1 //===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the ARM instructions in TableGen format.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // ARM specific DAG Nodes.
18 def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
20 def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21 def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22 [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
25 def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
27 def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
29 def SDT_ARMCMov : SDTypeProfile<1, 3,
30 [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
33 def SDT_ARMBrcond : SDTypeProfile<0, 2,
34 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
36 def SDT_ARMBrJT : SDTypeProfile<0, 2,
37 [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
39 def SDT_ARMBr2JT : SDTypeProfile<0, 3,
40 [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
43 def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
45 SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46 SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47 SDTCisVT<5, OtherVT>]>;
49 def SDT_ARMAnd : SDTypeProfile<1, 2,
50 [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
53 def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
55 def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
56 SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
58 def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
59 def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
61 def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
62 def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
64 def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
66 def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
69 def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
71 def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
72 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
74 def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
76 def SDT_ARMMEMCPY : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
77 SDTCisVT<2, i32>, SDTCisVT<3, i32>,
80 def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
83 SDTCisInt<0>, SDTCisVT<1, i32>]>;
85 // SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
86 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
93 def SDT_LongMac : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
100 // ARMlsll, ARMlsrl, ARMasrl
101 def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
107 // TODO Add another operand for 'Size' so that we can re-use this node when we
108 // start supporting *TP versions.
109 def SDT_ARMLoLoop : SDTypeProfile<0, 2, [SDTCisVT<0, i32>,
110 SDTCisVT<1, OtherVT>]>;
112 def ARMSmlald : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
113 def ARMSmlaldx : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
114 def ARMSmlsld : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
115 def ARMSmlsldx : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
117 def SDT_ARMCSel : SDTypeProfile<1, 3,
123 def ARMcsinv : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
124 def ARMcsneg : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
125 def ARMcsinc : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
127 def SDT_MulHSR : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
130 SDTCisSameAs<0, 3>]>;
132 def ARMsmmlar : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
133 def ARMsmmlsr : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
136 def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
137 def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>;
138 def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntUnaryOp>;
140 def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
141 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
142 def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
143 [SDNPHasChain, SDNPSideEffect,
144 SDNPOptInGlue, SDNPOutGlue]>;
145 def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
147 [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
148 SDNPMayStore, SDNPMayLoad]>;
150 def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
151 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
153 def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
154 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
156 def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
157 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
160 def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
161 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
162 def ARMintretflag : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
163 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
164 def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
166 def ARMsubs : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
168 def ARMssatnoshift : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
170 def ARMusatnoshift : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
172 def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
173 [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
175 def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
177 def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
180 def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
183 def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
186 def ARMcmn : SDNode<"ARMISD::CMN", SDT_ARMCmp,
189 def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
190 [SDNPOutGlue, SDNPCommutative]>;
192 def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
194 def ARMasrl : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
195 def ARMlsrl : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
196 def ARMlsll : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
198 def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
199 def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
200 def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>;
202 def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags,
204 def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>;
205 def ARMlsls : SDNode<"ARMISD::LSLS", SDTBinaryArithWithFlags>;
206 def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>;
207 def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>;
209 def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
210 def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
211 SDT_ARMEH_SJLJ_Setjmp,
212 [SDNPHasChain, SDNPSideEffect]>;
213 def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
214 SDT_ARMEH_SJLJ_Longjmp,
215 [SDNPHasChain, SDNPSideEffect]>;
216 def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
217 SDT_ARMEH_SJLJ_SetupDispatch,
218 [SDNPHasChain, SDNPSideEffect]>;
220 def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
221 [SDNPHasChain, SDNPSideEffect]>;
222 def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
223 [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
225 def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
226 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
228 def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
230 def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
231 [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
232 SDNPMayStore, SDNPMayLoad]>;
234 def ARMsmulwb : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
235 def ARMsmulwt : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
236 def ARMsmlalbb : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
237 def ARMsmlalbt : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
238 def ARMsmlaltb : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
239 def ARMsmlaltt : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
241 // Vector operations shared between NEON and MVE
243 def ARMvdup : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
245 // VDUPLANE can produce a quad-register result from a double-register source,
246 // so the result is not constrained to match the source.
247 def ARMvduplane : SDNode<"ARMISD::VDUPLANE",
248 SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
251 def SDTARMVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
252 def ARMvrev64 : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
253 def ARMvrev32 : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
254 def ARMvrev16 : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
256 def SDTARMVGETLN : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
258 def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
259 def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
261 def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
262 def ARMvmovImm : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
263 def ARMvmvnImm : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
264 def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
267 def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
269 def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
270 SDTCisSameAs<0, 2>,]>;
271 def ARMvshlImm : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
272 def ARMvshrsImm : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
273 def ARMvshruImm : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
274 def ARMvshls : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
275 def ARMvshlu : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
277 def SDTARMVCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
279 def SDTARMVCMPZ : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
281 def ARMvcmp : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
282 def ARMvcmpz : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
284 def ARMWLS : SDNode<"ARMISD::WLS", SDT_ARMLoLoop, [SDNPHasChain]>;
285 def ARMLE : SDNode<"ARMISD::LE", SDT_ARMLoLoop, [SDNPHasChain]>;
286 def ARMLoopDec : SDNode<"ARMISD::LOOP_DEC", SDTIntBinOp, [SDNPHasChain]>;
288 //===----------------------------------------------------------------------===//
289 // ARM Flag Definitions.
291 class RegConstraint<string C> {
292 string Constraints = C;
295 //===----------------------------------------------------------------------===//
296 // ARM specific transformation functions and pattern fragments.
299 // imm_neg_XFORM - Return the negation of an i32 immediate value.
300 def imm_neg_XFORM : SDNodeXForm<imm, [{
301 return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
304 // imm_not_XFORM - Return the complement of a i32 immediate value.
305 def imm_not_XFORM : SDNodeXForm<imm, [{
306 return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
309 /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
310 def imm16_31 : ImmLeaf<i32, [{
311 return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
314 // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
315 def sext_16_node : PatLeaf<(i32 GPR:$a), [{
316 return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
319 def sext_bottom_16 : PatFrag<(ops node:$a),
320 (sext_inreg node:$a, i16)>;
321 def sext_top_16 : PatFrag<(ops node:$a),
322 (i32 (sra node:$a, (i32 16)))>;
324 def bb_mul : PatFrag<(ops node:$a, node:$b),
325 (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
326 def bt_mul : PatFrag<(ops node:$a, node:$b),
327 (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
328 def tb_mul : PatFrag<(ops node:$a, node:$b),
329 (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
330 def tt_mul : PatFrag<(ops node:$a, node:$b),
331 (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
333 /// Split a 32-bit immediate into two 16 bit parts.
334 def hi16 : SDNodeXForm<imm, [{
335 return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
339 def lo16AllZero : PatLeaf<(i32 imm), [{
340 // Returns true if all low 16-bits are 0.
341 return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
344 class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
345 class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
347 // An 'and' node with a single use.
348 def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
349 return N->hasOneUse();
352 // An 'xor' node with a single use.
353 def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
354 return N->hasOneUse();
357 // An 'fmul' node with a single use.
358 def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
359 return N->hasOneUse();
362 // An 'fadd' node which checks for single non-hazardous use.
363 def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
364 return hasNoVMLxHazardUse(N);
367 // An 'fsub' node which checks for single non-hazardous use.
368 def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
369 return hasNoVMLxHazardUse(N);
372 //===----------------------------------------------------------------------===//
373 // Operand Definitions.
376 // Immediate operands with a shared generic asm render method.
377 class ImmAsmOperand<int Low, int High> : AsmOperandClass {
378 let RenderMethod = "addImmOperands";
379 let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
380 let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
383 class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
384 let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
385 let DiagnosticType = "ImmRange" # Low # "_" # High;
386 let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
389 // Operands that are part of a memory addressing mode.
390 class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
393 // FIXME: rename brtarget to t2_brtarget
394 def brtarget : Operand<OtherVT> {
395 let EncoderMethod = "getBranchTargetOpValue";
396 let OperandType = "OPERAND_PCREL";
397 let DecoderMethod = "DecodeT2BROperand";
400 // Branches targeting ARM-mode must be divisible by 4 if they're a raw
402 def ARMBranchTarget : AsmOperandClass {
403 let Name = "ARMBranchTarget";
406 // Branches targeting Thumb-mode must be divisible by 2 if they're a raw
408 def ThumbBranchTarget : AsmOperandClass {
409 let Name = "ThumbBranchTarget";
412 def arm_br_target : Operand<OtherVT> {
413 let ParserMatchClass = ARMBranchTarget;
414 let EncoderMethod = "getARMBranchTargetOpValue";
415 let OperandType = "OPERAND_PCREL";
418 // Call target for ARM. Handles conditional/unconditional
419 // FIXME: rename bl_target to t2_bltarget?
420 def arm_bl_target : Operand<i32> {
421 let ParserMatchClass = ARMBranchTarget;
422 let EncoderMethod = "getARMBLTargetOpValue";
423 let OperandType = "OPERAND_PCREL";
426 // Target for BLX *from* ARM mode.
427 def arm_blx_target : Operand<i32> {
428 let ParserMatchClass = ThumbBranchTarget;
429 let EncoderMethod = "getARMBLXTargetOpValue";
430 let OperandType = "OPERAND_PCREL";
433 // A list of registers separated by comma. Used by load/store multiple.
434 def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
435 def reglist : Operand<i32> {
436 let EncoderMethod = "getRegisterListOpValue";
437 let ParserMatchClass = RegListAsmOperand;
438 let PrintMethod = "printRegisterList";
439 let DecoderMethod = "DecodeRegListOperand";
442 // A list of general purpose registers and APSR separated by comma.
444 def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
445 def reglist_with_apsr : Operand<i32> {
446 let EncoderMethod = "getRegisterListOpValue";
447 let ParserMatchClass = RegListWithAPSRAsmOperand;
448 let PrintMethod = "printRegisterList";
449 let DecoderMethod = "DecodeRegListOperand";
452 def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
454 def DPRRegListAsmOperand : AsmOperandClass {
455 let Name = "DPRRegList";
456 let DiagnosticType = "DPR_RegList";
458 def dpr_reglist : Operand<i32> {
459 let EncoderMethod = "getRegisterListOpValue";
460 let ParserMatchClass = DPRRegListAsmOperand;
461 let PrintMethod = "printRegisterList";
462 let DecoderMethod = "DecodeDPRRegListOperand";
465 def SPRRegListAsmOperand : AsmOperandClass {
466 let Name = "SPRRegList";
467 let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
469 def spr_reglist : Operand<i32> {
470 let EncoderMethod = "getRegisterListOpValue";
471 let ParserMatchClass = SPRRegListAsmOperand;
472 let PrintMethod = "printRegisterList";
473 let DecoderMethod = "DecodeSPRRegListOperand";
476 def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
477 "FPSRegListWithVPR"; }
478 def fp_sreglist_with_vpr : Operand<i32> {
479 let EncoderMethod = "getRegisterListOpValue";
480 let ParserMatchClass = FPSRegListWithVPRAsmOperand;
481 let PrintMethod = "printRegisterList";
483 def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
484 "FPDRegListWithVPR"; }
485 def fp_dreglist_with_vpr : Operand<i32> {
486 let EncoderMethod = "getRegisterListOpValue";
487 let ParserMatchClass = FPDRegListWithVPRAsmOperand;
488 let PrintMethod = "printRegisterList";
491 // An operand for the CONSTPOOL_ENTRY pseudo-instruction.
492 def cpinst_operand : Operand<i32> {
493 let PrintMethod = "printCPInstOperand";
497 def pclabel : Operand<i32> {
498 let PrintMethod = "printPCLabel";
501 // ADR instruction labels.
502 def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
503 def adrlabel : Operand<i32> {
504 let EncoderMethod = "getAdrLabelOpValue";
505 let ParserMatchClass = AdrLabelAsmOperand;
506 let PrintMethod = "printAdrLabelOperand<0>";
509 def neon_vcvt_imm32 : Operand<i32> {
510 let EncoderMethod = "getNEONVcvtImm32OpValue";
511 let DecoderMethod = "DecodeVCVTImmOperand";
514 // rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
515 def rot_imm_XFORM: SDNodeXForm<imm, [{
516 switch (N->getZExtValue()){
517 default: llvm_unreachable(nullptr);
518 case 0: return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
519 case 8: return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
520 case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
521 case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
524 def RotImmAsmOperand : AsmOperandClass {
526 let ParserMethod = "parseRotImm";
528 def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
529 int32_t v = N->getZExtValue();
530 return v == 8 || v == 16 || v == 24; }],
532 let PrintMethod = "printRotImmOperand";
533 let ParserMatchClass = RotImmAsmOperand;
536 // Power-of-two operand for MVE VIDUP and friends, which encode
537 // {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
538 def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
539 let Name = "VIDUP_imm";
540 let PredicateMethod = "isPowerTwoInRange<1,8>";
541 let RenderMethod = "addPowerTwoOperands";
542 let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
544 def MVE_VIDUP_imm : Operand<i32> {
545 let EncoderMethod = "getPowerTwoOpValue";
546 let DecoderMethod = "DecodePowerTwoOperand<0,3>";
547 let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
550 // Pair vector indexing
551 class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
552 let Name = "MVEPairVectorIndex"#start;
553 let RenderMethod = "addMVEPairVectorIndexOperands";
554 let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
557 class MVEPairVectorIndex<string opval> : Operand<i32> {
558 let PrintMethod = "printVectorIndex";
559 let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
560 let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
561 let MIOperandInfo = (ops i32imm);
564 def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
565 let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
568 def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
569 let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
573 class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
574 let Name = "MVEVectorIndex"#NumLanes;
575 let RenderMethod = "addMVEVectorIndexOperands";
576 let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
579 class MVEVectorIndex<int NumLanes> : Operand<i32> {
580 let PrintMethod = "printVectorIndex";
581 let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
582 let MIOperandInfo = (ops i32imm);
585 // shift_imm: An integer that encodes a shift amount and the type of shift
586 // (asr or lsl). The 6-bit immediate encodes as:
589 // {4-0} imm5 shift amount.
590 // asr #32 encoded as imm5 == 0.
591 def ShifterImmAsmOperand : AsmOperandClass {
592 let Name = "ShifterImm";
593 let ParserMethod = "parseShifterImm";
595 def shift_imm : Operand<i32> {
596 let PrintMethod = "printShiftImmOperand";
597 let ParserMatchClass = ShifterImmAsmOperand;
600 // shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
601 def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
602 def so_reg_reg : Operand<i32>, // reg reg imm
603 ComplexPattern<i32, 3, "SelectRegShifterOperand",
604 [shl, srl, sra, rotr]> {
605 let EncoderMethod = "getSORegRegOpValue";
606 let PrintMethod = "printSORegRegOperand";
607 let DecoderMethod = "DecodeSORegRegOperand";
608 let ParserMatchClass = ShiftedRegAsmOperand;
609 let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
612 def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
613 def so_reg_imm : Operand<i32>, // reg imm
614 ComplexPattern<i32, 2, "SelectImmShifterOperand",
615 [shl, srl, sra, rotr]> {
616 let EncoderMethod = "getSORegImmOpValue";
617 let PrintMethod = "printSORegImmOperand";
618 let DecoderMethod = "DecodeSORegImmOperand";
619 let ParserMatchClass = ShiftedImmAsmOperand;
620 let MIOperandInfo = (ops GPR, i32imm);
623 // FIXME: Does this need to be distinct from so_reg?
624 def shift_so_reg_reg : Operand<i32>, // reg reg imm
625 ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
626 [shl,srl,sra,rotr]> {
627 let EncoderMethod = "getSORegRegOpValue";
628 let PrintMethod = "printSORegRegOperand";
629 let DecoderMethod = "DecodeSORegRegOperand";
630 let ParserMatchClass = ShiftedRegAsmOperand;
631 let MIOperandInfo = (ops GPR, GPR, i32imm);
634 // FIXME: Does this need to be distinct from so_reg?
635 def shift_so_reg_imm : Operand<i32>, // reg reg imm
636 ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
637 [shl,srl,sra,rotr]> {
638 let EncoderMethod = "getSORegImmOpValue";
639 let PrintMethod = "printSORegImmOperand";
640 let DecoderMethod = "DecodeSORegImmOperand";
641 let ParserMatchClass = ShiftedImmAsmOperand;
642 let MIOperandInfo = (ops GPR, i32imm);
645 // mod_imm: match a 32-bit immediate operand, which can be encoded into
646 // a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
647 // - "Modified Immediate Constants"). Within the MC layer we keep this
648 // immediate in its encoded form.
649 def ModImmAsmOperand: AsmOperandClass {
651 let ParserMethod = "parseModImm";
653 def mod_imm : Operand<i32>, ImmLeaf<i32, [{
654 return ARM_AM::getSOImmVal(Imm) != -1;
656 let EncoderMethod = "getModImmOpValue";
657 let PrintMethod = "printModImmOperand";
658 let ParserMatchClass = ModImmAsmOperand;
661 // Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
662 // method and such, as they are only used on aliases (Pat<> and InstAlias<>).
663 // The actual parsing, encoding, decoding are handled by the destination
664 // instructions, which use mod_imm.
666 def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
667 def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
668 return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
670 let ParserMatchClass = ModImmNotAsmOperand;
673 def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
674 def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
675 unsigned Value = -(unsigned)N->getZExtValue();
676 return Value && ARM_AM::getSOImmVal(Value) != -1;
678 let ParserMatchClass = ModImmNegAsmOperand;
681 /// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
682 def arm_i32imm : IntImmLeaf<i32, [{
683 if (Subtarget->useMovt())
685 return ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue());
688 /// imm0_1 predicate - Immediate in the range [0,1].
689 def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
690 def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
692 /// imm0_3 predicate - Immediate in the range [0,3].
693 def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
694 def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
696 /// imm0_7 predicate - Immediate in the range [0,7].
697 def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
700 def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
701 return Imm >= 0 && Imm < 8;
703 let ParserMatchClass = Imm0_7AsmOperand;
706 /// imm8_255 predicate - Immediate in the range [8,255].
707 def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
708 def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
709 return Imm >= 8 && Imm < 256;
711 let ParserMatchClass = Imm8_255AsmOperand;
714 /// imm8 predicate - Immediate is exactly 8.
715 def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
716 def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
717 let ParserMatchClass = Imm8AsmOperand;
720 /// imm16 predicate - Immediate is exactly 16.
721 def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
722 def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
723 let ParserMatchClass = Imm16AsmOperand;
726 /// imm32 predicate - Immediate is exactly 32.
727 def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
728 def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
729 let ParserMatchClass = Imm32AsmOperand;
732 def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
734 /// imm1_7 predicate - Immediate in the range [1,7].
735 def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
736 def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
737 let ParserMatchClass = Imm1_7AsmOperand;
740 /// imm1_15 predicate - Immediate in the range [1,15].
741 def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
742 def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
743 let ParserMatchClass = Imm1_15AsmOperand;
746 /// imm1_31 predicate - Immediate in the range [1,31].
747 def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
748 def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
749 let ParserMatchClass = Imm1_31AsmOperand;
752 /// imm0_15 predicate - Immediate in the range [0,15].
753 def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
754 let Name = "Imm0_15";
756 def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
757 return Imm >= 0 && Imm < 16;
759 let ParserMatchClass = Imm0_15AsmOperand;
762 /// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
763 def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
764 def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
765 return Imm >= 0 && Imm < 32;
767 let ParserMatchClass = Imm0_31AsmOperand;
770 /// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
771 def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
772 def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
773 return Imm >= 0 && Imm < 33;
775 let ParserMatchClass = Imm0_32AsmOperand;
778 /// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
779 def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
780 def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
781 return Imm >= 0 && Imm < 64;
783 let ParserMatchClass = Imm0_63AsmOperand;
786 /// imm0_239 predicate - Immediate in the range [0,239].
