[Alignment][NFC] Convert StoreInst to MaybeAlign
[llvm-core.git] / lib / IR / Instructions.cpp
blob245c7628b08e03b3a13f024357bf81b4c38ab95d
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/TypeSize.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <vector>
47 using namespace llvm;
49 //===----------------------------------------------------------------------===//
50 // AllocaInst Class
51 //===----------------------------------------------------------------------===//
53 Optional<uint64_t>
54 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
55 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
56 if (isArrayAllocation()) {
57 auto C = dyn_cast<ConstantInt>(getArraySize());
58 if (!C)
59 return None;
60 Size *= C->getZExtValue();
62 return Size;
65 //===----------------------------------------------------------------------===//
66 // CallSite Class
67 //===----------------------------------------------------------------------===//
69 User::op_iterator CallSite::getCallee() const {
70 return cast<CallBase>(getInstruction())->op_end() - 1;
73 //===----------------------------------------------------------------------===//
74 // SelectInst Class
75 //===----------------------------------------------------------------------===//
77 /// areInvalidOperands - Return a string if the specified operands are invalid
78 /// for a select operation, otherwise return null.
79 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
80 if (Op1->getType() != Op2->getType())
81 return "both values to select must have same type";
83 if (Op1->getType()->isTokenTy())
84 return "select values cannot have token type";
86 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
87 // Vector select.
88 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
89 return "vector select condition element type must be i1";
90 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
91 if (!ET)
92 return "selected values for vector select must be vectors";
93 if (ET->getNumElements() != VT->getNumElements())
94 return "vector select requires selected vectors to have "
95 "the same vector length as select condition";
96 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
97 return "select condition must be i1 or <n x i1>";
99 return nullptr;
102 //===----------------------------------------------------------------------===//
103 // PHINode Class
104 //===----------------------------------------------------------------------===//
106 PHINode::PHINode(const PHINode &PN)
107 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
108 ReservedSpace(PN.getNumOperands()) {
109 allocHungoffUses(PN.getNumOperands());
110 std::copy(PN.op_begin(), PN.op_end(), op_begin());
111 std::copy(PN.block_begin(), PN.block_end(), block_begin());
112 SubclassOptionalData = PN.SubclassOptionalData;
115 // removeIncomingValue - Remove an incoming value. This is useful if a
116 // predecessor basic block is deleted.
117 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
118 Value *Removed = getIncomingValue(Idx);
120 // Move everything after this operand down.
122 // FIXME: we could just swap with the end of the list, then erase. However,
123 // clients might not expect this to happen. The code as it is thrashes the
124 // use/def lists, which is kinda lame.
125 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
126 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
128 // Nuke the last value.
129 Op<-1>().set(nullptr);
130 setNumHungOffUseOperands(getNumOperands() - 1);
132 // If the PHI node is dead, because it has zero entries, nuke it now.
133 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
134 // If anyone is using this PHI, make them use a dummy value instead...
135 replaceAllUsesWith(UndefValue::get(getType()));
136 eraseFromParent();
138 return Removed;
141 /// growOperands - grow operands - This grows the operand list in response
142 /// to a push_back style of operation. This grows the number of ops by 1.5
143 /// times.
145 void PHINode::growOperands() {
146 unsigned e = getNumOperands();
147 unsigned NumOps = e + e / 2;
148 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
150 ReservedSpace = NumOps;
151 growHungoffUses(ReservedSpace, /* IsPhi */ true);
154 /// hasConstantValue - If the specified PHI node always merges together the same
155 /// value, return the value, otherwise return null.
156 Value *PHINode::hasConstantValue() const {
157 // Exploit the fact that phi nodes always have at least one entry.
158 Value *ConstantValue = getIncomingValue(0);
159 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
160 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
161 if (ConstantValue != this)
162 return nullptr; // Incoming values not all the same.
163 // The case where the first value is this PHI.
164 ConstantValue = getIncomingValue(i);
166 if (ConstantValue == this)
167 return UndefValue::get(getType());
168 return ConstantValue;
171 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
172 /// together the same value, assuming that undefs result in the same value as
173 /// non-undefs.
174 /// Unlike \ref hasConstantValue, this does not return a value because the
175 /// unique non-undef incoming value need not dominate the PHI node.
176 bool PHINode::hasConstantOrUndefValue() const {
177 Value *ConstantValue = nullptr;
178 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
179 Value *Incoming = getIncomingValue(i);
180 if (Incoming != this && !isa<UndefValue>(Incoming)) {
181 if (ConstantValue && ConstantValue != Incoming)
182 return false;
183 ConstantValue = Incoming;
186 return true;
189 //===----------------------------------------------------------------------===//
190 // LandingPadInst Implementation
191 //===----------------------------------------------------------------------===//
193 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
194 const Twine &NameStr, Instruction *InsertBefore)
195 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
196 init(NumReservedValues, NameStr);
199 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
200 const Twine &NameStr, BasicBlock *InsertAtEnd)
201 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
202 init(NumReservedValues, NameStr);
205 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
206 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
207 LP.getNumOperands()),
208 ReservedSpace(LP.getNumOperands()) {
209 allocHungoffUses(LP.getNumOperands());
210 Use *OL = getOperandList();
211 const Use *InOL = LP.getOperandList();
212 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
213 OL[I] = InOL[I];
215 setCleanup(LP.isCleanup());
218 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
219 const Twine &NameStr,
220 Instruction *InsertBefore) {
221 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
224 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
225 const Twine &NameStr,
226 BasicBlock *InsertAtEnd) {
227 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
230 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
231 ReservedSpace = NumReservedValues;
232 setNumHungOffUseOperands(0);
233 allocHungoffUses(ReservedSpace);
234 setName(NameStr);
235 setCleanup(false);
238 /// growOperands - grow operands - This grows the operand list in response to a
239 /// push_back style of operation. This grows the number of ops by 2 times.
