1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the ARM implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMFrameLowering.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Utils/ARMBaseInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
66 #define DEBUG_TYPE "arm-frame-lowering"
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden
, cl::init(true),
72 cl::desc("Align ARM NEON spills in prolog and epilog"));
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI
,
76 unsigned NumAlignedDPRCS2Regs
);
78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget
&sti
)
79 : TargetFrameLowering(StackGrowsDown
, sti
.getStackAlignment(), 0, Align(4)),
82 bool ARMFrameLowering::keepFramePointer(const MachineFunction
&MF
) const {
83 // iOS always has a FP for backtracking, force other targets to keep their FP
84 // when doing FastISel. The emitted code is currently superior, and in cases
85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86 return MF
.getSubtarget
<ARMSubtarget
>().useFastISel();
89 /// Returns true if the target can safely skip saving callee-saved registers
90 /// for noreturn nounwind functions.
91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction
&MF
) const {
92 assert(MF
.getFunction().hasFnAttribute(Attribute::NoReturn
) &&
93 MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
) &&
94 !MF
.getFunction().hasFnAttribute(Attribute::UWTable
));
96 // Frame pointer and link register are not treated as normal CSR, thus we
97 // can always skip CSR saves for nonreturning functions.
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register. This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
104 bool ARMFrameLowering::hasFP(const MachineFunction
&MF
) const {
105 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
106 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
108 // ABI-required frame pointer.
109 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
))
112 // Frame pointer required for use within this function.
113 return (RegInfo
->needsStackRealignment(MF
) ||
114 MFI
.hasVarSizedObjects() ||
115 MFI
.isFrameAddressTaken());
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function. This eliminates the need for
121 /// add/sub sp brackets around call sites. Returns true if the call frame is
122 /// included as part of the stack frame.
123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
124 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
125 unsigned CFSize
= MFI
.getMaxCallFrameSize();
126 // It's not always a good idea to include the call frame as part of the
127 // stack frame. ARM (especially Thumb) has small immediate offset to
128 // address the stack frame. So a large call frame can cause poor codegen
129 // and may even makes it impossible to scavenge a register.
130 if (CFSize
>= ((1 << 12) - 1) / 2) // Half of imm12
133 return !MFI
.hasVarSizedObjects();
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified. Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction
&MF
) const {
142 return hasReservedCallFrame(MF
) || MF
.getFrameInfo().hasVarSizedObjects();
145 static bool isCSRestore(MachineInstr
&MI
, const ARMBaseInstrInfo
&TII
,
146 const MCPhysReg
*CSRegs
) {
147 // Integer spill area is handled with "pop".
148 if (isPopOpcode(MI
.getOpcode())) {
149 // The first two operands are predicates. The last two are
150 // imp-def and imp-use of SP. Check everything in between.
151 for (int i
= 5, e
= MI
.getNumOperands(); i
!= e
; ++i
)
152 if (!isCalleeSavedRegister(MI
.getOperand(i
).getReg(), CSRegs
))
156 if ((MI
.getOpcode() == ARM::LDR_POST_IMM
||
157 MI
.getOpcode() == ARM::LDR_POST_REG
||
158 MI
.getOpcode() == ARM::t2LDR_POST
) &&
159 isCalleeSavedRegister(MI
.getOperand(0).getReg(), CSRegs
) &&
160 MI
.getOperand(1).getReg() == ARM::SP
)
166 static void emitRegPlusImmediate(
167 bool isARM
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&MBBI
,
168 const DebugLoc
&dl
, const ARMBaseInstrInfo
&TII
, unsigned DestReg
,
169 unsigned SrcReg
, int NumBytes
, unsigned MIFlags
= MachineInstr::NoFlags
,
170 ARMCC::CondCodes Pred
= ARMCC::AL
, unsigned PredReg
= 0) {
172 emitARMRegPlusImmediate(MBB
, MBBI
, dl
, DestReg
, SrcReg
, NumBytes
,
173 Pred
, PredReg
, TII
, MIFlags
);
175 emitT2RegPlusImmediate(MBB
, MBBI
, dl
, DestReg
, SrcReg
, NumBytes
,
176 Pred
, PredReg
, TII
, MIFlags
);
179 static void emitSPUpdate(bool isARM
, MachineBasicBlock
&MBB
,
180 MachineBasicBlock::iterator
&MBBI
, const DebugLoc
&dl
,
181 const ARMBaseInstrInfo
&TII
, int NumBytes
,
182 unsigned MIFlags
= MachineInstr::NoFlags
,
183 ARMCC::CondCodes Pred
= ARMCC::AL
,
184 unsigned PredReg
= 0) {
185 emitRegPlusImmediate(isARM
, MBB
, MBBI
, dl
, TII
, ARM::SP
, ARM::SP
, NumBytes
,
186 MIFlags
, Pred
, PredReg
);
189 static int sizeOfSPAdjustment(const MachineInstr
&MI
) {
191 switch (MI
.getOpcode()) {
192 case ARM::VSTMDDB_UPD
:
196 case ARM::t2STMDB_UPD
:
200 case ARM::STR_PRE_IMM
:
203 llvm_unreachable("Unknown push or pop like instruction");
207 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
208 // pred) so the list starts at 4.
209 for (int i
= MI
.getNumOperands() - 1; i
>= 4; --i
)
214 static bool WindowsRequiresStackProbe(const MachineFunction
&MF
,
215 size_t StackSizeInBytes
) {
216 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
217 const Function
&F
= MF
.getFunction();
218 unsigned StackProbeSize
= (MFI
.getStackProtectorIndex() > 0) ? 4080 : 4096;
219 if (F
.hasFnAttribute("stack-probe-size"))
220 F
.getFnAttribute("stack-probe-size")
222 .getAsInteger(0, StackProbeSize
);
223 return (StackSizeInBytes
>= StackProbeSize
) &&
224 !F
.hasFnAttribute("no-stack-arg-probe");
229 struct StackAdjustingInsts
{
231 MachineBasicBlock::iterator I
;
236 SmallVector
<InstInfo
, 4> Insts
;
238 void addInst(MachineBasicBlock::iterator I
, unsigned SPAdjust
,
239 bool BeforeFPSet
= false) {
240 InstInfo Info
= {I
, SPAdjust
, BeforeFPSet
};
241 Insts
.push_back(Info
);
244 void addExtraBytes(const MachineBasicBlock::iterator I
, unsigned ExtraBytes
) {
246 llvm::find_if(Insts
, [&](InstInfo
&Info
) { return Info
.I
== I
; });
247 assert(Info
!= Insts
.end() && "invalid sp adjusting instruction");
248 Info
->SPAdjust
+= ExtraBytes
;
251 void emitDefCFAOffsets(MachineBasicBlock
&MBB
, const DebugLoc
&dl
,
252 const ARMBaseInstrInfo
&TII
, bool HasFP
) {
253 MachineFunction
&MF
= *MBB
.getParent();
254 unsigned CFAOffset
= 0;
255 for (auto &Info
: Insts
) {
256 if (HasFP
&& !Info
.BeforeFPSet
)
259 CFAOffset
-= Info
.SPAdjust
;
260 unsigned CFIIndex
= MF
.addFrameInst(
261 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset
));
262 BuildMI(MBB
, std::next(Info
.I
), dl
,
263 TII
.get(TargetOpcode::CFI_INSTRUCTION
))
264 .addCFIIndex(CFIIndex
)
265 .setMIFlags(MachineInstr::FrameSetup
);
270 } // end anonymous namespace
272 /// Emit an instruction sequence that will align the address in
273 /// register Reg by zero-ing out the lower bits. For versions of the
274 /// architecture that support Neon, this must be done in a single
275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
276 /// single instruction. That function only gets called when optimizing
277 /// spilling of D registers on a core with the Neon instruction set
279 static void emitAligningInstructions(MachineFunction
&MF
, ARMFunctionInfo
*AFI
,
280 const TargetInstrInfo
&TII
,
281 MachineBasicBlock
&MBB
,
282 MachineBasicBlock::iterator MBBI
,
283 const DebugLoc
&DL
, const unsigned Reg
,
284 const unsigned Alignment
,
285 const bool MustBeSingleInstruction
) {
286 const ARMSubtarget
&AST
=
287 static_cast<const ARMSubtarget
&>(MF
.getSubtarget());
288 const bool CanUseBFC
= AST
.hasV6T2Ops() || AST
.hasV7Ops();
289 const unsigned AlignMask
= Alignment
- 1;
290 const unsigned NrBitsToZero
= countTrailingZeros(Alignment
);
291 assert(!AFI
->isThumb1OnlyFunction() && "Thumb1 not supported");
292 if (!AFI
->isThumbFunction()) {
293 // if the BFC instruction is available, use that to zero the lower
295 // bfc Reg, #0, log2(Alignment)
296 // otherwise use BIC, if the mask to zero the required number of bits
297 // can be encoded in the bic immediate field
298 // bic Reg, Reg, Alignment-1
300 // lsr Reg, Reg, log2(Alignment)
301 // lsl Reg, Reg, log2(Alignment)
303 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::BFC
), Reg
)
304 .addReg(Reg
, RegState::Kill
)
306 .add(predOps(ARMCC::AL
));
307 } else if (AlignMask
<= 255) {
308 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::BICri
), Reg
)
309 .addReg(Reg
, RegState::Kill
)
311 .add(predOps(ARMCC::AL
))
314 assert(!MustBeSingleInstruction
&&
315 "Shouldn't call emitAligningInstructions demanding a single "
316 "instruction to be emitted for large stack alignment for a target "
318 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::MOVsi
), Reg
)
319 .addReg(Reg
, RegState::Kill
)
320 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr
, NrBitsToZero
))
321 .add(predOps(ARMCC::AL
))
323 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::MOVsi
), Reg
)
324 .addReg(Reg
, RegState::Kill
)
325 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, NrBitsToZero
))
326 .add(predOps(ARMCC::AL
))
330 // Since this is only reached for Thumb-2 targets, the BFC instruction
331 // should always be available.
333 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::t2BFC
), Reg
)
334 .addReg(Reg
, RegState::Kill
)
336 .add(predOps(ARMCC::AL
));
340 /// We need the offset of the frame pointer relative to other MachineFrameInfo
341 /// offsets which are encoded relative to SP at function begin.
342 /// See also emitPrologue() for how the FP is set up.
343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
345 /// this to produce a conservative estimate that we check in an assert() later.
346 static int getMaxFPOffset(const Function
&F
, const ARMFunctionInfo
&AFI
) {
347 // For Thumb1, push.w isn't available, so the first push will always push
348 // r7 and lr onto the stack first.
349 if (AFI
.isThumb1OnlyFunction())
350 return -AFI
.getArgRegsSaveSize() - (2 * 4);
351 // This is a conservative estimation: Assume the frame pointer being r7 and
352 // pc("r15") up to r8 getting spilled before (= 8 registers).
353 return -AFI
.getArgRegsSaveSize() - (8 * 4);
356 void ARMFrameLowering::emitPrologue(MachineFunction
&MF
,
357 MachineBasicBlock
&MBB
) const {
358 MachineBasicBlock::iterator MBBI
= MBB
.begin();
359 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
360 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
361 MachineModuleInfo
&MMI
= MF
.getMMI();
362 MCContext
&Context
= MMI
.getContext();
363 const TargetMachine
&TM
= MF
.getTarget();
364 const MCRegisterInfo
*MRI
= Context
.getRegisterInfo();
365 const ARMBaseRegisterInfo
*RegInfo
= STI
.getRegisterInfo();
366 const ARMBaseInstrInfo
&TII
= *STI
.getInstrInfo();
367 assert(!AFI
->isThumb1OnlyFunction() &&
368 "This emitPrologue does not support Thumb1!");
369 bool isARM
= !AFI
->isThumbFunction();
370 unsigned Align
= STI
.getFrameLowering()->getStackAlignment();
371 unsigned ArgRegsSaveSize
= AFI
->getArgRegsSaveSize();
372 unsigned NumBytes
= MFI
.getStackSize();
373 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
375 // Debug location must be unknown since the first debug location is used
376 // to determine the end of the prologue.
379 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
381 // Determine the sizes of each callee-save spill areas and record which frame
382 // belongs to which callee-save spill areas.
383 unsigned GPRCS1Size
= 0, GPRCS2Size
= 0, DPRCSSize
= 0;
384 int FramePtrSpillFI
= 0;
387 // All calls are tail calls in GHC calling conv, and functions have no
388 // prologue/epilogue.