787 def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
788 let Name = "Imm0_239";
790 def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
791 let ParserMatchClass = Imm0_239AsmOperand;
794 /// imm0_255 predicate - Immediate in the range [0,255].
795 def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
796 def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
797 let ParserMatchClass = Imm0_255AsmOperand;
800 /// imm0_65535 - An immediate is in the range [0,65535].
801 def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
802 def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
803 return Imm >= 0 && Imm < 65536;
805 let ParserMatchClass = Imm0_65535AsmOperand;
808 // imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
809 def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
810 return -Imm >= 0 && -Imm < 65536;
813 // imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
814 // a relocatable expression.
816 // FIXME: This really needs a Thumb version separate from the ARM version.
817 // While the range is the same, and can thus use the same match class,
818 // the encoding is different so it should have a different encoder method.
819 def Imm0_65535ExprAsmOperand: AsmOperandClass {
820 let Name = "Imm0_65535Expr";
821 let RenderMethod = "addImmOperands";
822 let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
825 def imm0_65535_expr : Operand<i32> {
826 let EncoderMethod = "getHiLo16ImmOpValue";
827 let ParserMatchClass = Imm0_65535ExprAsmOperand;
830 def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
831 def imm256_65535_expr : Operand<i32> {
832 let ParserMatchClass = Imm256_65535ExprAsmOperand;
835 /// imm24b - True if the 32-bit immediate is encodable in 24 bits.
836 def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
837 let Name = "Imm24bit";
838 let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
840 def imm24b : Operand<i32>, ImmLeaf<i32, [{
841 return Imm >= 0 && Imm <= 0xffffff;
843 let ParserMatchClass = Imm24bitAsmOperand;
847 /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
849 def BitfieldAsmOperand : AsmOperandClass {
850 let Name = "Bitfield";
851 let ParserMethod = "parseBitfield";
854 def bf_inv_mask_imm : Operand<i32>,
856 return ARM::isBitFieldInvertedMask(N->getZExtValue());
858 let EncoderMethod = "getBitfieldInvertedMaskOpValue";
859 let PrintMethod = "printBitfieldInvMaskImmOperand";
860 let DecoderMethod = "DecodeBitfieldMaskOperand";
861 let ParserMatchClass = BitfieldAsmOperand;
862 let GISelPredicateCode = [{
863 // There's better methods of implementing this check. IntImmLeaf<> would be
864 // equivalent and have less boilerplate but we need a test for C++
865 // predicates and this one causes new rules to be imported into GlobalISel
866 // without requiring additional features first.
867 const auto &MO = MI.getOperand(1);
870 return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
874 def imm1_32_XFORM: SDNodeXForm<imm, [{
875 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
878 def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
879 let Name = "Imm1_32";
881 def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
882 uint64_t Imm = N->getZExtValue();
883 return Imm > 0 && Imm <= 32;
886 let PrintMethod = "printImmPlusOneOperand";
887 let ParserMatchClass = Imm1_32AsmOperand;
890 def imm1_16_XFORM: SDNodeXForm<imm, [{
891 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
894 def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
895 def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
896 return Imm > 0 && Imm <= 16;
899 let PrintMethod = "printImmPlusOneOperand";
900 let ParserMatchClass = Imm1_16AsmOperand;
903 def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
904 let Name = "MVEShiftImm1_7";
905 // Reason we're doing this is because instruction vshll.s8 t1 encoding
906 // accepts 1,7 but the t2 encoding accepts 8. By doing this we can get a
907 // better diagnostic message if someone uses bigger immediate than the t1/t2
909 let DiagnosticString = "operand must be an immediate in the range [1,8]";
911 def mve_shift_imm1_7 : Operand<i32> {
912 let ParserMatchClass = MVEShiftImm1_7AsmOperand;
913 let EncoderMethod = "getMVEShiftImmOpValue";
916 def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
917 let Name = "MVEShiftImm1_15";
918 // Reason we're doing this is because instruction vshll.s16 t1 encoding
919 // accepts 1,15 but the t2 encoding accepts 16. By doing this we can get a
920 // better diagnostic message if someone uses bigger immediate than the t1/t2
922 let DiagnosticString = "operand must be an immediate in the range [1,16]";
924 def mve_shift_imm1_15 : Operand<i32> {
925 let ParserMatchClass = MVEShiftImm1_15AsmOperand;
926 let EncoderMethod = "getMVEShiftImmOpValue";
929 // Define ARM specific addressing modes.
930 // addrmode_imm12 := reg +/- imm12
932 def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
933 class AddrMode_Imm12 : MemOperand,
934 ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
935 // 12-bit immediate operand. Note that instructions using this encode
936 // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
937 // immediate values are as normal.
939 let EncoderMethod = "getAddrModeImm12OpValue";
940 let DecoderMethod = "DecodeAddrModeImm12Operand";
941 let ParserMatchClass = MemImm12OffsetAsmOperand;
942 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
945 def addrmode_imm12 : AddrMode_Imm12 {
946 let PrintMethod = "printAddrModeImm12Operand<false>";
949 def addrmode_imm12_pre : AddrMode_Imm12 {
950 let PrintMethod = "printAddrModeImm12Operand<true>";
953 // ldst_so_reg := reg +/- reg shop imm
955 def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
956 def ldst_so_reg : MemOperand,
957 ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
958 let EncoderMethod = "getLdStSORegOpValue";
959 // FIXME: Simplify the printer
960 let PrintMethod = "printAddrMode2Operand";
961 let DecoderMethod = "DecodeSORegMemOperand";
962 let ParserMatchClass = MemRegOffsetAsmOperand;
963 let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
966 // postidx_imm8 := +/- [0,255]
969 // {8} 1 is imm8 is non-negative. 0 otherwise.
970 // {7-0} [0,255] imm8 value.
971 def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
972 def postidx_imm8 : MemOperand {
973 let PrintMethod = "printPostIdxImm8Operand";
974 let ParserMatchClass = PostIdxImm8AsmOperand;
975 let MIOperandInfo = (ops i32imm);
978 // postidx_imm8s4 := +/- [0,1020]
981 // {8} 1 is imm8 is non-negative. 0 otherwise.
982 // {7-0} [0,255] imm8 value, scaled by 4.
983 def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
984 def postidx_imm8s4 : MemOperand {
985 let PrintMethod = "printPostIdxImm8s4Operand";
986 let ParserMatchClass = PostIdxImm8s4AsmOperand;
987 let MIOperandInfo = (ops i32imm);
991 // postidx_reg := +/- reg
993 def PostIdxRegAsmOperand : AsmOperandClass {
994 let Name = "PostIdxReg";
995 let ParserMethod = "parsePostIdxReg";
997 def postidx_reg : MemOperand {
998 let EncoderMethod = "getPostIdxRegOpValue";
999 let DecoderMethod = "DecodePostIdxReg";
1000 let PrintMethod = "printPostIdxRegOperand";
1001 let ParserMatchClass = PostIdxRegAsmOperand;
1002 let MIOperandInfo = (ops GPRnopc, i32imm);
1005 def PostIdxRegShiftedAsmOperand : AsmOperandClass {
1006 let Name = "PostIdxRegShifted";
1007 let ParserMethod = "parsePostIdxReg";
1009 def am2offset_reg : MemOperand,
1010 ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
1011 [], [SDNPWantRoot]> {
1012 let EncoderMethod = "getAddrMode2OffsetOpValue";
1013 let PrintMethod = "printAddrMode2OffsetOperand";
1014 // When using this for assembly, it's always as a post-index offset.
1015 let ParserMatchClass = PostIdxRegShiftedAsmOperand;
1016 let MIOperandInfo = (ops GPRnopc, i32imm);
1019 // FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1020 // the GPR is purely vestigal at this point.
1021 def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1022 def am2offset_imm : MemOperand,
1023 ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1024 [], [SDNPWantRoot]> {
1025 let EncoderMethod = "getAddrMode2OffsetOpValue";
1026 let PrintMethod = "printAddrMode2OffsetOperand";
1027 let ParserMatchClass = AM2OffsetImmAsmOperand;
1028 let MIOperandInfo = (ops GPRnopc, i32imm);
1032 // addrmode3 := reg +/- reg
1033 // addrmode3 := reg +/- imm8
1035 // FIXME: split into imm vs. reg versions.
1036 def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1037 class AddrMode3 : MemOperand,
1038 ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1039 let EncoderMethod = "getAddrMode3OpValue";
1040 let ParserMatchClass = AddrMode3AsmOperand;
1041 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1044 def addrmode3 : AddrMode3
1046 let PrintMethod = "printAddrMode3Operand<false>";
1049 def addrmode3_pre : AddrMode3
1051 let PrintMethod = "printAddrMode3Operand<true>";
1054 // FIXME: split into imm vs. reg versions.
1055 // FIXME: parser method to handle +/- register.
1056 def AM3OffsetAsmOperand : AsmOperandClass {
1057 let Name = "AM3Offset";
1058 let ParserMethod = "parseAM3Offset";
1060 def am3offset : MemOperand,
1061 ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1062 [], [SDNPWantRoot]> {
1063 let EncoderMethod = "getAddrMode3OffsetOpValue";
1064 let PrintMethod = "printAddrMode3OffsetOperand";
1065 let ParserMatchClass = AM3OffsetAsmOperand;
1066 let MIOperandInfo = (ops GPR, i32imm);
1069 // ldstm_mode := {ia, ib, da, db}
1071 def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1072 let EncoderMethod = "getLdStmModeOpValue";
1073 let PrintMethod = "printLdStmModeOperand";
1076 // addrmode5 := reg +/- imm8*4
1078 def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1079 class AddrMode5 : MemOperand,
1080 ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1081 let EncoderMethod = "getAddrMode5OpValue";
1082 let DecoderMethod = "DecodeAddrMode5Operand";
1083 let ParserMatchClass = AddrMode5AsmOperand;
1084 let MIOperandInfo = (ops GPR:$base, i32imm);
1087 def addrmode5 : AddrMode5 {
1088 let PrintMethod = "printAddrMode5Operand<false>";
1091 def addrmode5_pre : AddrMode5 {
1092 let PrintMethod = "printAddrMode5Operand<true>";
1095 // addrmode5fp16 := reg +/- imm8*2
1097 def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1098 class AddrMode5FP16 : Operand<i32>,
1099 ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1100 let EncoderMethod = "getAddrMode5FP16OpValue";
1101 let DecoderMethod = "DecodeAddrMode5FP16Operand";
1102 let ParserMatchClass = AddrMode5FP16AsmOperand;
1103 let MIOperandInfo = (ops GPR:$base, i32imm);
1106 def addrmode5fp16 : AddrMode5FP16 {
1107 let PrintMethod = "printAddrMode5FP16Operand<false>";
1110 // addrmode6 := reg with optional alignment
1112 def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1113 def addrmode6 : MemOperand,
1114 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1115 let PrintMethod = "printAddrMode6Operand";
1116 let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1117 let EncoderMethod = "getAddrMode6AddressOpValue";
1118 let DecoderMethod = "DecodeAddrMode6Operand";
1119 let ParserMatchClass = AddrMode6AsmOperand;
1122 def am6offset : MemOperand,
1123 ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1124 [], [SDNPWantRoot]> {
1125 let PrintMethod = "printAddrMode6OffsetOperand";
1126 let MIOperandInfo = (ops GPR);
1127 let EncoderMethod = "getAddrMode6OffsetOpValue";
1128 let DecoderMethod = "DecodeGPRRegisterClass";
1131 // Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1132 // (single element from one lane) for size 32.
1133 def addrmode6oneL32 : MemOperand,
1134 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1135 let PrintMethod = "printAddrMode6Operand";
1136 let MIOperandInfo = (ops GPR:$addr, i32imm);
1137 let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1140 // Base class for addrmode6 with specific alignment restrictions.
1141 class AddrMode6Align : MemOperand,
1142 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1143 let PrintMethod = "printAddrMode6Operand";
1144 let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1145 let EncoderMethod = "getAddrMode6AddressOpValue";
1146 let DecoderMethod = "DecodeAddrMode6Operand";
1149 // Special version of addrmode6 to handle no allowed alignment encoding for
1150 // VLD/VST instructions and checking the alignment is not specified.
1151 def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1152 let Name = "AlignedMemoryNone";
1153 let DiagnosticString = "alignment must be omitted";
1155 def addrmode6alignNone : AddrMode6Align {
1156 // The alignment specifier can only be omitted.
1157 let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1160 // Special version of addrmode6 to handle 16-bit alignment encoding for
1161 // VLD/VST instructions and checking the alignment value.
1162 def AddrMode6Align16AsmOperand : AsmOperandClass {
1163 let Name = "AlignedMemory16";
1164 let DiagnosticString = "alignment must be 16 or omitted";
1166 def addrmode6align16 : AddrMode6Align {
1167 // The alignment specifier can only be 16 or omitted.
1168 let ParserMatchClass = AddrMode6Align16AsmOperand;
1171 // Special version of addrmode6 to handle 32-bit alignment encoding for
1172 // VLD/VST instructions and checking the alignment value.
1173 def AddrMode6Align32AsmOperand : AsmOperandClass {
1174 let Name = "AlignedMemory32";
1175 let DiagnosticString = "alignment must be 32 or omitted";
1177 def addrmode6align32 : AddrMode6Align {
1178 // The alignment specifier can only be 32 or omitted.
1179 let ParserMatchClass = AddrMode6Align32AsmOperand;
1182 // Special version of addrmode6 to handle 64-bit alignment encoding for
1183 // VLD/VST instructions and checking the alignment value.
1184 def AddrMode6Align64AsmOperand : AsmOperandClass {
1185 let Name = "AlignedMemory64";
1186 let DiagnosticString = "alignment must be 64 or omitted";
1188 def addrmode6align64 : AddrMode6Align {
1189 // The alignment specifier can only be 64 or omitted.
1190 let ParserMatchClass = AddrMode6Align64AsmOperand;
1193 // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1194 // for VLD/VST instructions and checking the alignment value.
1195 def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1196 let Name = "AlignedMemory64or128";
1197 let DiagnosticString = "alignment must be 64, 128 or omitted";
1199 def addrmode6align64or128 : AddrMode6Align {
1200 // The alignment specifier can only be 64, 128 or omitted.
1201 let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1204 // Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1205 // encoding for VLD/VST instructions and checking the alignment value.
1206 def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1207 let Name = "AlignedMemory64or128or256";
1208 let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1210 def addrmode6align64or128or256 : AddrMode6Align {
1211 // The alignment specifier can only be 64, 128, 256 or omitted.
1212 let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1215 // Special version of addrmode6 to handle alignment encoding for VLD-dup
1216 // instructions, specifically VLD4-dup.
1217 def addrmode6dup : MemOperand,
1218 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1219 let PrintMethod = "printAddrMode6Operand";
1220 let MIOperandInfo = (ops GPR:$addr, i32imm);
1221 let EncoderMethod = "getAddrMode6DupAddressOpValue";
1222 // FIXME: This is close, but not quite right. The alignment specifier is
1224 let ParserMatchClass = AddrMode6AsmOperand;
1227 // Base class for addrmode6dup with specific alignment restrictions.
1228 class AddrMode6DupAlign : MemOperand,
1229 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1230 let PrintMethod = "printAddrMode6Operand";
1231 let MIOperandInfo = (ops GPR:$addr, i32imm);
1232 let EncoderMethod = "getAddrMode6DupAddressOpValue";
1235 // Special version of addrmode6 to handle no allowed alignment encoding for
1236 // VLD-dup instruction and checking the alignment is not specified.
1237 def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1238 let Name = "DupAlignedMemoryNone";
1239 let DiagnosticString = "alignment must be omitted";
1241 def addrmode6dupalignNone : AddrMode6DupAlign {
1242 // The alignment specifier can only be omitted.
1243 let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1246 // Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1247 // instruction and checking the alignment value.
1248 def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1249 let Name = "DupAlignedMemory16";
1250 let DiagnosticString = "alignment must be 16 or omitted";
1252 def addrmode6dupalign16 : AddrMode6DupAlign {
1253 // The alignment specifier can only be 16 or omitted.
1254 let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1257 // Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1258 // instruction and checking the alignment value.
1259 def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1260 let Name = "DupAlignedMemory32";
1261 let DiagnosticString = "alignment must be 32 or omitted";
1263 def addrmode6dupalign32 : AddrMode6DupAlign {
1264 // The alignment specifier can only be 32 or omitted.
1265 let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1268 // Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1269 // instructions and checking the alignment value.
1270 def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1271 let Name = "DupAlignedMemory64";
1272 let DiagnosticString = "alignment must be 64 or omitted";
1274 def addrmode6dupalign64 : AddrMode6DupAlign {
1275 // The alignment specifier can only be 64 or omitted.
1276 let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1279 // Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1280 // for VLD instructions and checking the alignment value.
1281 def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1282 let Name = "DupAlignedMemory64or128";
1283 let DiagnosticString = "alignment must be 64, 128 or omitted";
1285 def addrmode6dupalign64or128 : AddrMode6DupAlign {
1286 // The alignment specifier can only be 64, 128 or omitted.
1287 let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1290 // addrmodepc := pc + reg
1292 def addrmodepc : MemOperand,
1293 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1294 let PrintMethod = "printAddrModePCOperand";
1295 let MIOperandInfo = (ops GPR, i32imm);
1298 // addr_offset_none := reg
1300 def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1301 def addr_offset_none : MemOperand,
1302 ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1303 let PrintMethod = "printAddrMode7Operand";
1304 let DecoderMethod = "DecodeAddrMode7Operand";
1305 let ParserMatchClass = MemNoOffsetAsmOperand;
1306 let MIOperandInfo = (ops GPR:$base);
1309 // t_addr_offset_none := reg [r0-r7]
1310 def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1311 def t_addr_offset_none : MemOperand {
1312 let PrintMethod = "printAddrMode7Operand";
1313 let DecoderMethod = "DecodetGPRRegisterClass";
1314 let ParserMatchClass = MemNoOffsetTAsmOperand;
1315 let MIOperandInfo = (ops tGPR:$base);
1318 def nohash_imm : Operand<i32> {
1319 let PrintMethod = "printNoHashImmediate";
1322 def CoprocNumAsmOperand : AsmOperandClass {
1323 let Name = "CoprocNum";
1324 let ParserMethod = "parseCoprocNumOperand";
1326 def p_imm : Operand<i32> {
1327 let PrintMethod = "printPImmediate";
1328 let ParserMatchClass = CoprocNumAsmOperand;
1329 let DecoderMethod = "DecodeCoprocessor";
1332 def CoprocRegAsmOperand : AsmOperandClass {
1333 let Name = "CoprocReg";
1334 let ParserMethod = "parseCoprocRegOperand";
1336 def c_imm : Operand<i32> {
1337 let PrintMethod = "printCImmediate";
1338 let ParserMatchClass = CoprocRegAsmOperand;
1340 def CoprocOptionAsmOperand : AsmOperandClass {
1341 let Name = "CoprocOption";
1342 let ParserMethod = "parseCoprocOptionOperand";
1344 def coproc_option_imm : Operand<i32> {
1345 let PrintMethod = "printCoprocOptionImm";
1346 let ParserMatchClass = CoprocOptionAsmOperand;
1349 //===----------------------------------------------------------------------===//
1351 include "ARMInstrFormats.td"
1353 //===----------------------------------------------------------------------===//
1354 // Multiclass helpers...