240 void LandingPadInst::growOperands(unsigned Size) {
241 unsigned e = getNumOperands();
242 if (ReservedSpace >= e + Size) return;
243 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
244 growHungoffUses(ReservedSpace);
247 void LandingPadInst::addClause(Constant *Val) {
248 unsigned OpNo = getNumOperands();
249 growOperands(1);
250 assert(OpNo < ReservedSpace && "Growing didn't work!");
251 setNumHungOffUseOperands(getNumOperands() + 1);
252 getOperandList()[OpNo] = Val;
255 //===----------------------------------------------------------------------===//
256 // CallBase Implementation
257 //===----------------------------------------------------------------------===//
259 Function *CallBase::getCaller() { return getParent()->getParent(); }
261 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
262 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
263 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
266 bool CallBase::isIndirectCall() const {
267 const Value *V = getCalledValue();
268 if (isa<Function>(V) || isa<Constant>(V))
269 return false;
270 if (const CallInst *CI = dyn_cast<CallInst>(this))
271 if (CI->isInlineAsm())
272 return false;
273 return true;
276 /// Tests if this call site must be tail call optimized. Only a CallInst can
277 /// be tail call optimized.
278 bool CallBase::isMustTailCall() const {
279 if (auto *CI = dyn_cast<CallInst>(this))
280 return CI->isMustTailCall();
281 return false;
284 /// Tests if this call site is marked as a tail call.
285 bool CallBase::isTailCall() const {
286 if (auto *CI = dyn_cast<CallInst>(this))
287 return CI->isTailCall();
288 return false;
291 Intrinsic::ID CallBase::getIntrinsicID() const {
292 if (auto *F = getCalledFunction())
293 return F->getIntrinsicID();
294 return Intrinsic::not_intrinsic;
297 bool CallBase::isReturnNonNull() const {
298 if (hasRetAttr(Attribute::NonNull))
299 return true;
301 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
302 !NullPointerIsDefined(getCaller(),
303 getType()->getPointerAddressSpace()))
304 return true;
306 return false;
309 Value *CallBase::getReturnedArgOperand() const {
310 unsigned Index;
312 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
313 return getArgOperand(Index - AttributeList::FirstArgIndex);
314 if (const Function *F = getCalledFunction())
315 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
316 Index)
317 return getArgOperand(Index - AttributeList::FirstArgIndex);
319 return nullptr;
322 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
323 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
324 return true;
326 // Look at the callee, if available.
327 if (const Function *F = getCalledFunction())
328 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
329 return false;
332 /// Determine whether the argument or parameter has the given attribute.
333 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
334 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
336 if (Attrs.hasParamAttribute(ArgNo, Kind))
337 return true;
338 if (const Function *F = getCalledFunction())
339 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
340 return false;
343 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
344 if (const Function *F = getCalledFunction())
345 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
346 return false;
349 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
350 if (const Function *F = getCalledFunction())
351 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
352 return false;
355 CallBase::op_iterator
356 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
357 const unsigned BeginIndex) {
358 auto It = op_begin() + BeginIndex;
359 for (auto &B : Bundles)
360 It = std::copy(B.input_begin(), B.input_end(), It);
362 auto *ContextImpl = getContext().pImpl;
363 auto BI = Bundles.begin();
364 unsigned CurrentIndex = BeginIndex;
366 for (auto &BOI : bundle_op_infos()) {
367 assert(BI != Bundles.end() && "Incorrect allocation?");
369 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
370 BOI.Begin = CurrentIndex;
371 BOI.End = CurrentIndex + BI->input_size();
372 CurrentIndex = BOI.End;
373 BI++;
376 assert(BI == Bundles.end() && "Incorrect allocation?");
378 return It;
381 //===----------------------------------------------------------------------===//
382 // CallInst Implementation
383 //===----------------------------------------------------------------------===//
385 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
386 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
387 this->FTy = FTy;
388 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
389 "NumOperands not set up?");
390 setCalledOperand(Func);
392 #ifndef NDEBUG
393 assert((Args.size() == FTy->getNumParams() ||
394 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
395 "Calling a function with bad signature!");
397 for (unsigned i = 0; i != Args.size(); ++i)
398 assert((i >= FTy->getNumParams() ||
399 FTy->getParamType(i) == Args[i]->getType()) &&
400 "Calling a function with a bad signature!");
401 #endif
403 llvm::copy(Args, op_begin());
405 auto It = populateBundleOperandInfos(Bundles, Args.size());
406 (void)It;
407 assert(It + 1 == op_end() && "Should add up!");
409 setName(NameStr);
412 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
413 this->FTy = FTy;
414 assert(getNumOperands() == 1 && "NumOperands not set up?");
415 setCalledOperand(Func);
417 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
419 setName(NameStr);
422 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
423 Instruction *InsertBefore)
424 : CallBase(Ty->getReturnType(), Instruction::Call,
425 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
426 init(Ty, Func, Name);
429 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
430 BasicBlock *InsertAtEnd)
431 : CallBase(Ty->getReturnType(), Instruction::Call,
432 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
433 init(Ty, Func, Name);
436 CallInst::CallInst(const CallInst &CI)
437 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
438 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
439 CI.getNumOperands()) {
440 setTailCallKind(CI.getTailCallKind());
441 setCallingConv(CI.getCallingConv());
443 std::copy(CI.op_begin(), CI.op_end(), op_begin());
444 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
445 bundle_op_info_begin());
446 SubclassOptionalData = CI.SubclassOptionalData;
449 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
450 Instruction *InsertPt) {
451 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
453 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
454 Args, OpB, CI->getName(), InsertPt);
455 NewCI->setTailCallKind(CI->getTailCallKind());
456 NewCI->setCallingConv(CI->getCallingConv());
457 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
458 NewCI->setAttributes(CI->getAttributes());
459 NewCI->setDebugLoc(CI->getDebugLoc());
460 return NewCI;
463 // Update profile weight for call instruction by scaling it using the ratio
464 // of S/T. The meaning of "branch_weights" meta data for call instruction is
465 // transfered to represent call count.
