1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
21 static const char kCsvSep
= ',';
23 static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo
&STI
,
24 unsigned SchedClassId
,
25 const llvm::MCInst
&MCI
) {
26 const auto &SM
= STI
.getSchedModel();
27 while (SchedClassId
&& SM
.getSchedClassDesc(SchedClassId
)->isVariant())
29 STI
.resolveVariantSchedClass(SchedClassId
, &MCI
, SM
.getProcessorID());
35 enum EscapeTag
{ kEscapeCsv
, kEscapeHtml
, kEscapeHtmlString
};
37 template <EscapeTag Tag
>
38 void writeEscaped(llvm::raw_ostream
&OS
, const llvm::StringRef S
);
41 void writeEscaped
<kEscapeCsv
>(llvm::raw_ostream
&OS
, const llvm::StringRef S
) {
42 if (std::find(S
.begin(), S
.end(), kCsvSep
) == S
.end()) {
47 for (const char C
: S
) {
58 void writeEscaped
<kEscapeHtml
>(llvm::raw_ostream
&OS
, const llvm::StringRef S
) {
59 for (const char C
: S
) {
72 void writeEscaped
<kEscapeHtmlString
>(llvm::raw_ostream
&OS
,
73 const llvm::StringRef S
) {
74 for (const char C
: S
) {
84 template <EscapeTag Tag
>
86 writeClusterId(llvm::raw_ostream
&OS
,
87 const InstructionBenchmarkClustering::ClusterId
&CID
) {
89 writeEscaped
<Tag
>(OS
, "[noise]");
90 else if (CID
.isError())
91 writeEscaped
<Tag
>(OS
, "[error]");
96 template <EscapeTag Tag
>
97 static void writeMeasurementValue(llvm::raw_ostream
&OS
, const double Value
) {
98 writeEscaped
<Tag
>(OS
, llvm::formatv("{0:F}", Value
).str());
101 template <typename EscapeTag
, EscapeTag Tag
>
102 void Analysis::writeSnippet(llvm::raw_ostream
&OS
,
103 llvm::ArrayRef
<uint8_t> Bytes
,
104 const char *Separator
) const {
105 llvm::SmallVector
<std::string
, 3> Lines
;
106 // Parse the asm snippet and print it.
107 while (!Bytes
.empty()) {
110 if (!Disasm_
->getInstruction(MI
, MISize
, Bytes
, 0, llvm::nulls(),
112 writeEscaped
<Tag
>(OS
, llvm::join(Lines
, Separator
));
113 writeEscaped
<Tag
>(OS
, Separator
);
114 writeEscaped
<Tag
>(OS
, "[error decoding asm snippet]");
117 Lines
.emplace_back();
118 std::string
&Line
= Lines
.back();
119 llvm::raw_string_ostream
OSS(Line
);
120 InstPrinter_
->printInst(&MI
, OSS
, "", *SubtargetInfo_
);
121 Bytes
= Bytes
.drop_front(MISize
);
123 Line
= llvm::StringRef(Line
).trim().str();
125 writeEscaped
<Tag
>(OS
, llvm::join(Lines
, Separator
));
128 // Prints a row representing an instruction, along with scheduling info and
129 // point coordinates (measurements).