1357 /// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1358 /// binop that produces a value.
1359 let TwoOperandAliasConstraint = "$Rn = $Rd" in
1360 multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1361 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1362 SDPatternOperator opnode, bit Commutable = 0> {
1363 // The register-immediate version is re-materializable. This is useful
1364 // in particular for taking the address of a local.
1365 let isReMaterializable = 1 in {
1366 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1367 iii, opc, "\t$Rd, $Rn, $imm",
1368 [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1369 Sched<[WriteALU, ReadALU]> {
1374 let Inst{19-16} = Rn;
1375 let Inst{15-12} = Rd;
1376 let Inst{11-0} = imm;
1379 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1380 iir, opc, "\t$Rd, $Rn, $Rm",
1381 [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1382 Sched<[WriteALU, ReadALU, ReadALU]> {
1387 let isCommutable = Commutable;
1388 let Inst{19-16} = Rn;
1389 let Inst{15-12} = Rd;
1390 let Inst{11-4} = 0b00000000;
1394 def rsi : AsI1<opcod, (outs GPR:$Rd),
1395 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1396 iis, opc, "\t$Rd, $Rn, $shift",
1397 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1398 Sched<[WriteALUsi, ReadALU]> {
1403 let Inst{19-16} = Rn;
1404 let Inst{15-12} = Rd;
1405 let Inst{11-5} = shift{11-5};
1407 let Inst{3-0} = shift{3-0};
1410 def rsr : AsI1<opcod, (outs GPR:$Rd),
1411 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1412 iis, opc, "\t$Rd, $Rn, $shift",
1413 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1414 Sched<[WriteALUsr, ReadALUsr]> {
1419 let Inst{19-16} = Rn;
1420 let Inst{15-12} = Rd;
1421 let Inst{11-8} = shift{11-8};
1423 let Inst{6-5} = shift{6-5};
1425 let Inst{3-0} = shift{3-0};
1429 /// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1430 /// reversed. The 'rr' form is only defined for the disassembler; for codegen
1431 /// it is equivalent to the AsI1_bin_irs counterpart.
1432 let TwoOperandAliasConstraint = "$Rn = $Rd" in
1433 multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1434 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1435 SDNode opnode, bit Commutable = 0> {
1436 // The register-immediate version is re-materializable. This is useful
1437 // in particular for taking the address of a local.
1438 let isReMaterializable = 1 in {
1439 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1440 iii, opc, "\t$Rd, $Rn, $imm",
1441 [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1442 Sched<[WriteALU, ReadALU]> {
1447 let Inst{19-16} = Rn;
1448 let Inst{15-12} = Rd;
1449 let Inst{11-0} = imm;
1452 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1453 iir, opc, "\t$Rd, $Rn, $Rm",
1454 [/* pattern left blank */]>,
1455 Sched<[WriteALU, ReadALU, ReadALU]> {
1459 let Inst{11-4} = 0b00000000;
1462 let Inst{15-12} = Rd;
1463 let Inst{19-16} = Rn;
1466 def rsi : AsI1<opcod, (outs GPR:$Rd),
1467 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1468 iis, opc, "\t$Rd, $Rn, $shift",
1469 [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1470 Sched<[WriteALUsi, ReadALU]> {
1475 let Inst{19-16} = Rn;
1476 let Inst{15-12} = Rd;
1477 let Inst{11-5} = shift{11-5};
1479 let Inst{3-0} = shift{3-0};
1482 def rsr : AsI1<opcod, (outs GPR:$Rd),
1483 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1484 iis, opc, "\t$Rd, $Rn, $shift",
1485 [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1486 Sched<[WriteALUsr, ReadALUsr]> {
1491 let Inst{19-16} = Rn;
1492 let Inst{15-12} = Rd;
1493 let Inst{11-8} = shift{11-8};
1495 let Inst{6-5} = shift{6-5};
1497 let Inst{3-0} = shift{3-0};
1501 /// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1503 /// These opcodes will be converted to the real non-S opcodes by
1504 /// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1505 let hasPostISelHook = 1, Defs = [CPSR] in {
1506 multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1507 InstrItinClass iis, SDNode opnode,
1508 bit Commutable = 0> {
1509 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1511 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1512 Sched<[WriteALU, ReadALU]>;
1514 def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1516 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1517 Sched<[WriteALU, ReadALU, ReadALU]> {
1518 let isCommutable = Commutable;
1520 def rsi : ARMPseudoInst<(outs GPR:$Rd),
1521 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1523 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1524 so_reg_imm:$shift))]>,
1525 Sched<[WriteALUsi, ReadALU]>;
1527 def rsr : ARMPseudoInst<(outs GPR:$Rd),
1528 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1530 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1531 so_reg_reg:$shift))]>,
1532 Sched<[WriteALUSsr, ReadALUsr]>;
1536 /// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1537 /// operands are reversed.
1538 let hasPostISelHook = 1, Defs = [CPSR] in {
1539 multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
1540 InstrItinClass iis, SDNode opnode,
1541 bit Commutable = 0> {
1542 def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1544 [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1545 Sched<[WriteALU, ReadALU]>;
1547 def rsi : ARMPseudoInst<(outs GPR:$Rd),
1548 (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1550 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1552 Sched<[WriteALUsi, ReadALU]>;
1554 def rsr : ARMPseudoInst<(outs GPR:$Rd),
1555 (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1557 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1559 Sched<[WriteALUSsr, ReadALUsr]>;
1563 /// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1564 /// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1565 /// a explicit result, only implicitly set CPSR.
1566 let isCompare = 1, Defs = [CPSR] in {
1567 multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1568 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1569 SDPatternOperator opnode, bit Commutable = 0,
1570 string rrDecoderMethod = ""> {
1571 def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1573 [(opnode GPR:$Rn, mod_imm:$imm)]>,
1574 Sched<[WriteCMP, ReadALU]> {
1579 let Inst{19-16} = Rn;
1580 let Inst{15-12} = 0b0000;
1581 let Inst{11-0} = imm;
1583 let Unpredictable{15-12} = 0b1111;
1585 def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1587 [(opnode GPR:$Rn, GPR:$Rm)]>,
1588 Sched<[WriteCMP, ReadALU, ReadALU]> {
1591 let isCommutable = Commutable;
1594 let Inst{19-16} = Rn;
1595 let Inst{15-12} = 0b0000;
1596 let Inst{11-4} = 0b00000000;
1598 let DecoderMethod = rrDecoderMethod;
1600 let Unpredictable{15-12} = 0b1111;
1602 def rsi : AI1<opcod, (outs),
1603 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1604 opc, "\t$Rn, $shift",
1605 [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1606 Sched<[WriteCMPsi, ReadALU]> {
1611 let Inst{19-16} = Rn;
1612 let Inst{15-12} = 0b0000;
1613 let Inst{11-5} = shift{11-5};
1615 let Inst{3-0} = shift{3-0};
1617 let Unpredictable{15-12} = 0b1111;
1619 def rsr : AI1<opcod, (outs),
1620 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1621 opc, "\t$Rn, $shift",
1622 [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1623 Sched<[WriteCMPsr, ReadALU]> {
1628 let Inst{19-16} = Rn;
1629 let Inst{15-12} = 0b0000;
1630 let Inst{11-8} = shift{11-8};
1632 let Inst{6-5} = shift{6-5};
1634 let Inst{3-0} = shift{3-0};
1636 let Unpredictable{15-12} = 0b1111;
1642 /// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1643 /// register and one whose operand is a register rotated by 8/16/24.
1644 /// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1645 class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1646 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1647 IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1648 [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1649 Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1653 let Inst{19-16} = 0b1111;
1654 let Inst{15-12} = Rd;
1655 let Inst{11-10} = rot;
1659 class AI_ext_rrot_np<bits<8> opcod, string opc>
1660 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1661 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1662 Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1664 let Inst{19-16} = 0b1111;
1665 let Inst{11-10} = rot;
1668 /// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1669 /// register and one whose operand is a register rotated by 8/16/24.
1670 class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1671 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1672 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1673 [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1674 (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1675 Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1680 let Inst{19-16} = Rn;
1681 let Inst{15-12} = Rd;
1682 let Inst{11-10} = rot;
1683 let Inst{9-4} = 0b000111;
1687 class AI_exta_rrot_np<bits<8> opcod, string opc>
1688 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1689 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1690 Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1693 let Inst{19-16} = Rn;
1694 let Inst{11-10} = rot;
1697 /// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1698 let TwoOperandAliasConstraint = "$Rn = $Rd" in
1699 multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1700 bit Commutable = 0> {
1701 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1702 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1703 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1704 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1706 Sched<[WriteALU, ReadALU]> {
1711 let Inst{15-12} = Rd;
1712 let Inst{19-16} = Rn;
1713 let Inst{11-0} = imm;
1715 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1716 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1717 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1719 Sched<[WriteALU, ReadALU, ReadALU]> {
1723 let Inst{11-4} = 0b00000000;
1725 let isCommutable = Commutable;
1727 let Inst{15-12} = Rd;
1728 let Inst{19-16} = Rn;
1730 def rsi : AsI1<opcod, (outs GPR:$Rd),
1731 (ins GPR:$Rn, so_reg_imm:$shift),
1732 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1733 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1735 Sched<[WriteALUsi, ReadALU]> {
1740 let Inst{19-16} = Rn;
1741 let Inst{15-12} = Rd;
1742 let Inst{11-5} = shift{11-5};
1744 let Inst{3-0} = shift{3-0};
1746 def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1747 (ins GPRnopc:$Rn, so_reg_reg:$shift),
1748 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1749 [(set GPRnopc:$Rd, CPSR,
1750 (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1752 Sched<[WriteALUsr, ReadALUsr]> {
1757 let Inst{19-16} = Rn;
1758 let Inst{15-12} = Rd;
1759 let Inst{11-8} = shift{11-8};
1761 let Inst{6-5} = shift{6-5};
1763 let Inst{3-0} = shift{3-0};
1768 /// AI1_rsc_irs - Define instructions and patterns for rsc
1769 let TwoOperandAliasConstraint = "$Rn = $Rd" in
1770 multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1771 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1772 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1773 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1774 [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1776 Sched<[WriteALU, ReadALU]> {
1781 let Inst{15-12} = Rd;
1782 let Inst{19-16} = Rn;
1783 let Inst{11-0} = imm;
1785 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1786 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1787 [/* pattern left blank */]>,
1788 Sched<[WriteALU, ReadALU, ReadALU]> {
1792 let Inst{11-4} = 0b00000000;
1795 let Inst{15-12} = Rd;
1796 let Inst{19-16} = Rn;
1798 def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1799 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1800 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1802 Sched<[WriteALUsi, ReadALU]> {
1807 let Inst{19-16} = Rn;
1808 let Inst{15-12} = Rd;
1809 let Inst{11-5} = shift{11-5};
1811 let Inst{3-0} = shift{3-0};
1813 def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
1814 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1815 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
1817 Sched<[WriteALUsr, ReadALUsr]> {
1822 let Inst{19-16} = Rn;
1823 let Inst{15-12} = Rd;
1824 let Inst{11-8} = shift{11-8};
1826 let Inst{6-5} = shift{6-5};
1828 let Inst{3-0} = shift{3-0};
1833 let canFoldAsLoad = 1, isReMaterializable = 1 in {
1834 multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
1835 InstrItinClass iir, PatFrag opnode> {
1836 // Note: We use the complex addrmode_imm12 rather than just an input
1837 // GPR and a constrained immediate so that we can use this to match
1838 // frame index references and avoid matching constant pool references.
1839 def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
1840 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1841 [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
1844 let Inst{23} = addr{12}; // U (add = ('U' == 1))
1845 let Inst{19-16} = addr{16-13}; // Rn
1846 let Inst{15-12} = Rt;
1847 let Inst{11-0} = addr{11-0}; // imm12
1849 def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
1850 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1851 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
1854 let shift{4} = 0; // Inst{4} = 0
1855 let Inst{23} = shift{12}; // U (add = ('U' == 1))
1856 let Inst{19-16} = shift{16-13}; // Rn
1857 let Inst{15-12} = Rt;
1858 let Inst{11-0} = shift{11-0};
1863 let canFoldAsLoad = 1, isReMaterializable = 1 in {
1864 multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
1865 InstrItinClass iir, PatFrag opnode> {
1866 // Note: We use the complex addrmode_imm12 rather than just an input
1867 // GPR and a constrained immediate so that we can use this to match
1868 // frame index references and avoid matching constant pool references.
1869 def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
1870 (ins addrmode_imm12:$addr),
1871 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1872 [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
1875 let Inst{23} = addr{12}; // U (add = ('U' == 1))
1876 let Inst{19-16} = addr{16-13}; // Rn
1877 let Inst{15-12} = Rt;
1878 let Inst{11-0} = addr{11-0}; // imm12
1880 def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
1881 (ins ldst_so_reg:$shift),
1882 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1883 [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
1886 let shift{4} = 0; // Inst{4} = 0
1887 let Inst{23} = shift{12}; // U (add = ('U' == 1))
1888 let Inst{19-16} = shift{16-13}; // Rn
1889 let Inst{15-12} = Rt;
1890 let Inst{11-0} = shift{11-0};
1896 multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
1897 InstrItinClass iir, PatFrag opnode> {
1898 // Note: We use the complex addrmode_imm12 rather than just an input
1899 // GPR and a constrained immediate so that we can use this to match
1900 // frame index references and avoid matching constant pool references.
1901 def i12 : AI2ldst<0b010, 0, isByte, (outs),
1902 (ins GPR:$Rt, addrmode_imm12:$addr),
1903 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1904 [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
1907 let Inst{23} = addr{12}; // U (add = ('U' == 1))
1908 let Inst{19-16} = addr{16-13}; // Rn
1909 let Inst{15-12} = Rt;
1910 let Inst{11-0} = addr{11-0}; // imm12
1912 def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
1913 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1914 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
1917 let shift{4} = 0; // Inst{4} = 0
1918 let Inst{23} = shift{12}; // U (add = ('U' == 1))
1919 let Inst{19-16} = shift{16-13}; // Rn
1920 let Inst{15-12} = Rt;
1921 let Inst{11-0} = shift{11-0};
1925 multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
1926 InstrItinClass iir, PatFrag opnode> {
1927 // Note: We use the complex addrmode_imm12 rather than just an input
1928 // GPR and a constrained immediate so that we can use this to match
1929 // frame index references and avoid matching constant pool references.
1930 def i12 : AI2ldst<0b010, 0, isByte, (outs),
1931 (ins GPRnopc:$Rt, addrmode_imm12:$addr),
1932 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1933 [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
1936 let Inst{23} = addr{12}; // U (add = ('U' == 1))
1937 let Inst{19-16} = addr{16-13}; // Rn
1938 let Inst{15-12} = Rt;
1939 let Inst{11-0} = addr{11-0}; // imm12
1941 def rs : AI2ldst<0b011, 0, isByte, (outs),
1942 (ins GPRnopc:$Rt, ldst_so_reg:$shift),
1943 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1944 [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
1947 let shift{4} = 0; // Inst{4} = 0
1948 let Inst{23} = shift{12}; // U (add = ('U' == 1))
1949 let Inst{19-16} = shift{16-13}; // Rn
1950 let Inst{15-12} = Rt;
1951 let Inst{11-0} = shift{11-0};
1956 //===----------------------------------------------------------------------===//
1958 //===----------------------------------------------------------------------===//
1960 //===----------------------------------------------------------------------===//
1961 // Miscellaneous Instructions.
1964 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1965 /// the function. The first operand is the ID# for this instruction, the second
1966 /// is the index into the MachineConstantPool that this is, the third is the
1967 /// size in bytes of this constant pool entry.
1968 let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
1969 def CONSTPOOL_ENTRY :
1970 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1971 i32imm:$size), NoItinerary, []>;
1973 /// A jumptable consisting of direct 32-bit addresses of the destination basic
1974 /// blocks (either absolute, or relative to the start of the jump-table in PIC
1975 /// mode). Used mostly in ARM and Thumb-1 modes.
1976 def JUMPTABLE_ADDRS :
1977 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1978 i32imm:$size), NoItinerary, []>;
1980 /// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
1981 /// that cannot be optimised to use TBB or TBH.
1982 def JUMPTABLE_INSTS :
1983 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1984 i32imm:$size), NoItinerary, []>;
1986 /// A jumptable consisting of 8-bit unsigned integers representing offsets from
1987 /// a TBB instruction.
1989 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1990 i32imm:$size), NoItinerary, []>;
1992 /// A jumptable consisting of 16-bit unsigned integers representing offsets from
1993 /// a TBH instruction.
1995 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1996 i32imm:$size), NoItinerary, []>;
1999 // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
2000 // from removing one half of the matched pairs. That breaks PEI, which assumes
2001 // these will always be in pairs, and asserts if it finds otherwise. Better way?
2002 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
2003 def ADJCALLSTACKUP :
2004 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
2005 [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
2007 def ADJCALLSTACKDOWN :
2008 PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
2009 [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
2012 def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
2013 "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
2014 Requires<[IsARM, HasV6]> {
2016 let Inst{27-8} = 0b00110010000011110000;
2017 let Inst{7-0} = imm;
2018 let DecoderMethod = "DecodeHINTInstruction";
2021 def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2022 def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2023 def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2024 def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2025 def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2026 def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2027 def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2028 def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2030 def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2032 [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2033 Requires<[IsARM, HasV6]> {
2038 let Inst{15-12} = Rd;
2039 let Inst{19-16} = Rn;
2040 let Inst{27-20} = 0b01101000;
2041 let Inst{7-4} = 0b1011;
2042 let Inst{11-8} = 0b1111;
2043 let Unpredictable{11-8} = 0b1111;
2046 // The 16-bit operand $val can be used by a debugger to store more information
2047 // about the breakpoint.
2048 def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2049 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2051 let Inst{3-0} = val{3-0};
2052 let Inst{19-8} = val{15-4};
2053 let Inst{27-20} = 0b00010010;
2054 let Inst{31-28} = 0xe; // AL
2055 let Inst{7-4} = 0b0111;
2057 // default immediate for breakpoint mnemonic
2058 def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2060 def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2061 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2063 let Inst{3-0} = val{3-0};
2064 let Inst{19-8} = val{15-4};
2065 let Inst{27-20} = 0b00010000;
2066 let Inst{31-28} = 0xe; // AL
2067 let Inst{7-4} = 0b0111;
2070 // Change Processor State
2071 // FIXME: We should use InstAlias to handle the optional operands.
2072 class CPS<dag iops, string asm_ops>
2073 : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2074 []>, Requires<[IsARM]> {
2080 let Inst{31-28} = 0b1111;
2081 let Inst{27-20} = 0b00010000;
2082 let Inst{19-18} = imod;
2083 let Inst{17} = M; // Enabled if mode is set;
2084 let Inst{16-9} = 0b00000000;
2085 let Inst{8-6} = iflags;
2087 let Inst{4-0} = mode;
2090 let DecoderMethod = "DecodeCPSInstruction" in {
2092 def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2093 "$imod\t$iflags, $mode">;
2094 let mode = 0, M = 0 in
2095 def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2097 let imod = 0, iflags = 0, M = 1 in
2098 def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2101 // Preload signals the memory system of possible future data/instruction access.