466 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
467 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
468 if (ProfileData == nullptr)
469 return;
471 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
472 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
473 !ProfDataName->getString().equals("VP")))
474 return;
476 if (T == 0) {
477 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
478 "div by 0. Ignoring. Likely the function "
479 << getParent()->getParent()->getName()
480 << " has 0 entry count, and contains call instructions "
481 "with non-zero prof info.");
482 return;
485 MDBuilder MDB(getContext());
486 SmallVector<Metadata *, 3> Vals;
487 Vals.push_back(ProfileData->getOperand(0));
488 APInt APS(128, S), APT(128, T);
489 if (ProfDataName->getString().equals("branch_weights") &&
490 ProfileData->getNumOperands() > 0) {
491 // Using APInt::div may be expensive, but most cases should fit 64 bits.
492 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
493 ->getValue()
494 .getZExtValue());
495 Val *= APS;
496 Vals.push_back(MDB.createConstant(ConstantInt::get(
497 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
498 } else if (ProfDataName->getString().equals("VP"))
499 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
500 // The first value is the key of the value profile, which will not change.
501 Vals.push_back(ProfileData->getOperand(i));
502 // Using APInt::div may be expensive, but most cases should fit 64 bits.
503 APInt Val(128,
504 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
505 ->getValue()
506 .getZExtValue());
507 Val *= APS;
508 Vals.push_back(MDB.createConstant(
509 ConstantInt::get(Type::getInt64Ty(getContext()),
510 Val.udiv(APT).getLimitedValue())));
512 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
515 /// IsConstantOne - Return true only if val is constant int 1
516 static bool IsConstantOne(Value *val) {
517 assert(val && "IsConstantOne does not work with nullptr val");
518 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
519 return CVal && CVal->isOne();
522 static Instruction *createMalloc(Instruction *InsertBefore,
523 BasicBlock *InsertAtEnd, Type *IntPtrTy,
524 Type *AllocTy, Value *AllocSize,
525 Value *ArraySize,
526 ArrayRef<OperandBundleDef> OpB,
527 Function *MallocF, const Twine &Name) {
528 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
529 "createMalloc needs either InsertBefore or InsertAtEnd");
531 // malloc(type) becomes:
532 // bitcast (i8* malloc(typeSize)) to type*
533 // malloc(type, arraySize) becomes:
534 // bitcast (i8* malloc(typeSize*arraySize)) to type*
535 if (!ArraySize)
536 ArraySize = ConstantInt::get(IntPtrTy, 1);
537 else if (ArraySize->getType() != IntPtrTy) {
538 if (InsertBefore)
539 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
540 "", InsertBefore);
541 else
542 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
543 "", InsertAtEnd);
546 if (!IsConstantOne(ArraySize)) {
547 if (IsConstantOne(AllocSize)) {
548 AllocSize = ArraySize; // Operand * 1 = Operand
549 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
550 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
551 false /*ZExt*/);
552 // Malloc arg is constant product of type size and array size
553 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
554 } else {
555 // Multiply type size by the array size...
556 if (InsertBefore)
557 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
558 "mallocsize", InsertBefore);
559 else
560 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
561 "mallocsize", InsertAtEnd);
565 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
566 // Create the call to Malloc.
567 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
568 Module *M = BB->getParent()->getParent();
569 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
570 FunctionCallee MallocFunc = MallocF;
571 if (!MallocFunc)
572 // prototype malloc as "void *malloc(size_t)"
573 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
574 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
575 CallInst *MCall = nullptr;
576 Instruction *Result = nullptr;
577 if (InsertBefore) {
578 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
579 InsertBefore);
580 Result = MCall;
581 if (Result->getType() != AllocPtrType)
582 // Create a cast instruction to convert to the right type...
583 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
584 } else {
585 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
586 Result = MCall;
587 if (Result->getType() != AllocPtrType) {
588 InsertAtEnd->getInstList().push_back(MCall);
589 // Create a cast instruction to convert to the right type...
590 Result = new BitCastInst(MCall, AllocPtrType, Name);
593 MCall->setTailCall();
594 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
595 MCall->setCallingConv(F->getCallingConv());
596 if (!F->returnDoesNotAlias())
597 F->setReturnDoesNotAlias();
599 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
601 return Result;
604 /// CreateMalloc - Generate the IR for a call to malloc:
605 /// 1. Compute the malloc call's argument as the specified type's size,
606 /// possibly multiplied by the array size if the array size is not
607 /// constant 1.
608 /// 2. Call malloc with that argument.
609 /// 3. Bitcast the result of the malloc call to the specified type.
610 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
611 Type *IntPtrTy, Type *AllocTy,
612 Value *AllocSize, Value *ArraySize,
613 Function *MallocF,
614 const Twine &Name) {
615 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
616 ArraySize, None, MallocF, Name);
618 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
619 Type *IntPtrTy, Type *AllocTy,
620 Value *AllocSize, Value *ArraySize,
621 ArrayRef<OperandBundleDef> OpB,
622 Function *MallocF,
623 const Twine &Name) {
624 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
625 ArraySize, OpB, MallocF, Name);
628 /// CreateMalloc - Generate the IR for a call to malloc:
629 /// 1. Compute the malloc call's argument as the specified type's size,
630 /// possibly multiplied by the array size if the array size is not
631 /// constant 1.
632 /// 2. Call malloc with that argument.
633 /// 3. Bitcast the result of the malloc call to the specified type.
634 /// Note: This function does not add the bitcast to the basic block, that is the
635 /// responsibility of the caller.
636 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
637 Type *IntPtrTy, Type *AllocTy,
638 Value *AllocSize, Value *ArraySize,
639 Function *MallocF, const Twine &Name) {
640 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
641 ArraySize, None, MallocF, Name);
643 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
644 Type *IntPtrTy, Type *AllocTy,
645 Value *AllocSize, Value *ArraySize,
646 ArrayRef<OperandBundleDef> OpB,
647 Function *MallocF, const Twine &Name) {
648 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
649 ArraySize, OpB, MallocF, Name);
652 static Instruction *createFree(Value *Source,
653 ArrayRef<OperandBundleDef> Bundles,
654 Instruction *InsertBefore,
655 BasicBlock *InsertAtEnd) {
656 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
657 "createFree needs either InsertBefore or InsertAtEnd");
658 assert(Source->getType()->isPointerTy() &&
659 "Can not free something of nonpointer type!");
661 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
662 Module *M = BB->getParent()->getParent();
664 Type *VoidTy = Type::getVoidTy(M->getContext());
665 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
666 // prototype free as "void free(void*)"
667 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
668 CallInst *Result = nullptr;
669 Value *PtrCast = Source;
670 if (InsertBefore) {
671 if (Source->getType() != IntPtrTy)
672 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
673 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
674 } else {
675 if (Source->getType() != IntPtrTy)
676 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
677 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
679 Result->setTailCall();
680 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
681 Result->setCallingConv(F->getCallingConv());
683 return Result;
686 /// CreateFree - Generate the IR for a call to the builtin free function.
