SelectCCValid->getZExtValue();
6095 int SelectCCMaskVal = SelectCCMask->getZExtValue();
6097 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6098 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6099 if (!TrueVal || !FalseVal)
6100 return SDValue();
6101 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6103 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6104 SelectCCMaskVal ^= SelectCCValidVal;
6105 else
6106 return SDValue();
6108 if (SelectCCValidVal & ~CCValidVal)
6109 return SDValue();
6110 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6111 return SDValue();
6113 return Select->getOperand(4);
6116 SDValue SystemZTargetLowering::combineIntDIVREM(
6117 SDNode *N, DAGCombinerInfo &DCI) const {
6118 SelectionDAG &DAG = DCI.DAG;
6119 EVT VT = N->getValueType(0);
6120 // In the case where the divisor is a vector of constants a cheaper
6121 // sequence of instructions can replace the divide. BuildSDIV is called to
6122 // do this during DAG combining, but it only succeeds when it can build a
6123 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6124 // since it is not Legal but Custom it can only happen before
6125 // legalization. Therefore we must scalarize this early before Combine
6126 // 1. For widened vectors, this is already the result of type legalization.
6127 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6128 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6129 return DAG.UnrollVectorOp(N);
6130 return SDValue();
6133 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6134 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6135 return N->getOperand(0);
6136 return N;
6139 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6140 DAGCombinerInfo &DCI) const {
6141 switch(N->getOpcode()) {
6142 default: break;
6143 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
6144 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
6145 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
6146 case SystemZISD::MERGE_HIGH:
6147 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
6148 case ISD::LOAD: return combineLOAD(N, DCI);
6149 case ISD::STORE: return combineSTORE(N, DCI);
6150 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI);
6151 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6152 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6153 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
6154 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
6155 case ISD::BSWAP: return combineBSWAP(N, DCI);
6156 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
6157 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6158 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
6159 case ISD::SDIV:
6160 case ISD::UDIV:
6161 case ISD::SREM:
6162 case ISD::UREM: return combineIntDIVREM(N, DCI);
6165 return SDValue();
6168 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6169 // are for Op.
6170 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6171 unsigned OpNo) {
6172 EVT VT = Op.getValueType();
6173 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6174 APInt SrcDemE;
6175 unsigned Opcode = Op.getOpcode();
6176 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6177 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6178 switch (Id) {
6179 case Intrinsic::s390_vpksh: // PACKS
6180 case Intrinsic::s390_vpksf:
6181 case Intrinsic::s390_vpksg:
6182 case Intrinsic::s390_vpkshs: // PACKS_CC
6183 case Intrinsic::s390_vpksfs:
6184 case Intrinsic::s390_vpksgs:
6185 case Intrinsic::s390_vpklsh: // PACKLS
6186 case Intrinsic::s390_vpklsf:
6187 case Intrinsic::s390_vpklsg:
6188 case Intrinsic::s390_vpklshs: // PACKLS_CC
6189 case Intrinsic::s390_vpklsfs:
6190 case Intrinsic::s390_vpklsgs:
6191 // VECTOR PACK truncates the elements of two source vectors into one.
6192 SrcDemE = DemandedElts;
6193 if (OpNo == 2)
6194 SrcDemE.lshrInPlace(NumElts / 2);
6195 SrcDemE = SrcDemE.trunc(NumElts / 2);
6196 break;
6197 // VECTOR UNPACK extends half the elements of the source vector.
6198 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6199 case Intrinsic::s390_vuphh:
6200 case Intrinsic::s390_vuphf:
6201 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6202 case Intrinsic::s390_vuplhh:
6203 case Intrinsic::s390_vuplhf:
6204 SrcDemE = APInt(NumElts * 2, 0);
6205 SrcDemE.insertBits(DemandedElts, 0);
6206 break;
6207 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6208 case Intrinsic::s390_vuplhw:
6209 case Intrinsic::s390_vuplf:
6210 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6211 case Intrinsic::s390_vupllh:
6212 case Intrinsic::s390_vupllf:
6213 SrcDemE = APInt(NumElts * 2, 0);
6214 SrcDemE.insertBits(DemandedElts, NumElts);
6215 break;
6216 case Intrinsic::s390_vpdi: {
6217 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6218 SrcDemE = APInt(NumElts, 0);
6219 if (!DemandedElts[OpNo - 1])
6220 break;
6221 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6222 unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6223 // Demand input element 0 or 1, given by the mask bit value.
6224 SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6225 break;
6227 case Intrinsic::s390_vsldb: {
6228 // VECTOR SHIFT LEFT DOUBLE BY BYTE
6229 assert(VT == MVT::v16i8 && "Unexpected type.");
6230 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6231 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6232 unsigned NumSrc0Els = 16 - FirstIdx;
6233 SrcDemE = APInt(NumElts, 0);
6234 if (OpNo == 1) {
6235 APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6236 SrcDemE.insertBits(DemEls, FirstIdx);
6237 } else {
6238 APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6239 SrcDemE.insertBits(DemEls, 0);
6241 break;
6243 case Intrinsic::s390_vperm:
6244 SrcDemE = APInt(NumElts, 1);
6245 break;
6246 default:
6247 llvm_unreachable("Unhandled intrinsic.");
6248 break;
6250 } else {
6251 switch (Opcode) {
6252 case SystemZISD::JOIN_DWORDS:
6253 // Scalar operand.
6254 SrcDemE = APInt(1, 1);
6255 break;
6256 case SystemZISD::SELECT_CCMASK:
6257 SrcDemE = DemandedElts;
6258 break;
6259 default:
6260 llvm_unreachable("Unhandled opcode.");
6261 break;
6264 return SrcDemE;
6267 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6268 const APInt &DemandedElts,
6269 const SelectionDAG &DAG, unsigned Depth,
6270 unsigned OpNo) {
6271 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6272 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6273 KnownBits LHSKnown =
6274 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6275 KnownBits RHSKnown =
6276 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6277 Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6278 Known.One = LHSKnown.One & RHSKnown.One;
6281 void
6282 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6283 KnownBits &Known,
6284 const APInt &DemandedElts,
6285 const SelectionDAG &DAG,
6286 unsigned Depth) const {
6287 Known.resetAll();
6289 // Intrinsic CC result is returned in the two low bits.