2102 multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2104 def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2105 IIC_Preload, !strconcat(opc, "\t$addr"),
2106 [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2107 Sched<[WritePreLd]> {
2110 let Inst{31-26} = 0b111101;
2111 let Inst{25} = 0; // 0 for immediate form
2112 let Inst{24} = data;
2113 let Inst{23} = addr{12}; // U (add = ('U' == 1))
2114 let Inst{22} = read;
2115 let Inst{21-20} = 0b01;
2116 let Inst{19-16} = addr{16-13}; // Rn
2117 let Inst{15-12} = 0b1111;
2118 let Inst{11-0} = addr{11-0}; // imm12
2121 def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2122 !strconcat(opc, "\t$shift"),
2123 [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2124 Sched<[WritePreLd]> {
2126 let Inst{31-26} = 0b111101;
2127 let Inst{25} = 1; // 1 for register form
2128 let Inst{24} = data;
2129 let Inst{23} = shift{12}; // U (add = ('U' == 1))
2130 let Inst{22} = read;
2131 let Inst{21-20} = 0b01;
2132 let Inst{19-16} = shift{16-13}; // Rn
2133 let Inst{15-12} = 0b1111;
2134 let Inst{11-0} = shift{11-0};
2139 defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>;
2140 defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2141 defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>;
2143 def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2144 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2146 let Inst{31-10} = 0b1111000100000001000000;
2151 def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2152 [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2154 let Inst{27-4} = 0b001100100000111100001111;
2155 let Inst{3-0} = opt;
2158 // A8.8.247 UDF - Undefined (Encoding A1)
2159 def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2160 "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2162 let Inst{31-28} = 0b1110; // AL
2163 let Inst{27-25} = 0b011;
2164 let Inst{24-20} = 0b11111;
2165 let Inst{19-8} = imm16{15-4};
2166 let Inst{7-4} = 0b1111;
2167 let Inst{3-0} = imm16{3-0};
2171 * A5.4 Permanently UNDEFINED instructions.
2173 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2174 * Other UDF encodings generate SIGILL.
2176 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2178 * 1110 0111 1111 iiii iiii iiii 1111 iiii
2180 * 1101 1110 iiii iiii
2181 * It uses the following encoding:
2182 * 1110 0111 1111 1110 1101 1110 1111 0000
2183 * - In ARM: UDF #60896;
2184 * - In Thumb: UDF #254 followed by a branch-to-self.
2186 let isBarrier = 1, isTerminator = 1 in
2187 def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2189 Requires<[IsARM,UseNaClTrap]> {
2190 let Inst = 0xe7fedef0;
2192 let isBarrier = 1, isTerminator = 1 in
2193 def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2195 Requires<[IsARM,DontUseNaClTrap]> {
2196 let Inst = 0xe7ffdefe;
2199 def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2200 def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2202 // Address computation and loads and stores in PIC mode.
2203 let isNotDuplicable = 1 in {
2204 def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2206 [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2207 Sched<[WriteALU, ReadALU]>;
2209 let AddedComplexity = 10 in {
2210 def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2212 [(set GPR:$dst, (load addrmodepc:$addr))]>;
2214 def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2216 [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2218 def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2220 [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2222 def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2224 [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2226 def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2228 [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2230 let AddedComplexity = 10 in {
2231 def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2232 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2234 def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2235 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2236 addrmodepc:$addr)]>;
2238 def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2239 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2241 } // isNotDuplicable = 1
2244 // LEApcrel - Load a pc-relative address into a register without offending the
2246 let hasSideEffects = 0, isReMaterializable = 1 in
2247 // The 'adr' mnemonic encodes differently if the label is before or after
2248 // the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2249 // know until then which form of the instruction will be used.
2250 def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2251 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2252 Sched<[WriteALU, ReadALU]> {
2255 let Inst{27-25} = 0b001;
2257 let Inst{23-22} = label{13-12};
2260 let Inst{19-16} = 0b1111;
2261 let Inst{15-12} = Rd;
2262 let Inst{11-0} = label{11-0};
2265 let hasSideEffects = 1 in {
2266 def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2267 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2269 def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2270 (ins i32imm:$label, pred:$p),
2271 4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2274 //===----------------------------------------------------------------------===//
2275 // Control Flow Instructions.
2278 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2280 def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2281 "bx", "\tlr", [(ARMretflag)]>,
2282 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2283 let Inst{27-0} = 0b0001001011111111111100011110;
2287 def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2288 "mov", "\tpc, lr", [(ARMretflag)]>,
2289 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2290 let Inst{27-0} = 0b0001101000001111000000001110;
2293 // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2294 // the user-space one).
2295 def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2297 [(ARMintretflag imm:$offset)]>;
2300 // Indirect branches
2301 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2303 def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2304 [(brind GPR:$dst)]>,
2305 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2307 let Inst{31-4} = 0b1110000100101111111111110001;
2308 let Inst{3-0} = dst;
2311 def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2312 "bx", "\t$dst", [/* pattern left blank */]>,
2313 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2315 let Inst{27-4} = 0b000100101111111111110001;
2316 let Inst{3-0} = dst;
2320 // SP is marked as a use to prevent stack-pointer assignments that appear
2321 // immediately before calls from potentially appearing dead.
2323 // FIXME: Do we really need a non-predicated version? If so, it should
2324 // at least be a pseudo instruction expanding to the predicated version
2325 // at MC lowering time.
2326 Defs = [LR], Uses = [SP] in {
2327 def BL : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2328 IIC_Br, "bl\t$func",
2329 [(ARMcall tglobaladdr:$func)]>,
2330 Requires<[IsARM]>, Sched<[WriteBrL]> {
2331 let Inst{31-28} = 0b1110;
2333 let Inst{23-0} = func;
2334 let DecoderMethod = "DecodeBranchImmInstruction";
2337 def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2338 IIC_Br, "bl", "\t$func",
2339 [(ARMcall_pred tglobaladdr:$func)]>,
2340 Requires<[IsARM]>, Sched<[WriteBrL]> {
2342 let Inst{23-0} = func;
2343 let DecoderMethod = "DecodeBranchImmInstruction";
2347 def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
2348 IIC_Br, "blx\t$func",
2349 [(ARMcall GPR:$func)]>,
2350 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2352 let Inst{31-4} = 0b1110000100101111111111110011;
2353 let Inst{3-0} = func;
2356 def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2357 IIC_Br, "blx", "\t$func",
2358 [(ARMcall_pred GPR:$func)]>,
2359 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2361 let Inst{27-4} = 0b000100101111111111110011;
2362 let Inst{3-0} = func;
2366 // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2367 def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2368 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2369 Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2372 def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2373 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2374 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2376 // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2377 // return stack predictor.
2378 def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2379 8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2380 Requires<[IsARM]>, Sched<[WriteBr]>;
2382 // push lr before the call
2383 def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
2386 Requires<[IsARM]>, Sched<[WriteBr]>;
2389 let isBranch = 1, isTerminator = 1 in {
2390 // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2391 // a two-value operand where a dag node expects two operands. :(
2392 def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2393 IIC_Br, "b", "\t$target",
2394 [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2397 let Inst{23-0} = target;
2398 let DecoderMethod = "DecodeBranchImmInstruction";
2401 let isBarrier = 1 in {
2402 // B is "predicable" since it's just a Bcc with an 'always' condition.
2403 let isPredicable = 1 in
2404 // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2405 // should be sufficient.
2406 // FIXME: Is B really a Barrier? That doesn't seem right.
2407 def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2408 [(br bb:$target)], (Bcc arm_br_target:$target,
2409 (ops 14, zero_reg))>,
2412 let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2413 def BR_JTr : ARMPseudoInst<(outs),
2414 (ins GPR:$target, i32imm:$jt),
2416 [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2418 def BR_JTm_i12 : ARMPseudoInst<(outs),
2419 (ins addrmode_imm12:$target, i32imm:$jt),
2421 [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2422 tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2423 def BR_JTm_rs : ARMPseudoInst<(outs),
2424 (ins ldst_so_reg:$target, i32imm:$jt),
2426 [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2427 tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2428 def BR_JTadd : ARMPseudoInst<(outs),
2429 (ins GPR:$target, GPR:$idx, i32imm:$jt),
2431 [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2432 Sched<[WriteBrTbl]>;
2433 } // isNotDuplicable = 1, isIndirectBranch = 1
2439 def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2440 "blx\t$target", []>,
2441 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2442 let Inst{31-25} = 0b1111101;
2444 let Inst{23-0} = target{24-1};
2445 let Inst{24} = target{0};
2449 // Branch and Exchange Jazelle
2450 def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2451 [/* pattern left blank */]>, Sched<[WriteBr]> {
2453 let Inst{23-20} = 0b0010;
2454 let Inst{19-8} = 0xfff;
2455 let Inst{7-4} = 0b0010;
2456 let Inst{3-0} = func;
2462 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2463 def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
2466 def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
2469 def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2471 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2472 Requires<[IsARM]>, Sched<[WriteBr]>;
2474 def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2476 (BX GPR:$dst)>, Sched<[WriteBr]>,
2477 Requires<[IsARM, HasV4T]>;
2480 // Secure Monitor Call is a system instruction.
2481 def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2482 []>, Requires<[IsARM, HasTrustZone]> {
2484 let Inst{23-4} = 0b01100000000000000111;
2485 let Inst{3-0} = opt;
2487 def : MnemonicAlias<"smi", "smc">;
2489 // Supervisor Call (Software Interrupt)
2490 let isCall = 1, Uses = [SP] in {
2491 def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2494 let Inst{23-0} = svc;
2498 // Store Return State
2499 class SRSI<bit wb, string asm>
2500 : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2501 NoItinerary, asm, "", []> {
2503 let Inst{31-28} = 0b1111;
2504 let Inst{27-25} = 0b100;
2508 let Inst{19-16} = 0b1101; // SP
2509 let Inst{15-5} = 0b00000101000;
2510 let Inst{4-0} = mode;
2513 def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2514 let Inst{24-23} = 0;
2516 def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2517 let Inst{24-23} = 0;
2519 def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2520 let Inst{24-23} = 0b10;
2522 def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2523 let Inst{24-23} = 0b10;
2525 def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2526 let Inst{24-23} = 0b01;
2528 def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2529 let Inst{24-23} = 0b01;
2531 def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2532 let Inst{24-23} = 0b11;
2534 def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2535 let Inst{24-23} = 0b11;
2538 def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2539 def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2541 def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2542 def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2544 def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2545 def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2547 def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2548 def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2550 // Return From Exception
2551 class RFEI<bit wb, string asm>
2552 : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2553 NoItinerary, asm, "", []> {
2555 let Inst{31-28} = 0b1111;
2556 let Inst{27-25} = 0b100;
2560 let Inst{19-16} = Rn;
2561 let Inst{15-0} = 0xa00;
2564 def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2565 let Inst{24-23} = 0;
2567 def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2568 let Inst{24-23} = 0;
2570 def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2571 let Inst{24-23} = 0b10;
2573 def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2574 let Inst{24-23} = 0b10;
2576 def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2577 let Inst{24-23} = 0b01;
2579 def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2580 let Inst{24-23} = 0b01;
2582 def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2583 let Inst{24-23} = 0b11;
2585 def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2586 let Inst{24-23} = 0b11;
2589 // Hypervisor Call is a system instruction
2591 def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2592 "hvc", "\t$imm", []>,
2593 Requires<[IsARM, HasVirtualization]> {
2596 // Even though HVC isn't predicable, it's encoding includes a condition field.
2597 // The instruction is undefined if the condition field is 0xf otherwise it is
2598 // unpredictable if it isn't condition AL (0xe).
2599 let Inst{31-28} = 0b1110;
2600 let Unpredictable{31-28} = 0b1111;
2601 let Inst{27-24} = 0b0001;
2602 let Inst{23-20} = 0b0100;
2603 let Inst{19-8} = imm{15-4};
2604 let Inst{7-4} = 0b0111;
2605 let Inst{3-0} = imm{3-0};
2609 // Return from exception in Hypervisor mode.
2610 let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2611 def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2612 Requires<[IsARM, HasVirtualization]> {
2613 let Inst{23-0} = 0b011000000000000001101110;
2616 //===----------------------------------------------------------------------===//
2617 // Load / Store Instructions.
2623 defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2624 defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2626 defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2627 defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2630 // Special LDR for loads from non-pc-relative constpools.
2631 let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2632 isReMaterializable = 1, isCodeGenOnly = 1 in
2633 def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2634 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2638 let Inst{23} = addr{12}; // U (add = ('U' == 1))
2639 let Inst{19-16} = 0b1111;
2640 let Inst{15-12} = Rt;
2641 let Inst{11-0} = addr{11-0}; // imm12
2644 // Loads with zero extension
2645 def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2646 IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2647 [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2649 // Loads with sign extension
2650 def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2651 IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2652 [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2654 def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2655 IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2656 [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2658 let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2660 def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2661 LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2662 Requires<[IsARM, HasV5TE]>;
2665 def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2666 NoItinerary, "lda", "\t$Rt, $addr", []>;
2667 def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2668 NoItinerary, "ldab", "\t$Rt, $addr", []>;
2669 def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2670 NoItinerary, "ldah", "\t$Rt, $addr", []>;
2673 multiclass AI2_ldridx<bit isByte, string opc,
2674 InstrItinClass iii, InstrItinClass iir> {
2675 def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2676 (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2677 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2680 let Inst{23} = addr{12};
2681 let Inst{19-16} = addr{16-13};
2682 let Inst{11-0} = addr{11-0};
2683 let DecoderMethod = "DecodeLDRPreImm";
2686 def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2687 (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2688 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2691 let Inst{23} = addr{12};
2692 let Inst{19-16} = addr{16-13};
2693 let Inst{11-0} = addr{11-0};
2695 let DecoderMethod = "DecodeLDRPreReg";
2698 def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2699 (ins addr_offset_none:$addr, am2offset_reg:$offset),
2700 IndexModePost, LdFrm, iir,
2701 opc, "\t$Rt, $addr, $offset",
2702 "$addr.base = $Rn_wb", []> {
2708 let Inst{23} = offset{12};
2709 let Inst{19-16} = addr;
2710 let Inst{11-0} = offset{11-0};
2713 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2716 def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2717 (ins addr_offset_none:$addr, am2offset_imm:$offset),
2718 IndexModePost, LdFrm, iii,
2719 opc, "\t$Rt, $addr, $offset",
2720 "$addr.base = $Rn_wb", []> {
2726 let Inst{23} = offset{12};
2727 let Inst{19-16} = addr;
2728 let Inst{11-0} = offset{11-0};
2730 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2735 let mayLoad = 1, hasSideEffects = 0 in {
2736 // FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
2737 // IIC_iLoad_siu depending on whether it the offset register is shifted.
2738 defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2739 defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2742 multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2743 def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2744 (ins addrmode3_pre:$addr), IndexModePre,
2746 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2748 let Inst{23} = addr{8}; // U bit
2749 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
2750 let Inst{19-16} = addr{12-9}; // Rn
2751 let Inst{11-8} = addr{7-4}; // imm7_4/zero
2752 let Inst{3-0} = addr{3-0}; // imm3_0/Rm
2753 let DecoderMethod = "DecodeAddrMode3Instruction";
2755 def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2756 (ins addr_offset_none:$addr, am3offset:$offset),
2757 IndexModePost, LdMiscFrm, itin,
2758 opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2762 let Inst{23} = offset{8}; // U bit
2763 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
2764 let Inst{19-16} = addr;
2765 let Inst{11-8} = offset{7-4}; // imm7_4/zero
2766 let Inst{3-0} = offset{3-0}; // imm3_0/Rm
2767 let DecoderMethod = "DecodeAddrMode3Instruction";
2771 let mayLoad = 1, hasSideEffects = 0 in {
2772 defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2773 defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2774 defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2775 let hasExtraDefRegAllocReq = 1 in {
2776 def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2777 (ins addrmode3_pre:$addr), IndexModePre,
2778 LdMiscFrm, IIC_iLoad_d_ru,
2779 "ldrd", "\t$Rt, $Rt2, $addr!",
2780 "$addr.base = $Rn_wb", []> {
2782 let Inst{23} = addr{8}; // U bit
2783 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
2784 let Inst{19-16} = addr{12-9}; // Rn
2785 let Inst{11-8} = addr{7-4}; // imm7_4/zero
2786 let Inst{3-0} = addr{3-0}; // imm3_0/Rm
2787 let DecoderMethod = "DecodeAddrMode3Instruction";
2789 def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2790 (ins addr_offset_none:$addr, am3offset:$offset),
2791 IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
2792 "ldrd", "\t$Rt, $Rt2, $addr, $offset",
2793 "$addr.base = $Rn_wb", []> {
2796 let Inst{23} = offset{8}; // U bit
2797 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
2798 let Inst{19-16} = addr;
2799 let Inst{11-8} = offset{7-4}; // imm7_4/zero
2800 let Inst{3-0} = offset{3-0}; // imm3_0/Rm
2801 let DecoderMethod = "DecodeAddrMode3Instruction";
2803 } // hasExtraDefRegAllocReq = 1
2804 } // mayLoad = 1, hasSideEffects = 0
2806 // LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
2807 let mayLoad = 1, hasSideEffects = 0 in {
2808 def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2809 (ins addr_offset_none:$addr, am2offset_reg:$offset),
2810 IndexModePost, LdFrm, IIC_iLoad_ru,
2811 "ldrt", "\t$Rt, $addr, $offset",
2812 "$addr.base = $Rn_wb", []> {
2818 let Inst{23} = offset{12};
2819 let Inst{21} = 1; // overwrite
2820 let Inst{19-16} = addr;
2821 let Inst{11-5} = offset{11-5};
2823 let Inst{3-0} = offset{3-0};
2824 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2828 : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2829 (ins addr_offset_none:$addr, am2offset_imm:$offset),
2830 IndexModePost, LdFrm, IIC_iLoad_ru,
2831 "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2837 let Inst{23} = offset{12};
2838 let Inst{21} = 1; // overwrite
2839 let Inst{19-16} = addr;
2840 let Inst{11-0} = offset{11-0};
2841 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2844 def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2845 (ins addr_offset_none:$addr, am2offset_reg:$offset),
2846 IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2847 "ldrbt", "\t$Rt, $addr, $offset",
2848 "$addr.base = $Rn_wb", []> {
2854 let Inst{23} = offset{12};
2855 let Inst{21} = 1; // overwrite
2856 let Inst{19-16} = addr;
2857 let Inst{11-5} = offset{11-5};
2859 let Inst{3-0} = offset{3-0};
2860 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2864 : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2865 (ins addr_offset_none:$addr, am2offset_imm:$offset),
2866 IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2867 "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2873 let Inst{23} = offset{12};
2874 let Inst{21} = 1; // overwrite
2875 let Inst{19-16} = addr;
2876 let Inst{11-0} = offset{11-0};
2877 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2880 multiclass AI3ldrT<bits<4> op, string opc> {
2881 def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
2882 (ins addr_offset_none:$addr, postidx_imm8:$offset),
2883 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2884 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
2886 let Inst{23} = offset{8};
2888 let Inst{11-8} = offset{7-4};
2889 let Inst{3-0} = offset{3-0};
2891 def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
2892 (ins addr_offset_none:$addr, postidx_reg:$Rm),
2893 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2894 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
2896 let Inst{23} = Rm{4};
2899 let Unpredictable{11-8} = 0b1111;
2900 let Inst{3-0} = Rm{3-0};
2901 let DecoderMethod = "DecodeLDR";
2905 defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
2906 defm LDRHT : AI3ldrT<0b1011, "ldrht">;
2907 defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
2911 : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2915 : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2918 // Pseudo instruction ldr Rt, =immediate
2920 : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
2921 (ins const_pool_asm_imm:$immediate, pred:$q),
2926 // Stores with truncate
2927 def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
2928 IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
2929 [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
2932 let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
2933 def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
2934 StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
2935 Requires<[IsARM, HasV5TE]> {
2941 multiclass AI2_stridx<bit isByte, string opc,
2942 InstrItinClass iii, InstrItinClass iir> {
2943 def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2944 (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
2946 opc, "\t$Rt, $addr!",
2947 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2950 let Inst{23} = addr{12}; // U (add = ('U' == 1))
2951 let Inst{19-16} = addr{16-13}; // Rn
2952 let Inst{11-0} = addr{11-0}; // imm12
2953 let DecoderMethod = "DecodeSTRPreImm";
2956 def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2957 (ins GPR:$Rt, ldst_so_reg:$addr),
2958 IndexModePre, StFrm, iir,
2959 opc, "\t$Rt, $addr!",
2960 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2963 let Inst{23} = addr{12}; // U (add = ('U' == 1))
2964 let Inst{19-16} = addr{16-13}; // Rn
2965 let Inst{11-0} = addr{11-0};
2966 let Inst{4} = 0; // Inst{4} = 0
2967 let DecoderMethod = "DecodeSTRPreReg";
2969 def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
2970 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
2971 IndexModePost, StFrm, iir,
2972 opc, "\t$Rt, $addr, $offset",
2973 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2979 let Inst{23} = offset{12};
2980 let Inst{19-16} = addr;
2981 let Inst{11-0} = offset{11-0};
2984 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2987 def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
2988 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
2989 IndexModePost, StFrm, iii,
2990 opc, "\t$Rt, $addr, $offset",
2991 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2997 let Inst{23} = offset{12};
2998 let Inst{19-16} = addr;
2999 let Inst{11-0} = offset{11-0};
3001 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3005 let mayStore = 1, hasSideEffects = 0 in {
3006 // FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
3007 // IIC_iStore_siu depending on whether it the offset register is shifted.