687 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
688 return createFree(Source, None, InsertBefore, nullptr);
690 Instruction *CallInst::CreateFree(Value *Source,
691 ArrayRef<OperandBundleDef> Bundles,
692 Instruction *InsertBefore) {
693 return createFree(Source, Bundles, InsertBefore, nullptr);
696 /// CreateFree - Generate the IR for a call to the builtin free function.
697 /// Note: This function does not add the call to the basic block, that is the
698 /// responsibility of the caller.
699 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
700 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
701 assert(FreeCall && "CreateFree did not create a CallInst");
702 return FreeCall;
704 Instruction *CallInst::CreateFree(Value *Source,
705 ArrayRef<OperandBundleDef> Bundles,
706 BasicBlock *InsertAtEnd) {
707 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
708 assert(FreeCall && "CreateFree did not create a CallInst");
709 return FreeCall;
712 //===----------------------------------------------------------------------===//
713 // InvokeInst Implementation
714 //===----------------------------------------------------------------------===//
716 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
717 BasicBlock *IfException, ArrayRef<Value *> Args,
718 ArrayRef<OperandBundleDef> Bundles,
719 const Twine &NameStr) {
720 this->FTy = FTy;
722 assert((int)getNumOperands() ==
723 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
724 "NumOperands not set up?");
725 setNormalDest(IfNormal);
726 setUnwindDest(IfException);
727 setCalledOperand(Fn);
729 #ifndef NDEBUG
730 assert(((Args.size() == FTy->getNumParams()) ||
731 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
732 "Invoking a function with bad signature");
734 for (unsigned i = 0, e = Args.size(); i != e; i++)
735 assert((i >= FTy->getNumParams() ||
736 FTy->getParamType(i) == Args[i]->getType()) &&
737 "Invoking a function with a bad signature!");
738 #endif
740 llvm::copy(Args, op_begin());
742 auto It = populateBundleOperandInfos(Bundles, Args.size());
743 (void)It;
744 assert(It + 3 == op_end() && "Should add up!");
746 setName(NameStr);
749 InvokeInst::InvokeInst(const InvokeInst &II)
750 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
751 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
752 II.getNumOperands()) {
753 setCallingConv(II.getCallingConv());
754 std::copy(II.op_begin(), II.op_end(), op_begin());
755 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
756 bundle_op_info_begin());
757 SubclassOptionalData = II.SubclassOptionalData;
760 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
761 Instruction *InsertPt) {
762 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
764 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
765 II->getNormalDest(), II->getUnwindDest(),
766 Args, OpB, II->getName(), InsertPt);
767 NewII->setCallingConv(II->getCallingConv());
768 NewII->SubclassOptionalData = II->SubclassOptionalData;
769 NewII->setAttributes(II->getAttributes());
770 NewII->setDebugLoc(II->getDebugLoc());
771 return NewII;
775 LandingPadInst *InvokeInst::getLandingPadInst() const {
776 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
779 //===----------------------------------------------------------------------===//
780 // CallBrInst Implementation
781 //===----------------------------------------------------------------------===//
783 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
784 ArrayRef<BasicBlock *> IndirectDests,
785 ArrayRef<Value *> Args,
786 ArrayRef<OperandBundleDef> Bundles,
787 const Twine &NameStr) {
788 this->FTy = FTy;
790 assert((int)getNumOperands() ==
791 ComputeNumOperands(Args.size(), IndirectDests.size(),
792 CountBundleInputs(Bundles)) &&
793 "NumOperands not set up?");
794 NumIndirectDests = IndirectDests.size();
795 setDefaultDest(Fallthrough);
796 for (unsigned i = 0; i != NumIndirectDests; ++i)
797 setIndirectDest(i, IndirectDests[i]);
798 setCalledOperand(Fn);
800 #ifndef NDEBUG
801 assert(((Args.size() == FTy->getNumParams()) ||
802 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
803 "Calling a function with bad signature");
805 for (unsigned i = 0, e = Args.size(); i != e; i++)
806 assert((i >= FTy->getNumParams() ||
807 FTy->getParamType(i) == Args[i]->getType()) &&
808 "Calling a function with a bad signature!");
809 #endif
811 std::copy(Args.begin(), Args.end(), op_begin());
813 auto It = populateBundleOperandInfos(Bundles, Args.size());
814 (void)It;
815 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
817 setName(NameStr);
820 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
821 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
822 if (BasicBlock *OldBB = getIndirectDest(i)) {
823 BlockAddress *Old = BlockAddress::get(OldBB);
824 BlockAddress *New = BlockAddress::get(B);
825 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
826 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
827 setArgOperand(ArgNo, New);
831 CallBrInst::CallBrInst(const CallBrInst &CBI)
832 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
833 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
834 CBI.getNumOperands()) {
835 setCallingConv(CBI.getCallingConv());
836 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
837 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
838 bundle_op_info_begin());
839 SubclassOptionalData = CBI.SubclassOptionalData;
840 NumIndirectDests = CBI.NumIndirectDests;
843 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
844 Instruction *InsertPt) {
845 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
847 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
848 CBI->getCalledValue(),
849 CBI->getDefaultDest(),
850 CBI->getIndirectDests(),
851 Args, OpB, CBI->getName(), InsertPt);
852 NewCBI->setCallingConv(CBI->getCallingConv());
853 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
854 NewCBI->setAttributes(CBI->getAttributes());
855 NewCBI->setDebugLoc(CBI->getDebugLoc());
856 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
857 return NewCBI;
860 //===----------------------------------------------------------------------===//
861 // ReturnInst Implementation
862 //===----------------------------------------------------------------------===//