6290 unsigned tmp0, tmp1; // not used
6291 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6292 Known.Zero.setBitsFrom(2);
6293 return;
6295 EVT VT = Op.getValueType();
6296 if (Op.getResNo() != 0 || VT == MVT::Untyped)
6297 return;
6298 assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6299 "KnownBits does not match VT in bitwidth");
6300 assert ((!VT.isVector() ||
6301 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6302 "DemandedElts does not match VT number of elements");
6303 unsigned BitWidth = Known.getBitWidth();
6304 unsigned Opcode = Op.getOpcode();
6305 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6306 bool IsLogical = false;
6307 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6308 switch (Id) {
6309 case Intrinsic::s390_vpksh: // PACKS
6310 case Intrinsic::s390_vpksf:
6311 case Intrinsic::s390_vpksg:
6312 case Intrinsic::s390_vpkshs: // PACKS_CC
6313 case Intrinsic::s390_vpksfs:
6314 case Intrinsic::s390_vpksgs:
6315 case Intrinsic::s390_vpklsh: // PACKLS
6316 case Intrinsic::s390_vpklsf:
6317 case Intrinsic::s390_vpklsg:
6318 case Intrinsic::s390_vpklshs: // PACKLS_CC
6319 case Intrinsic::s390_vpklsfs:
6320 case Intrinsic::s390_vpklsgs:
6321 case Intrinsic::s390_vpdi:
6322 case Intrinsic::s390_vsldb:
6323 case Intrinsic::s390_vperm:
6324 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6325 break;
6326 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6327 case Intrinsic::s390_vuplhh:
6328 case Intrinsic::s390_vuplhf:
6329 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6330 case Intrinsic::s390_vupllh:
6331 case Intrinsic::s390_vupllf:
6332 IsLogical = true;
6333 LLVM_FALLTHROUGH;
6334 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6335 case Intrinsic::s390_vuphh:
6336 case Intrinsic::s390_vuphf:
6337 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6338 case Intrinsic::s390_vuplhw:
6339 case Intrinsic::s390_vuplf: {
6340 SDValue SrcOp = Op.getOperand(1);
6341 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6342 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6343 if (IsLogical) {
6344 Known = Known.zext(BitWidth, true);
6345 } else
6346 Known = Known.sext(BitWidth);
6347 break;
6349 default:
6350 break;
6352 } else {
6353 switch (Opcode) {
6354 case SystemZISD::JOIN_DWORDS:
6355 case SystemZISD::SELECT_CCMASK:
6356 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6357 break;
6358 case SystemZISD::REPLICATE: {
6359 SDValue SrcOp = Op.getOperand(0);
6360 Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6361 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6362 Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6363 break;
6365 default:
6366 break;
6370 // Known has the width of the source operand(s). Adjust if needed to match
6371 // the passed bitwidth.
6372 if (Known.getBitWidth() != BitWidth)
6373 Known = Known.zextOrTrunc(BitWidth, false);
6376 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6377 const SelectionDAG &DAG, unsigned Depth,
6378 unsigned OpNo) {
6379 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6380 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6381 if (LHS == 1) return 1; // Early out.
6382 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6383 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6384 if (RHS == 1) return 1; // Early out.
6385 unsigned Common = std::min(LHS, RHS);
6386 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6387 EVT VT = Op.getValueType();
6388 unsigned VTBits = VT.getScalarSizeInBits();
6389 if (SrcBitWidth > VTBits) { // PACK
6390 unsigned SrcExtraBits = SrcBitWidth - VTBits;
6391 if (Common > SrcExtraBits)
6392 return (Common - SrcExtraBits);
6393 return 1;
6395 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6396 return Common;
6399 unsigned
6400 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6401 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6402 unsigned Depth) const {
6403 if (Op.getResNo() != 0)
6404 return 1;
6405 unsigned Opcode = Op.getOpcode();
6406 if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6407 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6408 switch (Id) {
6409 case Intrinsic::s390_vpksh: // PACKS
6410 case Intrinsic::s390_vpksf:
6411 case Intrinsic::s390_vpksg:
6412 case Intrinsic::s390_vpkshs: // PACKS_CC
6413 case Intrinsic::s390_vpksfs:
6414 case Intrinsic::s390_vpksgs:
6415 case Intrinsic::s390_vpklsh: // PACKLS
6416 case Intrinsic::s390_vpklsf:
6417 case Intrinsic::s390_vpklsg:
6418 case Intrinsic::s390_vpklshs: // PACKLS_CC
6419 case Intrinsic::s390_vpklsfs:
6420 case Intrinsic::s390_vpklsgs:
6421 case Intrinsic::s390_vpdi:
6422 case Intrinsic::s390_vsldb:
6423 case Intrinsic::s390_vperm:
6424 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6425 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
6426 case Intrinsic::s390_vuphh:
6427 case Intrinsic::s390_vuphf:
6428 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
6429 case Intrinsic::s390_vuplhw:
6430 case Intrinsic::s390_vuplf: {
6431 SDValue PackedOp = Op.getOperand(1);
6432 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6433 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6434 EVT VT = Op.getValueType();
6435 unsigned VTBits = VT.getScalarSizeInBits();
6436 Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6437 return Tmp;
6439 default:
6440 break;
6442 } else {
6443 switch (Opcode) {
6444 case SystemZISD::SELECT_CCMASK:
6445 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6446 default:
6447 break;
6451 return 1;
6454 //===----------------------------------------------------------------------===//
6455 // Custom insertion
6456 //===----------------------------------------------------------------------===//
6458 // Create a new basic block after MBB.
6459 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6460 MachineFunction &MF = *MBB->getParent();
6461 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6462 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6463 return NewMBB;
6466 // Split MBB after MI and return the new block (the one that contains
6467 // instructions after MI).
6468 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6469 MachineBasicBlock *MBB) {
6470 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6471 NewMBB->splice(NewMBB->begin(), MBB,
6472 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6473 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6474 return NewMBB;
6477 // Split MBB before MI and return the new block (the one that contains MI).
6478 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6479 MachineBasicBlock *MBB) {
6480 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6481 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6482 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6483 return NewMBB;
6486 // Force base value Base into a register before MI. Return the register.
6487 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6488 const SystemZInstrInfo *TII) {
6489 if (Base.isReg())
6490 return Base.getReg();
6492 MachineBasicBlock *MBB = MI.getParent();
6493 MachineFunction &MF = *MBB->getParent();
6494 MachineRegisterInfo &MRI = MF.getRegInfo();
6496 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6497 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6498 .add(Base)
6499 .addImm(0)
6500 .addReg(0);
6501 return Reg;
6504 // The CC operand of MI might be missing a kill marker because there
6505 // were multiple uses of CC, and ISel didn't know which to mark.
6506 // Figure out whether MI should have had a kill marker.
6507 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6508 // Scan forward through BB for a use/def of CC.
6509 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6510 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6511 const MachineInstr& mi = *miI;
6512 if (mi.readsRegister(SystemZ::CC))
6513 return false;
6514 if (mi.definesRegister(SystemZ::CC))
6515 break; // Should have kill-flag - update below.
6518 // If we hit the end of the block, check whether CC is live into a
6519 // successor.
6520 if (miI == MBB->end()) {
6521 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6522 if ((*SI)->isLiveIn(SystemZ::CC))
6523 return false;
6526 return true;
6529 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6530 // together with other Select pseudo-opcodes into a single basic-block with
6531 // a conditional jump around it.