3008 defm STR : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
3009 defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
3012 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3013 am2offset_reg:$offset),
3014 (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
3015 am2offset_reg:$offset)>;
3016 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3017 am2offset_imm:$offset),
3018 (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3019 am2offset_imm:$offset)>;
3020 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3021 am2offset_reg:$offset),
3022 (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3023 am2offset_reg:$offset)>;
3024 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3025 am2offset_imm:$offset),
3026 (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3027 am2offset_imm:$offset)>;
3029 // Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3030 // put the patterns on the instruction definitions directly as ISel wants
3031 // the address base and offset to be separate operands, not a single
3032 // complex operand like we represent the instructions themselves. The
3033 // pseudos map between the two.
3034 let usesCustomInserter = 1,
3035 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3036 def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3037 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3040 (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3041 def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3042 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3045 (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3046 def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3047 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3050 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3051 def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3052 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3055 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3056 def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3057 (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3060 (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3065 def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3066 (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3067 StMiscFrm, IIC_iStore_bh_ru,
3068 "strh", "\t$Rt, $addr!",
3069 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3071 let Inst{23} = addr{8}; // U bit
3072 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
3073 let Inst{19-16} = addr{12-9}; // Rn
3074 let Inst{11-8} = addr{7-4}; // imm7_4/zero
3075 let Inst{3-0} = addr{3-0}; // imm3_0/Rm
3076 let DecoderMethod = "DecodeAddrMode3Instruction";
3079 def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3080 (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3081 IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3082 "strh", "\t$Rt, $addr, $offset",
3083 "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3084 [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3085 addr_offset_none:$addr,
3086 am3offset:$offset))]> {
3089 let Inst{23} = offset{8}; // U bit
3090 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
3091 let Inst{19-16} = addr;
3092 let Inst{11-8} = offset{7-4}; // imm7_4/zero
3093 let Inst{3-0} = offset{3-0}; // imm3_0/Rm
3094 let DecoderMethod = "DecodeAddrMode3Instruction";
3097 let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3098 def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3099 (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3100 IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3101 "strd", "\t$Rt, $Rt2, $addr!",
3102 "$addr.base = $Rn_wb", []> {
3104 let Inst{23} = addr{8}; // U bit
3105 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm
3106 let Inst{19-16} = addr{12-9}; // Rn
3107 let Inst{11-8} = addr{7-4}; // imm7_4/zero
3108 let Inst{3-0} = addr{3-0}; // imm3_0/Rm
3109 let DecoderMethod = "DecodeAddrMode3Instruction";
3112 def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3113 (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3115 IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3116 "strd", "\t$Rt, $Rt2, $addr, $offset",
3117 "$addr.base = $Rn_wb", []> {
3120 let Inst{23} = offset{8}; // U bit
3121 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm
3122 let Inst{19-16} = addr;
3123 let Inst{11-8} = offset{7-4}; // imm7_4/zero
3124 let Inst{3-0} = offset{3-0}; // imm3_0/Rm
3125 let DecoderMethod = "DecodeAddrMode3Instruction";
3127 } // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3129 // STRT, STRBT, and STRHT
3131 def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3132 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3133 IndexModePost, StFrm, IIC_iStore_bh_ru,
3134 "strbt", "\t$Rt, $addr, $offset",
3135 "$addr.base = $Rn_wb", []> {
3141 let Inst{23} = offset{12};
3142 let Inst{21} = 1; // overwrite
3143 let Inst{19-16} = addr;
3144 let Inst{11-5} = offset{11-5};
3146 let Inst{3-0} = offset{3-0};
3147 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3151 : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3152 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3153 IndexModePost, StFrm, IIC_iStore_bh_ru,
3154 "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3160 let Inst{23} = offset{12};
3161 let Inst{21} = 1; // overwrite
3162 let Inst{19-16} = addr;
3163 let Inst{11-0} = offset{11-0};
3164 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3168 : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3169 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3171 let mayStore = 1, hasSideEffects = 0 in {
3172 def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3173 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3174 IndexModePost, StFrm, IIC_iStore_ru,
3175 "strt", "\t$Rt, $addr, $offset",
3176 "$addr.base = $Rn_wb", []> {
3182 let Inst{23} = offset{12};
3183 let Inst{21} = 1; // overwrite
3184 let Inst{19-16} = addr;
3185 let Inst{11-5} = offset{11-5};
3187 let Inst{3-0} = offset{3-0};
3188 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3192 : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3193 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3194 IndexModePost, StFrm, IIC_iStore_ru,
3195 "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3201 let Inst{23} = offset{12};
3202 let Inst{21} = 1; // overwrite
3203 let Inst{19-16} = addr;
3204 let Inst{11-0} = offset{11-0};
3205 let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3210 : ARMAsmPseudo<"strt${q} $Rt, $addr",
3211 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3213 multiclass AI3strT<bits<4> op, string opc> {
3214 def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3215 (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3216 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3217 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3219 let Inst{23} = offset{8};
3221 let Inst{11-8} = offset{7-4};
3222 let Inst{3-0} = offset{3-0};
3224 def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3225 (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3226 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3227 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3229 let Inst{23} = Rm{4};
3232 let Inst{3-0} = Rm{3-0};
3237 defm STRHT : AI3strT<0b1011, "strht">;
3239 def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3240 NoItinerary, "stl", "\t$Rt, $addr", []>;
3241 def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3242 NoItinerary, "stlb", "\t$Rt, $addr", []>;
3243 def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3244 NoItinerary, "stlh", "\t$Rt, $addr", []>;
3246 //===----------------------------------------------------------------------===//
3247 // Load / store multiple Instructions.
3250 multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3251 InstrItinClass itin, InstrItinClass itin_upd> {
3252 // IA is the default, so no need for an explicit suffix on the
3253 // mnemonic here. Without it is the canonical spelling.
3255 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3256 IndexModeNone, f, itin,
3257 !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3258 let Inst{24-23} = 0b01; // Increment After
3259 let Inst{22} = P_bit;
3260 let Inst{21} = 0; // No writeback
3261 let Inst{20} = L_bit;
3264 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3265 IndexModeUpd, f, itin_upd,
3266 !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3267 let Inst{24-23} = 0b01; // Increment After
3268 let Inst{22} = P_bit;
3269 let Inst{21} = 1; // Writeback
3270 let Inst{20} = L_bit;
3272 let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3275 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3276 IndexModeNone, f, itin,
3277 !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3278 let Inst{24-23} = 0b00; // Decrement After
3279 let Inst{22} = P_bit;
3280 let Inst{21} = 0; // No writeback
3281 let Inst{20} = L_bit;
3284 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3285 IndexModeUpd, f, itin_upd,
3286 !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3287 let Inst{24-23} = 0b00; // Decrement After
3288 let Inst{22} = P_bit;
3289 let Inst{21} = 1; // Writeback
3290 let Inst{20} = L_bit;
3292 let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3295 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3296 IndexModeNone, f, itin,
3297 !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3298 let Inst{24-23} = 0b10; // Decrement Before
3299 let Inst{22} = P_bit;
3300 let Inst{21} = 0; // No writeback
3301 let Inst{20} = L_bit;
3304 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3305 IndexModeUpd, f, itin_upd,
3306 !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3307 let Inst{24-23} = 0b10; // Decrement Before
3308 let Inst{22} = P_bit;
3309 let Inst{21} = 1; // Writeback
3310 let Inst{20} = L_bit;
3312 let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3315 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3316 IndexModeNone, f, itin,
3317 !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3318 let Inst{24-23} = 0b11; // Increment Before
3319 let Inst{22} = P_bit;
3320 let Inst{21} = 0; // No writeback
3321 let Inst{20} = L_bit;
3324 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3325 IndexModeUpd, f, itin_upd,
3326 !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3327 let Inst{24-23} = 0b11; // Increment Before
3328 let Inst{22} = P_bit;
3329 let Inst{21} = 1; // Writeback
3330 let Inst{20} = L_bit;
3332 let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3336 let hasSideEffects = 0 in {
3338 let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3339 defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3340 IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3342 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3343 defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3345 ComplexDeprecationPredicate<"ARMStore">;
3349 // FIXME: remove when we have a way to marking a MI with these properties.
3350 // FIXME: Should pc be an implicit operand like PICADD, etc?
3351 let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3352 hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3353 def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3354 reglist:$regs, variable_ops),
3355 4, IIC_iLoad_mBr, [],
3356 (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3357 RegConstraint<"$Rn = $wb">;
3359 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3360 defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3363 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3364 defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3369 //===----------------------------------------------------------------------===//
3370 // Move Instructions.
3373 let hasSideEffects = 0, isMoveReg = 1 in
3374 def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3375 "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3379 let Inst{19-16} = 0b0000;
3380 let Inst{11-4} = 0b00000000;
3383 let Inst{15-12} = Rd;
3386 // A version for the smaller set of tail call registers.
3387 let hasSideEffects = 0 in
3388 def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3389 IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3393 let Inst{11-4} = 0b00000000;
3396 let Inst{15-12} = Rd;
3399 def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3400 DPSoRegRegFrm, IIC_iMOVsr,
3401 "mov", "\t$Rd, $src",
3402 [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3406 let Inst{15-12} = Rd;
3407 let Inst{19-16} = 0b0000;
3408 let Inst{11-8} = src{11-8};
3410 let Inst{6-5} = src{6-5};
3412 let Inst{3-0} = src{3-0};
3416 def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3417 DPSoRegImmFrm, IIC_iMOVsr,
3418 "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3419 UnaryDP, Sched<[WriteALU]> {
3422 let Inst{15-12} = Rd;
3423 let Inst{19-16} = 0b0000;
3424 let Inst{11-5} = src{11-5};
3426 let Inst{3-0} = src{3-0};
3430 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3431 def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3432 "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3437 let Inst{15-12} = Rd;
3438 let Inst{19-16} = 0b0000;
3439 let Inst{11-0} = imm;
3442 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3443 def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3445 "movw", "\t$Rd, $imm",
3446 [(set GPR:$Rd, imm0_65535:$imm)]>,
3447 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3450 let Inst{15-12} = Rd;
3451 let Inst{11-0} = imm{11-0};
3452 let Inst{19-16} = imm{15-12};
3455 let DecoderMethod = "DecodeArmMOVTWInstruction";
3458 def : InstAlias<"mov${p} $Rd, $imm",
3459 (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3460 Requires<[IsARM, HasV6T2]>;
3462 def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3463 (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3466 let Constraints = "$src = $Rd" in {
3467 def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3468 (ins GPR:$src, imm0_65535_expr:$imm),
3470 "movt", "\t$Rd, $imm",
3472 (or (and GPR:$src, 0xffff),
3473 lo16AllZero:$imm))]>, UnaryDP,
3474 Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3477 let Inst{15-12} = Rd;
3478 let Inst{11-0} = imm{11-0};
3479 let Inst{19-16} = imm{15-12};
3482 let DecoderMethod = "DecodeArmMOVTWInstruction";
3485 def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3486 (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3491 def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3492 Requires<[IsARM, HasV6T2]>;
3494 let Uses = [CPSR] in
3495 def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3496 [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3497 Requires<[IsARM]>, Sched<[WriteALU]>;
3499 // These aren't really mov instructions, but we have to define them this way
3500 // due to flag operands.
3502 let Defs = [CPSR] in {
3503 def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3504 [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
3505 Sched<[WriteALU]>, Requires<[IsARM]>;
3506 def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3507 [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
3508 Sched<[WriteALU]>, Requires<[IsARM]>;
3511 //===----------------------------------------------------------------------===//
3512 // Extend Instructions.
3517 def SXTB : AI_ext_rrot<0b01101010,
3518 "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3519 def SXTH : AI_ext_rrot<0b01101011,
3520 "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3522 def SXTAB : AI_exta_rrot<0b01101010,
3523 "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3524 def SXTAH : AI_exta_rrot<0b01101011,
3525 "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3527 def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3528 (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3529 def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3531 (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3533 def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">;
3534 def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3535 (SXTB16 GPR:$Src, 0)>;
3536 def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3537 (SXTB16 GPR:$Src, rot_imm:$rot)>;
3539 def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3540 def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3541 (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3542 def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3543 (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3547 let AddedComplexity = 16 in {
3548 def UXTB : AI_ext_rrot<0b01101110,
3549 "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3550 def UXTH : AI_ext_rrot<0b01101111,
3551 "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3552 def UXTB16 : AI_ext_rrot<0b01101100,
3553 "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3555 // FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3556 // The transformation should probably be done as a combiner action
3557 // instead so we can include a check for masking back in the upper
3558 // eight bits of the source into the lower eight bits of the result.
3559 //def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3560 // (UXTB16r_rot GPR:$Src, 3)>;
3561 def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3562 (UXTB16 GPR:$Src, 1)>;
3563 def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3564 (UXTB16 GPR:$Src, 0)>;
3565 def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3566 (UXTB16 GPR:$Src, rot_imm:$rot)>;
3568 def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3569 BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3570 def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3571 BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3573 def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3574 (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3575 def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3576 (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3579 // This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3580 def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3581 def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3582 (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3583 def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3584 (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3587 def SBFX : I<(outs GPRnopc:$Rd),
3588 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3589 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3590 "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3591 Requires<[IsARM, HasV6T2]> {
3596 let Inst{27-21} = 0b0111101;
3597 let Inst{6-4} = 0b101;
3598 let Inst{20-16} = width;
3599 let Inst{15-12} = Rd;
3600 let Inst{11-7} = lsb;
3604 def UBFX : I<(outs GPRnopc:$Rd),
3605 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3606 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3607 "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3608 Requires<[IsARM, HasV6T2]> {
3613 let Inst{27-21} = 0b0111111;
3614 let Inst{6-4} = 0b101;
3615 let Inst{20-16} = width;
3616 let Inst{15-12} = Rd;
3617 let Inst{11-7} = lsb;
3621 //===----------------------------------------------------------------------===//
3622 // Arithmetic Instructions.
3626 defm ADD : AsI1_bin_irs<0b0100, "add",
3627 IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3628 defm SUB : AsI1_bin_irs<0b0010, "sub",
3629 IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3631 // ADD and SUB with 's' bit set.
3633 // Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3634 // selection DAG. They are "lowered" to real ADD/SUB opcodes by
3635 // AdjustInstrPostInstrSelection where we determine whether or not to
3636 // set the "s" bit based on CPSR liveness.
3638 // FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3639 // support for an optional CPSR definition that corresponds to the DAG
3640 // node's second value. We can then eliminate the implicit def of CPSR.
3642 defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3643 defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3645 def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3646 def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3647 def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3648 (SUBSrsi $Rn, so_reg_imm:$shift)>;
3649 def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3650 (SUBSrsr $Rn, so_reg_reg:$shift)>;
3654 defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3655 defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3657 defm RSB : AsI1_rbin_irs<0b0011, "rsb",
3658 IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3661 // FIXME: Eliminate them if we can write def : Pat patterns which defines
3662 // CPSR and the implicit def of CPSR is not needed.
3663 defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3665 defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3667 // (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
3668 // The assume-no-carry-in form uses the negation of the input since add/sub
3669 // assume opposite meanings of the carry flag (i.e., carry == !borrow).
3670 // See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3672 def : ARMPat<(add GPR:$src, mod_imm_neg:$imm),
3673 (SUBri GPR:$src, mod_imm_neg:$imm)>;
3674 def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3675 (SUBSri GPR:$src, mod_imm_neg:$imm)>;
3677 def : ARMPat<(add GPR:$src, imm0_65535_neg:$imm),
3678 (SUBrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3679 Requires<[IsARM, HasV6T2]>;
3680 def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3681 (SUBSrr GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3682 Requires<[IsARM, HasV6T2]>;
3684 // The with-carry-in form matches bitwise not instead of the negation.
3685 // Effectively, the inverse interpretation of the carry flag already accounts
3686 // for part of the negation.
3687 def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3688 (SBCri GPR:$src, mod_imm_not:$imm)>;
3689 def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3690 (SBCrr GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3691 Requires<[IsARM, HasV6T2]>;
3693 // Note: These are implemented in C++ code, because they have to generate
3694 // ADD/SUBrs instructions, which use a complex pattern that a xform function
3696 // (mul X, 2^n+1) -> (add (X << n), X)
3697 // (mul X, 2^n-1) -> (rsb X, (X << n))
3699 // ARM Arithmetic Instruction
3700 // GPR:$dst = GPR:$a op GPR:$b
3701 class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3702 list<dag> pattern = [],
3703 dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3704 string asm = "\t$Rd, $Rn, $Rm">
3705 : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3706 Sched<[WriteALU, ReadALU, ReadALU]> {
3710 let Inst{27-20} = op27_20;
3711 let Inst{11-4} = op11_4;
3712 let Inst{19-16} = Rn;
3713 let Inst{15-12} = Rd;
3716 let Unpredictable{11-8} = 0b1111;
3719 // Wrappers around the AAI class
3720 class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3721 list<dag> pattern = []>
3722 : AAI<op27_20, op11_4, opc,
3724 (ins GPRnopc:$Rm, GPRnopc:$Rn),
3727 class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3728 Intrinsic intrinsic>
3729 : AAI<op27_20, op11_4, opc,
3730 [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3732 // Saturating add/subtract
3733 let hasSideEffects = 1 in {
3734 def QADD8 : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3735 def QADD16 : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3736 def QSUB16 : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3737 def QSUB8 : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3739 def QDADD : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3740 [(set GPRnopc:$Rd, (int_arm_qadd (int_arm_qadd GPRnopc:$Rm,
3743 def QDSUB : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3744 [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3745 (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3746 def QSUB : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3747 [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3748 let DecoderMethod = "DecodeQADDInstruction" in
3749 def QADD : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3750 [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3753 def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
3754 def UQADD8 : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
3755 def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
3756 def UQSUB8 : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
3757 def QASX : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
3758 def QSAX : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
3759 def UQASX : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
3760 def UQSAX : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
3762 // Signed/Unsigned add/subtract
3764 def SASX : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
3765 def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
3766 def SADD8 : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
3767 def SSAX : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
3768 def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
3769 def SSUB8 : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
3770 def UASX : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
3771 def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
3772 def UADD8 : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
3773 def USAX : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
3774 def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
3775 def USUB8 : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
3777 // Signed/Unsigned halving add/subtract
3779 def SHASX : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
3780 def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
3781 def SHADD8 : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
3782 def SHSAX : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
3783 def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
3784 def SHSUB8 : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
3785 def UHASX : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
3786 def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
3787 def UHADD8 : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
3788 def UHSAX : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
3789 def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
3790 def UHSUB8 : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
3792 // Unsigned Sum of Absolute Differences [and Accumulate].