130 void Analysis::printInstructionRowCsv(const size_t PointId
,
131 llvm::raw_ostream
&OS
) const {
132 const InstructionBenchmark
&Point
= Clustering_
.getPoints()[PointId
];
133 writeClusterId
<kEscapeCsv
>(OS
, Clustering_
.getClusterIdForPoint(PointId
));
135 writeSnippet
<EscapeTag
, kEscapeCsv
>(OS
, Point
.AssembledSnippet
, "; ");
137 writeEscaped
<kEscapeCsv
>(OS
, Point
.Key
.Config
);
139 assert(!Point
.Key
.Instructions
.empty());
140 const llvm::MCInst
&MCI
= Point
.Key
.Instructions
[0];
141 const unsigned SchedClassId
= resolveSchedClassId(
142 *SubtargetInfo_
, InstrInfo_
->get(MCI
.getOpcode()).getSchedClass(), MCI
);
144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
145 const llvm::MCSchedClassDesc
*const SCDesc
=
146 SubtargetInfo_
->getSchedModel().getSchedClassDesc(SchedClassId
);
147 writeEscaped
<kEscapeCsv
>(OS
, SCDesc
->Name
);
151 for (const auto &Measurement
: Point
.Measurements
) {
153 writeMeasurementValue
<kEscapeCsv
>(OS
, Measurement
.PerInstructionValue
);
158 Analysis::Analysis(const llvm::Target
&Target
,
159 const InstructionBenchmarkClustering
&Clustering
)
160 : Clustering_(Clustering
) {
161 if (Clustering
.getPoints().empty())
164 const InstructionBenchmark
&FirstPoint
= Clustering
.getPoints().front();
165 InstrInfo_
.reset(Target
.createMCInstrInfo());
166 RegInfo_
.reset(Target
.createMCRegInfo(FirstPoint
.LLVMTriple
));
167 AsmInfo_
.reset(Target
.createMCAsmInfo(*RegInfo_
, FirstPoint
.LLVMTriple
));
168 SubtargetInfo_
.reset(Target
.createMCSubtargetInfo(FirstPoint
.LLVMTriple
,
169 FirstPoint
.CpuName
, ""));
170 InstPrinter_
.reset(Target
.createMCInstPrinter(
171 llvm::Triple(FirstPoint
.LLVMTriple
), 0 /*default variant*/, *AsmInfo_
,
172 *InstrInfo_
, *RegInfo_
));
174 Context_
= llvm::make_unique
<llvm::MCContext
>(AsmInfo_
.get(), RegInfo_
.get(),
176 Disasm_
.reset(Target
.createMCDisassembler(*SubtargetInfo_
, *Context_
));
177 assert(Disasm_
&& "cannot create MCDisassembler. missing call to "
178 "InitializeXXXTargetDisassembler ?");
183 Analysis::run
<Analysis::PrintClusters
>(llvm::raw_ostream
&OS
) const {
184 if (Clustering_
.getPoints().empty())
185 return llvm::Error::success();
188 OS
<< "cluster_id" << kCsvSep
<< "opcode_name" << kCsvSep
<< "config"
189 << kCsvSep
<< "sched_class";
190 for (const auto &Measurement
: Clustering_
.getPoints().front().Measurements
) {
192 writeEscaped
<kEscapeCsv
>(OS
, Measurement
.Key
);
197 const auto &Clusters
= Clustering_
.getValidClusters();
198 for (size_t I
= 0, E
= Clusters
.size(); I
< E
; ++I
) {
199 for (const size_t PointId
: Clusters
[I
].PointIndices
) {
200 printInstructionRowCsv(PointId
, OS
);
204 return llvm::Error::success();
207 Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
208 ResolvedSchedClass
&&RSC
)
209 : RSC(std::move(RSC
)) {}
211 std::vector
<Analysis::ResolvedSchedClassAndPoints
>
212 Analysis::makePointsPerSchedClass() const {
213 std::vector
<ResolvedSchedClassAndPoints
> Entries
;
214 // Maps SchedClassIds to index in result.