864 ReturnInst::ReturnInst(const ReturnInst &RI)
865 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
866 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
867 RI.getNumOperands()) {
868 if (RI.getNumOperands())
869 Op<0>() = RI.Op<0>();
870 SubclassOptionalData = RI.SubclassOptionalData;
873 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
874 : Instruction(Type::getVoidTy(C), Instruction::Ret,
875 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
876 InsertBefore) {
877 if (retVal)
878 Op<0>() = retVal;
881 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
882 : Instruction(Type::getVoidTy(C), Instruction::Ret,
883 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
884 InsertAtEnd) {
885 if (retVal)
886 Op<0>() = retVal;
889 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
890 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
891 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
893 //===----------------------------------------------------------------------===//
894 // ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
897 ResumeInst::ResumeInst(const ResumeInst &RI)
898 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
899 OperandTraits<ResumeInst>::op_begin(this), 1) {
900 Op<0>() = RI.Op<0>();
903 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
904 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
906 Op<0>() = Exn;
909 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
910 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
911 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
912 Op<0>() = Exn;
915 //===----------------------------------------------------------------------===//
916 // CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
920 : Instruction(CRI.getType(), Instruction::CleanupRet,
921 OperandTraits<CleanupReturnInst>::op_end(this) -
922 CRI.getNumOperands(),
923 CRI.getNumOperands()) {
924 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
925 Op<0>() = CRI.Op<0>();
926 if (CRI.hasUnwindDest())
927 Op<1>() = CRI.Op<1>();
930 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
931 if (UnwindBB)
932 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
934 Op<0>() = CleanupPad;
935 if (UnwindBB)
936 Op<1>() = UnwindBB;
939 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
940 unsigned Values, Instruction *InsertBefore)
941 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
942 Instruction::CleanupRet,
943 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
944 Values, InsertBefore) {
945 init(CleanupPad, UnwindBB);
948 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
949 unsigned Values, BasicBlock *InsertAtEnd)
950 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
951 Instruction::CleanupRet,
952 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
953 Values, InsertAtEnd) {
954 init(CleanupPad, UnwindBB);
957 //===----------------------------------------------------------------------===//
958 // CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
960 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
961 Op<0>() = CatchPad;
962 Op<1>() = BB;
965 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
966 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
967 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
968 Op<0>() = CRI.Op<0>();
969 Op<1>() = CRI.Op<1>();
972 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
973 Instruction *InsertBefore)
974 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
975 OperandTraits<CatchReturnInst>::op_begin(this), 2,
976 InsertBefore) {
977 init(CatchPad, BB);
980 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
981 BasicBlock *InsertAtEnd)
982 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
983 OperandTraits<CatchReturnInst>::op_begin(this), 2,
984 InsertAtEnd) {
985 init(CatchPad, BB);
988 //===----------------------------------------------------------------------===//
989 // CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993 unsigned NumReservedValues,
994 const Twine &NameStr,
995 Instruction *InsertBefore)
996 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
997 InsertBefore) {
998 if (UnwindDest)
999 ++NumReservedValues;
1000 init(ParentPad, UnwindDest, NumReservedValues + 1);
1001 setName(NameStr);
1004 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1005 unsigned NumReservedValues,
1006 const Twine &NameStr, BasicBlock *InsertAtEnd)
1007 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1008 InsertAtEnd) {
1009 if (UnwindDest)
1010 ++NumReservedValues;
1011 init(ParentPad, UnwindDest, NumReservedValues + 1);
1012 setName(NameStr);
1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1016 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1017 CSI.getNumOperands()) {
1018 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1019 setNumHungOffUseOperands(ReservedSpace);
1020 Use *OL = getOperandList();
1021 const Use *InOL = CSI.getOperandList();
1022 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1023 OL[I] = InOL[I];
1026 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1027 unsigned NumReservedValues) {
1028 assert(ParentPad && NumReservedValues);
1030 ReservedSpace = NumReservedValues;
1031 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1032 allocHungoffUses(ReservedSpace);
1034 Op<0>() = ParentPad;
1035 if (UnwindDest) {
1036 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037 setUnwindDest(UnwindDest);
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
1043 void CatchSwitchInst::growOperands(unsigned Size) {
1044 unsigned NumOperands = getNumOperands();
1045 assert(NumOperands >= 1);
1046 if (ReservedSpace >= NumOperands + Size)
1047 return;
1048 ReservedSpace = (NumOperands + Size / 2) * 2;
1049 growHungoffUses(ReservedSpace);
1052 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1053 unsigned OpNo = getNumOperands();
1054 growOperands(1);
1055 assert(OpNo < ReservedSpace && "Growing didn't work!");
1056 setNumHungOffUseOperands(getNumOperands() + 1);
1057 getOperandList()[OpNo] = Handler;
1060 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1061 // Move all subsequent handlers up one.
1062 Use *EndDst = op_end() - 1;
1063 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1064 *CurDst = *(CurDst + 1);
1065 // Null out the last handler use.