3794 def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
3795 MulFrm /* for convenience */, NoItinerary, "usad8",
3797 [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
3798 Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
3802 let Inst{27-20} = 0b01111000;
3803 let Inst{15-12} = 0b1111;
3804 let Inst{7-4} = 0b0001;
3805 let Inst{19-16} = Rd;
3806 let Inst{11-8} = Rm;
3809 def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
3810 MulFrm /* for convenience */, NoItinerary, "usada8",
3811 "\t$Rd, $Rn, $Rm, $Ra",
3812 [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
3813 Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
3818 let Inst{27-20} = 0b01111000;
3819 let Inst{7-4} = 0b0001;
3820 let Inst{19-16} = Rd;
3821 let Inst{15-12} = Ra;
3822 let Inst{11-8} = Rm;
3826 // Signed/Unsigned saturate
3827 def SSAT : AI<(outs GPRnopc:$Rd),
3828 (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3829 SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3830 Requires<[IsARM,HasV6]>{
3835 let Inst{27-21} = 0b0110101;
3836 let Inst{5-4} = 0b01;
3837 let Inst{20-16} = sat_imm;
3838 let Inst{15-12} = Rd;
3839 let Inst{11-7} = sh{4-0};
3840 let Inst{6} = sh{5};
3844 def SSAT16 : AI<(outs GPRnopc:$Rd),
3845 (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
3846 NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
3847 Requires<[IsARM,HasV6]>{
3851 let Inst{27-20} = 0b01101010;
3852 let Inst{11-4} = 0b11110011;
3853 let Inst{15-12} = Rd;
3854 let Inst{19-16} = sat_imm;
3858 def USAT : AI<(outs GPRnopc:$Rd),
3859 (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3860 SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3861 Requires<[IsARM,HasV6]> {
3866 let Inst{27-21} = 0b0110111;
3867 let Inst{5-4} = 0b01;
3868 let Inst{15-12} = Rd;
3869 let Inst{11-7} = sh{4-0};
3870 let Inst{6} = sh{5};
3871 let Inst{20-16} = sat_imm;
3875 def USAT16 : AI<(outs GPRnopc:$Rd),
3876 (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
3877 NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
3878 Requires<[IsARM,HasV6]>{
3882 let Inst{27-20} = 0b01101110;
3883 let Inst{11-4} = 0b11110011;
3884 let Inst{15-12} = Rd;
3885 let Inst{19-16} = sat_imm;
3889 def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
3890 (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
3891 def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
3892 (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
3893 def : ARMPat<(ARMssatnoshift GPRnopc:$Rn, imm0_31:$imm),
3894 (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3895 def : ARMPat<(ARMusatnoshift GPRnopc:$Rn, imm0_31:$imm),
3896 (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3897 def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
3898 (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
3899 def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
3900 (USAT16 imm0_15:$pos, GPRnopc:$a)>;
3902 //===----------------------------------------------------------------------===//
3903 // Bitwise Instructions.
3906 defm AND : AsI1_bin_irs<0b0000, "and",
3907 IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
3908 defm ORR : AsI1_bin_irs<0b1100, "orr",
3909 IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
3910 defm EOR : AsI1_bin_irs<0b0001, "eor",
3911 IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
3912 defm BIC : AsI1_bin_irs<0b1110, "bic",
3913 IIC_iBITi, IIC_iBITr, IIC_iBITsr,
3914 BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
3916 // FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
3917 // like in the actual instruction encoding. The complexity of mapping the mask
3918 // to the lsb/msb pair should be handled by ISel, not encapsulated in the
3919 // instruction description.
3920 def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
3921 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3922 "bfc", "\t$Rd, $imm", "$src = $Rd",
3923 [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
3924 Requires<[IsARM, HasV6T2]> {
3927 let Inst{27-21} = 0b0111110;
3928 let Inst{6-0} = 0b0011111;
3929 let Inst{15-12} = Rd;
3930 let Inst{11-7} = imm{4-0}; // lsb
3931 let Inst{20-16} = imm{9-5}; // msb
3934 // A8.6.18 BFI - Bitfield insert (Encoding A1)
3935 def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
3936 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3937 "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
3938 [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
3939 bf_inv_mask_imm:$imm))]>,
3940 Requires<[IsARM, HasV6T2]> {
3944 let Inst{27-21} = 0b0111110;
3945 let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15
3946 let Inst{15-12} = Rd;
3947 let Inst{11-7} = imm{4-0}; // lsb
3948 let Inst{20-16} = imm{9-5}; // width
3952 def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
3953 "mvn", "\t$Rd, $Rm",
3954 [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
3958 let Inst{19-16} = 0b0000;
3959 let Inst{11-4} = 0b00000000;
3960 let Inst{15-12} = Rd;
3963 let Unpredictable{19-16} = 0b1111;
3965 def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
3966 DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
3967 [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
3972 let Inst{19-16} = 0b0000;
3973 let Inst{15-12} = Rd;
3974 let Inst{11-5} = shift{11-5};
3976 let Inst{3-0} = shift{3-0};
3978 let Unpredictable{19-16} = 0b1111;
3980 def MVNsr : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
3981 DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
3982 [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
3987 let Inst{19-16} = 0b0000;
3988 let Inst{15-12} = Rd;
3989 let Inst{11-8} = shift{11-8};
3991 let Inst{6-5} = shift{6-5};
3993 let Inst{3-0} = shift{3-0};
3995 let Unpredictable{19-16} = 0b1111;
3997 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3998 def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
3999 IIC_iMVNi, "mvn", "\t$Rd, $imm",
4000 [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
4004 let Inst{19-16} = 0b0000;
4005 let Inst{15-12} = Rd;
4006 let Inst{11-0} = imm;
4009 let AddedComplexity = 1 in
4010 def : ARMPat<(and GPR:$src, mod_imm_not:$imm),
4011 (BICri GPR:$src, mod_imm_not:$imm)>;
4013 //===----------------------------------------------------------------------===//
4014 // Multiply Instructions.
4016 class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4017 string opc, string asm, list<dag> pattern>
4018 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4022 let Inst{19-16} = Rd;
4023 let Inst{11-8} = Rm;
4026 class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4027 string opc, string asm, list<dag> pattern>
4028 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4033 let Inst{19-16} = RdHi;
4034 let Inst{15-12} = RdLo;
4035 let Inst{11-8} = Rm;
4038 class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4039 string opc, string asm, list<dag> pattern>
4040 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4045 let Inst{19-16} = RdHi;
4046 let Inst{15-12} = RdLo;
4047 let Inst{11-8} = Rm;
4051 // FIXME: The v5 pseudos are only necessary for the additional Constraint
4052 // property. Remove them when it's possible to add those properties
4053 // on an individual MachineInstr, not just an instruction description.
4054 let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4055 def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4056 (ins GPRnopc:$Rn, GPRnopc:$Rm),
4057 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4058 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4059 Requires<[IsARM, HasV6]>,
4060 Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4061 let Inst{15-12} = 0b0000;
4062 let Unpredictable{15-12} = 0b1111;
4065 let Constraints = "@earlyclobber $Rd" in
4066 def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4067 pred:$p, cc_out:$s),
4069 [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4070 (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4071 Requires<[IsARM, NoV6, UseMulOps]>,
4072 Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4075 def MLA : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4076 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4077 IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4078 [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4079 Requires<[IsARM, HasV6, UseMulOps]>,
4080 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4082 let Inst{15-12} = Ra;
4085 let Constraints = "@earlyclobber $Rd" in
4086 def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4087 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4088 pred:$p, cc_out:$s), 4, IIC_iMAC32,
4089 [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4090 (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4091 Requires<[IsARM, NoV6]>,
4092 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4094 def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4095 IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4096 [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4097 Requires<[IsARM, HasV6T2, UseMulOps]>,
4098 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4103 let Inst{19-16} = Rd;
4104 let Inst{15-12} = Ra;
4105 let Inst{11-8} = Rm;
4109 // Extra precision multiplies with low / high results
4110 let hasSideEffects = 0 in {
4111 let isCommutable = 1 in {
4112 def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4113 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4114 "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4115 [(set GPR:$RdLo, GPR:$RdHi,
4116 (smullohi GPR:$Rn, GPR:$Rm))]>,
4117 Requires<[IsARM, HasV6]>,
4118 Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4120 def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4121 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4122 "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4123 [(set GPR:$RdLo, GPR:$RdHi,
4124 (umullohi GPR:$Rn, GPR:$Rm))]>,
4125 Requires<[IsARM, HasV6]>,
4126 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4128 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4129 def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4130 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4132 [(set GPR:$RdLo, GPR:$RdHi,
4133 (smullohi GPR:$Rn, GPR:$Rm))],
4134 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4135 Requires<[IsARM, NoV6]>,
4136 Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4138 def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4139 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4141 [(set GPR:$RdLo, GPR:$RdHi,
4142 (umullohi GPR:$Rn, GPR:$Rm))],
4143 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4144 Requires<[IsARM, NoV6]>,
4145 Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4149 // Multiply + accumulate
4150 def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4151 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4152 "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4153 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4154 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4155 def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4156 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4157 "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4158 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4159 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4161 def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4162 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4164 "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4165 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4166 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4171 let Inst{19-16} = RdHi;
4172 let Inst{15-12} = RdLo;
4173 let Inst{11-8} = Rm;
4178 "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4179 def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4180 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4182 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4183 pred:$p, cc_out:$s)>,
4184 Requires<[IsARM, NoV6]>,
4185 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4186 def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4187 (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4189 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4190 pred:$p, cc_out:$s)>,
4191 Requires<[IsARM, NoV6]>,
4192 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4197 // Most significant word multiply
4198 def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4199 IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4200 [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4201 Requires<[IsARM, HasV6]>,
4202 Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4203 let Inst{15-12} = 0b1111;
4206 def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4207 IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4208 [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4209 Requires<[IsARM, HasV6]>,
4210 Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4211 let Inst{15-12} = 0b1111;
4214 def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4215 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4216 IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4217 [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4218 Requires<[IsARM, HasV6, UseMulOps]>,
4219 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4221 def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4222 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4223 IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4224 [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4225 Requires<[IsARM, HasV6]>,
4226 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4228 def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4229 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4230 IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4231 Requires<[IsARM, HasV6, UseMulOps]>,
4232 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4234 def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4235 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4236 IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4237 [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4238 Requires<[IsARM, HasV6]>,
4239 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4241 multiclass AI_smul<string opc> {
4242 def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4243 IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4244 [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4245 Requires<[IsARM, HasV5TE]>,
4246 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4248 def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4249 IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4250 [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4251 Requires<[IsARM, HasV5TE]>,
4252 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4254 def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4255 IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4256 [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4257 Requires<[IsARM, HasV5TE]>,
4258 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4260 def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4261 IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4262 [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4263 Requires<[IsARM, HasV5TE]>,
4264 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4266 def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4267 IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4268 [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4269 Requires<[IsARM, HasV5TE]>,
4270 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4272 def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4273 IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4274 [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4275 Requires<[IsARM, HasV5TE]>,
4276 Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4280 multiclass AI_smla<string opc> {
4281 let DecoderMethod = "DecodeSMLAInstruction" in {
4282 def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4283 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4284 IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4285 [(set GPRnopc:$Rd, (add GPR:$Ra,
4286 (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4287 Requires<[IsARM, HasV5TE, UseMulOps]>,
4288 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4290 def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4291 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4292 IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4293 [(set GPRnopc:$Rd, (add GPR:$Ra,
4294 (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4295 Requires<[IsARM, HasV5TE, UseMulOps]>,
4296 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4298 def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4299 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4300 IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4301 [(set GPRnopc:$Rd, (add GPR:$Ra,
4302 (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4303 Requires<[IsARM, HasV5TE, UseMulOps]>,
4304 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4306 def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4307 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4308 IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4309 [(set GPRnopc:$Rd, (add GPR:$Ra,
4310 (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4311 Requires<[IsARM, HasV5TE, UseMulOps]>,
4312 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4314 def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4315 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4316 IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4318 (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4319 Requires<[IsARM, HasV5TE, UseMulOps]>,
4320 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4322 def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4323 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4324 IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4326 (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4327 Requires<[IsARM, HasV5TE, UseMulOps]>,
4328 Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4332 defm SMUL : AI_smul<"smul">;
4333 defm SMLA : AI_smla<"smla">;
4335 // Halfword multiply accumulate long: SMLAL<x><y>.
4336 class SMLAL<bits<2> opc1, string asm>
4337 : AMulxyI64<0b0001010, opc1,
4338 (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4339 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4340 IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4341 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4342 Requires<[IsARM, HasV5TE]>,
4343 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4345 def SMLALBB : SMLAL<0b00, "smlalbb">;
4346 def SMLALBT : SMLAL<0b10, "smlalbt">;
4347 def SMLALTB : SMLAL<0b01, "smlaltb">;
4348 def SMLALTT : SMLAL<0b11, "smlaltt">;
4350 def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4351 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4352 def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4353 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4354 def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4355 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4356 def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4357 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4359 // Helper class for AI_smld.
4360 class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4361 InstrItinClass itin, string opc, string asm>
4362 : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4363 Requires<[IsARM, HasV6]> {
4366 let Inst{27-23} = 0b01110;
4367 let Inst{22} = long;
4368 let Inst{21-20} = 0b00;
4369 let Inst{11-8} = Rm;
4376 class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4377 InstrItinClass itin, string opc, string asm>
4378 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4380 let Inst{15-12} = 0b1111;
4381 let Inst{19-16} = Rd;
4383 class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4384 InstrItinClass itin, string opc, string asm>
4385 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4388 let Inst{19-16} = Rd;
4389 let Inst{15-12} = Ra;
4391 class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4392 InstrItinClass itin, string opc, string asm>
4393 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4396 let Inst{19-16} = RdHi;
4397 let Inst{15-12} = RdLo;
4400 multiclass AI_smld<bit sub, string opc> {
4402 def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4403 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4404 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4405 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4407 def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4408 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4409 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4410 Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4412 def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4413 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4415 !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4416 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4417 Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4419 def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4420 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4422 !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4423 RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4424 Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4427 defm SMLA : AI_smld<0, "smla">;
4428 defm SMLS : AI_smld<1, "smls">;
4430 def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4431 (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4432 def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4433 (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4434 def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4435 (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4436 def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4437 (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4438 def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4439 (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4440 def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4441 (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4442 def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4443 (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4444 def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4445 (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4447 multiclass AI_sdml<bit sub, string opc> {
4449 def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4450 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4451 Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4452 def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4453 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4454 Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4457 defm SMUA : AI_sdml<0, "smua">;
4458 defm SMUS : AI_sdml<1, "smus">;
4460 def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4461 (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4462 def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4463 (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4464 def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4465 (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4466 def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4467 (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4469 //===----------------------------------------------------------------------===//
4470 // Division Instructions (ARMv7-A with virtualization extension)
4472 def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4473 "sdiv", "\t$Rd, $Rn, $Rm",
4474 [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4475 Requires<[IsARM, HasDivideInARM]>,
4478 def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4479 "udiv", "\t$Rd, $Rn, $Rm",
4480 [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4481 Requires<[IsARM, HasDivideInARM]>,
4484 //===----------------------------------------------------------------------===//
4485 // Misc. Arithmetic Instructions.
4488 def CLZ : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4489 IIC_iUNAr, "clz", "\t$Rd, $Rm",
4490 [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4493 def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4494 IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4495 [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4496 Requires<[IsARM, HasV6T2]>,
4499 def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4500 IIC_iUNAr, "rev", "\t$Rd, $Rm",
4501 [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4504 let AddedComplexity = 5 in
4505 def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4506 IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4507 [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4508 Requires<[IsARM, HasV6]>,
4511 def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4512 (REV16 (LDRH addrmode3:$addr))>;
4513 def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4514 (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4516 let AddedComplexity = 5 in
4517 def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4518 IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4519 [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4520 Requires<[IsARM, HasV6]>,
4523 def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4524 (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4527 def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4528 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4529 IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4530 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4531 (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4533 Requires<[IsARM, HasV6]>,
4534 Sched<[WriteALUsi, ReadALU]>;
4536 // Alternate cases for PKHBT where identities eliminate some nodes.
4537 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4538 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4539 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4540 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4542 // Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4543 // will match the pattern below.
4544 def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4545 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4546 IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4547 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4548 (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4550 Requires<[IsARM, HasV6]>,
4551 Sched<[WriteALUsi, ReadALU]>;
4553 // Alternate cases for PKHTB where identities eliminate some nodes. Note that
4554 // a shift amount of 0 is *not legal* here, it is PKHBT instead.
4555 // We also can not replace a srl (17..31) by an arithmetic shift we would use in
4556 // pkhtb src1, src2, asr (17..31).
4557 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4558 (srl GPRnopc:$src2, imm16:$sh)),
4559 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4560 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4561 (sra GPRnopc:$src2, imm16_31:$sh)),
4562 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4563 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4564 (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4565 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4567 //===----------------------------------------------------------------------===//
4571 // + CRC32{B,H,W} 0x04C11DB7
4572 // + CRC32C{B,H,W} 0x1EDC6F41
4575 class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4576 : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4577 !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4578 [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4579 Requires<[IsARM, HasV8, HasCRC]> {
4584 let Inst{31-28} = 0b1110;
4585 let Inst{27-23} = 0b00010;
4586 let Inst{22-21} = sz;
4588 let Inst{19-16} = Rn;
4589 let Inst{15-12} = Rd;
4590 let Inst{11-10} = 0b00;
4593 let Inst{7-4} = 0b0100;
4596 let Unpredictable{11-8} = 0b1101;
4599 def CRC32B : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4600 def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4601 def CRC32H : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4602 def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4603 def CRC32W : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4604 def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4606 //===----------------------------------------------------------------------===//
4607 // ARMv8.1a Privilege Access Never extension
4611 def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4612 "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4615 let Inst{31-28} = 0b1111;
4616 let Inst{27-20} = 0b00010001;
4617 let Inst{19-16} = 0b0000;
4618 let Inst{15-10} = 0b000000;
4621 let Inst{7-4} = 0b0000;
4622 let Inst{3-0} = 0b0000;
4624 let Unpredictable{19-16} = 0b1111;
4625 let Unpredictable{15-10} = 0b111111;
4626 let Unpredictable{8} = 0b1;
4627 let Unpredictable{3-0} = 0b1111;
4630 //===----------------------------------------------------------------------===//
4631 // Comparison Instructions...