215 std::unordered_map
<unsigned, size_t> SchedClassIdToIndex
;
216 const auto &Points
= Clustering_
.getPoints();
217 for (size_t PointId
= 0, E
= Points
.size(); PointId
< E
; ++PointId
) {
218 const InstructionBenchmark
&Point
= Points
[PointId
];
219 if (!Point
.Error
.empty())
221 assert(!Point
.Key
.Instructions
.empty());
222 // FIXME: we should be using the tuple of classes for instructions in the
224 const llvm::MCInst
&MCI
= Point
.Key
.Instructions
[0];
225 unsigned SchedClassId
= InstrInfo_
->get(MCI
.getOpcode()).getSchedClass();
226 const bool WasVariant
= SchedClassId
&& SubtargetInfo_
->getSchedModel()
227 .getSchedClassDesc(SchedClassId
)
229 SchedClassId
= resolveSchedClassId(*SubtargetInfo_
, SchedClassId
, MCI
);
230 const auto IndexIt
= SchedClassIdToIndex
.find(SchedClassId
);
231 if (IndexIt
== SchedClassIdToIndex
.end()) {
232 // Create a new entry.
233 SchedClassIdToIndex
.emplace(SchedClassId
, Entries
.size());
234 ResolvedSchedClassAndPoints
Entry(
235 ResolvedSchedClass(*SubtargetInfo_
, SchedClassId
, WasVariant
));
236 Entry
.PointIds
.push_back(PointId
);
237 Entries
.push_back(std::move(Entry
));
239 // Append to the existing entry.
240 Entries
[IndexIt
->second
].PointIds
.push_back(PointId
);
246 // Uops repeat the same opcode over again. Just show this opcode and show the
247 // whole snippet only on hover.
248 static void writeUopsSnippetHtml(llvm::raw_ostream
&OS
,
249 const std::vector
<llvm::MCInst
> &Instructions
,
250 const llvm::MCInstrInfo
&InstrInfo
) {
251 if (Instructions
.empty())
253 writeEscaped
<kEscapeHtml
>(OS
, InstrInfo
.getName(Instructions
[0].getOpcode()));
254 if (Instructions
.size() > 1)
255 OS
<< " (x" << Instructions
.size() << ")";
258 // Latency tries to find a serial path. Just show the opcode path and show the
259 // whole snippet only on hover.
261 writeLatencySnippetHtml(llvm::raw_ostream
&OS
,
262 const std::vector
<llvm::MCInst
> &Instructions
,
263 const llvm::MCInstrInfo
&InstrInfo
) {
265 for (const llvm::MCInst
&Instr
: Instructions
) {
270 writeEscaped
<kEscapeHtml
>(OS
, InstrInfo
.getName(Instr
.getOpcode()));
274 void Analysis::printSchedClassClustersHtml(
275 const std::vector
<SchedClassCluster
> &Clusters
,
276 const ResolvedSchedClass
&RSC
, llvm::raw_ostream
&OS
) const {
277 const auto &Points
= Clustering_
.getPoints();
278 OS
<< "<table class=\"sched-class-clusters\">";
279 OS
<< "<tr><th>ClusterId</th><th>Opcode/Config</th>";
280 assert(!Clusters
.empty());
281 for (const auto &Measurement
:
282 Points
[Clusters
[0].getPointIds()[0]].Measurements
) {
284 writeEscaped
<kEscapeHtml
>(OS
, Measurement
.Key
);
288 for (const SchedClassCluster
&Cluster
: Clusters
) {
290 << (Cluster
.measurementsMatch(*SubtargetInfo_
, RSC
, Clustering_
)
294 writeClusterId
<kEscapeHtml
>(OS
, Cluster
.id());
295 OS
<< "</td><td><ul>";
296 for (const size_t PointId
: Cluster
.getPointIds()) {
297 const auto &Point
= Points
[PointId
];
298 OS
<< "<li><span class=\"mono\" title=\"";
299 writeSnippet
<EscapeTag
, kEscapeHtmlString
>(OS
, Point
.AssembledSnippet
,
302 switch (Point
.Mode
) {
303 case InstructionBenchmark::Latency
:
304 writeLatencySnippetHtml(OS
, Point
.Key
.Instructions
, *InstrInfo_
);
306 case InstructionBenchmark::Uops
:
307 writeUopsSnippetHtml(OS
, Point
.Key
.Instructions
, *InstrInfo_
);
310 llvm_unreachable("invalid mode");
312 OS
<< "</span> <span class=\"mono\">";
313 writeEscaped
<kEscapeHtml
>(OS
, Point
.Key
.Config
);
314 OS
<< "</span></li>";
317 for (const auto &Stats
: Cluster
.getRepresentative()) {
318 OS
<< "<td class=\"measurement\">";
319 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.avg());
320 OS
<< "<br><span class=\"minmax\">[";
321 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.min());
323 writeMeasurementValue
<kEscapeHtml
>(OS
, Stats
.max());
324 OS
<< "]</span></td>";
331 // Return the non-redundant list of WriteProcRes used by the given sched class.