1066 *EndDst = nullptr;
1068 setNumHungOffUseOperands(getNumOperands() - 1);
1071 //===----------------------------------------------------------------------===//
1072 // FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
1074 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1075 const Twine &NameStr) {
1076 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1077 llvm::copy(Args, op_begin());
1078 setParentPad(ParentPad);
1079 setName(NameStr);
1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1083 : Instruction(FPI.getType(), FPI.getOpcode(),
1084 OperandTraits<FuncletPadInst>::op_end(this) -
1085 FPI.getNumOperands(),
1086 FPI.getNumOperands()) {
1087 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1088 setParentPad(FPI.getParentPad());
1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1092 ArrayRef<Value *> Args, unsigned Values,
1093 const Twine &NameStr, Instruction *InsertBefore)
1094 : Instruction(ParentPad->getType(), Op,
1095 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1096 InsertBefore) {
1097 init(ParentPad, Args, NameStr);
1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1101 ArrayRef<Value *> Args, unsigned Values,
1102 const Twine &NameStr, BasicBlock *InsertAtEnd)
1103 : Instruction(ParentPad->getType(), Op,
1104 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1105 InsertAtEnd) {
1106 init(ParentPad, Args, NameStr);
1109 //===----------------------------------------------------------------------===//
1110 // UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1113 UnreachableInst::UnreachableInst(LLVMContext &Context,
1114 Instruction *InsertBefore)
1115 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1116 0, InsertBefore) {}
1117 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1118 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1119 0, InsertAtEnd) {}
1121 //===----------------------------------------------------------------------===//
1122 // BranchInst Implementation
1123 //===----------------------------------------------------------------------===//
1125 void BranchInst::AssertOK() {
1126 if (isConditional())
1127 assert(getCondition()->getType()->isIntegerTy(1) &&
1128 "May only branch on boolean predicates!");
1131 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1132 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1133 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1134 InsertBefore) {
1135 assert(IfTrue && "Branch destination may not be null!");
1136 Op<-1>() = IfTrue;
1139 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1140 Instruction *InsertBefore)
1141 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1142 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1143 InsertBefore) {
1144 Op<-1>() = IfTrue;
1145 Op<-2>() = IfFalse;
1146 Op<-3>() = Cond;
1147 #ifndef NDEBUG
1148 AssertOK();
1149 #endif
1152 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1153 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1154 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1155 assert(IfTrue && "Branch destination may not be null!");
1156 Op<-1>() = IfTrue;
1159 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1160 BasicBlock *InsertAtEnd)
1161 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1162 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1163 Op<-1>() = IfTrue;
1164 Op<-2>() = IfFalse;
1165 Op<-3>() = Cond;
1166 #ifndef NDEBUG
1167 AssertOK();
1168 #endif
1171 BranchInst::BranchInst(const BranchInst &BI)
1172 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1173 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1174 BI.getNumOperands()) {
1175 Op<-1>() = BI.Op<-1>();
1176 if (BI.getNumOperands() != 1) {
1177 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1178 Op<-3>() = BI.Op<-3>();
1179 Op<-2>() = BI.Op<-2>();
1181 SubclassOptionalData = BI.SubclassOptionalData;
1184 void BranchInst::swapSuccessors() {
1185 assert(isConditional() &&
1186 "Cannot swap successors of an unconditional branch");
1187 Op<-1>().swap(Op<-2>());
1189 // Update profile metadata if present and it matches our structural
1190 // expectations.
1191 swapProfMetadata();
1194 //===----------------------------------------------------------------------===//
1195 // AllocaInst Implementation
1196 //===----------------------------------------------------------------------===//
1198 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1199 if (!Amt)
1200 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1201 else {
1202 assert(!isa<BasicBlock>(Amt) &&
1203 "Passed basic block into allocation size parameter! Use other ctor");
1204 assert(Amt->getType()->isIntegerTy() &&
1205 "Allocation array size is not an integer!");
1207 return Amt;
1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1211 Instruction *InsertBefore)
1212 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1215 BasicBlock *InsertAtEnd)
1216 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1218 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1219 const Twine &Name, Instruction *InsertBefore)
1220 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1222 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1223 const Twine &Name, BasicBlock *InsertAtEnd)
1224 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1226 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1227 unsigned Align, const Twine &Name,
1228 Instruction *InsertBefore)
1229 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1230 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1231 AllocatedType(Ty) {
1232 setAlignment(MaybeAlign(Align));
1233 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1234 setName(Name);
1237 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1238 unsigned Align, const Twine &Name,
1239 BasicBlock *InsertAtEnd)
1240 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1241 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1242 AllocatedType(Ty) {
1243 setAlignment(MaybeAlign(Align));
1244 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1245 setName(Name);
1248 void AllocaInst::setAlignment(MaybeAlign Align) {
1249 assert((!Align || *Align <= MaximumAlignment) &&
1250 "Alignment is greater than MaximumAlignment!");
1251 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1252 encode(Align));
1253 if (Align)
1254 assert(getAlignment() == Align->value() &&
1255 "Alignment representation error!");
1256 else
1257 assert(getAlignment() == 0 && "Alignment representation error!");
1260 bool AllocaInst::isArrayAllocation() const {
1261 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1262 return !CI->isOne();
1263 return true;
1266 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1267 /// function and is a constant size. If so, the code generator will fold it
1268 /// into the prolog/epilog code, so it is basically free.
1269 bool AllocaInst::isStaticAlloca() const {
1270 // Must be constant size.
1271 if (!isa<ConstantInt>(getArraySize())) return false;
1273 // Must be in the entry block.