389 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
392 StackAdjustingInsts DefCFAOffsetCandidates
;
393 bool HasFP
= hasFP(MF
);
395 // Allocate the vararg register save area.
396 if (ArgRegsSaveSize
) {
397 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -ArgRegsSaveSize
,
398 MachineInstr::FrameSetup
);
399 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), ArgRegsSaveSize
, true);
402 if (!AFI
->hasStackFrame() &&
403 (!STI
.isTargetWindows() || !WindowsRequiresStackProbe(MF
, NumBytes
))) {
404 if (NumBytes
- ArgRegsSaveSize
!= 0) {
405 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -(NumBytes
- ArgRegsSaveSize
),
406 MachineInstr::FrameSetup
);
407 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
),
408 NumBytes
- ArgRegsSaveSize
, true);
410 DefCFAOffsetCandidates
.emitDefCFAOffsets(MBB
, dl
, TII
, HasFP
);
414 // Determine spill area sizes.
415 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
416 unsigned Reg
= CSI
[i
].getReg();
417 int FI
= CSI
[i
].getFrameIdx();
424 if (STI
.splitFramePushPop(MF
)) {
439 FramePtrSpillFI
= FI
;
443 // This is a DPR. Exclude the aligned DPRCS2 spills.
446 if (Reg
< ARM::D8
|| Reg
>= ARM::D8
+ AFI
->getNumAlignedDPRCS2Regs())
452 MachineBasicBlock::iterator LastPush
= MBB
.end(), GPRCS1Push
, GPRCS2Push
;
453 if (GPRCS1Size
> 0) {
454 GPRCS1Push
= LastPush
= MBBI
++;
455 DefCFAOffsetCandidates
.addInst(LastPush
, GPRCS1Size
, true);
458 // Determine starting offsets of spill areas.
459 unsigned GPRCS1Offset
= NumBytes
- ArgRegsSaveSize
- GPRCS1Size
;
460 unsigned GPRCS2Offset
= GPRCS1Offset
- GPRCS2Size
;
461 unsigned DPRAlign
= DPRCSSize
? std::min(8U, Align
) : 4U;
462 unsigned DPRGapSize
= (GPRCS1Size
+ GPRCS2Size
+ ArgRegsSaveSize
) % DPRAlign
;
463 unsigned DPRCSOffset
= GPRCS2Offset
- DPRGapSize
- DPRCSSize
;
464 int FramePtrOffsetInPush
= 0;
466 int FPOffset
= MFI
.getObjectOffset(FramePtrSpillFI
);
467 assert(getMaxFPOffset(MF
.getFunction(), *AFI
) <= FPOffset
&&
468 "Max FP estimation is wrong");
469 FramePtrOffsetInPush
= FPOffset
+ ArgRegsSaveSize
;
470 AFI
->setFramePtrSpillOffset(MFI
.getObjectOffset(FramePtrSpillFI
) +
473 AFI
->setGPRCalleeSavedArea1Offset(GPRCS1Offset
);
474 AFI
->setGPRCalleeSavedArea2Offset(GPRCS2Offset
);
475 AFI
->setDPRCalleeSavedAreaOffset(DPRCSOffset
);
478 if (GPRCS2Size
> 0) {
479 GPRCS2Push
= LastPush
= MBBI
++;
480 DefCFAOffsetCandidates
.addInst(LastPush
, GPRCS2Size
);
483 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
484 // .cfi_offset operations will reflect that.
486 assert(DPRGapSize
== 4 && "unexpected alignment requirements for DPRs");
487 if (LastPush
!= MBB
.end() &&
488 tryFoldSPUpdateIntoPushPop(STI
, MF
, &*LastPush
, DPRGapSize
))
489 DefCFAOffsetCandidates
.addExtraBytes(LastPush
, DPRGapSize
);
491 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -DPRGapSize
,
492 MachineInstr::FrameSetup
);
493 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), DPRGapSize
);
499 // Since vpush register list cannot have gaps, there may be multiple vpush
500 // instructions in the prologue.
501 while (MBBI
!= MBB
.end() && MBBI
->getOpcode() == ARM::VSTMDDB_UPD
) {
502 DefCFAOffsetCandidates
.addInst(MBBI
, sizeOfSPAdjustment(*MBBI
));
507 // Move past the aligned DPRCS2 area.
508 if (AFI
->getNumAlignedDPRCS2Regs() > 0) {
509 MBBI
= skipAlignedDPRCS2Spills(MBBI
, AFI
->getNumAlignedDPRCS2Regs());
510 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
511 // leaves the stack pointer pointing to the DPRCS2 area.
513 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
514 NumBytes
+= MFI
.getObjectOffset(D8SpillFI
);
516 NumBytes
= DPRCSOffset
;
518 if (STI
.isTargetWindows() && WindowsRequiresStackProbe(MF
, NumBytes
)) {
519 uint32_t NumWords
= NumBytes
>> 2;
521 if (NumWords
< 65536)
522 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi16
), ARM::R4
)
524 .setMIFlags(MachineInstr::FrameSetup
)
525 .add(predOps(ARMCC::AL
));
527 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi32imm
), ARM::R4
)
529 .setMIFlags(MachineInstr::FrameSetup
);
531 switch (TM
.getCodeModel()) {
532 case CodeModel::Tiny
:
533 llvm_unreachable("Tiny code model not available on ARM.");
534 case CodeModel::Small
:
535 case CodeModel::Medium
:
536 case CodeModel::Kernel
:
537 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tBL
))
538 .add(predOps(ARMCC::AL
))
539 .addExternalSymbol("__chkstk")
540 .addReg(ARM::R4
, RegState::Implicit
)
541 .setMIFlags(MachineInstr::FrameSetup
);
543 case CodeModel::Large
:
544 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi32imm
), ARM::R12
)
545 .addExternalSymbol("__chkstk")
546 .setMIFlags(MachineInstr::FrameSetup
);
548 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tBLXr
))
549 .add(predOps(ARMCC::AL
))
550 .addReg(ARM::R12
, RegState::Kill
)
551 .addReg(ARM::R4
, RegState::Implicit
)
552 .setMIFlags(MachineInstr::FrameSetup
);
556 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
557 .addReg(ARM::SP
, RegState::Kill
)
558 .addReg(ARM::R4
, RegState::Kill
)
559 .setMIFlags(MachineInstr::FrameSetup
)
560 .add(predOps(ARMCC::AL
))
566 // Adjust SP after all the callee-save spills.
567 if (AFI
->getNumAlignedDPRCS2Regs() == 0 &&
568 tryFoldSPUpdateIntoPushPop(STI
, MF
, &*LastPush
, NumBytes
))
569 DefCFAOffsetCandidates
.addExtraBytes(LastPush
, NumBytes
);
571 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -NumBytes
,
572 MachineInstr::FrameSetup
);
573 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), NumBytes
);
577 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
578 // Note it's not safe to do this in Thumb2 mode because it would have
579 // taken two instructions:
582 // If an interrupt is taken between the two instructions, then sp is in
583 // an inconsistent state (pointing to the middle of callee-saved area).
584 // The interrupt handler can end up clobbering the registers.
585 AFI
->setShouldRestoreSPFromFP(true);
588 // Set FP to point to the stack slot that contains the previous FP.
589 // For iOS, FP is R7, which has now been stored in spill area 1.
590 // Otherwise, if this is not iOS, all the callee-saved registers go
591 // into spill area 1, including the FP in R11. In either case, it
592 // is in area one and the adjustment needs to take place just after
595 MachineBasicBlock::iterator AfterPush
= std::next(GPRCS1Push
);
596 unsigned PushSize
= sizeOfSPAdjustment(*GPRCS1Push
);
597 emitRegPlusImmediate(!AFI
->isThumbFunction(), MBB
, AfterPush
,
598 dl
, TII
, FramePtr
, ARM::SP
,
599 PushSize
+ FramePtrOffsetInPush
,
600 MachineInstr::FrameSetup
);
601 if (FramePtrOffsetInPush
+ PushSize
!= 0) {
602 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createDefCfa(
603 nullptr, MRI
->getDwarfRegNum(FramePtr
, true),
604 -(ArgRegsSaveSize
- FramePtrOffsetInPush
)));
605 BuildMI(MBB
, AfterPush
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
606 .addCFIIndex(CFIIndex
)
607 .setMIFlags(MachineInstr::FrameSetup
);
610 MF
.addFrameInst(MCCFIInstruction::createDefCfaRegister(
611 nullptr, MRI
->getDwarfRegNum(FramePtr
, true)));
612 BuildMI(MBB
, AfterPush
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
613 .addCFIIndex(CFIIndex
)
614 .setMIFlags(MachineInstr::FrameSetup
);
618 // Now that the prologue's actual instructions are finalised, we can insert
619 // the necessary DWARF cf instructions to describe the situation. Start by
620 // recording where each register ended up:
621 if (GPRCS1Size
> 0) {
622 MachineBasicBlock::iterator Pos
= std::next(GPRCS1Push
);
624 for (const auto &Entry
: CSI
) {
625 unsigned Reg
= Entry
.getReg();
626 int FI
= Entry
.getFrameIdx();
633 if (STI
.splitFramePushPop(MF
))
645 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
646 nullptr, MRI
->getDwarfRegNum(Reg
, true), MFI
.getObjectOffset(FI
)));
647 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
648 .addCFIIndex(CFIIndex
)
649 .setMIFlags(MachineInstr::FrameSetup
);
655 if (GPRCS2Size
> 0) {
656 MachineBasicBlock::iterator Pos
= std::next(GPRCS2Push
);
657 for (const auto &Entry
: CSI
) {
658 unsigned Reg
= Entry
.getReg();
659 int FI
= Entry
.getFrameIdx();
666 if (STI
.splitFramePushPop(MF
)) {
667 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
668 unsigned Offset
= MFI
.getObjectOffset(FI
);
669 unsigned CFIIndex
= MF
.addFrameInst(
670 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
671 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
672 .addCFIIndex(CFIIndex
)
673 .setMIFlags(MachineInstr::FrameSetup
);
681 // Since vpush register list cannot have gaps, there may be multiple vpush
682 // instructions in the prologue.
683 MachineBasicBlock::iterator Pos
= std::next(LastPush
);
684 for (const auto &Entry
: CSI
) {
685 unsigned Reg
= Entry
.getReg();
686 int FI
= Entry
.getFrameIdx();
687 if ((Reg
>= ARM::D0
&& Reg
<= ARM::D31
) &&
688 (Reg
< ARM::D8
|| Reg
>= ARM::D8
+ AFI
->getNumAlignedDPRCS2Regs())) {
689 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
690 unsigned Offset
= MFI
.getObjectOffset(FI
);
691 unsigned CFIIndex
= MF
.addFrameInst(
692 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
693 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
694 .addCFIIndex(CFIIndex
)
695 .setMIFlags(MachineInstr::FrameSetup
);
700 // Now we can emit descriptions of where the canonical frame address was
701 // throughout the process. If we have a frame pointer, it takes over the job
702 // half-way through, so only the first few .cfi_def_cfa_offset instructions
703 // actually get emitted.
704 DefCFAOffsetCandidates
.emitDefCFAOffsets(MBB
, dl
, TII
, HasFP
);
706 if (STI
.isTargetELF() && hasFP(MF
))
707 MFI
.setOffsetAdjustment(MFI
.getOffsetAdjustment() -
708 AFI
->getFramePtrSpillOffset());
710 AFI
->setGPRCalleeSavedArea1Size(GPRCS1Size
);
711 AFI
->setGPRCalleeSavedArea2Size(GPRCS2Size
);
712 AFI
->setDPRCalleeSavedGapSize(DPRGapSize
);
713 AFI
->setDPRCalleeSavedAreaSize(DPRCSSize
);
715 // If we need dynamic stack realignment, do it here. Be paranoid and make
716 // sure if we also have VLAs, we have a base pointer for frame access.
717 // If aligned NEON registers were spilled, the stack has already been
719 if (!AFI
->getNumAlignedDPRCS2Regs() && RegInfo
->needsStackRealignment(MF
)) {
720 unsigned MaxAlign
= MFI
.getMaxAlignment();
721 assert(!AFI
->isThumb1OnlyFunction());
722 if (!AFI
->isThumbFunction()) {
723 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MBBI
, dl
, ARM::SP
, MaxAlign
,
726 // We cannot use sp as source/dest register here, thus we're using r4 to
727 // perform the calculations. We're emitting the following sequence:
729 // -- use emitAligningInstructions to produce best sequence to zero
730 // -- out lower bits in r4
732 // FIXME: It will be better just to find spare register here.