332 // The scheduling model for LLVM is such that each instruction has a certain
333 // number of uops which consume resources which are described by WriteProcRes
334 // entries. Each entry describe how many cycles are spent on a specific ProcRes
336 // For example, an instruction might have 3 uOps, one dispatching on P0
337 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
338 // Note that LLVM additionally denormalizes resource consumption to include
339 // usage of super resources by subresources. So in practice if there exists a
340 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
341 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
342 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
343 // denote implied usage of superresources by subresources:
348 // =============================
350 // Eventually we end up with three entries for the WriteProcRes of the
352 // {ProcResIdx=1, Cycles=1} // P0
353 // {ProcResIdx=7, Cycles=3} // P06
354 // {ProcResIdx=10, Cycles=3} // P016
356 // Note that in this case, P016 does not contribute any cycles, so it would
357 // be removed by this function.
358 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
359 static llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8>
360 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc
&SCDesc
,
361 const llvm::MCSubtargetInfo
&STI
) {
362 llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8> Result
;
363 const auto &SM
= STI
.getSchedModel();
364 const unsigned NumProcRes
= SM
.getNumProcResourceKinds();
366 // This assumes that the ProcResDescs are sorted in topological order, which
367 // is guaranteed by the tablegen backend.
368 llvm::SmallVector
<float, 32> ProcResUnitUsage(NumProcRes
);
369 for (const auto *WPR
= STI
.getWriteProcResBegin(&SCDesc
),
370 *const WPREnd
= STI
.getWriteProcResEnd(&SCDesc
);
371 WPR
!= WPREnd
; ++WPR
) {
372 const llvm::MCProcResourceDesc
*const ProcResDesc
=
373 SM
.getProcResource(WPR
->ProcResourceIdx
);
374 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
375 // This is a ProcResUnit.
376 Result
.push_back({WPR
->ProcResourceIdx
, WPR
->Cycles
});
377 ProcResUnitUsage
[WPR
->ProcResourceIdx
] += WPR
->Cycles
;
379 // This is a ProcResGroup. First see if it contributes any cycles or if
380 // it has cycles just from subunits.
381 float RemainingCycles
= WPR
->Cycles
;
382 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
383 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
385 RemainingCycles
-= ProcResUnitUsage
[*SubResIdx
];
387 if (RemainingCycles
< 0.01f
) {
388 // The ProcResGroup contributes no cycles of its own.
391 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
392 Result
.push_back({WPR
->ProcResourceIdx
,
393 static_cast<uint16_t>(std::round(RemainingCycles
))});
394 // Spread the remaining cycles over all subunits.