6532 static bool isSelectPseudo(MachineInstr &MI) {
6533 switch (MI.getOpcode()) {
6534 case SystemZ::Select32:
6535 case SystemZ::Select64:
6536 case SystemZ::SelectF32:
6537 case SystemZ::SelectF64:
6538 case SystemZ::SelectF128:
6539 case SystemZ::SelectVR32:
6540 case SystemZ::SelectVR64:
6541 case SystemZ::SelectVR128:
6542 return true;
6544 default:
6545 return false;
6549 // Helper function, which inserts PHI functions into SinkMBB:
6550 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6551 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6552 // in [MIItBegin, MIItEnd) range.
6553 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6554 MachineBasicBlock::iterator MIItEnd,
6555 MachineBasicBlock *TrueMBB,
6556 MachineBasicBlock *FalseMBB,
6557 MachineBasicBlock *SinkMBB) {
6558 MachineFunction *MF = TrueMBB->getParent();
6559 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6561 unsigned CCValid = MIItBegin->getOperand(3).getImm();
6562 unsigned CCMask = MIItBegin->getOperand(4).getImm();
6563 DebugLoc DL = MIItBegin->getDebugLoc();
6565 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6567 // As we are creating the PHIs, we have to be careful if there is more than
6568 // one. Later Selects may reference the results of earlier Selects, but later
6569 // PHIs have to reference the individual true/false inputs from earlier PHIs.
6570 // That also means that PHI construction must work forward from earlier to
6571 // later, and that the code must maintain a mapping from earlier PHI's
6572 // destination registers, and the registers that went into the PHI.
6573 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6575 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;
6576 MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) {
6577 Register DestReg = MIIt->getOperand(0).getReg();
6578 Register TrueReg = MIIt->getOperand(1).getReg();
6579 Register FalseReg = MIIt->getOperand(2).getReg();
6581 // If this Select we are generating is the opposite condition from
6582 // the jump we generated, then we have to swap the operands for the
6583 // PHI that is going to be generated.
6584 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6585 std::swap(TrueReg, FalseReg);
6587 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6588 TrueReg = RegRewriteTable[TrueReg].first;
6590 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6591 FalseReg = RegRewriteTable[FalseReg].second;
6593 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6594 .addReg(TrueReg).addMBB(TrueMBB)
6595 .addReg(FalseReg).addMBB(FalseMBB);
6597 // Add this PHI to the rewrite table.
6598 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6601 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6604 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6605 MachineBasicBlock *
6606 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6607 MachineBasicBlock *MBB) const {
6608 const SystemZInstrInfo *TII =
6609 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6611 unsigned CCValid = MI.getOperand(3).getImm();
6612 unsigned CCMask = MI.getOperand(4).getImm();
6613 DebugLoc DL = MI.getDebugLoc();
6615 // If we have a sequence of Select* pseudo instructions using the
6616 // same condition code value, we want to expand all of them into
6617 // a single pair of basic blocks using the same condition.
6618 MachineInstr *LastMI = &MI;
6619 MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward(
6620 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6622 if (isSelectPseudo(MI))
6623 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6624 NextMIIt->getOperand(3).getImm() == CCValid &&
6625 (NextMIIt->getOperand(4).getImm() == CCMask ||
6626 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6627 LastMI = &*NextMIIt;
6628 NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end());
6631 MachineBasicBlock *StartMBB = MBB;
6632 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6633 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6635 // Unless CC was killed in the last Select instruction, mark it as
6636 // live-in to both FalseMBB and JoinMBB.
6637 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6638 FalseMBB->addLiveIn(SystemZ::CC);
6639 JoinMBB->addLiveIn(SystemZ::CC);
6642 // StartMBB:
6643 // BRC CCMask, JoinMBB
6644 // # fallthrough to FalseMBB
6645 MBB = StartMBB;
6646 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6647 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6648 MBB->addSuccessor(JoinMBB);
6649 MBB->addSuccessor(FalseMBB);
6651 // FalseMBB:
6652 // # fallthrough to JoinMBB
6653 MBB = FalseMBB;
6654 MBB->addSuccessor(JoinMBB);
6656 // JoinMBB:
6657 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6658 // ...
6659 MBB = JoinMBB;
6660 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6661 MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward(
6662 std::next(MachineBasicBlock::iterator(LastMI)), MBB->end());
6663 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6665 StartMBB->erase(MIItBegin, MIItEnd);
6666 return JoinMBB;
6669 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6670 // StoreOpcode is the store to use and Invert says whether the store should
6671 // happen when the condition is false rather than true. If a STORE ON
6672 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6673 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6674 MachineBasicBlock *MBB,
6675 unsigned StoreOpcode,
6676 unsigned STOCOpcode,
6677 bool Invert) const {
6678 const SystemZInstrInfo *TII =
6679 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6681 Register SrcReg = MI.getOperand(0).getReg();
6682 MachineOperand Base = MI.getOperand(1);
6683 int64_t Disp = MI.getOperand(2).getImm();
6684 Register IndexReg = MI.getOperand(3).getReg();
6685 unsigned CCValid = MI.getOperand(4).getImm();
6686 unsigned CCMask = MI.getOperand(5).getImm();
6687 DebugLoc DL = MI.getDebugLoc();
6689 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6691 // Use STOCOpcode if possible. We could use different store patterns in
6692 // order to avoid matching the index register, but the performance trade-offs
6693 // might be more complicated in that case.
6694 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6695 if (Invert)
6696 CCMask ^= CCValid;
6698 // ISel pattern matching also adds a load memory operand of the same
6699 // address, so take special care to find the storing memory operand.
6700 MachineMemOperand *MMO = nullptr;
6701 for (auto *I : MI.memoperands())
6702 if (I->isStore()) {
6703 MMO = I;
6704 break;
6707 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6708 .addReg(SrcReg)
6709 .add(Base)
6710 .addImm(Disp)
6711 .addImm(CCValid)
6712 .addImm(CCMask)
6713 .addMemOperand(MMO);
6715 MI.eraseFromParent();
6716 return MBB;
6719 // Get the condition needed to branch around the store.
6720 if (!Invert)
6721 CCMask ^= CCValid;
6723 MachineBasicBlock *StartMBB = MBB;
6724 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
6725 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6727 // Unless CC was killed in the CondStore instruction, mark it as
6728 // live-in to both FalseMBB and JoinMBB.
6729 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6730 FalseMBB->addLiveIn(SystemZ::CC);
6731 JoinMBB->addLiveIn(SystemZ::CC);
6734 // StartMBB:
6735 // BRC CCMask, JoinMBB
6736 // # fallthrough to FalseMBB
6737 MBB = StartMBB;
6738 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6739 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6740 MBB->addSuccessor(JoinMBB);
6741 MBB->addSuccessor(FalseMBB);
6743 // FalseMBB:
6744 // store %SrcReg, %Disp(%Index,%Base)
6745 // # fallthrough to JoinMBB
6746 MBB = FalseMBB;
6747 BuildMI(MBB, DL, TII->get(StoreOpcode))
6748 .addReg(SrcReg)
6749 .add(Base)
6750 .addImm(Disp)
6751 .addReg(IndexReg);
6752 MBB->addSuccessor(JoinMBB);
6754 MI.eraseFromParent();
6755 return JoinMBB;
6758 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6759 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
6760 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6761 // BitSize is the width of the field in bits, or 0 if this is a partword
6762 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6763 // is one of the operands. Invert says whether the field should be
6764 // inverted after performing BinOpcode (e.g. for NAND).