733 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::R4
)
734 .addReg(ARM::SP
, RegState::Kill
)
735 .add(predOps(ARMCC::AL
));
736 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MBBI
, dl
, ARM::R4
, MaxAlign
,
738 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
739 .addReg(ARM::R4
, RegState::Kill
)
740 .add(predOps(ARMCC::AL
));
743 AFI
->setShouldRestoreSPFromFP(true);
746 // If we need a base pointer, set it up here. It's whatever the value
747 // of the stack pointer is at this point. Any variable size objects
748 // will be allocated after this, so we can still use the base pointer
749 // to reference locals.
750 // FIXME: Clarify FrameSetup flags here.
751 if (RegInfo
->hasBasePointer(MF
)) {
753 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), RegInfo
->getBaseRegister())
755 .add(predOps(ARMCC::AL
))
758 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), RegInfo
->getBaseRegister())
760 .add(predOps(ARMCC::AL
));
763 // If the frame has variable sized objects then the epilogue must restore
764 // the sp from fp. We can assume there's an FP here since hasFP already
765 // checks for hasVarSizedObjects.
766 if (MFI
.hasVarSizedObjects())
767 AFI
->setShouldRestoreSPFromFP(true);
770 void ARMFrameLowering::emitEpilogue(MachineFunction
&MF
,
771 MachineBasicBlock
&MBB
) const {
772 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
773 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
774 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
775 const ARMBaseInstrInfo
&TII
=
776 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
777 assert(!AFI
->isThumb1OnlyFunction() &&
778 "This emitEpilogue does not support Thumb1!");
779 bool isARM
= !AFI
->isThumbFunction();
781 unsigned ArgRegsSaveSize
= AFI
->getArgRegsSaveSize();
782 int NumBytes
= (int)MFI
.getStackSize();
783 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
785 // All calls are tail calls in GHC calling conv, and functions have no
786 // prologue/epilogue.
787 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
790 // First put ourselves on the first (from top) terminator instructions.
791 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
792 DebugLoc dl
= MBBI
!= MBB
.end() ? MBBI
->getDebugLoc() : DebugLoc();
794 if (!AFI
->hasStackFrame()) {
795 if (NumBytes
- ArgRegsSaveSize
!= 0)
796 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, NumBytes
- ArgRegsSaveSize
);
798 // Unwind MBBI to point to first LDR / VLDRD.
799 const MCPhysReg
*CSRegs
= RegInfo
->getCalleeSavedRegs(&MF
);
800 if (MBBI
!= MBB
.begin()) {
803 } while (MBBI
!= MBB
.begin() && isCSRestore(*MBBI
, TII
, CSRegs
));
804 if (!isCSRestore(*MBBI
, TII
, CSRegs
))
808 // Move SP to start of FP callee save spill area.
809 NumBytes
-= (ArgRegsSaveSize
+
810 AFI
->getGPRCalleeSavedArea1Size() +
811 AFI
->getGPRCalleeSavedArea2Size() +
812 AFI
->getDPRCalleeSavedGapSize() +
813 AFI
->getDPRCalleeSavedAreaSize());
815 // Reset SP based on frame pointer only if the stack frame extends beyond
816 // frame pointer stack slot or target is ELF and the function has FP.
817 if (AFI
->shouldRestoreSPFromFP()) {
818 NumBytes
= AFI
->getFramePtrSpillOffset() - NumBytes
;
821 emitARMRegPlusImmediate(MBB
, MBBI
, dl
, ARM::SP
, FramePtr
, -NumBytes
,
824 // It's not possible to restore SP from FP in a single instruction.
825 // For iOS, this looks like:
828 // This is bad, if an interrupt is taken after the mov, sp is in an
829 // inconsistent state.
830 // Use the first callee-saved register as a scratch register.
831 assert(!MFI
.getPristineRegs(MF
).test(ARM::R4
) &&
832 "No scratch register to restore SP from FP!");
833 emitT2RegPlusImmediate(MBB
, MBBI
, dl
, ARM::R4
, FramePtr
, -NumBytes
,
835 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
837 .add(predOps(ARMCC::AL
));
842 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), ARM::SP
)
844 .add(predOps(ARMCC::AL
))
847 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
849 .add(predOps(ARMCC::AL
));
851 } else if (NumBytes
&&
852 !tryFoldSPUpdateIntoPushPop(STI
, MF
, &*MBBI
, NumBytes
))
853 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, NumBytes
);
855 // Increment past our save areas.
856 if (MBBI
!= MBB
.end() && AFI
->getDPRCalleeSavedAreaSize()) {
858 // Since vpop register list cannot have gaps, there may be multiple vpop
859 // instructions in the epilogue.
860 while (MBBI
!= MBB
.end() && MBBI
->getOpcode() == ARM::VLDMDIA_UPD
)
863 if (AFI
->getDPRCalleeSavedGapSize()) {
864 assert(AFI
->getDPRCalleeSavedGapSize() == 4 &&
865 "unexpected DPR alignment gap");
866 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, AFI
->getDPRCalleeSavedGapSize());
869 if (AFI
->getGPRCalleeSavedArea2Size()) MBBI
++;
870 if (AFI
->getGPRCalleeSavedArea1Size()) MBBI
++;
874 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, ArgRegsSaveSize
);
877 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
878 /// debug info. It's the same as what we use for resolving the code-gen
879 /// references for now. FIXME: This can go wrong when references are
880 /// SP-relative and simple call frames aren't used.
882 ARMFrameLowering::getFrameIndexReference(const MachineFunction
&MF
, int FI
,
883 unsigned &FrameReg
) const {
884 return ResolveFrameIndexReference(MF
, FI
, FrameReg
, 0);
888 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction
&MF
,
889 int FI
, unsigned &FrameReg
,
891 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
892 const ARMBaseRegisterInfo
*RegInfo
= static_cast<const ARMBaseRegisterInfo
*>(
893 MF
.getSubtarget().getRegisterInfo());
894 const ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
895 int Offset
= MFI
.getObjectOffset(FI
) + MFI
.getStackSize();
896 int FPOffset
= Offset
- AFI
->getFramePtrSpillOffset();
897 bool isFixed
= MFI
.isFixedObjectIndex(FI
);
902 // SP can move around if there are allocas. We may also lose track of SP
903 // when emergency spilling inside a non-reserved call frame setup.
904 bool hasMovingSP
= !hasReservedCallFrame(MF
);
906 // When dynamically realigning the stack, use the frame pointer for
907 // parameters, and the stack/base pointer for locals.
908 if (RegInfo
->needsStackRealignment(MF
)) {
909 assert(hasFP(MF
) && "dynamic stack realignment without a FP!");
911 FrameReg
= RegInfo
->getFrameRegister(MF
);
913 } else if (hasMovingSP
) {
914 assert(RegInfo
->hasBasePointer(MF
) &&
915 "VLAs and dynamic stack alignment, but missing base pointer!");
916 FrameReg
= RegInfo
->getBaseRegister();
922 // If there is a frame pointer, use it when we can.
923 if (hasFP(MF
) && AFI
->hasStackFrame()) {
924 // Use frame pointer to reference fixed objects. Use it for locals if
925 // there are VLAs (and thus the SP isn't reliable as a base).
926 if (isFixed
|| (hasMovingSP
&& !RegInfo
->hasBasePointer(MF
))) {
927 FrameReg
= RegInfo
->getFrameRegister(MF
);
929 } else if (hasMovingSP
) {
930 assert(RegInfo
->hasBasePointer(MF
) && "missing base pointer!");
931 if (AFI
->isThumb2Function()) {
932 // Try to use the frame pointer if we can, else use the base pointer
933 // since it's available. This is handy for the emergency spill slot, in
935 if (FPOffset
>= -255 && FPOffset
< 0) {
936 FrameReg
= RegInfo
->getFrameRegister(MF
);
940 } else if (AFI
->isThumbFunction()) {
941 // Prefer SP to base pointer, if the offset is suitably aligned and in
942 // range as the effective range of the immediate offset is bigger when
944 // Use add <rd>, sp, #<imm8>
945 // ldr <rd>, [sp, #<imm8>]
946 if (Offset
>= 0 && (Offset
& 3) == 0 && Offset
<= 1020)
948 // In Thumb2 mode, the negative offset is very limited. Try to avoid
949 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
950 if (AFI
->isThumb2Function() && FPOffset
>= -255 && FPOffset
< 0) {
951 FrameReg
= RegInfo
->getFrameRegister(MF
);
954 } else if (Offset
> (FPOffset
< 0 ? -FPOffset
: FPOffset
)) {
955 // Otherwise, use SP or FP, whichever is closer to the stack slot.
956 FrameReg
= RegInfo
->getFrameRegister(MF
);
960 // Use the base pointer if we have one.
961 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
962 // That can happen if we forced a base pointer for a large call frame.
963 if (RegInfo
->hasBasePointer(MF
)) {
964 FrameReg
= RegInfo
->getBaseRegister();
970 void ARMFrameLowering::emitPushInst(MachineBasicBlock
&MBB
,
971 MachineBasicBlock::iterator MI
,
972 const std::vector
<CalleeSavedInfo
> &CSI
,
973 unsigned StmOpc
, unsigned StrOpc
,
975 bool(*Func
)(unsigned, bool),
976 unsigned NumAlignedDPRCS2Regs
,
977 unsigned MIFlags
) const {
978 MachineFunction
&MF
= *MBB
.getParent();
979 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
980 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
984 using RegAndKill
= std::pair
<unsigned, bool>;
986 SmallVector
<RegAndKill
, 4> Regs
;
987 unsigned i
= CSI
.size();
989 unsigned LastReg
= 0;
990 for (; i
!= 0; --i
) {
991 unsigned Reg
= CSI
[i
-1].getReg();
992 if (!(Func
)(Reg
, STI
.splitFramePushPop(MF
))) continue;
994 // D-registers in the aligned area DPRCS2 are NOT spilled here.
995 if (Reg
>= ARM::D8
&& Reg
< ARM::D8
+ NumAlignedDPRCS2Regs
)
998 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
999 bool isLiveIn
= MRI
.isLiveIn(Reg
);
1000 if (!isLiveIn
&& !MRI
.isReserved(Reg
))
1002 // If NoGap is true, push consecutive registers and then leave the rest
1003 // for other instructions. e.g.
1004 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1005 if (NoGap
&& LastReg
&& LastReg
!= Reg
-1)
1008 // Do not set a kill flag on values that are also marked as live-in. This
1009 // happens with the @llvm-returnaddress intrinsic and with arguments
1010 // passed in callee saved registers.
1011 // Omitting the kill flags is conservatively correct even if the live-in
1012 // is not used after all.