395 for (const auto *SubResIdx
= ProcResDesc
->SubUnitsIdxBegin
;
396 SubResIdx
!= ProcResDesc
->SubUnitsIdxBegin
+ ProcResDesc
->NumUnits
;
398 ProcResUnitUsage
[*SubResIdx
] += RemainingCycles
/ ProcResDesc
->NumUnits
;
405 Analysis::ResolvedSchedClass::ResolvedSchedClass(
406 const llvm::MCSubtargetInfo
&STI
, unsigned ResolvedSchedClassId
,
408 : SchedClassId(ResolvedSchedClassId
), SCDesc(STI
.getSchedModel().getSchedClassDesc(ResolvedSchedClassId
)),
409 WasVariant(WasVariant
),
410 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc
, STI
)),
411 IdealizedProcResPressure(computeIdealizedProcResPressure(
412 STI
.getSchedModel(), NonRedundantWriteProcRes
)) {
413 assert((SCDesc
== nullptr || !SCDesc
->isVariant()) &&
414 "ResolvedSchedClass should never be variant");
417 void Analysis::SchedClassCluster::addPoint(
418 size_t PointId
, const InstructionBenchmarkClustering
&Clustering
) {
419 PointIds
.push_back(PointId
);
420 const auto &Point
= Clustering
.getPoints()[PointId
];
421 if (ClusterId
.isUndef()) {
422 ClusterId
= Clustering
.getClusterIdForPoint(PointId
);
423 Representative
.resize(Point
.Measurements
.size());
425 for (size_t I
= 0, E
= Point
.Measurements
.size(); I
< E
; ++I
) {
426 Representative
[I
].push(Point
.Measurements
[I
]);
428 assert(ClusterId
== Clustering
.getClusterIdForPoint(PointId
));
431 // Returns a ProxResIdx by id or name.
432 static unsigned findProcResIdx(const llvm::MCSubtargetInfo
&STI
,
433 const llvm::StringRef NameOrId
) {
434 // Interpret the key as an ProcResIdx.
435 unsigned ProcResIdx
= 0;
436 if (llvm::to_integer(NameOrId
, ProcResIdx
, 10))
438 // Interpret the key as a ProcRes name.
439 const auto &SchedModel
= STI
.getSchedModel();
440 for (int I
= 0, E
= SchedModel
.getNumProcResourceKinds(); I
< E
; ++I
) {
441 if (NameOrId
== SchedModel
.getProcResource(I
)->Name
)
447 bool Analysis::SchedClassCluster::measurementsMatch(
448 const llvm::MCSubtargetInfo
&STI
, const ResolvedSchedClass
&RSC
,
449 const InstructionBenchmarkClustering
&Clustering
) const {
450 const size_t NumMeasurements
= Representative
.size();
451 std::vector
<BenchmarkMeasure
> ClusterCenterPoint(NumMeasurements
);
452 std::vector
<BenchmarkMeasure
> SchedClassPoint(NumMeasurements
);
454 assert(!Clustering
.getPoints().empty());
455 const InstructionBenchmark::ModeE Mode
= Clustering
.getPoints()[0].Mode
;
456 if (Mode
== InstructionBenchmark::Latency
) {
457 if (NumMeasurements
!= 1) {
459 << "invalid number of measurements in latency mode: expected 1, got "
460 << NumMeasurements
<< "\n";
464 SchedClassPoint
[0].PerInstructionValue
= 0.0;
465 for (unsigned I
= 0; I
< RSC
.SCDesc
->NumWriteLatencyEntries
; ++I
) {
466 const llvm::MCWriteLatencyEntry
*const WLE
=
467 STI
.getWriteLatencyEntry(RSC
.SCDesc
, I
);
468 SchedClassPoint
[0].PerInstructionValue
=
469 std::max
<double>(SchedClassPoint
[0].PerInstructionValue
, WLE
->Cycles
);
471 ClusterCenterPoint
[0].PerInstructionValue
= Representative
[0].avg();
472 } else if (Mode
== InstructionBenchmark::Uops
) {
473 for (int I
= 0, E
= Representative
.size(); I
< E
; ++I
) {
474 const auto Key
= Representative
[I
].key();
475 uint16_t ProcResIdx
= findProcResIdx(STI
, Key
);
476 if (ProcResIdx
> 0) {
477 // Find the pressure on ProcResIdx `Key`.