1274 const BasicBlock *Parent = getParent();
1275 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1278 //===----------------------------------------------------------------------===//
1279 // LoadInst Implementation
1280 //===----------------------------------------------------------------------===//
1282 void LoadInst::AssertOK() {
1283 assert(getOperand(0)->getType()->isPointerTy() &&
1284 "Ptr must have pointer type.");
1285 assert(!(isAtomic() && getAlignment() == 0) &&
1286 "Alignment required for atomic load");
1289 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1290 Instruction *InsertBef)
1291 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1293 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1294 BasicBlock *InsertAE)
1295 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1297 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1298 Instruction *InsertBef)
1299 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertBef) {}
1301 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1302 BasicBlock *InsertAE)
1303 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertAE) {}
1305 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1306 MaybeAlign Align, Instruction *InsertBef)
1307 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1308 SyncScope::System, InsertBef) {}
1310 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1311 MaybeAlign Align, BasicBlock *InsertAE)
1312 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1313 SyncScope::System, InsertAE) {}
1315 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1316 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1317 Instruction *InsertBef)
1318 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1319 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1320 setVolatile(isVolatile);
1321 setAlignment(MaybeAlign(Align));
1322 setAtomic(Order, SSID);
1323 AssertOK();
1324 setName(Name);
1327 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1328 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1329 BasicBlock *InsertAE)
1330 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1331 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1332 setVolatile(isVolatile);
1333 setAlignment(Align);
1334 setAtomic(Order, SSID);
1335 AssertOK();
1336 setName(Name);
1339 void LoadInst::setAlignment(MaybeAlign Align) {
1340 assert((!Align || *Align <= MaximumAlignment) &&
1341 "Alignment is greater than MaximumAlignment!");
1342 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1343 (encode(Align) << 1));
1344 if (Align)
1345 assert(getAlignment() == Align->value() &&
1346 "Alignment representation error!");
1347 else
1348 assert(getAlignment() == 0 && "Alignment representation error!");
1351 //===----------------------------------------------------------------------===//
1352 // StoreInst Implementation
1353 //===----------------------------------------------------------------------===//
1355 void StoreInst::AssertOK() {
1356 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1357 assert(getOperand(1)->getType()->isPointerTy() &&
1358 "Ptr must have pointer type!");
1359 assert(getOperand(0)->getType() ==
1360 cast<PointerType>(getOperand(1)->getType())->getElementType()
1361 && "Ptr must be a pointer to Val type!");
1362 assert(!(isAtomic() && getAlignment() == 0) &&
1363 "Alignment required for atomic store");
1366 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1367 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1369 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1370 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1372 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1373 Instruction *InsertBefore)
1374 : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertBefore) {}
1376 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1377 BasicBlock *InsertAtEnd)
1378 : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertAtEnd) {}
1380 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1381 Instruction *InsertBefore)
1382 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1383 SyncScope::System, InsertBefore) {}
1385 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1386 BasicBlock *InsertAtEnd)
1387 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1388 SyncScope::System, InsertAtEnd) {}
1390 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1391 AtomicOrdering Order, SyncScope::ID SSID,
1392 Instruction *InsertBefore)
1393 : Instruction(Type::getVoidTy(val->getContext()), Store,
1394 OperandTraits<StoreInst>::op_begin(this),
1395 OperandTraits<StoreInst>::operands(this), InsertBefore) {
1396 Op<0>() = val;
1397 Op<1>() = addr;
1398 setVolatile(isVolatile);
1399 setAlignment(Align);
1400 setAtomic(Order, SSID);
1401 AssertOK();
1404 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1405 AtomicOrdering Order, SyncScope::ID SSID,
1406 BasicBlock *InsertAtEnd)
1407 : Instruction(Type::getVoidTy(val->getContext()), Store,
1408 OperandTraits<StoreInst>::op_begin(this),
1409 OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1410 Op<0>() = val;
1411 Op<1>() = addr;
1412 setVolatile(isVolatile);
1413 setAlignment(Align);
1414 setAtomic(Order, SSID);
1415 AssertOK();
1418 void StoreInst::setAlignment(MaybeAlign Align) {
1419 assert((!Align || *Align <= MaximumAlignment) &&
1420 "Alignment is greater than MaximumAlignment!");
1421 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1422 (encode(Align) << 1));
1423 if (Align)
1424 assert(getAlignment() == Align->value() &&
1425 "Alignment representation error!");
1426 else
1427 assert(getAlignment() == 0 && "Alignment representation error!");
1430 //===----------------------------------------------------------------------===//
1431 // AtomicCmpXchgInst Implementation
1432 //===----------------------------------------------------------------------===//
1434 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1435 AtomicOrdering SuccessOrdering,
1436 AtomicOrdering FailureOrdering,
1437 SyncScope::ID SSID) {
1438 Op<0>() = Ptr;
1439 Op<1>() = Cmp;
1440 Op<2>() = NewVal;
1441 setSuccessOrdering(SuccessOrdering);
1442 setFailureOrdering(FailureOrdering);
1443 setSyncScopeID(SSID);
1445 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1446 "All operands must be non-null!");
1447 assert(getOperand(0)->getType()->isPointerTy() &&
1448 "Ptr must have pointer type!");
1449 assert(getOperand(1)->getType() ==
1450 cast<PointerType>(getOperand(0)->getType())->getElementType()
1451 && "Ptr must be a pointer to Cmp type!");
1452 assert(getOperand(2)->getType() ==
1453 cast<PointerType>(getOperand(0)->getType())->getElementType()
1454 && "Ptr must be a pointer to NewVal type!");
1455 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1456 "AtomicCmpXchg instructions must be atomic!");
1457 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1458 "AtomicCmpXchg instructions must be atomic!");
1459 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1460 "AtomicCmpXchg failure argument shall be no stronger than the success "
1461 "argument");
1462 assert(FailureOrdering != AtomicOrdering::Release &&
1463 FailureOrdering != AtomicOrdering::AcquireRelease &&
1464 "AtomicCmpXchg failure ordering cannot include release semantics");
1467 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1468 AtomicOrdering SuccessOrdering,
1469 AtomicOrdering FailureOrdering,
1470 SyncScope::ID SSID,
1471 Instruction *InsertBefore)
1472 : Instruction(
1473 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1474 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1475 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1476 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1479 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1480 AtomicOrdering SuccessOrdering,