1013 Regs
.push_back(std::make_pair(Reg
, /*isKill=*/!isLiveIn
));
1019 llvm::sort(Regs
, [&](const RegAndKill
&LHS
, const RegAndKill
&RHS
) {
1020 return TRI
.getEncodingValue(LHS
.first
) < TRI
.getEncodingValue(RHS
.first
);
1023 if (Regs
.size() > 1 || StrOpc
== 0) {
1024 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(StmOpc
), ARM::SP
)
1026 .setMIFlags(MIFlags
)
1027 .add(predOps(ARMCC::AL
));
1028 for (unsigned i
= 0, e
= Regs
.size(); i
< e
; ++i
)
1029 MIB
.addReg(Regs
[i
].first
, getKillRegState(Regs
[i
].second
));
1030 } else if (Regs
.size() == 1) {
1031 BuildMI(MBB
, MI
, DL
, TII
.get(StrOpc
), ARM::SP
)
1032 .addReg(Regs
[0].first
, getKillRegState(Regs
[0].second
))
1034 .setMIFlags(MIFlags
)
1036 .add(predOps(ARMCC::AL
));
1040 // Put any subsequent vpush instructions before this one: they will refer to
1041 // higher register numbers so need to be pushed first in order to preserve
1043 if (MI
!= MBB
.begin())
1048 void ARMFrameLowering::emitPopInst(MachineBasicBlock
&MBB
,
1049 MachineBasicBlock::iterator MI
,
1050 std::vector
<CalleeSavedInfo
> &CSI
,
1051 unsigned LdmOpc
, unsigned LdrOpc
,
1052 bool isVarArg
, bool NoGap
,
1053 bool(*Func
)(unsigned, bool),
1054 unsigned NumAlignedDPRCS2Regs
) const {
1055 MachineFunction
&MF
= *MBB
.getParent();
1056 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1057 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
1058 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1060 bool isTailCall
= false;
1061 bool isInterrupt
= false;
1062 bool isTrap
= false;
1063 if (MBB
.end() != MI
) {
1064 DL
= MI
->getDebugLoc();
1065 unsigned RetOpcode
= MI
->getOpcode();
1066 isTailCall
= (RetOpcode
== ARM::TCRETURNdi
|| RetOpcode
== ARM::TCRETURNri
);
1068 RetOpcode
== ARM::SUBS_PC_LR
|| RetOpcode
== ARM::t2SUBS_PC_LR
;
1070 RetOpcode
== ARM::TRAP
|| RetOpcode
== ARM::TRAPNaCl
||
1071 RetOpcode
== ARM::tTRAP
;
1074 SmallVector
<unsigned, 4> Regs
;
1075 unsigned i
= CSI
.size();
1077 unsigned LastReg
= 0;
1078 bool DeleteRet
= false;
1079 for (; i
!= 0; --i
) {
1080 CalleeSavedInfo
&Info
= CSI
[i
-1];
1081 unsigned Reg
= Info
.getReg();
1082 if (!(Func
)(Reg
, STI
.splitFramePushPop(MF
))) continue;
1084 // The aligned reloads from area DPRCS2 are not inserted here.
1085 if (Reg
>= ARM::D8
&& Reg
< ARM::D8
+ NumAlignedDPRCS2Regs
)
1088 if (Reg
== ARM::LR
&& !isTailCall
&& !isVarArg
&& !isInterrupt
&&
1089 !isTrap
&& STI
.hasV5TOps()) {
1090 if (MBB
.succ_empty()) {
1092 // Fold the return instruction into the LDM.
1094 LdmOpc
= AFI
->isThumbFunction() ? ARM::t2LDMIA_RET
: ARM::LDMIA_RET
;
1095 // We 'restore' LR into PC so it is not live out of the return block:
1096 // Clear Restored bit.
1097 Info
.setRestored(false);
1099 LdmOpc
= AFI
->isThumbFunction() ? ARM::t2LDMIA_UPD
: ARM::LDMIA_UPD
;
1102 // If NoGap is true, pop consecutive registers and then leave the rest
1103 // for other instructions. e.g.
1104 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1105 if (NoGap
&& LastReg
&& LastReg
!= Reg
-1)
1109 Regs
.push_back(Reg
);
1115 llvm::sort(Regs
, [&](unsigned LHS
, unsigned RHS
) {
1116 return TRI
.getEncodingValue(LHS
) < TRI
.getEncodingValue(RHS
);
1119 if (Regs
.size() > 1 || LdrOpc
== 0) {
1120 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(LdmOpc
), ARM::SP
)
1122 .add(predOps(ARMCC::AL
));
1123 for (unsigned i
= 0, e
= Regs
.size(); i
< e
; ++i
)
1124 MIB
.addReg(Regs
[i
], getDefRegState(true));
1126 if (MI
!= MBB
.end()) {
1127 MIB
.copyImplicitOps(*MI
);
1128 MI
->eraseFromParent();
1132 } else if (Regs
.size() == 1) {
1133 // If we adjusted the reg to PC from LR above, switch it back here. We
1134 // only do that for LDM.
1135 if (Regs
[0] == ARM::PC
)
1137 MachineInstrBuilder MIB
=
1138 BuildMI(MBB
, MI
, DL
, TII
.get(LdrOpc
), Regs
[0])
1139 .addReg(ARM::SP
, RegState::Define
)
1141 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1142 // that refactoring is complete (eventually).
1143 if (LdrOpc
== ARM::LDR_POST_REG
|| LdrOpc
== ARM::LDR_POST_IMM
) {
1145 MIB
.addImm(ARM_AM::getAM2Opc(ARM_AM::add
, 4, ARM_AM::no_shift
));
1148 MIB
.add(predOps(ARMCC::AL
));
1152 // Put any subsequent vpop instructions after this one: they will refer to
1153 // higher register numbers so need to be popped afterwards.
1154 if (MI
!= MBB
.end())
1159 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1160 /// starting from d8. Also insert stack realignment code and leave the stack
1161 /// pointer pointing to the d8 spill slot.
1162 static void emitAlignedDPRCS2Spills(MachineBasicBlock
&MBB
,
1163 MachineBasicBlock::iterator MI
,
1164 unsigned NumAlignedDPRCS2Regs
,
1165 const std::vector
<CalleeSavedInfo
> &CSI
,
1166 const TargetRegisterInfo
*TRI
) {
1167 MachineFunction
&MF
= *MBB
.getParent();
1168 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1169 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1170 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1171 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1173 // Mark the D-register spill slots as properly aligned. Since MFI computes
1174 // stack slot layout backwards, this can actually mean that the d-reg stack
1175 // slot offsets can be wrong. The offset for d8 will always be correct.
1176 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
1177 unsigned DNum
= CSI
[i
].getReg() - ARM::D8
;
1178 if (DNum
> NumAlignedDPRCS2Regs
- 1)
1180 int FI
= CSI
[i
].getFrameIdx();
1181 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1182 // registers will be 8-byte aligned.
1183 MFI
.setObjectAlignment(FI
, DNum
% 2 ? 8 : 16);
1185 // The stack slot for D8 needs to be maximally aligned because this is
1186 // actually the point where we align the stack pointer. MachineFrameInfo
1187 // computes all offsets relative to the incoming stack pointer which is a
1188 // bit weird when realigning the stack. Any extra padding for this
1189 // over-alignment is not realized because the code inserted below adjusts
1190 // the stack pointer by numregs * 8 before aligning the stack pointer.
1192 MFI
.setObjectAlignment(FI
, MFI
.getMaxAlignment());
1195 // Move the stack pointer to the d8 spill slot, and align it at the same
1196 // time. Leave the stack slot address in the scratch register r4.
1198 // sub r4, sp, #numregs * 8
1199 // bic r4, r4, #align - 1
1202 bool isThumb
= AFI
->isThumbFunction();
1203 assert(!AFI
->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1204 AFI
->setShouldRestoreSPFromFP(true);
1206 // sub r4, sp, #numregs * 8
1207 // The immediate is <= 64, so it doesn't need any special encoding.
1208 unsigned Opc
= isThumb
? ARM::t2SUBri
: ARM::SUBri
;
1209 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::R4
)
1211 .addImm(8 * NumAlignedDPRCS2Regs
)
1212 .add(predOps(ARMCC::AL
))
1215 unsigned MaxAlign
= MF
.getFrameInfo().getMaxAlignment();
1216 // We must set parameter MustBeSingleInstruction to true, since
1217 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1218 // stack alignment. Luckily, this can always be done since all ARM
1219 // architecture versions that support Neon also support the BFC
1221 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MI
, DL
, ARM::R4
, MaxAlign
, true);
1224 // The stack pointer must be adjusted before spilling anything, otherwise
1225 // the stack slots could be clobbered by an interrupt handler.
1226 // Leave r4 live, it is used below.
1227 Opc
= isThumb
? ARM::tMOVr
: ARM::MOVr
;
1228 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::SP
)
1230 .add(predOps(ARMCC::AL
));
1232 MIB
.add(condCodeOp());
1234 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1235 // r4 holds the stack slot address.
1236 unsigned NextReg
= ARM::D8
;
1238 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1239 // The writeback is only needed when emitting two vst1.64 instructions.
1240 if (NumAlignedDPRCS2Regs
>= 6) {
1241 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1242 &ARM::QQPRRegClass
);
1243 MBB
.addLiveIn(SupReg
);
1244 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1d64Qwb_fixed
), ARM::R4
)
1245 .addReg(ARM::R4
, RegState::Kill
)
1248 .addReg(SupReg
, RegState::ImplicitKill
)
1249 .add(predOps(ARMCC::AL
));
1251 NumAlignedDPRCS2Regs
-= 4;
1254 // We won't modify r4 beyond this point. It currently points to the next
1255 // register to be spilled.
1256 unsigned R4BaseReg
= NextReg
;
1258 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1259 if (NumAlignedDPRCS2Regs
>= 4) {
1260 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1261 &ARM::QQPRRegClass
);
1262 MBB
.addLiveIn(SupReg
);
1263 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1d64Q
))
1267 .addReg(SupReg
, RegState::ImplicitKill
)
1268 .add(predOps(ARMCC::AL
));
1270 NumAlignedDPRCS2Regs
-= 4;
1273 // 16-byte aligned vst1.64 with 2 d-regs.
1274 if (NumAlignedDPRCS2Regs
>= 2) {
1275 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1277 MBB
.addLiveIn(SupReg
);
1278 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1q64
))
1282 .add(predOps(ARMCC::AL
));
1284 NumAlignedDPRCS2Regs
-= 2;
1287 // Finally, use a vanilla vstr.64 for the odd last register.
1288 if (NumAlignedDPRCS2Regs
) {
1289 MBB
.addLiveIn(NextReg
);
1290 // vstr.64 uses addrmode5 which has an offset scale of 4.
1291 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VSTRD
))
1294 .addImm((NextReg
- R4BaseReg
) * 2)
1295 .add(predOps(ARMCC::AL
));
1298 // The last spill instruction inserted should kill the scratch register r4.
1299 std::prev(MI
)->addRegisterKilled(ARM::R4
, TRI
);
1302 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1303 /// iterator to the following instruction.
1304 static MachineBasicBlock::iterator
1305 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI
,
1306 unsigned NumAlignedDPRCS2Regs
) {
1307 // sub r4, sp, #numregs * 8
1308 // bic r4, r4, #align - 1
1311 assert(MI
->mayStore() && "Expecting spill instruction");
1313 // These switches all fall through.
1314 switch(NumAlignedDPRCS2Regs
) {
1317 assert(MI
->mayStore() && "Expecting spill instruction");
1321 assert(MI
->mayStore() && "Expecting spill instruction");
1326 assert(MI
->killsRegister(ARM::R4
) && "Missed kill flag");
1332 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1333 /// starting from d8. These instructions are assumed to execute while the
1334 /// stack is still aligned, unlike the code inserted by emitPopInst.
1335 static void emitAlignedDPRCS2Restores(MachineBasicBlock
&MBB
,
1336 MachineBasicBlock::iterator MI
,
1337 unsigned NumAlignedDPRCS2Regs
,
1338 const std::vector
<CalleeSavedInfo
> &CSI
,
1339 const TargetRegisterInfo
*TRI
) {
1340 MachineFunction
&MF
= *MBB
.getParent();
1341 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1342 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1343 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1345 // Find the frame index assigned to d8.
1347 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
)
1348 if (CSI
[i
].getReg() == ARM::D8
) {
1349 D8SpillFI
= CSI
[i
].getFrameIdx();
1353 // Materialize the address of the d8 spill slot into the scratch register r4.
1354 // This can be fairly complicated if the stack frame is large, so just use
1355 // the normal frame index elimination mechanism to do it. This code runs as
1356 // the initial part of the epilog where the stack and base pointers haven't
1357 // been changed yet.
1358 bool isThumb
= AFI
->isThumbFunction();
1359 assert(!AFI
->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1361 unsigned Opc
= isThumb
? ARM::t2ADDri
: ARM::ADDri
;
1362 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::R4
)
1363 .addFrameIndex(D8SpillFI
)
1365 .add(predOps(ARMCC::AL
))
1368 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1369 unsigned NextReg
= ARM::D8
;
1371 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1372 if (NumAlignedDPRCS2Regs
>= 6) {
1373 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1374 &ARM::QQPRRegClass
);
1375 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1d64Qwb_fixed
), NextReg
)
1376 .addReg(ARM::R4
, RegState::Define
)
1377 .addReg(ARM::R4
, RegState::Kill
)
1379 .addReg(SupReg
, RegState::ImplicitDefine
)
1380 .add(predOps(ARMCC::AL
));
1382 NumAlignedDPRCS2Regs
-= 4;
1385 // We won't modify r4 beyond this point. It currently points to the next
1386 // register to be spilled.