478 const auto ProcResPressureIt
=
479 std::find_if(RSC
.IdealizedProcResPressure
.begin(),
480 RSC
.IdealizedProcResPressure
.end(),
481 [ProcResIdx
](const std::pair
<uint16_t, float> &WPR
) {
482 return WPR
.first
== ProcResIdx
;
484 SchedClassPoint
[I
].PerInstructionValue
=
485 ProcResPressureIt
== RSC
.IdealizedProcResPressure
.end()
487 : ProcResPressureIt
->second
;
488 } else if (Key
== "NumMicroOps") {
489 SchedClassPoint
[I
].PerInstructionValue
= RSC
.SCDesc
->NumMicroOps
;
491 llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
496 ClusterCenterPoint
[I
].PerInstructionValue
= Representative
[I
].avg();
499 llvm::errs() << "unimplemented measurement matching for mode " << Mode
503 return Clustering
.isNeighbour(ClusterCenterPoint
, SchedClassPoint
);
506 void Analysis::printSchedClassDescHtml(const ResolvedSchedClass
&RSC
,
507 llvm::raw_ostream
&OS
) const {
508 OS
<< "<table class=\"sched-class-desc\">";
509 OS
<< "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
510 "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
511 "resource (port) pressure assuming ideal distribution\">Idealized "
512 "Resource Pressure</th></tr>";
513 if (RSC
.SCDesc
->isValid()) {
514 const auto &SM
= SubtargetInfo_
->getSchedModel();
515 OS
<< "<tr><td>✔</td>";
516 OS
<< "<td>" << (RSC
.WasVariant
? "✔" : "✕") << "</td>";
517 OS
<< "<td>" << RSC
.SCDesc
->NumMicroOps
<< "</td>";
520 for (int I
= 0, E
= RSC
.SCDesc
->NumWriteLatencyEntries
; I
< E
; ++I
) {
521 const auto *const Entry
=
522 SubtargetInfo_
->getWriteLatencyEntry(RSC
.SCDesc
, I
);
523 OS
<< "<li>" << Entry
->Cycles
;
524 if (RSC
.SCDesc
->NumWriteLatencyEntries
> 1) {
525 // Dismabiguate if more than 1 latency.
526 OS
<< " (WriteResourceID " << Entry
->WriteResourceID
<< ")";
533 for (const auto &WPR
: RSC
.NonRedundantWriteProcRes
) {
534 OS
<< "<li><span class=\"mono\">";
535 writeEscaped
<kEscapeHtml
>(OS
,
536 SM
.getProcResource(WPR
.ProcResourceIdx
)->Name
);
537 OS
<< "</span>: " << WPR
.Cycles
<< "</li>";
540 // Idealized port pressure.
542 for (const auto &Pressure
: RSC
.IdealizedProcResPressure
) {
543 OS
<< "<li><span class=\"mono\">";
544 writeEscaped
<kEscapeHtml
>(OS
, SubtargetInfo_
->getSchedModel()
545 .getProcResource(Pressure
.first
)
548 writeMeasurementValue
<kEscapeHtml
>(OS
, Pressure
.second
);
554 OS
<< "<tr><td>✕</td><td></td><td></td></tr>";
559 static constexpr const char kHtmlHead
[] = R
"(
561 <title>llvm-exegesis Analysis Results</title>
564 font-family: sans-serif
566 span.sched-class-name {
568 font-family: monospace;
571 font-family: monospace;
574 font-family: monospace;
581 border-collapse: collapse;
583 table, table tr,td,th {
584 border: 1px solid #444;
589 list-style-type: none;
591 table.sched-class-clusters td {
595 padding-bottom: 10px;
597 table.sched-class-desc td {
604 font-family: monospace;
609 tr.good-cluster td.measurement {
612 tr.bad-cluster td.measurement {
615 tr.good-cluster td.measurement span.minmax {
618 tr.bad-cluster td.measurement span.minmax {
626 llvm::Error
Analysis::run
<Analysis::PrintSchedClassInconsistencies
>(
627 llvm::raw_ostream
&OS
) const {
628 const auto &FirstPoint
= Clustering_
.getPoints()[0];
630 OS
<< "<!DOCTYPE html><html>" << kHtmlHead
<< "<body>";
631 OS
<< "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
632 OS
<< "<h3>Triple: <span class=\"mono\">";
633 writeEscaped
<kEscapeHtml
>(OS
, FirstPoint
.LLVMTriple
);
634 OS
<< "</span></h3><h3>Cpu: <span class=\"mono\">";
635 writeEscaped
<kEscapeHtml
>(OS
, FirstPoint
.CpuName
);
636 OS
<< "</span></h3>";
638 for (const auto &RSCAndPoints
: makePointsPerSchedClass()) {
639 if (!RSCAndPoints
.RSC
.SCDesc
)
641 // Bucket sched class points into sched class clusters.