4634 defm CMP : AI1_cmp_irs<0b1010, "cmp",
4635 IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4637 // ARMcmpZ can re-use the above instruction definitions.
4638 def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4639 (CMPri GPR:$src, mod_imm:$imm)>;
4640 def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4641 (CMPrr GPR:$src, GPR:$rhs)>;
4642 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4643 (CMPrsi GPR:$src, so_reg_imm:$rhs)>;
4644 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4645 (CMPrsr GPR:$src, so_reg_reg:$rhs)>;
4647 // CMN register-integer
4648 let isCompare = 1, Defs = [CPSR] in {
4649 def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4650 "cmn", "\t$Rn, $imm",
4651 [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4652 Sched<[WriteCMP, ReadALU]> {
4657 let Inst{19-16} = Rn;
4658 let Inst{15-12} = 0b0000;
4659 let Inst{11-0} = imm;
4661 let Unpredictable{15-12} = 0b1111;
4664 // CMN register-register/shift
4665 def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4666 "cmn", "\t$Rn, $Rm",
4667 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4668 GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4671 let isCommutable = 1;
4674 let Inst{19-16} = Rn;
4675 let Inst{15-12} = 0b0000;
4676 let Inst{11-4} = 0b00000000;
4679 let Unpredictable{15-12} = 0b1111;
4682 def CMNzrsi : AI1<0b1011, (outs),
4683 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4684 "cmn", "\t$Rn, $shift",
4685 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4686 GPR:$Rn, so_reg_imm:$shift)]>,
4687 Sched<[WriteCMPsi, ReadALU]> {
4692 let Inst{19-16} = Rn;
4693 let Inst{15-12} = 0b0000;
4694 let Inst{11-5} = shift{11-5};
4696 let Inst{3-0} = shift{3-0};
4698 let Unpredictable{15-12} = 0b1111;
4701 def CMNzrsr : AI1<0b1011, (outs),
4702 (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4703 "cmn", "\t$Rn, $shift",
4704 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4705 GPRnopc:$Rn, so_reg_reg:$shift)]>,
4706 Sched<[WriteCMPsr, ReadALU]> {
4711 let Inst{19-16} = Rn;
4712 let Inst{15-12} = 0b0000;
4713 let Inst{11-8} = shift{11-8};
4715 let Inst{6-5} = shift{6-5};
4717 let Inst{3-0} = shift{3-0};
4719 let Unpredictable{15-12} = 0b1111;
4724 def : ARMPat<(ARMcmp GPR:$src, mod_imm_neg:$imm),
4725 (CMNri GPR:$src, mod_imm_neg:$imm)>;
4727 def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
4728 (CMNri GPR:$src, mod_imm_neg:$imm)>;
4730 // Note that TST/TEQ don't set all the same flags that CMP does!
4731 defm TST : AI1_cmp_irs<0b1000, "tst",
4732 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4733 BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
4734 "DecodeTSTInstruction">;
4735 defm TEQ : AI1_cmp_irs<0b1001, "teq",
4736 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4737 BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
4739 // Pseudo i64 compares for some floating point compares.
4740 let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
4742 def BCCi64 : PseudoInst<(outs),
4743 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
4745 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
4748 def BCCZi64 : PseudoInst<(outs),
4749 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
4750 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
4752 } // usesCustomInserter
4755 // Conditional moves
4756 let hasSideEffects = 0 in {
4758 let isCommutable = 1, isSelect = 1 in
4759 def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
4760 (ins GPR:$false, GPR:$Rm, cmovpred:$p),
4762 [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
4764 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4766 def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
4767 (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4770 (ARMcmov GPR:$false, so_reg_imm:$shift,
4772 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4773 def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
4774 (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4776 [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
4778 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4781 let isMoveImm = 1 in
4783 : ARMPseudoInst<(outs GPR:$Rd),
4784 (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4786 [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
4788 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
4791 let isMoveImm = 1 in
4792 def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
4793 (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4795 [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
4797 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4799 // Two instruction predicate mov immediate.
4800 let isMoveImm = 1 in
4802 : ARMPseudoInst<(outs GPR:$Rd),
4803 (ins GPR:$false, i32imm:$src, cmovpred:$p),
4805 [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
4807 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
4809 let isMoveImm = 1 in
4810 def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
4811 (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4813 [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
4815 RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4820 //===----------------------------------------------------------------------===//
4821 // Atomic operations intrinsics
4824 def MemBarrierOptOperand : AsmOperandClass {
4825 let Name = "MemBarrierOpt";
4826 let ParserMethod = "parseMemBarrierOptOperand";
4828 def memb_opt : Operand<i32> {
4829 let PrintMethod = "printMemBOption";
4830 let ParserMatchClass = MemBarrierOptOperand;
4831 let DecoderMethod = "DecodeMemBarrierOption";
4834 def InstSyncBarrierOptOperand : AsmOperandClass {
4835 let Name = "InstSyncBarrierOpt";
4836 let ParserMethod = "parseInstSyncBarrierOptOperand";
4838 def instsyncb_opt : Operand<i32> {
4839 let PrintMethod = "printInstSyncBOption";
4840 let ParserMatchClass = InstSyncBarrierOptOperand;
4841 let DecoderMethod = "DecodeInstSyncBarrierOption";
4844 def TraceSyncBarrierOptOperand : AsmOperandClass {
4845 let Name = "TraceSyncBarrierOpt";
4846 let ParserMethod = "parseTraceSyncBarrierOptOperand";
4848 def tsb_opt : Operand<i32> {
4849 let PrintMethod = "printTraceSyncBOption";
4850 let ParserMatchClass = TraceSyncBarrierOptOperand;
4853 // Memory barriers protect the atomic sequences
4854 let hasSideEffects = 1 in {
4855 def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4856 "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
4857 Requires<[IsARM, HasDB]> {
4859 let Inst{31-4} = 0xf57ff05;
4860 let Inst{3-0} = opt;
4863 def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4864 "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
4865 Requires<[IsARM, HasDB]> {
4867 let Inst{31-4} = 0xf57ff04;
4868 let Inst{3-0} = opt;
4871 // ISB has only full system option
4872 def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
4873 "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
4874 Requires<[IsARM, HasDB]> {
4876 let Inst{31-4} = 0xf57ff06;
4877 let Inst{3-0} = opt;
4880 let hasNoSchedulingInfo = 1 in
4881 def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
4882 "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
4883 let Inst{31-0} = 0xe320f012;
4888 // Armv8.5-A speculation barrier
4889 def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
4890 Requires<[IsARM, HasSB]>, Sched<[]> {
4891 let Inst{31-0} = 0xf57ff070;
4892 let Unpredictable = 0x000fff0f;
4893 let hasSideEffects = 1;
4896 let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
4897 // Pseudo instruction that combines movs + predicated rsbmi
4898 // to implement integer ABS
4899 def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
4902 let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
4903 def COPY_STRUCT_BYVAL_I32 : PseudoInst<
4904 (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
4906 [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
4909 let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
4910 // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
4911 // Copies N registers worth of memory from address %src to address %dst
4912 // and returns the incremented addresses. N scratch register will
4913 // be attached for the copy to use.
4914 def MEMCPY : PseudoInst<
4915 (outs GPR:$newdst, GPR:$newsrc),
4916 (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
4918 [(set GPR:$newdst, GPR:$newsrc,
4919 (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
4922 def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4923 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4926 def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4927 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4930 def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4931 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4934 def strex_1 : PatFrag<(ops node:$val, node:$ptr),
4935 (int_arm_strex node:$val, node:$ptr), [{
4936 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4939 def strex_2 : PatFrag<(ops node:$val, node:$ptr),
4940 (int_arm_strex node:$val, node:$ptr), [{
4941 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4944 def strex_4 : PatFrag<(ops node:$val, node:$ptr),
4945 (int_arm_strex node:$val, node:$ptr), [{
4946 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4949 def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4950 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4953 def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4954 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4957 def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4958 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4961 def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
4962 (int_arm_stlex node:$val, node:$ptr), [{
4963 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4966 def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
4967 (int_arm_stlex node:$val, node:$ptr), [{
4968 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4971 def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
4972 (int_arm_stlex node:$val, node:$ptr), [{
4973 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4976 let mayLoad = 1 in {
4977 def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4978 NoItinerary, "ldrexb", "\t$Rt, $addr",
4979 [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
4980 def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4981 NoItinerary, "ldrexh", "\t$Rt, $addr",
4982 [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
4983 def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4984 NoItinerary, "ldrex", "\t$Rt, $addr",
4985 [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
4986 let hasExtraDefRegAllocReq = 1 in
4987 def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
4988 NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
4989 let DecoderMethod = "DecodeDoubleRegLoad";
4992 def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4993 NoItinerary, "ldaexb", "\t$Rt, $addr",
4994 [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
4995 def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4996 NoItinerary, "ldaexh", "\t$Rt, $addr",
4997 [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
4998 def LDAEX : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4999 NoItinerary, "ldaex", "\t$Rt, $addr",
5000 [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
5001 let hasExtraDefRegAllocReq = 1 in
5002 def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5003 NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
5004 let DecoderMethod = "DecodeDoubleRegLoad";
5008 let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
5009 def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5010 NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
5011 [(set GPR:$Rd, (strex_1 GPR:$Rt,
5012 addr_offset_none:$addr))]>;
5013 def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5014 NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
5015 [(set GPR:$Rd, (strex_2 GPR:$Rt,
5016 addr_offset_none:$addr))]>;
5017 def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5018 NoItinerary, "strex", "\t$Rd, $Rt, $addr",
5019 [(set GPR:$Rd, (strex_4 GPR:$Rt,
5020 addr_offset_none:$addr))]>;
5021 let hasExtraSrcRegAllocReq = 1 in
5022 def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5023 (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5024 NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5025 let DecoderMethod = "DecodeDoubleRegStore";
5027 def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5028 NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5030 (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5031 def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5032 NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5034 (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5035 def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5036 NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5038 (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5039 let hasExtraSrcRegAllocReq = 1 in
5040 def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5041 (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5042 NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5043 let DecoderMethod = "DecodeDoubleRegStore";
5047 def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5049 Requires<[IsARM, HasV6K]> {
5050 let Inst{31-0} = 0b11110101011111111111000000011111;
5053 def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5054 (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5055 def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5056 (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5058 def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5059 (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5060 def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5061 (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5063 class acquiring_load<PatFrag base>
5064 : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5065 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5066 return isAcquireOrStronger(Ordering);
5069 def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
5070 def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5071 def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5073 class releasing_store<PatFrag base>
5074 : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
5075 AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5076 return isReleaseOrStronger(Ordering);
5079 def atomic_store_release_8 : releasing_store<atomic_store_8>;
5080 def atomic_store_release_16 : releasing_store<atomic_store_16>;
5081 def atomic_store_release_32 : releasing_store<atomic_store_32>;
5083 let AddedComplexity = 8 in {
5084 def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr), (LDAB addr_offset_none:$addr)>;
5085 def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5086 def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA addr_offset_none:$addr)>;
5087 def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val), (STLB GPR:$val, addr_offset_none:$addr)>;
5088 def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5089 def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL GPR:$val, addr_offset_none:$addr)>;
5092 // SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5093 // FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5094 let mayLoad = 1, mayStore = 1 in {
5095 def SWP : AIswp<0, (outs GPRnopc:$Rt),
5096 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5097 Requires<[IsARM,PreV8]>;
5098 def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5099 (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5100 Requires<[IsARM,PreV8]>;
5103 //===----------------------------------------------------------------------===//
5104 // Coprocessor Instructions.
5107 def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5108 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5109 NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5110 [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5111 timm:$CRm, timm:$opc2)]>,
5112 Requires<[IsARM,PreV8]> {
5120 let Inst{3-0} = CRm;
5122 let Inst{7-5} = opc2;
5123 let Inst{11-8} = cop;
5124 let Inst{15-12} = CRd;
5125 let Inst{19-16} = CRn;
5126 let Inst{23-20} = opc1;
5128 let DecoderNamespace = "CoProc";
5131 def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5132 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5133 NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5134 [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5135 timm:$CRm, timm:$opc2)]>,
5136 Requires<[IsARM,PreV8]> {
5137 let Inst{31-28} = 0b1111;
5145 let Inst{3-0} = CRm;
5147 let Inst{7-5} = opc2;
5148 let Inst{11-8} = cop;
5149 let Inst{15-12} = CRd;
5150 let Inst{19-16} = CRn;
5151 let Inst{23-20} = opc1;
5153 let DecoderNamespace = "CoProc";
5156 class ACI<dag oops, dag iops, string opc, string asm,
5157 list<dag> pattern, IndexMode im = IndexModeNone>
5158 : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5159 opc, asm, "", pattern> {
5160 let Inst{27-25} = 0b110;
5162 class ACInoP<dag oops, dag iops, string opc, string asm,
5163 list<dag> pattern, IndexMode im = IndexModeNone>
5164 : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5165 opc, asm, "", pattern> {
5166 let Inst{31-28} = 0b1111;
5167 let Inst{27-25} = 0b110;
5170 let DecoderNamespace = "CoProc" in {
5171 multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5172 def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5173 asm, "\t$cop, $CRd, $addr", pattern> {
5177 let Inst{24} = 1; // P = 1
5178 let Inst{23} = addr{8};
5179 let Inst{22} = Dbit;
5180 let Inst{21} = 0; // W = 0
5181 let Inst{20} = load;
5182 let Inst{19-16} = addr{12-9};
5183 let Inst{15-12} = CRd;
5184 let Inst{11-8} = cop;
5185 let Inst{7-0} = addr{7-0};
5186 let DecoderMethod = "DecodeCopMemInstruction";
5188 def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5189 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5193 let Inst{24} = 1; // P = 1
5194 let Inst{23} = addr{8};
5195 let Inst{22} = Dbit;
5196 let Inst{21} = 1; // W = 1
5197 let Inst{20} = load;
5198 let Inst{19-16} = addr{12-9};
5199 let Inst{15-12} = CRd;
5200 let Inst{11-8} = cop;
5201 let Inst{7-0} = addr{7-0};
5202 let DecoderMethod = "DecodeCopMemInstruction";
5204 def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5205 postidx_imm8s4:$offset),
5206 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5211 let Inst{24} = 0; // P = 0
5212 let Inst{23} = offset{8};
5213 let Inst{22} = Dbit;
5214 let Inst{21} = 1; // W = 1
5215 let Inst{20} = load;
5216 let Inst{19-16} = addr;
5217 let Inst{15-12} = CRd;
5218 let Inst{11-8} = cop;
5219 let Inst{7-0} = offset{7-0};
5220 let DecoderMethod = "DecodeCopMemInstruction";
5222 def _OPTION : ACI<(outs),
5223 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5224 coproc_option_imm:$option),
5225 asm, "\t$cop, $CRd, $addr, $option", []> {
5230 let Inst{24} = 0; // P = 0
5231 let Inst{23} = 1; // U = 1
5232 let Inst{22} = Dbit;
5233 let Inst{21} = 0; // W = 0
5234 let Inst{20} = load;
5235 let Inst{19-16} = addr;
5236 let Inst{15-12} = CRd;
5237 let Inst{11-8} = cop;
5238 let Inst{7-0} = option;
5239 let DecoderMethod = "DecodeCopMemInstruction";
5242 multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5243 def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5244 asm, "\t$cop, $CRd, $addr", pattern> {
5248 let Inst{24} = 1; // P = 1
5249 let Inst{23} = addr{8};
5250 let Inst{22} = Dbit;
5251 let Inst{21} = 0; // W = 0
5252 let Inst{20} = load;
5253 let Inst{19-16} = addr{12-9};
5254 let Inst{15-12} = CRd;
5255 let Inst{11-8} = cop;
5256 let Inst{7-0} = addr{7-0};
5257 let DecoderMethod = "DecodeCopMemInstruction";
5259 def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5260 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5264 let Inst{24} = 1; // P = 1
5265 let Inst{23} = addr{8};
5266 let Inst{22} = Dbit;
5267 let Inst{21} = 1; // W = 1
5268 let Inst{20} = load;
5269 let Inst{19-16} = addr{12-9};
5270 let Inst{15-12} = CRd;
5271 let Inst{11-8} = cop;
5272 let Inst{7-0} = addr{7-0};
5273 let DecoderMethod = "DecodeCopMemInstruction";
5275 def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5276 postidx_imm8s4:$offset),
5277 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5282 let Inst{24} = 0; // P = 0
5283 let Inst{23} = offset{8};
5284 let Inst{22} = Dbit;
5285 let Inst{21} = 1; // W = 1
5286 let Inst{20} = load;
5287 let Inst{19-16} = addr;
5288 let Inst{15-12} = CRd;
5289 let Inst{11-8} = cop;
5290 let Inst{7-0} = offset{7-0};
5291 let DecoderMethod = "DecodeCopMemInstruction";
5293 def _OPTION : ACInoP<(outs),
5294 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5295 coproc_option_imm:$option),
5296 asm, "\t$cop, $CRd, $addr, $option", []> {
5301 let Inst{24} = 0; // P = 0
5302 let Inst{23} = 1; // U = 1
5303 let Inst{22} = Dbit;
5304 let Inst{21} = 0; // W = 0
5305 let Inst{20} = load;
5306 let Inst{19-16} = addr;
5307 let Inst{15-12} = CRd;
5308 let Inst{11-8} = cop;
5309 let Inst{7-0} = option;
5310 let DecoderMethod = "DecodeCopMemInstruction";
5314 defm LDC : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5315 defm LDCL : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5316 defm LDC2 : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5317 defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5319 defm STC : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5320 defm STCL : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5321 defm STC2 : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5322 defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5324 } // DecoderNamespace = "CoProc"
5326 //===----------------------------------------------------------------------===//
5327 // Move between coprocessor and ARM core register.
5330 class MovRCopro<string opc, bit direction, dag oops, dag iops,
5332 : ABI<0b1110, oops, iops, NoItinerary, opc,
5333 "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5334 let Inst{20} = direction;
5344 let Inst{15-12} = Rt;
5345 let Inst{11-8} = cop;
5346 let Inst{23-21} = opc1;
5347 let Inst{7-5} = opc2;
5348 let Inst{3-0} = CRm;
5349 let Inst{19-16} = CRn;
5351 let DecoderNamespace = "CoProc";
5354 def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5356 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5357 c_imm:$CRm, imm0_7:$opc2),
5358 [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5359 timm:$CRm, timm:$opc2)]>,
5360 ComplexDeprecationPredicate<"MCR">;
5361 def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5362 (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5363 c_imm:$CRm, 0, pred:$p)>;
5364 def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5365 (outs GPRwithAPSR:$Rt),
5366 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5368 def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5369 (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5370 c_imm:$CRm, 0, pred:$p)>;
5372 def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
5373 (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5375 class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5377 : ABXI<0b1110, oops, iops, NoItinerary,
5378 !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5379 let Inst{31-24} = 0b11111110;
5380 let Inst{20} = direction;
5390 let Inst{15-12} = Rt;
5391 let Inst{11-8} = cop;
5392 let Inst{23-21} = opc1;
5393 let Inst{7-5} = opc2;
5394 let Inst{3-0} = CRm;
5395 let Inst{19-16} = CRn;
5397 let DecoderNamespace = "CoProc";
5400 def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5402 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5403 c_imm:$CRm, imm0_7:$opc2),
5404 [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5405 timm:$CRm, timm:$opc2)]>,
5406 Requires<[IsARM,PreV8]>;
5407 def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5408 (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5410 def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5411 (outs GPRwithAPSR:$Rt),
5412 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5414 Requires<[IsARM,PreV8]>;
5415 def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5416 (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5419 def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
5420 timm:$CRm, timm:$opc2),
5421 (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5423 class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5425 : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5428 let Inst{23-21} = 0b010;
5429 let Inst{20} = direction;
5437 let Inst{15-12} = Rt;
5438 let Inst{19-16} = Rt2;
5439 let Inst{11-8} = cop;
5440 let Inst{7-4} = opc1;
5441 let Inst{3-0} = CRm;
5444 def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5445 (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5446 GPRnopc:$Rt2, c_imm:$CRm),
5447 [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
5448 GPRnopc:$Rt2, timm:$CRm)]>;
5449 def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5450 (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5451 (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5453 class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5454 list<dag> pattern = []>
5455 : ABXI<0b1100, oops, iops, NoItinerary,
5456 !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5457 Requires<[IsARM,PreV8]> {
5458 let Inst{31-28} = 0b1111;
5459 let Inst{23-21} = 0b010;
5460 let Inst{20} = direction;
5468 let Inst{15-12} = Rt;
5469 let Inst{19-16} = Rt2;
5470 let Inst{11-8} = cop;
5471 let Inst{7-4} = opc1;
5472 let Inst{3-0} = CRm;
5474 let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5477 def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5478 (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5479 GPRnopc:$Rt2, c_imm:$CRm),
5480 [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
5481 GPRnopc:$Rt2, timm:$CRm)]>;
5483 def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5484 (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5485 (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5487 //===----------------------------------------------------------------------===//
5488 // Move between special register and ARM core register
5491 // Move to ARM core register from Special Register
5492 def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5493 "mrs", "\t$Rd, apsr", []> {
5495 let Inst{23-16} = 0b00001111;
5496 let Unpredictable{19-17} = 0b111;
5498 let Inst{15-12} = Rd;
5500 let Inst{11-0} = 0b000000000000;
5501 let Unpredictable{11-0} = 0b110100001111;
5504 def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5507 // The MRSsys instruction is the MRS instruction from the ARM ARM,
5508 // section B9.3.9, with the R bit set to 1.