1387 unsigned R4BaseReg
= NextReg
;
1389 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1390 if (NumAlignedDPRCS2Regs
>= 4) {
1391 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1392 &ARM::QQPRRegClass
);
1393 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1d64Q
), NextReg
)
1396 .addReg(SupReg
, RegState::ImplicitDefine
)
1397 .add(predOps(ARMCC::AL
));
1399 NumAlignedDPRCS2Regs
-= 4;
1402 // 16-byte aligned vld1.64 with 2 d-regs.
1403 if (NumAlignedDPRCS2Regs
>= 2) {
1404 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1406 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1q64
), SupReg
)
1409 .add(predOps(ARMCC::AL
));
1411 NumAlignedDPRCS2Regs
-= 2;
1414 // Finally, use a vanilla vldr.64 for the remaining odd register.
1415 if (NumAlignedDPRCS2Regs
)
1416 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLDRD
), NextReg
)
1418 .addImm(2 * (NextReg
- R4BaseReg
))
1419 .add(predOps(ARMCC::AL
));
1421 // Last store kills r4.
1422 std::prev(MI
)->addRegisterKilled(ARM::R4
, TRI
);
1425 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock
&MBB
,
1426 MachineBasicBlock::iterator MI
,
1427 const std::vector
<CalleeSavedInfo
> &CSI
,
1428 const TargetRegisterInfo
*TRI
) const {
1432 MachineFunction
&MF
= *MBB
.getParent();
1433 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1435 unsigned PushOpc
= AFI
->isThumbFunction() ? ARM::t2STMDB_UPD
: ARM::STMDB_UPD
;
1436 unsigned PushOneOpc
= AFI
->isThumbFunction() ?
1437 ARM::t2STR_PRE
: ARM::STR_PRE_IMM
;
1438 unsigned FltOpc
= ARM::VSTMDDB_UPD
;
1439 unsigned NumAlignedDPRCS2Regs
= AFI
->getNumAlignedDPRCS2Regs();
1440 emitPushInst(MBB
, MI
, CSI
, PushOpc
, PushOneOpc
, false, &isARMArea1Register
, 0,
1441 MachineInstr::FrameSetup
);
1442 emitPushInst(MBB
, MI
, CSI
, PushOpc
, PushOneOpc
, false, &isARMArea2Register
, 0,
1443 MachineInstr::FrameSetup
);
1444 emitPushInst(MBB
, MI
, CSI
, FltOpc
, 0, true, &isARMArea3Register
,
1445 NumAlignedDPRCS2Regs
, MachineInstr::FrameSetup
);
1447 // The code above does not insert spill code for the aligned DPRCS2 registers.
1448 // The stack realignment code will be inserted between the push instructions
1449 // and these spills.
1450 if (NumAlignedDPRCS2Regs
)
1451 emitAlignedDPRCS2Spills(MBB
, MI
, NumAlignedDPRCS2Regs
, CSI
, TRI
);
1456 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
1457 MachineBasicBlock::iterator MI
,
1458 std::vector
<CalleeSavedInfo
> &CSI
,
1459 const TargetRegisterInfo
*TRI
) const {
1463 MachineFunction
&MF
= *MBB
.getParent();
1464 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1465 bool isVarArg
= AFI
->getArgRegsSaveSize() > 0;
1466 unsigned NumAlignedDPRCS2Regs
= AFI
->getNumAlignedDPRCS2Regs();
1468 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1469 // registers. Do that here instead.
1470 if (NumAlignedDPRCS2Regs
)
1471 emitAlignedDPRCS2Restores(MBB
, MI
, NumAlignedDPRCS2Regs
, CSI
, TRI
);
1473 unsigned PopOpc
= AFI
->isThumbFunction() ? ARM::t2LDMIA_UPD
: ARM::LDMIA_UPD
;
1474 unsigned LdrOpc
= AFI
->isThumbFunction() ? ARM::t2LDR_POST
:ARM::LDR_POST_IMM
;
1475 unsigned FltOpc
= ARM::VLDMDIA_UPD
;
1476 emitPopInst(MBB
, MI
, CSI
, FltOpc
, 0, isVarArg
, true, &isARMArea3Register
,
1477 NumAlignedDPRCS2Regs
);
1478 emitPopInst(MBB
, MI
, CSI
, PopOpc
, LdrOpc
, isVarArg
, false,
1479 &isARMArea2Register
, 0);
1480 emitPopInst(MBB
, MI
, CSI
, PopOpc
, LdrOpc
, isVarArg
, false,
1481 &isARMArea1Register
, 0);
1486 // FIXME: Make generic?
1487 static unsigned EstimateFunctionSizeInBytes(const MachineFunction
&MF
,
1488 const ARMBaseInstrInfo
&TII
) {
1489 unsigned FnSize
= 0;
1490 for (auto &MBB
: MF
) {
1491 for (auto &MI
: MBB
)
1492 FnSize
+= TII
.getInstSizeInBytes(MI
);
1494 if (MF
.getJumpTableInfo())
1495 for (auto &Table
: MF
.getJumpTableInfo()->getJumpTables())
1496 FnSize
+= Table
.MBBs
.size() * 4;
1497 FnSize
+= MF
.getConstantPool()->getConstants().size() * 4;
1501 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1502 /// frames and return the stack size limit beyond which some of these
1503 /// instructions will require a scratch register during their expansion later.
1504 // FIXME: Move to TII?
1505 static unsigned estimateRSStackSizeLimit(MachineFunction
&MF
,
1506 const TargetFrameLowering
*TFI
,
1507 bool &HasNonSPFrameIndex
) {
1508 const ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1509 const ARMBaseInstrInfo
&TII
=
1510 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
1511 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1512 unsigned Limit
= (1 << 12) - 1;
1513 for (auto &MBB
: MF
) {
1514 for (auto &MI
: MBB
) {
1515 if (MI
.isDebugInstr())
1517 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1518 if (!MI
.getOperand(i
).isFI())
1521 // When using ADDri to get the address of a stack object, 255 is the
1522 // largest offset guaranteed to fit in the immediate offset.
1523 if (MI
.getOpcode() == ARM::ADDri
) {
1524 Limit
= std::min(Limit
, (1U << 8) - 1);
1527 // t2ADDri will not require an extra register, it can reuse the
1529 if (MI
.getOpcode() == ARM::t2ADDri
|| MI
.getOpcode() == ARM::t2ADDri12
)
1532 const MCInstrDesc
&MCID
= MI
.getDesc();
1533 const TargetRegisterClass
*RegClass
= TII
.getRegClass(MCID
, i
, TRI
, MF
);
1534 if (RegClass
&& !RegClass
->contains(ARM::SP
))
1535 HasNonSPFrameIndex
= true;
1537 // Otherwise check the addressing mode.
1538 switch (MI
.getDesc().TSFlags
& ARMII::AddrModeMask
) {
1539 case ARMII::AddrMode_i12
:
1540 case ARMII::AddrMode2
:
1541 // Default 12 bit limit.
1543 case ARMII::AddrMode3
:
1544 case ARMII::AddrModeT2_i8
:
1545 Limit
= std::min(Limit
, (1U << 8) - 1);
1547 case ARMII::AddrMode5FP16
:
1548 Limit
= std::min(Limit
, ((1U << 8) - 1) * 2);
1550 case ARMII::AddrMode5
:
1551 case ARMII::AddrModeT2_i8s4
:
1552 case ARMII::AddrModeT2_ldrex
:
1553 Limit
= std::min(Limit
, ((1U << 8) - 1) * 4);
1555 case ARMII::AddrModeT2_i12
:
1556 // i12 supports only positive offset so these will be converted to
1557 // i8 opcodes. See llvm::rewriteT2FrameIndex.
1558 if (TFI
->hasFP(MF
) && AFI
->hasStackFrame())
1559 Limit
= std::min(Limit
, (1U << 8) - 1);
1561 case ARMII::AddrMode4
:
1562 case ARMII::AddrMode6
:
1563 // Addressing modes 4 & 6 (load/store) instructions can't encode an
1564 // immediate offset for stack references.
1566 case ARMII::AddrModeT2_i7
:
1567 Limit
= std::min(Limit
, ((1U << 7) - 1) * 1);
1569 case ARMII::AddrModeT2_i7s2
:
1570 Limit
= std::min(Limit
, ((1U << 7) - 1) * 2);
1572 case ARMII::AddrModeT2_i7s4
:
1573 Limit
= std::min(Limit
, ((1U << 7) - 1) * 4);
1576 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1578 break; // At most one FI per instruction
1586 // In functions that realign the stack, it can be an advantage to spill the
1587 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1588 // instructions take alignment hints that can improve performance.
1590 checkNumAlignedDPRCS2Regs(MachineFunction
&MF
, BitVector
&SavedRegs
) {
1591 MF
.getInfo
<ARMFunctionInfo
>()->setNumAlignedDPRCS2Regs(0);
1592 if (!SpillAlignedNEONRegs
)
1595 // Naked functions don't spill callee-saved registers.
1596 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
1599 // We are planning to use NEON instructions vst1 / vld1.
1600 if (!static_cast<const ARMSubtarget
&>(MF
.getSubtarget()).hasNEON())
1603 // Don't bother if the default stack alignment is sufficiently high.
1604 if (MF
.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1607 // Aligned spills require stack realignment.
1608 if (!static_cast<const ARMBaseRegisterInfo
*>(
1609 MF
.getSubtarget().getRegisterInfo())->canRealignStack(MF
))
1612 // We always spill contiguous d-registers starting from d8. Count how many
1613 // needs spilling. The register allocator will almost always use the
1614 // callee-saved registers in order, but it can happen that there are holes in
1615 // the range. Registers above the hole will be spilled to the standard DPRCS
1617 unsigned NumSpills
= 0;
1618 for (; NumSpills
< 8; ++NumSpills
)
1619 if (!SavedRegs
.test(ARM::D8
+ NumSpills
))
1622 // Don't do this for just one d-register. It's not worth it.
1626 // Spill the first NumSpills D-registers after realigning the stack.
1627 MF
.getInfo
<ARMFunctionInfo
>()->setNumAlignedDPRCS2Regs(NumSpills
);
1629 // A scratch register is required for the vst1 / vld1 instructions.
1630 SavedRegs
.set(ARM::R4
);
1633 void ARMFrameLowering::determineCalleeSaves(MachineFunction
&MF
,
1634 BitVector
&SavedRegs
,
1635 RegScavenger
*RS
) const {
1636 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
1637 // This tells PEI to spill the FP as if it is any other callee-save register
1638 // to take advantage the eliminateFrameIndex machinery. This also ensures it
1639 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1640 // to combine multiple loads / stores.
1641 bool CanEliminateFrame
= true;
1642 bool CS1Spilled
= false;
1643 bool LRSpilled
= false;
1644 unsigned NumGPRSpills
= 0;
1645 unsigned NumFPRSpills
= 0;
1646 SmallVector
<unsigned, 4> UnspilledCS1GPRs
;
1647 SmallVector
<unsigned, 4> UnspilledCS2GPRs
;
1648 const ARMBaseRegisterInfo
*RegInfo
= static_cast<const ARMBaseRegisterInfo
*>(
1649 MF
.getSubtarget().getRegisterInfo());
1650 const ARMBaseInstrInfo
&TII
=
1651 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
1652 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1653 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1654 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1655 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1656 (void)TRI
; // Silence unused warning in non-assert builds.
1657 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
1659 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1660 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1661 // since it's not always possible to restore sp from fp in a single
1663 // FIXME: It will be better just to find spare register here.
1664 if (AFI
->isThumb2Function() &&
1665 (MFI
.hasVarSizedObjects() || RegInfo
->needsStackRealignment(MF
)))
1666 SavedRegs
.set(ARM::R4
);
1668 // If a stack probe will be emitted, spill R4 and LR, since they are
1669 // clobbered by the stack probe call.
1670 // This estimate should be a safe, conservative estimate. The actual
1671 // stack probe is enabled based on the size of the local objects;
1672 // this estimate also includes the varargs store size.
1673 if (STI
.isTargetWindows() &&
1674 WindowsRequiresStackProbe(MF
, MFI
.estimateStackSize(MF
))) {
1675 SavedRegs
.set(ARM::R4
);
1676 SavedRegs
.set(ARM::LR
);
1679 if (AFI
->isThumb1OnlyFunction()) {
1680 // Spill LR if Thumb1 function uses variable length argument lists.