642 std::vector
<SchedClassCluster
> SchedClassClusters
;
643 for (const size_t PointId
: RSCAndPoints
.PointIds
) {
644 const auto &ClusterId
= Clustering_
.getClusterIdForPoint(PointId
);
645 if (!ClusterId
.isValid())
646 continue; // Ignore noise and errors. FIXME: take noise into account ?
647 auto SchedClassClusterIt
=
648 std::find_if(SchedClassClusters
.begin(), SchedClassClusters
.end(),
649 [ClusterId
](const SchedClassCluster
&C
) {
650 return C
.id() == ClusterId
;
652 if (SchedClassClusterIt
== SchedClassClusters
.end()) {
653 SchedClassClusters
.emplace_back();
654 SchedClassClusterIt
= std::prev(SchedClassClusters
.end());
656 SchedClassClusterIt
->addPoint(PointId
, Clustering_
);
659 // Print any scheduling class that has at least one cluster that does not
660 // match the checked-in data.
661 if (llvm::all_of(SchedClassClusters
,
662 [this, &RSCAndPoints
](const SchedClassCluster
&C
) {
663 return C
.measurementsMatch(
664 *SubtargetInfo_
, RSCAndPoints
.RSC
, Clustering_
);
666 continue; // Nothing weird.
668 OS
<< "<div class=\"inconsistency\"><p>Sched Class <span "
669 "class=\"sched-class-name\">";
670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
671 writeEscaped
<kEscapeHtml
>(OS
, RSCAndPoints
.RSC
.SCDesc
->Name
);
673 OS
<< RSCAndPoints
.RSC
.SchedClassId
;
675 OS
<< "</span> contains instructions whose performance characteristics do"
676 " not match that of LLVM:</p>";
677 printSchedClassClustersHtml(SchedClassClusters
, RSCAndPoints
.RSC
, OS
);
678 OS
<< "<p>llvm SchedModel data:</p>";
679 printSchedClassDescHtml(RSCAndPoints
.RSC
, OS
);
683 OS
<< "</body></html>";
684 return llvm::Error::success();
687 // Distributes a pressure budget as evenly as possible on the provided subunits
688 // given the already existing port pressure distribution.
690 // The algorithm is as follows: while there is remaining pressure to
691 // distribute, find the subunits with minimal pressure, and distribute
692 // remaining pressure equally up to the pressure of the unit with
693 // second-to-minimal pressure.
694 // For example, let's assume we want to distribute 2*P1256
695 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
696 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
697 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
698 // RemainingPressure = 2.0
699 // We sort the subunits by pressure:
700 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
701 // We'll first start by the subunits with minimal pressure, which are at
702 // the beginning of the sorted array. In this example there is one (P2).
703 // The subunit with second-to-minimal pressure is the next one in the
704 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
706 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
707 // RemainingPressure = 1.9
708 // We repeat this process: distribute 0.2 pressure on each of the minimal
709 // P2 and P1, decrease budget by 2*0.2:
710 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
711 // RemainingPressure = 1.5
712 // There are no second-to-minimal subunits so we just share the remaining
713 // budget (1.5 cycles) equally:
714 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
715 // RemainingPressure = 0.0
716 // We stop as there is no remaining budget to distribute.