6765 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6766 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6767 unsigned BitSize, bool Invert) const {
6768 MachineFunction &MF = *MBB->getParent();
6769 const SystemZInstrInfo *TII =
6770 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6771 MachineRegisterInfo &MRI = MF.getRegInfo();
6772 bool IsSubWord = (BitSize < 32);
6774 // Extract the operands. Base can be a register or a frame index.
6775 // Src2 can be a register or immediate.
6776 Register Dest = MI.getOperand(0).getReg();
6777 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6778 int64_t Disp = MI.getOperand(2).getImm();
6779 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6780 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
6781 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
6782 DebugLoc DL = MI.getDebugLoc();
6783 if (IsSubWord)
6784 BitSize = MI.getOperand(6).getImm();
6786 // Subword operations use 32-bit registers.
6787 const TargetRegisterClass *RC = (BitSize <= 32 ?
6788 &SystemZ::GR32BitRegClass :
6789 &SystemZ::GR64BitRegClass);
6790 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6791 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6793 // Get the right opcodes for the displacement.
6794 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6795 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6796 assert(LOpcode && CSOpcode && "Displacement out of range");
6798 // Create virtual registers for temporary results.
6799 Register OrigVal = MRI.createVirtualRegister(RC);
6800 Register OldVal = MRI.createVirtualRegister(RC);
6801 Register NewVal = (BinOpcode || IsSubWord ?
6802 MRI.createVirtualRegister(RC) : Src2.getReg());
6803 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6804 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6806 // Insert a basic block for the main loop.
6807 MachineBasicBlock *StartMBB = MBB;
6808 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6809 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6811 // StartMBB:
6812 // ...
6813 // %OrigVal = L Disp(%Base)
6814 // # fall through to LoopMMB
6815 MBB = StartMBB;
6816 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6817 MBB->addSuccessor(LoopMBB);
6819 // LoopMBB:
6820 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6821 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6822 // %RotatedNewVal = OP %RotatedOldVal, %Src2
6823 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6824 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6825 // JNE LoopMBB
6826 // # fall through to DoneMMB
6827 MBB = LoopMBB;
6828 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6829 .addReg(OrigVal).addMBB(StartMBB)
6830 .addReg(Dest).addMBB(LoopMBB);
6831 if (IsSubWord)
6832 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6833 .addReg(OldVal).addReg(BitShift).addImm(0);
6834 if (Invert) {
6835 // Perform the operation normally and then invert every bit of the field.
6836 Register Tmp = MRI.createVirtualRegister(RC);
6837 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6838 if (BitSize <= 32)
6839 // XILF with the upper BitSize bits set.
6840 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6841 .addReg(Tmp).addImm(-1U << (32 - BitSize));
6842 else {
6843 // Use LCGR and add -1 to the result, which is more compact than
6844 // an XILF, XILH pair.
6845 Register Tmp2 = MRI.createVirtualRegister(RC);
6846 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6847 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6848 .addReg(Tmp2).addImm(-1);
6850 } else if (BinOpcode)
6851 // A simply binary operation.
6852 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6853 .addReg(RotatedOldVal)
6854 .add(Src2);
6855 else if (IsSubWord)
6856 // Use RISBG to rotate Src2 into position and use it to replace the
6857 // field in RotatedOldVal.
6858 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6859 .addReg(RotatedOldVal).addReg(Src2.getReg())
6860 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6861 if (IsSubWord)
6862 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6863 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6864 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6865 .addReg(OldVal)
6866 .addReg(NewVal)
6867 .add(Base)
6868 .addImm(Disp);
6869 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6870 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6871 MBB->addSuccessor(LoopMBB);
6872 MBB->addSuccessor(DoneMBB);
6874 MI.eraseFromParent();
6875 return DoneMBB;
6878 // Implement EmitInstrWithCustomInserter for pseudo
6879 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
6880 // instruction that should be used to compare the current field with the
6881 // minimum or maximum value. KeepOldMask is the BRC condition-code mask
6882 // for when the current field should be kept. BitSize is the width of
6883 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6884 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6885 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6886 unsigned KeepOldMask, unsigned BitSize) const {
6887 MachineFunction &MF = *MBB->getParent();
6888 const SystemZInstrInfo *TII =
6889 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6890 MachineRegisterInfo &MRI = MF.getRegInfo();
6891 bool IsSubWord = (BitSize < 32);
6893 // Extract the operands. Base can be a register or a frame index.
6894 Register Dest = MI.getOperand(0).getReg();
6895 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6896 int64_t Disp = MI.getOperand(2).getImm();
6897 Register Src2 = MI.getOperand(3).getReg();
6898 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
6899 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
6900 DebugLoc DL = MI.getDebugLoc();
6901 if (IsSubWord)
6902 BitSize = MI.getOperand(6).getImm();
6904 // Subword operations use 32-bit registers.
6905 const TargetRegisterClass *RC = (BitSize <= 32 ?
6906 &SystemZ::GR32BitRegClass :
6907 &SystemZ::GR64BitRegClass);
6908 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
6909 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6911 // Get the right opcodes for the displacement.
6912 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
6913 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6914 assert(LOpcode && CSOpcode && "Displacement out of range");
6916 // Create virtual registers for temporary results.
6917 Register OrigVal = MRI.createVirtualRegister(RC);
6918 Register OldVal = MRI.createVirtualRegister(RC);
6919 Register NewVal = MRI.createVirtualRegister(RC);
6920 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6921 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6922 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6924 // Insert 3 basic blocks for the loop.
6925 MachineBasicBlock *StartMBB = MBB;
6926 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6927 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6928 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6929 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6931 // StartMBB:
6932 // ...
6933 // %OrigVal = L Disp(%Base)
6934 // # fall through to LoopMMB
6935 MBB = StartMBB;
6936 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6937 MBB->addSuccessor(LoopMBB);
6939 // LoopMBB:
6940 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6941 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6942 // CompareOpcode %RotatedOldVal, %Src2
6943 // BRC KeepOldMask, UpdateMBB
6944 MBB = LoopMBB;
6945 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6946 .addReg(OrigVal).addMBB(StartMBB)
6947 .addReg(Dest).addMBB(UpdateMBB);
6948 if (IsSubWord)
6949 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6950 .addReg(OldVal).addReg(BitShift).addImm(0);
6951 BuildMI(MBB, DL, TII->get(CompareOpcode))
6952 .addReg(RotatedOldVal).addReg(Src2);
6953 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6954 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6955 MBB->addSuccessor(UpdateMBB);
6956 MBB->addSuccessor(UseAltMBB);
6958 // UseAltMBB:
6959 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6960 // # fall through to UpdateMMB
6961 MBB = UseAltMBB;
6962 if (IsSubWord)
6963 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6964 .addReg(RotatedOldVal).addReg(Src2)
6965 .addImm(32).addImm(31 + BitSize).addImm(0);
6966 MBB->addSuccessor(UpdateMBB);
6968 // UpdateMBB:
6969 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6970 // [ %RotatedAltVal, UseAltMBB ]
6971 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
6972 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
6973 // JNE LoopMBB
6974 // # fall through to DoneMMB
6975 MBB = UpdateMBB;
6976 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6977 .addReg(RotatedOldVal).addMBB(LoopMBB)
6978 .addReg(RotatedAltVal).addMBB(UseAltMBB);
6979 if (IsSubWord)
6980 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6981 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6982 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6983 .addReg(OldVal)
6984 .addReg(NewVal)
6985 .add(Base)
6986 .addImm(Disp);
6987 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6988 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6989 MBB->addSuccessor(LoopMBB);
6990 MBB->addSuccessor(DoneMBB);
6992 MI.eraseFromParent();
6993 return DoneMBB;
6996 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6997 // instruction MI.