1681 if (AFI
->getArgRegsSaveSize() > 0)
1682 SavedRegs
.set(ARM::LR
);
1684 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1685 // requires stack alignment. We don't know for sure what the stack size
1686 // will be, but for this, an estimate is good enough. If there anything
1687 // changes it, it'll be a spill, which implies we've used all the registers
1688 // and so R4 is already used, so not marking it here will be OK.
1689 // FIXME: It will be better just to find spare register here.
1690 if (MFI
.hasVarSizedObjects() || RegInfo
->needsStackRealignment(MF
) ||
1691 MFI
.estimateStackSize(MF
) > 508)
1692 SavedRegs
.set(ARM::R4
);
1695 // See if we can spill vector registers to aligned stack.
1696 checkNumAlignedDPRCS2Regs(MF
, SavedRegs
);
1698 // Spill the BasePtr if it's used.
1699 if (RegInfo
->hasBasePointer(MF
))
1700 SavedRegs
.set(RegInfo
->getBaseRegister());
1702 // Don't spill FP if the frame can be eliminated. This is determined
1703 // by scanning the callee-save registers to see if any is modified.
1704 const MCPhysReg
*CSRegs
= RegInfo
->getCalleeSavedRegs(&MF
);
1705 for (unsigned i
= 0; CSRegs
[i
]; ++i
) {
1706 unsigned Reg
= CSRegs
[i
];
1707 bool Spilled
= false;
1708 if (SavedRegs
.test(Reg
)) {
1710 CanEliminateFrame
= false;
1713 if (!ARM::GPRRegClass
.contains(Reg
)) {
1715 if (ARM::SPRRegClass
.contains(Reg
))
1717 else if (ARM::DPRRegClass
.contains(Reg
))
1719 else if (ARM::QPRRegClass
.contains(Reg
))
1728 if (!STI
.splitFramePushPop(MF
)) {
1735 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1740 case ARM::R0
: case ARM::R1
:
1741 case ARM::R2
: case ARM::R3
:
1742 case ARM::R4
: case ARM::R5
:
1743 case ARM::R6
: case ARM::R7
:
1750 if (!STI
.splitFramePushPop(MF
)) {
1751 UnspilledCS1GPRs
.push_back(Reg
);
1756 case ARM::R0
: case ARM::R1
:
1757 case ARM::R2
: case ARM::R3
:
1758 case ARM::R4
: case ARM::R5
:
1759 case ARM::R6
: case ARM::R7
:
1761 UnspilledCS1GPRs
.push_back(Reg
);
1764 UnspilledCS2GPRs
.push_back(Reg
);
1770 bool ForceLRSpill
= false;
1771 if (!LRSpilled
&& AFI
->isThumb1OnlyFunction()) {
1772 unsigned FnSize
= EstimateFunctionSizeInBytes(MF
, TII
);
1773 // Force LR to be spilled if the Thumb function size is > 2048. This enables
1774 // use of BL to implement far jump. If it turns out that it's not needed
1775 // then the branch fix up path will undo it.
1776 if (FnSize
>= (1 << 11)) {
1777 CanEliminateFrame
= false;
1778 ForceLRSpill
= true;
1782 // If any of the stack slot references may be out of range of an immediate
1783 // offset, make sure a register (or a spill slot) is available for the
1784 // register scavenger. Note that if we're indexing off the frame pointer, the
1785 // effective stack size is 4 bytes larger since the FP points to the stack
1786 // slot of the previous FP. Also, if we have variable sized objects in the
1787 // function, stack slot references will often be negative, and some of
1788 // our instructions are positive-offset only, so conservatively consider
1789 // that case to want a spill slot (or register) as well. Similarly, if
1790 // the function adjusts the stack pointer during execution and the
1791 // adjustments aren't already part of our stack size estimate, our offset
1792 // calculations may be off, so be conservative.
1793 // FIXME: We could add logic to be more precise about negative offsets
1794 // and which instructions will need a scratch register for them. Is it
1795 // worth the effort and added fragility?
1796 unsigned EstimatedStackSize
=
1797 MFI
.estimateStackSize(MF
) + 4 * (NumGPRSpills
+ NumFPRSpills
);
1799 // Determine biggest (positive) SP offset in MachineFrameInfo.
1800 int MaxFixedOffset
= 0;
1801 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
1802 int MaxObjectOffset
= MFI
.getObjectOffset(I
) + MFI
.getObjectSize(I
);
1803 MaxFixedOffset
= std::max(MaxFixedOffset
, MaxObjectOffset
);
1806 bool HasFP
= hasFP(MF
);
1808 if (AFI
->hasStackFrame())
1809 EstimatedStackSize
+= 4;
1811 // If FP is not used, SP will be used to access arguments, so count the
1812 // size of arguments into the estimation.
1813 EstimatedStackSize
+= MaxFixedOffset
;
1815 EstimatedStackSize
+= 16; // For possible paddings.
1817 unsigned EstimatedRSStackSizeLimit
, EstimatedRSFixedSizeLimit
;
1818 bool HasNonSPFrameIndex
= false;
1819 if (AFI
->isThumb1OnlyFunction()) {
1820 // For Thumb1, don't bother to iterate over the function. The only
1821 // instruction that requires an emergency spill slot is a store to a
1824 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1825 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1826 // a 5-bit unsigned immediate.
1828 // We could try to check if the function actually contains a tSTRspi
1829 // that might need the spill slot, but it's not really important.
1830 // Functions with VLAs or extremely large call frames are rare, and
1831 // if a function is allocating more than 1KB of stack, an extra 4-byte
1832 // slot probably isn't relevant.
1833 if (RegInfo
->hasBasePointer(MF
))
1834 EstimatedRSStackSizeLimit
= (1U << 5) * 4;
1836 EstimatedRSStackSizeLimit
= (1U << 8) * 4;
1837 EstimatedRSFixedSizeLimit
= (1U << 5) * 4;
1839 EstimatedRSStackSizeLimit
=
1840 estimateRSStackSizeLimit(MF
, this, HasNonSPFrameIndex
);
1841 EstimatedRSFixedSizeLimit
= EstimatedRSStackSizeLimit
;
1843 // Final estimate of whether sp or bp-relative accesses might require
1845 bool HasLargeStack
= EstimatedStackSize
> EstimatedRSStackSizeLimit
;
1847 // If the stack pointer moves and we don't have a base pointer, the
1848 // estimate logic doesn't work. The actual offsets might be larger when
1849 // we're constructing a call frame, or we might need to use negative
1851 bool HasMovingSP
= MFI
.hasVarSizedObjects() ||
1852 (MFI
.adjustsStack() && !canSimplifyCallFramePseudos(MF
));
1853 bool HasBPOrFixedSP
= RegInfo
->hasBasePointer(MF
) || !HasMovingSP
;
1855 // If we have a frame pointer, we assume arguments will be accessed
1856 // relative to the frame pointer. Check whether fp-relative accesses to
1857 // arguments require scavenging.
1859 // We could do slightly better on Thumb1; in some cases, an sp-relative
1860 // offset would be legal even though an fp-relative offset is not.
1861 int MaxFPOffset
= getMaxFPOffset(MF
.getFunction(), *AFI
);
1862 bool HasLargeArgumentList
=
1863 HasFP
&& (MaxFixedOffset
- MaxFPOffset
) > (int)EstimatedRSFixedSizeLimit
;
1865 bool BigFrameOffsets
= HasLargeStack
|| !HasBPOrFixedSP
||
1866 HasLargeArgumentList
|| HasNonSPFrameIndex
;
1867 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1868 << "; EstimatedStack: " << EstimatedStackSize
1869 << "; EstimatedFPStack: " << MaxFixedOffset
- MaxFPOffset
1870 << "; BigFrameOffsets: " << BigFrameOffsets
<< "\n");
1871 if (BigFrameOffsets
||
1872 !CanEliminateFrame
|| RegInfo
->cannotEliminateFrame(MF
)) {
1873 AFI
->setHasStackFrame(true);
1876 SavedRegs
.set(FramePtr
);
1877 // If the frame pointer is required by the ABI, also spill LR so that we
1878 // emit a complete frame record.
1879 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
) && !LRSpilled
) {
1880 SavedRegs
.set(ARM::LR
);
1883 auto LRPos
= llvm::find(UnspilledCS1GPRs
, ARM::LR
);
1884 if (LRPos
!= UnspilledCS1GPRs
.end())
1885 UnspilledCS1GPRs
.erase(LRPos
);
1887 auto FPPos
= llvm::find(UnspilledCS1GPRs
, FramePtr
);
1888 if (FPPos
!= UnspilledCS1GPRs
.end())
1889 UnspilledCS1GPRs
.erase(FPPos
);
1891 if (FramePtr
== ARM::R7
)
1895 // This is true when we inserted a spill for a callee-save GPR which is
1896 // not otherwise used by the function. This guaranteees it is possible
1897 // to scavenge a register to hold the address of a stack slot. On Thumb1,
1898 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
1899 // subtargets, this is any GPR, i.e. r4-r11 or lr.
1901 // If we don't insert a spill, we instead allocate an emergency spill
1902 // slot, which can be used by scavenging to spill an arbitrary register.
1904 // We currently don't try to figure out whether any specific instruction
1905 // requires scavening an additional register.
1906 bool ExtraCSSpill
= false;
1908 if (AFI
->isThumb1OnlyFunction()) {
1909 // For Thumb1-only targets, we need some low registers when we save and
1910 // restore the high registers (which aren't allocatable, but could be
1911 // used by inline assembly) because the push/pop instructions can not
1912 // access high registers. If necessary, we might need to push more low
1913 // registers to ensure that there is at least one free that can be used
1914 // for the saving & restoring, and preferably we should ensure that as
1915 // many as are needed are available so that fewer push/pop instructions
1918 // Low registers which are not currently pushed, but could be (r4-r7).
1919 SmallVector
<unsigned, 4> AvailableRegs
;
1921 // Unused argument registers (r0-r3) can be clobbered in the prologue for
1923 int EntryRegDeficit
= 0;
1924 for (unsigned Reg
: {ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
}) {
1925 if (!MF
.getRegInfo().isLiveIn(Reg
)) {
1928 << printReg(Reg
, TRI
)
1929 << " is unused argument register, EntryRegDeficit = "
1930 << EntryRegDeficit
<< "\n");
1934 // Unused return registers can be clobbered in the epilogue for free.
1935 int ExitRegDeficit
= AFI
->getReturnRegsCount() - 4;
1936 LLVM_DEBUG(dbgs() << AFI
->getReturnRegsCount()
1937 << " return regs used, ExitRegDeficit = "
1938 << ExitRegDeficit
<< "\n");
1940 int RegDeficit
= std::max(EntryRegDeficit
, ExitRegDeficit
);
1941 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit
<< "\n");
1943 // r4-r6 can be used in the prologue if they are pushed by the first push
1945 for (unsigned Reg
: {ARM::R4
, ARM::R5
, ARM::R6
}) {
1946 if (SavedRegs
.test(Reg
)) {
1948 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
)
1949 << " is saved low register, RegDeficit = "
1950 << RegDeficit
<< "\n");
1952 AvailableRegs
.push_back(Reg
);
1955 << printReg(Reg
, TRI
)
1956 << " is non-saved low register, adding to AvailableRegs\n");
1960 // r7 can be used if it is not being used as the frame pointer.
1962 if (SavedRegs
.test(ARM::R7
)) {
1964 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1965 << RegDeficit
<< "\n");
1967 AvailableRegs
.push_back(ARM::R7
);
1970 << "%r7 is non-saved low register, adding to AvailableRegs\n");
1974 // Each of r8-r11 needs to be copied to a low register, then pushed.
1975 for (unsigned Reg
: {ARM::R8
, ARM::R9
, ARM::R10
, ARM::R11
}) {
1976 if (SavedRegs
.test(Reg
)) {
1978 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
)
1979 << " is saved high register, RegDeficit = "
1980 << RegDeficit
<< "\n");
1984 // LR can only be used by PUSH, not POP, and can't be used at all if the
1985 // llvm.returnaddress intrinsic is used. This is only worth doing if we
1986 // are more limited at function entry than exit.