717 void distributePressure(float RemainingPressure
,
718 llvm::SmallVector
<uint16_t, 32> Subunits
,
719 llvm::SmallVector
<float, 32> &DensePressure
) {
720 // Find the number of subunits with minimal pressure (they are at the
722 llvm::sort(Subunits
, [&DensePressure
](const uint16_t A
, const uint16_t B
) {
723 return DensePressure
[A
] < DensePressure
[B
];
725 const auto getPressureForSubunit
= [&DensePressure
,
726 &Subunits
](size_t I
) -> float & {
727 return DensePressure
[Subunits
[I
]];
729 size_t NumMinimalSU
= 1;
730 while (NumMinimalSU
< Subunits
.size() &&
731 getPressureForSubunit(NumMinimalSU
) == getPressureForSubunit(0)) {
734 while (RemainingPressure
> 0.0f
) {
735 if (NumMinimalSU
== Subunits
.size()) {
736 // All units are minimal, just distribute evenly and be done.
737 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
738 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
742 // Distribute the remaining pressure equally.
743 const float MinimalPressure
= getPressureForSubunit(NumMinimalSU
- 1);
744 const float SecondToMinimalPressure
= getPressureForSubunit(NumMinimalSU
);
745 assert(MinimalPressure
< SecondToMinimalPressure
);
746 const float Increment
= SecondToMinimalPressure
- MinimalPressure
;
747 if (RemainingPressure
<= NumMinimalSU
* Increment
) {
748 // There is not enough remaining pressure.
749 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
750 getPressureForSubunit(I
) += RemainingPressure
/ NumMinimalSU
;
754 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
755 for (size_t I
= 0; I
< NumMinimalSU
; ++I
) {
756 getPressureForSubunit(I
) = SecondToMinimalPressure
;
757 RemainingPressure
-= SecondToMinimalPressure
;
759 while (NumMinimalSU
< Subunits
.size() &&
760 getPressureForSubunit(NumMinimalSU
) == SecondToMinimalPressure
) {
766 std::vector
<std::pair
<uint16_t, float>> computeIdealizedProcResPressure(
767 const llvm::MCSchedModel
&SM
,
768 llvm::SmallVector
<llvm::MCWriteProcResEntry
, 8> WPRS
) {
769 // DensePressure[I] is the port pressure for Proc Resource I.
770 llvm::SmallVector
<float, 32> DensePressure(SM
.getNumProcResourceKinds());
771 llvm::sort(WPRS
, [](const llvm::MCWriteProcResEntry
&A
,
772 const llvm::MCWriteProcResEntry
&B
) {
773 return A
.ProcResourceIdx
< B
.ProcResourceIdx
;
775 for (const llvm::MCWriteProcResEntry
&WPR
: WPRS
) {
776 // Get units for the entry.
777 const llvm::MCProcResourceDesc
*const ProcResDesc
=
778 SM
.getProcResource(WPR
.ProcResourceIdx
);
779 if (ProcResDesc
->SubUnitsIdxBegin
== nullptr) {
780 // This is a ProcResUnit.
781 DensePressure
[WPR
.ProcResourceIdx
] += WPR
.Cycles
;
783 // This is a ProcResGroup.
784 llvm::SmallVector
<uint16_t, 32> Subunits(ProcResDesc
->SubUnitsIdxBegin
,
785 ProcResDesc
->SubUnitsIdxBegin
+
786 ProcResDesc
->NumUnits
);
787 distributePressure(WPR
.Cycles
, Subunits
, DensePressure
);
790 // Turn dense pressure into sparse pressure by removing zero entries.
791 std::vector
<std::pair
<uint16_t, float>> Pressure
;
792 for (unsigned I
= 0, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
793 if (DensePressure
[I
] > 0.0f
)
794 Pressure
.emplace_back(I
, DensePressure
[I
]);
799 } // namespace exegesis