6998 MachineBasicBlock *
6999 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7000 MachineBasicBlock *MBB) const {
7002 MachineFunction &MF = *MBB->getParent();
7003 const SystemZInstrInfo *TII =
7004 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7005 MachineRegisterInfo &MRI = MF.getRegInfo();
7007 // Extract the operands. Base can be a register or a frame index.
7008 Register Dest = MI.getOperand(0).getReg();
7009 MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7010 int64_t Disp = MI.getOperand(2).getImm();
7011 Register OrigCmpVal = MI.getOperand(3).getReg();
7012 Register OrigSwapVal = MI.getOperand(4).getReg();
7013 Register BitShift = MI.getOperand(5).getReg();
7014 Register NegBitShift = MI.getOperand(6).getReg();
7015 int64_t BitSize = MI.getOperand(7).getImm();
7016 DebugLoc DL = MI.getDebugLoc();
7018 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7020 // Get the right opcodes for the displacement.
7021 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
7022 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7023 assert(LOpcode && CSOpcode && "Displacement out of range");
7025 // Create virtual registers for temporary results.
7026 Register OrigOldVal = MRI.createVirtualRegister(RC);
7027 Register OldVal = MRI.createVirtualRegister(RC);
7028 Register CmpVal = MRI.createVirtualRegister(RC);
7029 Register SwapVal = MRI.createVirtualRegister(RC);
7030 Register StoreVal = MRI.createVirtualRegister(RC);
7031 Register RetryOldVal = MRI.createVirtualRegister(RC);
7032 Register RetryCmpVal = MRI.createVirtualRegister(RC);
7033 Register RetrySwapVal = MRI.createVirtualRegister(RC);
7035 // Insert 2 basic blocks for the loop.
7036 MachineBasicBlock *StartMBB = MBB;
7037 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7038 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7039 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
7041 // StartMBB:
7042 // ...
7043 // %OrigOldVal = L Disp(%Base)
7044 // # fall through to LoopMMB
7045 MBB = StartMBB;
7046 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7047 .add(Base)
7048 .addImm(Disp)
7049 .addReg(0);
7050 MBB->addSuccessor(LoopMBB);
7052 // LoopMBB:
7053 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7054 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7055 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7056 // %Dest = RLL %OldVal, BitSize(%BitShift)
7057 // ^^ The low BitSize bits contain the field
7058 // of interest.
7059 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7060 // ^^ Replace the upper 32-BitSize bits of the
7061 // comparison value with those that we loaded,
7062 // so that we can use a full word comparison.
7063 // CR %Dest, %RetryCmpVal
7064 // JNE DoneMBB
7065 // # Fall through to SetMBB
7066 MBB = LoopMBB;
7067 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7068 .addReg(OrigOldVal).addMBB(StartMBB)
7069 .addReg(RetryOldVal).addMBB(SetMBB);
7070 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7071 .addReg(OrigCmpVal).addMBB(StartMBB)
7072 .addReg(RetryCmpVal).addMBB(SetMBB);
7073 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7074 .addReg(OrigSwapVal).addMBB(StartMBB)
7075 .addReg(RetrySwapVal).addMBB(SetMBB);
7076 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7077 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7078 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7079 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7080 BuildMI(MBB, DL, TII->get(SystemZ::CR))
7081 .addReg(Dest).addReg(RetryCmpVal);
7082 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7083 .addImm(SystemZ::CCMASK_ICMP)
7084 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7085 MBB->addSuccessor(DoneMBB);
7086 MBB->addSuccessor(SetMBB);
7088 // SetMBB:
7089 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7090 // ^^ Replace the upper 32-BitSize bits of the new
7091 // value with those that we loaded.
7092 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7093 // ^^ Rotate the new field to its proper position.
7094 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7095 // JNE LoopMBB
7096 // # fall through to ExitMMB
7097 MBB = SetMBB;
7098 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7099 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7100 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7101 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7102 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7103 .addReg(OldVal)
7104 .addReg(StoreVal)
7105 .add(Base)
7106 .addImm(Disp);
7107 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7108 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7109 MBB->addSuccessor(LoopMBB);
7110 MBB->addSuccessor(DoneMBB);
7112 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7113 // to the block after the loop. At this point, CC may have been defined
7114 // either by the CR in LoopMBB or by the CS in SetMBB.
7115 if (!MI.registerDefIsDead(SystemZ::CC))
7116 DoneMBB->addLiveIn(SystemZ::CC);
7118 MI.eraseFromParent();
7119 return DoneMBB;
7122 // Emit a move from two GR64s to a GR128.
7123 MachineBasicBlock *
7124 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7125 MachineBasicBlock *MBB) const {
7126 MachineFunction &MF = *MBB->getParent();
7127 const SystemZInstrInfo *TII =
7128 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7129 MachineRegisterInfo &MRI = MF.getRegInfo();
7130 DebugLoc DL = MI.getDebugLoc();
7132 Register Dest = MI.getOperand(0).getReg();
7133 Register Hi = MI.getOperand(1).getReg();
7134 Register Lo = MI.getOperand(2).getReg();
7135 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7136 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7138 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7139 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7140 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7141 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7142 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7144 MI.eraseFromParent();
7145 return MBB;
7148 // Emit an extension from a GR64 to a GR128. ClearEven is true
7149 // if the high register of the GR128 value must be cleared or false if
7150 // it's "don't care".