1987 if ((EntryRegDeficit
> ExitRegDeficit
) &&
1988 !(MF
.getRegInfo().isLiveIn(ARM::LR
) &&
1989 MF
.getFrameInfo().isReturnAddressTaken())) {
1990 if (SavedRegs
.test(ARM::LR
)) {
1992 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
1993 << RegDeficit
<< "\n");
1995 AvailableRegs
.push_back(ARM::LR
);
1996 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2000 // If there are more high registers that need pushing than low registers
2001 // available, push some more low registers so that we can use fewer push
2002 // instructions. This might not reduce RegDeficit all the way to zero,
2003 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2005 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit
<< "\n");
2006 for (; RegDeficit
> 0 && !AvailableRegs
.empty(); --RegDeficit
) {
2007 unsigned Reg
= AvailableRegs
.pop_back_val();
2008 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2009 << " to make up reg deficit\n");
2013 assert(!MRI
.isReserved(Reg
) && "Should not be reserved");
2014 if (Reg
!= ARM::LR
&& !MRI
.isPhysRegUsed(Reg
))
2015 ExtraCSSpill
= true;
2016 UnspilledCS1GPRs
.erase(llvm::find(UnspilledCS1GPRs
, Reg
));
2020 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2024 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2025 // restore LR in that case.
2026 bool ExpensiveLRRestore
= AFI
->isThumb1OnlyFunction() && MFI
.hasTailCall();
2028 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2029 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2030 if (!LRSpilled
&& CS1Spilled
&& !ExpensiveLRRestore
) {
2031 SavedRegs
.set(ARM::LR
);
2033 SmallVectorImpl
<unsigned>::iterator LRPos
;
2034 LRPos
= llvm::find(UnspilledCS1GPRs
, (unsigned)ARM::LR
);
2035 if (LRPos
!= UnspilledCS1GPRs
.end())
2036 UnspilledCS1GPRs
.erase(LRPos
);
2038 ForceLRSpill
= false;
2039 if (!MRI
.isReserved(ARM::LR
) && !MRI
.isPhysRegUsed(ARM::LR
) &&
2040 !AFI
->isThumb1OnlyFunction())
2041 ExtraCSSpill
= true;
2044 // If stack and double are 8-byte aligned and we are spilling an odd number
2045 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2046 // the integer and double callee save areas.
2047 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills
<< "\n");
2048 unsigned TargetAlign
= getStackAlignment();
2049 if (TargetAlign
>= 8 && (NumGPRSpills
& 1)) {
2050 if (CS1Spilled
&& !UnspilledCS1GPRs
.empty()) {
2051 for (unsigned i
= 0, e
= UnspilledCS1GPRs
.size(); i
!= e
; ++i
) {
2052 unsigned Reg
= UnspilledCS1GPRs
[i
];
2053 // Don't spill high register if the function is thumb. In the case of
2054 // Windows on ARM, accept R11 (frame pointer)
2055 if (!AFI
->isThumbFunction() ||
2056 (STI
.isTargetWindows() && Reg
== ARM::R11
) ||
2057 isARMLowRegister(Reg
) ||
2058 (Reg
== ARM::LR
&& !ExpensiveLRRestore
)) {
2060 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2061 << " to make up alignment\n");
2062 if (!MRI
.isReserved(Reg
) && !MRI
.isPhysRegUsed(Reg
) &&
2063 !(Reg
== ARM::LR
&& AFI
->isThumb1OnlyFunction()))
2064 ExtraCSSpill
= true;
2068 } else if (!UnspilledCS2GPRs
.empty() && !AFI
->isThumb1OnlyFunction()) {
2069 unsigned Reg
= UnspilledCS2GPRs
.front();
2071 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2072 << " to make up alignment\n");
2073 if (!MRI
.isReserved(Reg
) && !MRI
.isPhysRegUsed(Reg
))
2074 ExtraCSSpill
= true;
2078 // Estimate if we might need to scavenge a register at some point in order
2079 // to materialize a stack offset. If so, either spill one additional
2080 // callee-saved register or reserve a special spill slot to facilitate
2081 // register scavenging. Thumb1 needs a spill slot for stack pointer
2082 // adjustments also, even when the frame itself is small.
2083 if (BigFrameOffsets
&& !ExtraCSSpill
) {
2084 // If any non-reserved CS register isn't spilled, just spill one or two
2085 // extra. That should take care of it!
2086 unsigned NumExtras
= TargetAlign
/ 4;
2087 SmallVector
<unsigned, 2> Extras
;
2088 while (NumExtras
&& !UnspilledCS1GPRs
.empty()) {
2089 unsigned Reg
= UnspilledCS1GPRs
.back();
2090 UnspilledCS1GPRs
.pop_back();
2091 if (!MRI
.isReserved(Reg
) &&
2092 (!AFI
->isThumb1OnlyFunction() || isARMLowRegister(Reg
))) {
2093 Extras
.push_back(Reg
);
2097 // For non-Thumb1 functions, also check for hi-reg CS registers
2098 if (!AFI
->isThumb1OnlyFunction()) {
2099 while (NumExtras
&& !UnspilledCS2GPRs
.empty()) {
2100 unsigned Reg
= UnspilledCS2GPRs
.back();
2101 UnspilledCS2GPRs
.pop_back();
2102 if (!MRI
.isReserved(Reg
)) {
2103 Extras
.push_back(Reg
);
2108 if (NumExtras
== 0) {
2109 for (unsigned Reg
: Extras
) {
2111 if (!MRI
.isPhysRegUsed(Reg
))
2112 ExtraCSSpill
= true;
2115 if (!ExtraCSSpill
&& RS
) {
2116 // Reserve a slot closest to SP or frame pointer.
2117 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2118 const TargetRegisterClass
&RC
= ARM::GPRRegClass
;
2119 unsigned Size
= TRI
->getSpillSize(RC
);
2120 unsigned Align
= TRI
->getSpillAlignment(RC
);
2121 RS
->addScavengingFrameIndex(MFI
.CreateStackObject(Size
, Align
, false));
2127 SavedRegs
.set(ARM::LR
);
2128 AFI
->setLRIsSpilledForFarJump(true);
2130 AFI
->setLRIsSpilled(SavedRegs
.test(ARM::LR
));
2132 // If we have the "returned" parameter attribute which guarantees that we
2133 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2134 // record that fact for IPRA.
2135 if (AFI
->getPreservesR0())
2136 SavedRegs
.set(ARM::R0
);
2139 MachineBasicBlock::iterator
ARMFrameLowering::eliminateCallFramePseudoInstr(
2140 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
2141 MachineBasicBlock::iterator I
) const {
2142 const ARMBaseInstrInfo
&TII
=
2143 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
2144 if (!hasReservedCallFrame(MF
)) {
2145 // If we have alloca, convert as follows:
2146 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2147 // ADJCALLSTACKUP -> add, sp, sp, amount
2148 MachineInstr
&Old
= *I
;
2149 DebugLoc dl
= Old
.getDebugLoc();
2150 unsigned Amount
= TII
.getFrameSize(Old
);
2152 // We need to keep the stack aligned properly. To do this, we round the
2153 // amount of space needed for the outgoing arguments up to the next
2154 // alignment boundary.
2155 Amount
= alignSPAdjust(Amount
);
2157 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2158 assert(!AFI
->isThumb1OnlyFunction() &&
2159 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2160 bool isARM
= !AFI
->isThumbFunction();
2162 // Replace the pseudo instruction with a new instruction...
2163 unsigned Opc
= Old
.getOpcode();
2164 int PIdx
= Old
.findFirstPredOperandIdx();
2165 ARMCC::CondCodes Pred
=
2166 (PIdx
== -1) ? ARMCC::AL
2167 : (ARMCC::CondCodes
)Old
.getOperand(PIdx
).getImm();
2168 unsigned PredReg
= TII
.getFramePred(Old
);
2169 if (Opc
== ARM::ADJCALLSTACKDOWN
|| Opc
== ARM::tADJCALLSTACKDOWN
) {
2170 emitSPUpdate(isARM
, MBB
, I
, dl
, TII
, -Amount
, MachineInstr::NoFlags
,
2173 assert(Opc
== ARM::ADJCALLSTACKUP
|| Opc
== ARM::tADJCALLSTACKUP
);
2174 emitSPUpdate(isARM
, MBB
, I
, dl
, TII
, Amount
, MachineInstr::NoFlags
,
2179 return MBB
.erase(I
);
2182 /// Get the minimum constant for ARM that is greater than or equal to the
2183 /// argument. In ARM, constants can have any value that can be produced by
2184 /// rotating an 8-bit value to the right by an even number of bits within a
2186 static uint32_t alignToARMConstant(uint32_t Value
) {
2187 unsigned Shifted
= 0;
2192 while (!(Value
& 0xC0000000)) {
2197 bool Carry
= (Value
& 0x00FFFFFF);
2198 Value
= ((Value
& 0xFF000000) >> 24) + Carry
;
2200 if (Value
& 0x0000100)
2201 Value
= Value
& 0x000001FC;
2204 Value
= Value
>> (Shifted
- 24);
2206 Value
= Value
<< (24 - Shifted
);
2211 // The stack limit in the TCB is set to this many bytes above the actual
2213 static const uint64_t kSplitStackAvailable
= 256;
2215 // Adjust the function prologue to enable split stacks. This currently only
2216 // supports android and linux.
2218 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2219 // must be well defined in order to allow for consistent implementations of the
2220 // __morestack helper function. The ABI is also not a normal ABI in that it
2221 // doesn't follow the normal calling conventions because this allows the
2222 // prologue of each function to be optimized further.
2224 // Currently, the ABI looks like (when calling __morestack)
2226 // * r4 holds the minimum stack size requested for this function call
2227 // * r5 holds the stack size of the arguments to the function
2228 // * the beginning of the function is 3 instructions after the call to
2231 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2232 // place the arguments on to the new stack, and the 3-instruction knowledge to
2233 // jump directly to the body of the function when working on the new stack.
2235 // An old (and possibly no longer compatible) implementation of __morestack for
2236 // ARM can be found at [1].
2238 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2239 void ARMFrameLowering::adjustForSegmentedStacks(
2240 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
2243 const ARMSubtarget
*ST
= &MF
.getSubtarget
<ARMSubtarget
>();
2244 bool Thumb
= ST
->isThumb();
2246 // Sadly, this currently doesn't support varargs, platforms other than
2247 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2248 if (MF
.getFunction().isVarArg())
2249 report_fatal_error("Segmented stacks do not support vararg functions.");
2250 if (!ST
->isTargetAndroid() && !ST
->isTargetLinux())
2251 report_fatal_error("Segmented stacks not supported on this platform.");
2253 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2254 MachineModuleInfo
&MMI
= MF
.getMMI();
2255 MCContext
&Context
= MMI
.getContext();
2256 const MCRegisterInfo
*MRI
= Context
.getRegisterInfo();
2257 const ARMBaseInstrInfo
&TII
=
2258 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
2259 ARMFunctionInfo
*ARMFI
= MF
.getInfo
<ARMFunctionInfo
>();
2262 uint64_t StackSize
= MFI
.getStackSize();
2264 // Do not generate a prologue for leaf functions with a stack of size zero.
2265 // For non-leaf functions we have to allow for the possibility that the
2266 // callis to a non-split function, as in PR37807. This function could also
2267 // take the address of a non-split function. When the linker tries to adjust
2268 // its non-existent prologue, it would fail with an error. Mark the object
2269 // file so that such failures are not errors. See this Go language bug-report
2270 // https://go-review.googlesource.com/c/go/+/148819/
2271 if (StackSize
== 0 && !MFI
.hasTailCall()) {
2272 MF
.getMMI().setHasNosplitStack(true);
2276 // Use R4 and R5 as scratch registers.
2277 // We save R4 and R5 before use and restore them before leaving the function.
2278 unsigned ScratchReg0
= ARM::R4
;
2279 unsigned ScratchReg1
= ARM::R5
;
2280 uint64_t AlignedStackSize
;
2282 MachineBasicBlock
*PrevStackMBB
= MF
.CreateMachineBasicBlock();
2283 MachineBasicBlock
*PostStackMBB
= MF
.CreateMachineBasicBlock();
2284 MachineBasicBlock
*AllocMBB
= MF
.CreateMachineBasicBlock();
2285 MachineBasicBlock
*GetMBB
= MF
.CreateMachineBasicBlock();
2286 MachineBasicBlock
*McrMBB
= MF
.CreateMachineBasicBlock();
2288 // Grab everything that reaches PrologueMBB to update there liveness as well.