5509 def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5510 "mrs", "\t$Rd, spsr", []> {
5512 let Inst{23-16} = 0b01001111;
5513 let Unpredictable{19-16} = 0b1111;
5515 let Inst{15-12} = Rd;
5517 let Inst{11-0} = 0b000000000000;
5518 let Unpredictable{11-0} = 0b110100001111;
5521 // However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5522 // separate encoding (distinguished by bit 5.
5523 def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5524 NoItinerary, "mrs", "\t$Rd, $banked", []>,
5525 Requires<[IsARM, HasVirtualization]> {
5530 let Inst{22} = banked{5}; // R bit
5531 let Inst{21-20} = 0b00;
5532 let Inst{19-16} = banked{3-0};
5533 let Inst{15-12} = Rd;
5534 let Inst{11-9} = 0b001;
5535 let Inst{8} = banked{4};
5536 let Inst{7-0} = 0b00000000;
5539 // Move from ARM core register to Special Register
5541 // No need to have both system and application versions of MSR (immediate) or
5542 // MSR (register), the encodings are the same and the assembly parser has no way
5543 // to distinguish between them. The mask operand contains the special register
5544 // (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5545 // accessed in the special register.
5546 let Defs = [CPSR] in
5547 def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5548 "msr", "\t$mask, $Rn", []> {
5553 let Inst{22} = mask{4}; // R bit
5554 let Inst{21-20} = 0b10;
5555 let Inst{19-16} = mask{3-0};
5556 let Inst{15-12} = 0b1111;
5557 let Inst{11-4} = 0b00000000;
5561 let Defs = [CPSR] in
5562 def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, mod_imm:$imm), NoItinerary,
5563 "msr", "\t$mask, $imm", []> {
5568 let Inst{22} = mask{4}; // R bit
5569 let Inst{21-20} = 0b10;
5570 let Inst{19-16} = mask{3-0};
5571 let Inst{15-12} = 0b1111;
5572 let Inst{11-0} = imm;
5575 // However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5576 // separate encoding (distinguished by bit 5.
5577 def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5578 NoItinerary, "msr", "\t$banked, $Rn", []>,
5579 Requires<[IsARM, HasVirtualization]> {
5584 let Inst{22} = banked{5}; // R bit
5585 let Inst{21-20} = 0b10;
5586 let Inst{19-16} = banked{3-0};
5587 let Inst{15-12} = 0b1111;
5588 let Inst{11-9} = 0b001;
5589 let Inst{8} = banked{4};
5590 let Inst{7-4} = 0b0000;
5594 // Dynamic stack allocation yields a _chkstk for Windows targets. These calls
5595 // are needed to probe the stack when allocating more than
5596 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
5597 // ensure that the guard pages used by the OS virtual memory manager are
5598 // allocated in correct sequence.
5599 // The main point of having separate instruction are extra unmodelled effects
5600 // (compared to ordinary calls) like stack pointer change.
5602 def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5603 [SDNPHasChain, SDNPSideEffect]>;
5604 let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
5605 def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5607 def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5608 [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5609 let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
5610 def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5611 [(win__dbzchk tGPR:$divisor)]>;
5613 //===----------------------------------------------------------------------===//
5617 // __aeabi_read_tp preserves the registers r1-r3.
5618 // This is a pseudo inst so that we can get the encoding right,
5619 // complete with fixup for the aeabi_read_tp function.
5620 // TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5621 // is defined in "ARMInstrThumb.td".
5623 Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5624 def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5625 [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5626 Requires<[IsARM, IsReadTPSoft]>;
5629 // Reading thread pointer from coprocessor register
5630 def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5631 Requires<[IsARM, IsReadTPHard]>;
5633 //===----------------------------------------------------------------------===//
5634 // SJLJ Exception handling intrinsics
5635 // eh_sjlj_setjmp() is an instruction sequence to store the return
5636 // address and save #0 in R0 for the non-longjmp case.
5637 // Since by its nature we may be coming from some other function to get
5638 // here, and we're using the stack frame for the containing function to
5639 // save/restore registers, we can't keep anything live in regs across
5640 // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5641 // when we get here from a longjmp(). We force everything out of registers
5642 // except for our own input by listing the relevant registers in Defs. By
5643 // doing so, we also cause the prologue/epilogue code to actively preserve
5644 // all of the callee-saved resgisters, which is exactly what we want.
5645 // A constant value is passed in $val, and we use the location as a scratch.
5647 // These are pseudo-instructions and are lowered to individual MC-insts, so
5648 // no encoding information is necessary.
5650 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR,
5651 Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5652 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5653 def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5655 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5656 Requires<[IsARM, HasVFP2]>;
5660 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ],
5661 hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5662 def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5664 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5665 Requires<[IsARM, NoVFP]>;
5668 // FIXME: Non-IOS version(s)
5669 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
5670 Defs = [ R7, LR, SP ] in {
5671 def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5673 [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5677 let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5678 def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5679 [(ARMeh_sjlj_setup_dispatch)]>;
5681 // eh.sjlj.dispatchsetup pseudo-instruction.
5682 // This pseudo is used for both ARM and Thumb. Any differences are handled when
5683 // the pseudo is expanded (which happens before any passes that need the
5684 // instruction size).
5685 let isBarrier = 1 in
5686 def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5689 //===----------------------------------------------------------------------===//
5690 // Non-Instruction Patterns
5693 // ARMv4 indirect branch using (MOVr PC, dst)
5694 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5695 def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5696 4, IIC_Br, [(brind GPR:$dst)],
5697 (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5698 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5700 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5701 def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
5703 (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5704 Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5706 // Large immediate handling.
5708 // 32-bit immediate using two piece mod_imms or movw + movt.
5709 // This is a single pseudo instruction, the benefit is that it can be remat'd
5710 // as a single unit instead of having to handle reg inputs.
5711 // FIXME: Remove this when we can do generalized remat.
5712 let isReMaterializable = 1, isMoveImm = 1 in
5713 def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
5714 [(set GPR:$dst, (arm_i32imm:$src))]>,
5717 def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
5718 [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
5719 Requires<[IsARM, DontUseMovt]>;
5721 // Pseudo instruction that combines movw + movt + add pc (if PIC).
5722 // It also makes it possible to rematerialize the instructions.
5723 // FIXME: Remove this when we can do generalized remat and when machine licm
5724 // can properly the instructions.
5725 let isReMaterializable = 1 in {
5726 def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5728 [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
5729 Requires<[IsARM, UseMovtInPic]>;
5731 def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5734 (ARMWrapperPIC tglobaladdr:$addr))]>,
5735 Requires<[IsARM, DontUseMovtInPic]>;
5737 let AddedComplexity = 10 in
5738 def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5741 (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5742 Requires<[IsARM, DontUseMovtInPic]>;
5744 let AddedComplexity = 10 in
5745 def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5747 [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5748 Requires<[IsARM, UseMovtInPic]>;
5749 } // isReMaterializable
5751 // The many different faces of TLS access.
5752 def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
5753 (MOVi32imm tglobaltlsaddr :$dst)>,
5754 Requires<[IsARM, UseMovt]>;
5756 def : Pat<(ARMWrapper tglobaltlsaddr:$src),
5757 (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
5758 Requires<[IsARM, DontUseMovt]>;
5760 def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5761 (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
5763 def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5764 (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
5765 Requires<[IsARM, DontUseMovtInPic]>;
5766 let AddedComplexity = 10 in
5767 def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
5768 (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
5769 Requires<[IsARM, UseMovtInPic]>;
5772 // ConstantPool, GlobalAddress, and JumpTable
5773 def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
5774 def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
5775 Requires<[IsARM, UseMovt]>;
5776 def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
5777 Requires<[IsARM, UseMovt]>;
5778 def : ARMPat<(ARMWrapperJT tjumptable:$dst),
5779 (LEApcrelJT tjumptable:$dst)>;
5781 // TODO: add,sub,and, 3-instr forms?
5783 // Tail calls. These patterns also apply to Thumb mode.
5784 def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
5785 def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
5786 def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
5789 def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
5790 def : ARMPat<(ARMcall_nolink texternalsym:$func),
5791 (BMOVPCB_CALL texternalsym:$func)>;
5793 // zextload i1 -> zextload i8
5794 def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5795 def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
5797 // extload -> zextload
5798 def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5799 def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
5800 def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5801 def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>;
5803 def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
5805 def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
5806 def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
5809 def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
5810 (SMULBB GPR:$a, GPR:$b)>;
5811 def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
5812 (SMULBB GPR:$a, GPR:$b)>;
5813 def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
5814 (SMULBT GPR:$a, GPR:$b)>;
5815 def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
5816 (SMULTB GPR:$a, GPR:$b)>;
5817 def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
5818 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5819 def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
5820 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5821 def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
5822 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5823 def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
5824 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5826 def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
5827 (SMULBB GPR:$a, GPR:$b)>;
5828 def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
5829 (SMULBT GPR:$a, GPR:$b)>;
5830 def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
5831 (SMULTB GPR:$a, GPR:$b)>;
5832 def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
5833 (SMULTT GPR:$a, GPR:$b)>;
5834 def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
5835 (SMULWB GPR:$a, GPR:$b)>;
5836 def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
5837 (SMULWT GPR:$a, GPR:$b)>;
5839 def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
5840 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5841 def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
5842 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5843 def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
5844 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5845 def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
5846 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
5847 def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
5848 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
5849 def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
5850 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
5852 // Pre-v7 uses MCR for synchronization barriers.
5853 def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
5854 Requires<[IsARM, HasV6]>;
5856 // SXT/UXT with no rotate
5857 let AddedComplexity = 16 in {
5858 def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
5859 def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
5860 def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
5861 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
5862 (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
5863 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
5864 (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
5867 def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>;
5868 def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
5870 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
5871 (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
5872 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
5873 (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
5875 // Atomic load/store patterns
5876 def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
5877 (LDRBrs ldst_so_reg:$src)>;
5878 def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
5879 (LDRBi12 addrmode_imm12:$src)>;
5880 def : ARMPat<(atomic_load_16 addrmode3:$src),
5881 (LDRH addrmode3:$src)>;
5882 def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
5883 (LDRrs ldst_so_reg:$src)>;
5884 def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
5885 (LDRi12 addrmode_imm12:$src)>;
5886 def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
5887 (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
5888 def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
5889 (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
5890 def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
5891 (STRH GPR:$val, addrmode3:$ptr)>;
5892 def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
5893 (STRrs GPR:$val, ldst_so_reg:$ptr)>;
5894 def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
5895 (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
5898 //===----------------------------------------------------------------------===//
5902 include "ARMInstrThumb.td"
5904 //===----------------------------------------------------------------------===//
5908 include "ARMInstrThumb2.td"
5910 //===----------------------------------------------------------------------===//
5911 // Floating Point Support
5914 include "ARMInstrVFP.td"
5916 //===----------------------------------------------------------------------===//
5917 // Advanced SIMD (NEON) Support
5920 include "ARMInstrNEON.td"
5922 //===----------------------------------------------------------------------===//
5926 include "ARMInstrMVE.td"
5928 //===----------------------------------------------------------------------===//
5929 // Assembler aliases
5933 def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
5934 def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
5935 def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
5936 def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
5937 def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
5938 // Armv8-R 'Data Full Barrier'
5939 def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
5941 // System instructions
5942 def : MnemonicAlias<"swi", "svc">;
5944 // Load / Store Multiple
5945 def : MnemonicAlias<"ldmfd", "ldm">;
5946 def : MnemonicAlias<"ldmia", "ldm">;
5947 def : MnemonicAlias<"ldmea", "ldmdb">;
5948 def : MnemonicAlias<"stmfd", "stmdb">;
5949 def : MnemonicAlias<"stmia", "stm">;
5950 def : MnemonicAlias<"stmea", "stm">;
5952 // PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
5953 // input operands swapped when the shift amount is zero (i.e., unspecified).
5954 def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
5955 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
5956 Requires<[IsARM, HasV6]>;
5957 def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
5958 (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
5959 Requires<[IsARM, HasV6]>;
5961 // PUSH/POP aliases for STM/LDM
5962 def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
5963 def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
5965 // SSAT/USAT optional shift operand.
5966 def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
5967 (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
5968 def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
5969 (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
5972 // Extend instruction optional rotate operand.
5973 def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
5974 (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5975 def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
5976 (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5977 def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
5978 (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5979 def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
5980 (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5981 def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
5982 (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5983 def : ARMInstAlias<"sxth${p} $Rd, $Rm",
5984 (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5986 def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
5987 (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5988 def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
5989 (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5990 def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
5991 (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5992 def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
5993 (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5994 def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
5995 (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5996 def : ARMInstAlias<"uxth${p} $Rd, $Rm",
5997 (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6001 def : MnemonicAlias<"rfefa", "rfeda">;
6002 def : MnemonicAlias<"rfeea", "rfedb">;
6003 def : MnemonicAlias<"rfefd", "rfeia">;
6004 def : MnemonicAlias<"rfeed", "rfeib">;
6005 def : MnemonicAlias<"rfe", "rfeia">;
6008 def : MnemonicAlias<"srsfa", "srsib">;
6009 def : MnemonicAlias<"srsea", "srsia">;
6010 def : MnemonicAlias<"srsfd", "srsdb">;
6011 def : MnemonicAlias<"srsed", "srsda">;
6012 def : MnemonicAlias<"srs", "srsia">;
6015 def : MnemonicAlias<"qsubaddx", "qsax">;
6017 def : MnemonicAlias<"saddsubx", "sasx">;
6018 // SHASX == SHADDSUBX
6019 def : MnemonicAlias<"shaddsubx", "shasx">;
6020 // SHSAX == SHSUBADDX
6021 def : MnemonicAlias<"shsubaddx", "shsax">;
6023 def : MnemonicAlias<"ssubaddx", "ssax">;
6025 def : MnemonicAlias<"uaddsubx", "uasx">;
6026 // UHASX == UHADDSUBX
6027 def : MnemonicAlias<"uhaddsubx", "uhasx">;
6028 // UHSAX == UHSUBADDX
6029 def : MnemonicAlias<"uhsubaddx", "uhsax">;
6030 // UQASX == UQADDSUBX
6031 def : MnemonicAlias<"uqaddsubx", "uqasx">;
6032 // UQSAX == UQSUBADDX
6033 def : MnemonicAlias<"uqsubaddx", "uqsax">;
6035 def : MnemonicAlias<"usubaddx", "usax">;
6037 // "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6039 def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6040 (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6041 def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6042 (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6043 // Same for AND <--> BIC
6044 def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6045 (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6046 pred:$p, cc_out:$s)>;
6047 def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6048 (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6049 pred:$p, cc_out:$s)>;
6050 def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6051 (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6052 pred:$p, cc_out:$s)>;
6053 def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6054 (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6055 pred:$p, cc_out:$s)>;
6057 // Likewise, "add Rd, mod_imm_neg" -> sub
6058 def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6059 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6060 def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6061 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6062 // Likewise, "sub Rd, mod_imm_neg" -> add
6063 def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6064 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6065 def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6066 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6069 def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6070 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6071 def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6072 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6073 def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6074 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6075 def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6076 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6078 // Same for CMP <--> CMN via mod_imm_neg
6079 def : ARMInstSubst<"cmp${p} $Rd, $imm",
6080 (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6081 def : ARMInstSubst<"cmn${p} $Rd, $imm",
6082 (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6084 // The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6085 // LSR, ROR, and RRX instructions.
6086 // FIXME: We need C++ parser hooks to map the alias to the MOV
6087 // encoding. It seems we should be able to do that sort of thing
6088 // in tblgen, but it could get ugly.
6089 let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6090 def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6091 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6093 def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6094 (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6096 def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6097 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6099 def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6100 (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6103 def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6104 (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6105 let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6106 def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6107 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6109 def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6110 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6112 def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6113 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6115 def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6116 (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6120 // "neg" is and alias for "rsb rd, rn, #0"
6121 def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6122 (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6124 // Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6125 def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
6126 Requires<[IsARM, NoV6]>;
6128 // MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6129 // the instruction definitions need difference constraints pre-v6.
6130 // Use these aliases for the assembly parsing on pre-v6.
6131 def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6132 (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6133 Requires<[IsARM, NoV6]>;
6134 def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6135 (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6136 pred:$p, cc_out:$s), 0>,
6137 Requires<[IsARM, NoV6]>;
6138 def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6139 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6140 Requires<[IsARM, NoV6]>;
6141 def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6142 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6143 Requires<[IsARM, NoV6]>;
6144 def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6145 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6146 Requires<[IsARM, NoV6]>;
6147 def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6148 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6149 Requires<[IsARM, NoV6]>;
6151 // 'it' blocks in ARM mode just validate the predicates. The IT itself
6153 def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
6154 ComplexDeprecationPredicate<"IT">;
6156 let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
6157 def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6159 [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
6161 //===----------------------------------
6162 // Atomic cmpxchg for -O0
6163 //===----------------------------------
6165 // The fast register allocator used during -O0 inserts spills to cover any VRegs
6166 // live across basic block boundaries. When this happens between an LDXR and an
6167 // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6170 // Unfortunately, this means we have to have an alternative (expanded
6171 // post-regalloc) path for -O0 compilations. Fortunately this path can be
6172 // significantly more naive than the standard expansion: we conservatively
6173 // assume seq_cst, strong cmpxchg and omit clrex on failure.
6175 let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6176 mayLoad = 1, mayStore = 1 in {
6177 def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6178 (ins GPR:$addr, GPR:$desired, GPR:$new),
6179 NoItinerary, []>, Sched<[]>;
6181 def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6182 (ins GPR:$addr, GPR:$desired, GPR:$new),
6183 NoItinerary, []>, Sched<[]>;
6185 def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6186 (ins GPR:$addr, GPR:$desired, GPR:$new),
6187 NoItinerary, []>, Sched<[]>;
6189 def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6190 (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6191 NoItinerary, []>, Sched<[]>;
6194 def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
6195 [(atomic_fence imm:$ordering, 0)]> {
6196 let hasSideEffects = 1;
6198 let AsmString = "@ COMPILER BARRIER";
6199 let hasNoSchedulingInfo = 1;