7151 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7152 MachineBasicBlock *MBB,
7153 bool ClearEven) const {
7154 MachineFunction &MF = *MBB->getParent();
7155 const SystemZInstrInfo *TII =
7156 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7157 MachineRegisterInfo &MRI = MF.getRegInfo();
7158 DebugLoc DL = MI.getDebugLoc();
7160 Register Dest = MI.getOperand(0).getReg();
7161 Register Src = MI.getOperand(1).getReg();
7162 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7164 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7165 if (ClearEven) {
7166 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7167 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7169 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7170 .addImm(0);
7171 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7172 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7173 In128 = NewIn128;
7175 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7176 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7178 MI.eraseFromParent();
7179 return MBB;
7182 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7183 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7184 MachineFunction &MF = *MBB->getParent();
7185 const SystemZInstrInfo *TII =
7186 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7187 MachineRegisterInfo &MRI = MF.getRegInfo();
7188 DebugLoc DL = MI.getDebugLoc();
7190 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7191 uint64_t DestDisp = MI.getOperand(1).getImm();
7192 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7193 uint64_t SrcDisp = MI.getOperand(3).getImm();
7194 uint64_t Length = MI.getOperand(4).getImm();
7196 // When generating more than one CLC, all but the last will need to
7197 // branch to the end when a difference is found.
7198 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7199 splitBlockAfter(MI, MBB) : nullptr);
7201 // Check for the loop form, in which operand 5 is the trip count.
7202 if (MI.getNumExplicitOperands() > 5) {
7203 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7205 Register StartCountReg = MI.getOperand(5).getReg();
7206 Register StartSrcReg = forceReg(MI, SrcBase, TII);
7207 Register StartDestReg = (HaveSingleBase ? StartSrcReg :
7208 forceReg(MI, DestBase, TII));
7210 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7211 Register ThisSrcReg = MRI.createVirtualRegister(RC);
7212 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7213 MRI.createVirtualRegister(RC));
7214 Register NextSrcReg = MRI.createVirtualRegister(RC);
7215 Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7216 MRI.createVirtualRegister(RC));
7218 RC = &SystemZ::GR64BitRegClass;
7219 Register ThisCountReg = MRI.createVirtualRegister(RC);
7220 Register NextCountReg = MRI.createVirtualRegister(RC);
7222 MachineBasicBlock *StartMBB = MBB;
7223 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7224 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7225 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7227 // StartMBB:
7228 // # fall through to LoopMMB
7229 MBB->addSuccessor(LoopMBB);
7231 // LoopMBB:
7232 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7233 // [ %NextDestReg, NextMBB ]
7234 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7235 // [ %NextSrcReg, NextMBB ]
7236 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7237 // [ %NextCountReg, NextMBB ]
7238 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
7239 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7240 // ( JLH EndMBB )
7242 // The prefetch is used only for MVC. The JLH is used only for CLC.
7243 MBB = LoopMBB;
7245 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7246 .addReg(StartDestReg).addMBB(StartMBB)
7247 .addReg(NextDestReg).addMBB(NextMBB);
7248 if (!HaveSingleBase)
7249 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7250 .addReg(StartSrcReg).addMBB(StartMBB)
7251 .addReg(NextSrcReg).addMBB(NextMBB);
7252 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7253 .addReg(StartCountReg).addMBB(StartMBB)
7254 .addReg(NextCountReg).addMBB(NextMBB);
7255 if (Opcode == SystemZ::MVC)
7256 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7257 .addImm(SystemZ::PFD_WRITE)
7258 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7259 BuildMI(MBB, DL, TII->get(Opcode))
7260 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7261 .addReg(ThisSrcReg).addImm(SrcDisp);
7262 if (EndMBB) {
7263 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7264 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7265 .addMBB(EndMBB);
7266 MBB->addSuccessor(EndMBB);
7267 MBB->addSuccessor(NextMBB);
7270 // NextMBB:
7271 // %NextDestReg = LA 256(%ThisDestReg)
7272 // %NextSrcReg = LA 256(%ThisSrcReg)
7273 // %NextCountReg = AGHI %ThisCountReg, -1
7274 // CGHI %NextCountReg, 0
7275 // JLH LoopMBB
7276 // # fall through to DoneMMB
7278 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7279 MBB = NextMBB;
7281 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7282 .addReg(ThisDestReg).addImm(256).addReg(0);
7283 if (!HaveSingleBase)
7284 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7285 .addReg(ThisSrcReg).addImm(256).addReg(0);
7286 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7287 .addReg(ThisCountReg).addImm(-1);
7288 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7289 .addReg(NextCountReg).addImm(0);
7290 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7291 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7292 .addMBB(LoopMBB);
7293 MBB->addSuccessor(LoopMBB);
7294 MBB->addSuccessor(DoneMBB);
7296 DestBase = MachineOperand::CreateReg(NextDestReg, false);
7297 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7298 Length &= 255;
7299 if (EndMBB && !Length)
7300 // If the loop handled the whole CLC range, DoneMBB will be empty with
7301 // CC live-through into EndMBB, so add it as live-in.
7302 DoneMBB->addLiveIn(SystemZ::CC);
7303 MBB = DoneMBB;
7305 // Handle any remaining bytes with straight-line code.
7306 while (Length > 0) {
7307 uint64_t ThisLength = std::min(Length, uint64_t(256));
7308 // The previous iteration might have created out-of-range displacements.
7309 // Apply them using LAY if so.
7310 if (!isUInt<12>(DestDisp)) {
7311 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7312 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7313 .add(DestBase)
7314 .addImm(DestDisp)
7315 .addReg(0);
7316 DestBase = MachineOperand::CreateReg(Reg, false);
7317 DestDisp = 0;
7319 if (!isUInt<12>(SrcDisp)) {
7320 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7321 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7322 .add(SrcBase)
7323 .addImm(SrcDisp)
7324 .addReg(0);
7325 SrcBase = MachineOperand::CreateReg(Reg, false);
7326 SrcDisp = 0;
7328 BuildMI(*MBB, MI, DL, TII->get(Opcode))
7329 .add(DestBase)
7330 .addImm(DestDisp)
7331 .addImm(ThisLength)
7332 .add(SrcBase)
7333 .addImm(SrcDisp)
7334 .setMemRefs(MI.memoperands());
7335 DestDisp += ThisLength;
7336 SrcDisp += ThisLength;
7337 Length -= ThisLength;
7338 // If there's another CLC to go, branch to the end if a difference
7339 // was found.
7340 if (EndMBB && Length > 0) {
7341 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7342 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7343 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7344 .addMBB(EndMBB);
7345 MBB->addSuccessor(EndMBB);
7346 MBB->addSuccessor(NextMBB);
7347 MBB = NextMBB;
7350 if (EndMBB) {
7351 MBB->addSuccessor(EndMBB);
7352 MBB = EndMBB;
7353 MBB->addLiveIn(SystemZ::CC);
7356 MI.eraseFromParent();
7357 return MBB;
7360 // Decompose string pseudo-instruction MI into a loop that continually performs
7361 // Opcode until CC != 3.