2289 SmallPtrSet
<MachineBasicBlock
*, 8> BeforePrologueRegion
;
2290 SmallVector
<MachineBasicBlock
*, 2> WalkList
;
2291 WalkList
.push_back(&PrologueMBB
);
2294 MachineBasicBlock
*CurMBB
= WalkList
.pop_back_val();
2295 for (MachineBasicBlock
*PredBB
: CurMBB
->predecessors()) {
2296 if (BeforePrologueRegion
.insert(PredBB
).second
)
2297 WalkList
.push_back(PredBB
);
2299 } while (!WalkList
.empty());
2301 // The order in that list is important.
2302 // The blocks will all be inserted before PrologueMBB using that order.
2303 // Therefore the block that should appear first in the CFG should appear
2304 // first in the list.
2305 MachineBasicBlock
*AddedBlocks
[] = {PrevStackMBB
, McrMBB
, GetMBB
, AllocMBB
,
2308 for (MachineBasicBlock
*B
: AddedBlocks
)
2309 BeforePrologueRegion
.insert(B
);
2311 for (const auto &LI
: PrologueMBB
.liveins()) {
2312 for (MachineBasicBlock
*PredBB
: BeforePrologueRegion
)
2313 PredBB
->addLiveIn(LI
);
2316 // Remove the newly added blocks from the list, since we know
2317 // we do not have to do the following updates for them.
2318 for (MachineBasicBlock
*B
: AddedBlocks
) {
2319 BeforePrologueRegion
.erase(B
);
2320 MF
.insert(PrologueMBB
.getIterator(), B
);
2323 for (MachineBasicBlock
*MBB
: BeforePrologueRegion
) {
2324 // Make sure the LiveIns are still sorted and unique.
2325 MBB
->sortUniqueLiveIns();
2326 // Replace the edges to PrologueMBB by edges to the sequences
2327 // we are about to add.
2328 MBB
->ReplaceUsesOfBlockWith(&PrologueMBB
, AddedBlocks
[0]);
2331 // The required stack size that is aligned to ARM constant criterion.
2332 AlignedStackSize
= alignToARMConstant(StackSize
);
2334 // When the frame size is less than 256 we just compare the stack
2335 // boundary directly to the value of the stack pointer, per gcc.
2336 bool CompareStackPointer
= AlignedStackSize
< kSplitStackAvailable
;
2338 // We will use two of the callee save registers as scratch registers so we
2339 // need to save those registers onto the stack.
2340 // We will use SR0 to hold stack limit and SR1 to hold the stack size
2341 // requested and arguments for __morestack().
2342 // SR0: Scratch Register #0
2343 // SR1: Scratch Register #1
2346 BuildMI(PrevStackMBB
, DL
, TII
.get(ARM::tPUSH
))
2347 .add(predOps(ARMCC::AL
))
2348 .addReg(ScratchReg0
)
2349 .addReg(ScratchReg1
);
2351 BuildMI(PrevStackMBB
, DL
, TII
.get(ARM::STMDB_UPD
))
2352 .addReg(ARM::SP
, RegState::Define
)
2354 .add(predOps(ARMCC::AL
))
2355 .addReg(ScratchReg0
)
2356 .addReg(ScratchReg1
);
2359 // Emit the relevant DWARF information about the change in stack pointer as
2360 // well as where to find both r4 and r5 (the callee-save registers)
2362 MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2363 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2364 .addCFIIndex(CFIIndex
);
2365 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2366 nullptr, MRI
->getDwarfRegNum(ScratchReg1
, true), -4));
2367 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2368 .addCFIIndex(CFIIndex
);
2369 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2370 nullptr, MRI
->getDwarfRegNum(ScratchReg0
, true), -8));
2371 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2372 .addCFIIndex(CFIIndex
);
2376 BuildMI(McrMBB
, DL
, TII
.get(ARM::tMOVr
), ScratchReg1
)
2378 .add(predOps(ARMCC::AL
));
2379 } else if (CompareStackPointer
) {
2380 BuildMI(McrMBB
, DL
, TII
.get(ARM::MOVr
), ScratchReg1
)
2382 .add(predOps(ARMCC::AL
))
2386 // sub SR1, sp, #StackSize
2387 if (!CompareStackPointer
&& Thumb
) {
2388 BuildMI(McrMBB
, DL
, TII
.get(ARM::tSUBi8
), ScratchReg1
)
2390 .addReg(ScratchReg1
)
2391 .addImm(AlignedStackSize
)
2392 .add(predOps(ARMCC::AL
));
2393 } else if (!CompareStackPointer
) {
2394 BuildMI(McrMBB
, DL
, TII
.get(ARM::SUBri
), ScratchReg1
)
2396 .addImm(AlignedStackSize
)
2397 .add(predOps(ARMCC::AL
))
2401 if (Thumb
&& ST
->isThumb1Only()) {
2402 unsigned PCLabelId
= ARMFI
->createPICLabelUId();
2403 ARMConstantPoolValue
*NewCPV
= ARMConstantPoolSymbol::Create(
2404 MF
.getFunction().getContext(), "__STACK_LIMIT", PCLabelId
, 0);
2405 MachineConstantPool
*MCP
= MF
.getConstantPool();
2406 unsigned CPI
= MCP
->getConstantPoolIndex(NewCPV
, 4);
2408 // ldr SR0, [pc, offset(STACK_LIMIT)]
2409 BuildMI(GetMBB
, DL
, TII
.get(ARM::tLDRpci
), ScratchReg0
)
2410 .addConstantPoolIndex(CPI
)
2411 .add(predOps(ARMCC::AL
));
2414 BuildMI(GetMBB
, DL
, TII
.get(ARM::tLDRi
), ScratchReg0
)
2415 .addReg(ScratchReg0
)
2417 .add(predOps(ARMCC::AL
));
2419 // Get TLS base address from the coprocessor
2420 // mrc p15, #0, SR0, c13, c0, #3
2421 BuildMI(McrMBB
, DL
, TII
.get(ARM::MRC
), ScratchReg0
)
2427 .add(predOps(ARMCC::AL
));
2429 // Use the last tls slot on android and a private field of the TCP on linux.
2430 assert(ST
->isTargetAndroid() || ST
->isTargetLinux());
2431 unsigned TlsOffset
= ST
->isTargetAndroid() ? 63 : 1;
2433 // Get the stack limit from the right offset
2434 // ldr SR0, [sr0, #4 * TlsOffset]
2435 BuildMI(GetMBB
, DL
, TII
.get(ARM::LDRi12
), ScratchReg0
)
2436 .addReg(ScratchReg0
)
2437 .addImm(4 * TlsOffset
)
2438 .add(predOps(ARMCC::AL
));
2441 // Compare stack limit with stack size requested.
2443 Opcode
= Thumb
? ARM::tCMPr
: ARM::CMPrr
;
2444 BuildMI(GetMBB
, DL
, TII
.get(Opcode
))
2445 .addReg(ScratchReg0
)
2446 .addReg(ScratchReg1
)
2447 .add(predOps(ARMCC::AL
));
2449 // This jump is taken if StackLimit < SP - stack required.
2450 Opcode
= Thumb
? ARM::tBcc
: ARM::Bcc
;
2451 BuildMI(GetMBB
, DL
, TII
.get(Opcode
)).addMBB(PostStackMBB
)
2456 // Calling __morestack(StackSize, Size of stack arguments).
2457 // __morestack knows that the stack size requested is in SR0(r4)
2458 // and amount size of stack arguments is in SR1(r5).
2460 // Pass first argument for the __morestack by Scratch Register #0.
2461 // The amount size of stack required
2463 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVi8
), ScratchReg0
)
2465 .addImm(AlignedStackSize
)
2466 .add(predOps(ARMCC::AL
));
2468 BuildMI(AllocMBB
, DL
, TII
.get(ARM::MOVi
), ScratchReg0
)
2469 .addImm(AlignedStackSize
)
2470 .add(predOps(ARMCC::AL
))
2473 // Pass second argument for the __morestack by Scratch Register #1.
2474 // The amount size of stack consumed to save function arguments.
2476 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVi8
), ScratchReg1
)
2478 .addImm(alignToARMConstant(ARMFI
->getArgumentStackSize()))
2479 .add(predOps(ARMCC::AL
));
2481 BuildMI(AllocMBB
, DL
, TII
.get(ARM::MOVi
), ScratchReg1
)
2482 .addImm(alignToARMConstant(ARMFI
->getArgumentStackSize()))
2483 .add(predOps(ARMCC::AL
))
2487 // push {lr} - Save return address of this function.
2489 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPUSH
))
2490 .add(predOps(ARMCC::AL
))
2493 BuildMI(AllocMBB
, DL
, TII
.get(ARM::STMDB_UPD
))
2494 .addReg(ARM::SP
, RegState::Define
)
2496 .add(predOps(ARMCC::AL
))
2500 // Emit the DWARF info about the change in stack as well as where to find the
2501 // previous link register
2503 MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2504 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2505 .addCFIIndex(CFIIndex
);
2506 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2507 nullptr, MRI
->getDwarfRegNum(ARM::LR
, true), -12));
2508 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2509 .addCFIIndex(CFIIndex
);
2511 // Call __morestack().
2513 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tBL
))
2514 .add(predOps(ARMCC::AL
))
2515 .addExternalSymbol("__morestack");
2517 BuildMI(AllocMBB
, DL
, TII
.get(ARM::BL
))
2518 .addExternalSymbol("__morestack");
2521 // pop {lr} - Restore return address of this original function.
2523 if (ST
->isThumb1Only()) {
2524 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPOP
))
2525 .add(predOps(ARMCC::AL
))
2526 .addReg(ScratchReg0
);
2527 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVr
), ARM::LR
)
2528 .addReg(ScratchReg0
)
2529 .add(predOps(ARMCC::AL
));
2531 BuildMI(AllocMBB
, DL
, TII
.get(ARM::t2LDR_POST
))
2532 .addReg(ARM::LR
, RegState::Define
)
2533 .addReg(ARM::SP
, RegState::Define
)
2536 .add(predOps(ARMCC::AL
));
2539 BuildMI(AllocMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2540 .addReg(ARM::SP
, RegState::Define
)
2542 .add(predOps(ARMCC::AL
))
2546 // Restore SR0 and SR1 in case of __morestack() was called.
2547 // __morestack() will skip PostStackMBB block so we need to restore
2548 // scratch registers from here.
2551 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPOP
))
2552 .add(predOps(ARMCC::AL
))
2553 .addReg(ScratchReg0
)
2554 .addReg(ScratchReg1
);
2556 BuildMI(AllocMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2557 .addReg(ARM::SP
, RegState::Define
)
2559 .add(predOps(ARMCC::AL
))
2560 .addReg(ScratchReg0
)
2561 .addReg(ScratchReg1
);
2564 // Update the CFA offset now that we've popped
2565 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2566 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2567 .addCFIIndex(CFIIndex
);
2569 // Return from this function.
2570 BuildMI(AllocMBB
, DL
, TII
.get(ST
->getReturnOpcode())).add(predOps(ARMCC::AL
));
2572 // Restore SR0 and SR1 in case of __morestack() was not called.
2575 BuildMI(PostStackMBB
, DL
, TII
.get(ARM::tPOP
))
2576 .add(predOps(ARMCC::AL
))
2577 .addReg(ScratchReg0
)
2578 .addReg(ScratchReg1
);
2580 BuildMI(PostStackMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2581 .addReg(ARM::SP
, RegState::Define
)
2583 .add(predOps(ARMCC::AL
))
2584 .addReg(ScratchReg0
)
2585 .addReg(ScratchReg1
);
2588 // Update the CFA offset now that we've popped
2589 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2590 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2591 .addCFIIndex(CFIIndex
);
2593 // Tell debuggers that r4 and r5 are now the same as they were in the
2594 // previous function, that they're the "Same Value".
2595 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createSameValue(
2596 nullptr, MRI
->getDwarfRegNum(ScratchReg0
, true)));
2597 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2598 .addCFIIndex(CFIIndex
);
2599 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createSameValue(
2600 nullptr, MRI
->getDwarfRegNum(ScratchReg1
, true)));
2601 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2602 .addCFIIndex(CFIIndex
);
2604 // Organizing MBB lists
2605 PostStackMBB
->addSuccessor(&PrologueMBB
);
2607 AllocMBB
->addSuccessor(PostStackMBB
);
2609 GetMBB
->addSuccessor(PostStackMBB
);
2610 GetMBB
->addSuccessor(AllocMBB
);
2612 McrMBB
->addSuccessor(GetMBB
);
2614 PrevStackMBB
->addSuccessor(McrMBB
);
2616 #ifdef EXPENSIVE_CHECKS