7362 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7363 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7364 MachineFunction &MF = *MBB->getParent();
7365 const SystemZInstrInfo *TII =
7366 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7367 MachineRegisterInfo &MRI = MF.getRegInfo();
7368 DebugLoc DL = MI.getDebugLoc();
7370 uint64_t End1Reg = MI.getOperand(0).getReg();
7371 uint64_t Start1Reg = MI.getOperand(1).getReg();
7372 uint64_t Start2Reg = MI.getOperand(2).getReg();
7373 uint64_t CharReg = MI.getOperand(3).getReg();
7375 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7376 uint64_t This1Reg = MRI.createVirtualRegister(RC);
7377 uint64_t This2Reg = MRI.createVirtualRegister(RC);
7378 uint64_t End2Reg = MRI.createVirtualRegister(RC);
7380 MachineBasicBlock *StartMBB = MBB;
7381 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7382 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7384 // StartMBB:
7385 // # fall through to LoopMMB
7386 MBB->addSuccessor(LoopMBB);
7388 // LoopMBB:
7389 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7390 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7391 // R0L = %CharReg
7392 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7393 // JO LoopMBB
7394 // # fall through to DoneMMB
7396 // The load of R0L can be hoisted by post-RA LICM.
7397 MBB = LoopMBB;
7399 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7400 .addReg(Start1Reg).addMBB(StartMBB)
7401 .addReg(End1Reg).addMBB(LoopMBB);
7402 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7403 .addReg(Start2Reg).addMBB(StartMBB)
7404 .addReg(End2Reg).addMBB(LoopMBB);
7405 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7406 BuildMI(MBB, DL, TII->get(Opcode))
7407 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7408 .addReg(This1Reg).addReg(This2Reg);
7409 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7410 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7411 MBB->addSuccessor(LoopMBB);
7412 MBB->addSuccessor(DoneMBB);
7414 DoneMBB->addLiveIn(SystemZ::CC);
7416 MI.eraseFromParent();
7417 return DoneMBB;
7420 // Update TBEGIN instruction with final opcode and register clobbers.
7421 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7422 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7423 bool NoFloat) const {
7424 MachineFunction &MF = *MBB->getParent();
7425 const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7426 const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7428 // Update opcode.
7429 MI.setDesc(TII->get(Opcode));
7431 // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7432 // Make sure to add the corresponding GRSM bits if they are missing.
7433 uint64_t Control = MI.getOperand(2).getImm();
7434 static const unsigned GPRControlBit[16] = {
7435 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7436 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7438 Control |= GPRControlBit[15];
7439 if (TFI->hasFP(MF))
7440 Control |= GPRControlBit[11];
7441 MI.getOperand(2).setImm(Control);
7443 // Add GPR clobbers.
7444 for (int I = 0; I < 16; I++) {
7445 if ((Control & GPRControlBit[I]) == 0) {
7446 unsigned Reg = SystemZMC::GR64Regs[I];
7447 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7451 // Add FPR/VR clobbers.
7452 if (!NoFloat && (Control & 4) != 0) {
7453 if (Subtarget.hasVector()) {
7454 for (int I = 0; I < 32; I++) {
7455 unsigned Reg = SystemZMC::VR128Regs[I];
7456 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7458 } else {
7459 for (int I = 0; I < 16; I++) {
7460 unsigned Reg = SystemZMC::FP64Regs[I];
7461 MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7466 return MBB;
7469 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7470 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7471 MachineFunction &MF = *MBB->getParent();
7472 MachineRegisterInfo *MRI = &MF.getRegInfo();
7473 const SystemZInstrInfo *TII =
7474 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7475 DebugLoc DL = MI.getDebugLoc();
7477 Register SrcReg = MI.getOperand(0).getReg();
7479 // Create new virtual register of the same class as source.
7480 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7481 Register DstReg = MRI->createVirtualRegister(RC);
7483 // Replace pseudo with a normal load-and-test that models the def as
7484 // well.
7485 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7486 .addReg(SrcReg);
7487 MI.eraseFromParent();
7489 return MBB;
7492 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7493 MachineInstr &MI, MachineBasicBlock *MBB) const {
7494 switch (MI.getOpcode()) {
7495 case SystemZ::Select32:
7496 case SystemZ::Select64:
7497 case SystemZ::SelectF32:
7498 case SystemZ::SelectF64:
7499 case SystemZ::SelectF128:
7500 case SystemZ::SelectVR32:
7501 case SystemZ::SelectVR64:
7502 case SystemZ::SelectVR128:
7503 return emitSelect(MI, MBB);
7505 case SystemZ::CondStore8Mux:
7506 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7507 case SystemZ::CondStore8MuxInv:
7508 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7509 case SystemZ::CondStore16Mux:
7510 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7511 case SystemZ::CondStore16MuxInv:
7512 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7513 case SystemZ::CondStore32Mux:
7514 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7515 case SystemZ::CondStore32MuxInv:
7516 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7517 case SystemZ::CondStore8:
7518 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7519 case SystemZ::CondStore8Inv:
7520 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7521 case SystemZ::CondStore16:
7522 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7523 case SystemZ::CondStore16Inv:
7524 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7525 case SystemZ::CondStore32:
7526 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7527 case SystemZ::CondStore32Inv:
7528 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7529 case SystemZ::CondStore64:
7530 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7531 case SystemZ::CondStore64Inv:
7532 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7533 case SystemZ::CondStoreF32:
7534 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7535 case SystemZ::CondStoreF32Inv:
7536 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7537 case SystemZ::CondStoreF64:
7538 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7539 case SystemZ::CondStoreF64Inv:
7540 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7542 case SystemZ::PAIR128:
7543 return emitPair128(MI, MBB);
7544 case SystemZ::AEXT128:
7545 return emitExt128(MI, MBB, false);
7546 case SystemZ::ZEXT128:
7547 return emitExt128(MI, MBB, true);
7549 case SystemZ::ATOMIC_SWAPW:
7550 return emitAtomicLoadBinary(MI, MBB, 0, 0);
7551 case SystemZ::ATOMIC_SWAP_32:
7552 return emitAtomicLoadBinary(MI, MBB, 0, 32);
7553 case SystemZ::ATOMIC_SWAP_64:
7554 return emitAtomicLoadBinary(MI, MBB, 0, 64);
7556 case SystemZ::ATOMIC_LOADW_AR:
7557 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7558 case SystemZ::ATOMIC_LOADW_AFI:
7559 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7560 case SystemZ::ATOMIC_LOAD_AR:
7561 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7562 case SystemZ::ATOMIC_LOAD_AHI:
7563 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7564 case SystemZ::ATOMIC_LOAD_AFI:
7565 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7566 case SystemZ::ATOMIC_LOAD_AGR:
7567 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7568 case SystemZ::ATOMIC_LOAD_AGHI:
7569 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7570 case SystemZ::ATOMIC_LOAD_AGFI:
7571 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7573 case SystemZ::ATOMIC_LOADW_SR:
7574 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7575 case SystemZ::ATOMIC_LOAD_SR:
7576 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7577 case SystemZ::ATOMIC_LOAD_SGR:
7578 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7580 case SystemZ::ATOMIC_LOADW_NR:
7581 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7582 case SystemZ::ATOMIC_LOADW_NILH:
7583 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7584 case SystemZ::ATOMIC_LOAD_NR:
7585 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7586 case SystemZ::ATOMIC_LOAD_NILL:
7587 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7588 case SystemZ::ATOMIC_LOAD_NILH:
7589 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7590 case SystemZ::ATOMIC_LOAD_NILF:
7591 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7592 case SystemZ::ATOMIC_LOAD_NGR:
7593 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7594 case SystemZ::ATOMIC_LOAD_NILL64:
7595 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7596 case SystemZ::ATOMIC_LOAD_NILH64:
7597 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7598 case SystemZ::ATOMIC_LOAD_NIHL64:
7599 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7600 case SystemZ::ATOMIC_LOAD_NIHH64:
7601 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7602 case SystemZ::ATOMIC_LOAD_NILF64:
7603 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7604 case SystemZ::ATOMIC_LOAD_NIHF64:
7605 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7607 case SystemZ::ATOMIC_LOADW_OR:
7608 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7609 case SystemZ::ATOMIC_LOADW_OILH:
7610 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7611 case SystemZ::ATOMIC_LOAD_OR:
7612 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7613 case SystemZ::ATOMIC_LOAD_OILL:
7614 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7615 case SystemZ::ATOMIC_LOAD_OILH:
7616 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7617 case SystemZ::ATOMIC_LOAD_OILF:
7618 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7619 case SystemZ::ATOMIC_LOAD_OGR:
7620 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7621 case SystemZ::ATOMIC_LOAD_OILL64:
7622 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7623 case SystemZ::ATOMIC_LOAD_OILH64:
7624 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7625 case SystemZ::ATOMIC_LOAD_OIHL64:
7626 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7627 case SystemZ::ATOMIC_LOAD_OIHH64:
7628 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7629 case SystemZ::ATOMIC_LOAD_OILF64:
7630 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7631 case SystemZ::ATOMIC_LOAD_OIHF64:
7632 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7634 case SystemZ::ATOMIC_LOADW_XR:
7635 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7636 case SystemZ::ATOMIC_LOADW_XILF:
7637 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7638 case SystemZ::ATOMIC_LOAD_XR:
7639 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7640 case SystemZ::ATOMIC_LOAD_XILF:
7641 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7642 case SystemZ::ATOMIC_LOAD_XGR:
7643 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7644 case SystemZ::ATOMIC_LOAD_XILF64:
7645 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7646 case SystemZ::ATOMIC_LOAD_XIHF64:
7647 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7649 case SystemZ::ATOMIC_LOADW_NRi:
7650 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7651 case SystemZ::ATOMIC_LOADW_NILHi:
7652 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7653 case SystemZ::ATOMIC_LOAD_NRi:
7654 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7655 case SystemZ::ATOMIC_LOAD_NILLi:
7656 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7657 case SystemZ::ATOMIC_LOAD_NILHi:
7658 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7659 case SystemZ::ATOMIC_LOAD_NILFi:
7660 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7661 case SystemZ::ATOMIC_LOAD_NGRi:
7662 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7663 case SystemZ::ATOMIC_LOAD_NILL64i:
7664 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7665 case SystemZ::ATOMIC_LOAD_NILH64i:
7666 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7667 case SystemZ::ATOMIC_LOAD_NIHL64i:
7668 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7669 case SystemZ::ATOMIC_LOAD_NIHH64i:
7670 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7671 case SystemZ::ATOMIC_LOAD_NILF64i:
7672 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7673 case SystemZ::ATOMIC_LOAD_NIHF64i:
7674 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7676 case SystemZ::ATOMIC_LOADW_MIN:
7677 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7678 SystemZ::CCMASK_CMP_LE, 0);
7679 case SystemZ::ATOMIC_LOAD_MIN_32:
7680 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7681 SystemZ::CCMASK_CMP_LE, 32);
7682 case SystemZ::ATOMIC_LOAD_MIN_64:
7683 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7684 SystemZ::CCMASK_CMP_LE, 64);
7686 case SystemZ::ATOMIC_LOADW_MAX:
7687 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7688 SystemZ::CCMASK_CMP_GE, 0);
7689 case SystemZ::ATOMIC_LOAD_MAX_32:
7690 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7691 SystemZ::CCMASK_CMP_GE, 32);
7692 case SystemZ::ATOMIC_LOAD_MAX_64:
7693 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7694 SystemZ::CCMASK_CMP_GE, 64);
7696 case SystemZ::ATOMIC_LOADW_UMIN:
7697 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7698 SystemZ::CCMASK_CMP_LE, 0);
7699 case SystemZ::ATOMIC_LOAD_UMIN_32:
7700 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7701 SystemZ::CCMASK_CMP_LE, 32);
7702 case SystemZ::ATOMIC_LOAD_UMIN_64:
7703 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7704 SystemZ::CCMASK_CMP_LE, 64);
7706 case SystemZ::ATOMIC_LOADW_UMAX:
7707 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7708 SystemZ::CCMASK_CMP_GE, 0);
7709 case SystemZ::ATOMIC_LOAD_UMAX_32:
7710 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7711 SystemZ::CCMASK_CMP_GE, 32);
7712 case SystemZ::ATOMIC_LOAD_UMAX_64:
7713 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7714 SystemZ::CCMASK_CMP_GE, 64);
7716 case SystemZ::ATOMIC_CMP_SWAPW:
7717 return emitAtomicCmpSwapW(MI, MBB);
7718 case SystemZ::MVCSequence:
7719 case SystemZ::MVCLoop:
7720 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7721 case SystemZ::NCSequence:
7722 case SystemZ::NCLoop:
7723 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7724 case SystemZ::OCSequence:
7725 case SystemZ::OCLoop:
7726 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7727 case SystemZ::XCSequence:
7728 case SystemZ::XCLoop:
7729 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7730 case SystemZ::CLCSequence:
7731 case SystemZ::CLCLoop:
7732 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7733 case SystemZ::CLSTLoop:
7734 return emitStringWrapper(MI, MBB, SystemZ::CLST);
7735 case SystemZ::MVSTLoop:
7736 return emitStringWrapper(MI, MBB, SystemZ::MVST);
7737 case SystemZ::SRSTLoop:
7738 return emitStringWrapper(MI, MBB, SystemZ::SRST);
7739 case SystemZ::TBEGIN:
7740 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7741 case SystemZ::TBEGIN_nofloat:
7742 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7743 case SystemZ::TBEGINC:
7744 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7745 case SystemZ::LTEBRCompare_VecPseudo:
7746 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7747 case SystemZ::LTDBRCompare_VecPseudo:
7748 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7749 case SystemZ::LTXBRCompare_VecPseudo:
7750 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7752 case TargetOpcode::STACKMAP:
7753 case TargetOpcode::PATCHPOINT:
7754 return emitPatchPoint(MI, MBB);
7756 default:
7757 llvm_unreachable("Unexpected instr type to insert");
7761 // This is only used by the isel schedulers, and is needed only to prevent
7762 // compiler from crashing when list-ilp is used.
7763 const TargetRegisterClass *
7764 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7765 if (VT == MVT::Untyped)
7766 return &SystemZ::ADDR128BitRegClass;
7767 return TargetLowering::getRepRegClassFor(VT);