1481 AtomicOrdering FailureOrdering,
1482 SyncScope::ID SSID,
1483 BasicBlock *InsertAtEnd)
1484 : Instruction(
1485 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1486 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1487 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1488 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1491 //===----------------------------------------------------------------------===//
1492 // AtomicRMWInst Implementation
1493 //===----------------------------------------------------------------------===//
1495 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1496 AtomicOrdering Ordering,
1497 SyncScope::ID SSID) {
1498 Op<0>() = Ptr;
1499 Op<1>() = Val;
1500 setOperation(Operation);
1501 setOrdering(Ordering);
1502 setSyncScopeID(SSID);
1504 assert(getOperand(0) && getOperand(1) &&
1505 "All operands must be non-null!");
1506 assert(getOperand(0)->getType()->isPointerTy() &&
1507 "Ptr must have pointer type!");
1508 assert(getOperand(1)->getType() ==
1509 cast<PointerType>(getOperand(0)->getType())->getElementType()
1510 && "Ptr must be a pointer to Val type!");
1511 assert(Ordering != AtomicOrdering::NotAtomic &&
1512 "AtomicRMW instructions must be atomic!");
1515 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1516 AtomicOrdering Ordering,
1517 SyncScope::ID SSID,
1518 Instruction *InsertBefore)
1519 : Instruction(Val->getType(), AtomicRMW,
1520 OperandTraits<AtomicRMWInst>::op_begin(this),
1521 OperandTraits<AtomicRMWInst>::operands(this),
1522 InsertBefore) {
1523 Init(Operation, Ptr, Val, Ordering, SSID);
1526 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1527 AtomicOrdering Ordering,
1528 SyncScope::ID SSID,
1529 BasicBlock *InsertAtEnd)
1530 : Instruction(Val->getType(), AtomicRMW,
1531 OperandTraits<AtomicRMWInst>::op_begin(this),
1532 OperandTraits<AtomicRMWInst>::operands(this),
1533 InsertAtEnd) {
1534 Init(Operation, Ptr, Val, Ordering, SSID);
1537 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1538 switch (Op) {
1539 case AtomicRMWInst::Xchg:
1540 return "xchg";
1541 case AtomicRMWInst::Add:
1542 return "add";
1543 case AtomicRMWInst::Sub:
1544 return "sub";
1545 case AtomicRMWInst::And:
1546 return "and";
1547 case AtomicRMWInst::Nand:
1548 return "nand";
1549 case AtomicRMWInst::Or:
1550 return "or";
1551 case AtomicRMWInst::Xor:
1552 return "xor";
1553 case AtomicRMWInst::Max:
1554 return "max";
1555 case AtomicRMWInst::Min:
1556 return "min";
1557 case AtomicRMWInst::UMax:
1558 return "umax";
1559 case AtomicRMWInst::UMin:
1560 return "umin";
1561 case AtomicRMWInst::FAdd:
1562 return "fadd";
1563 case AtomicRMWInst::FSub:
1564 return "fsub";
1565 case AtomicRMWInst::BAD_BINOP:
1566 return "<invalid operation>";
1569 llvm_unreachable("invalid atomicrmw operation");
1572 //===----------------------------------------------------------------------===//
1573 // FenceInst Implementation
1574 //===----------------------------------------------------------------------===//
1576 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1577 SyncScope::ID SSID,
1578 Instruction *InsertBefore)
1579 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1580 setOrdering(Ordering);
1581 setSyncScopeID(SSID);
1584 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1585 SyncScope::ID SSID,
1586 BasicBlock *InsertAtEnd)
1587 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1588 setOrdering(Ordering);
1589 setSyncScopeID(SSID);
1592 //===----------------------------------------------------------------------===//
1593 // GetElementPtrInst Implementation
1594 //===----------------------------------------------------------------------===//
1596 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1597 const Twine &Name) {
1598 assert(getNumOperands() == 1 + IdxList.size() &&
1599 "NumOperands not initialized?");
1600 Op<0>() = Ptr;
1601 llvm::copy(IdxList, op_begin() + 1);
1602 setName(Name);
1605 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1606 : Instruction(GEPI.getType(), GetElementPtr,
1607 OperandTraits<GetElementPtrInst>::op_end(this) -
1608 GEPI.getNumOperands(),
1609 GEPI.getNumOperands()),
1610 SourceElementType(GEPI.SourceElementType),
1611 ResultElementType(GEPI.ResultElementType) {
1612 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1613 SubclassOptionalData = GEPI.SubclassOptionalData;
1616 /// getIndexedType - Returns the type of the element that would be accessed with
1617 /// a gep instruction with the specified parameters.
1619 /// The Idxs pointer should point to a continuous piece of memory containing the
1620 /// indices, either as Value* or uint64_t.
1622 /// A null type is returned if the indices are invalid for the specified
1623 /// pointer type.
1625 template <typename IndexTy>
1626 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1627 // Handle the special case of the empty set index set, which is always valid.
1628 if (IdxList.empty())
1629 return Agg;
1631 // If there is at least one index, the top level type must be sized, otherwise
1632 // it cannot be 'stepped over'.
1633 if (!Agg->isSized())
1634 return nullptr;
1636 unsigned CurIdx = 1;
1637 for (; CurIdx != IdxList.size(); ++CurIdx) {
1638 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1639 if (!CT || CT->isPointerTy()) return nullptr;
1640 IndexTy Index = IdxList[CurIdx];
1641 if (!CT->indexValid(Index)) return nullptr;
1642 Agg = CT->getTypeAtIndex(Index);
1644 return CurIdx == IdxList.size() ? Agg : nullptr;
1647 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1648 return getIndexedTypeInternal(Ty, IdxList);
1651 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1652 ArrayRef<Constant *> IdxList) {
1653 return getIndexedTypeInternal(Ty, IdxList);
1656 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1657 return getIndexedTypeInternal(Ty, IdxList);
1660 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1661 /// zeros. If so, the result pointer and the first operand have the same
1662 /// value, just potentially different types.
1663 bool GetElementPtrInst::hasAllZeroIndices() const {
1664 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1665 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1666 if (!CI->isZero()) return false;
1667 } else {
1668 return false;
1671 return true;
1674 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1675 /// constant integers. If so, the result pointer and the first operand have
1676 /// a constant offset between them.
1677 bool GetElementPtrInst::hasAllConstantIndices() const {
1678 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1679 if (!isa<ConstantInt>(getOperand(i)))
1680 return false;
1682 return true;
1685 void GetElementPtrInst::setIsInBounds(bool B) {
1686 cast<GEPOperator>(this)->setIsInBounds(B);
1689 bool GetElementPtrInst::isInBounds() const {
1690 return cast<GEPOperator>(this)->isInBounds();
1693 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1694 APInt &Offset) const {
1695 // Delegate to the generic GEPOperator implementation.
1696 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1699 //===----------------------------------------------------------------------===//
1700 // ExtractElementInst Implementation
1701 //===----------------------------------------------------------------------===//
1703 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1704 const Twine &Name,
1705 Instruction *InsertBef)
1706 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1707 ExtractElement,
1708 OperandTraits<ExtractElementInst>::op_begin(this),
1709 2, InsertBef) {
1710 assert(isValidOperands(Val, Index) &&
1711 "Invalid extractelement instruction operands!");
1712 Op<0>() = Val;
1713 Op<1>() = Index;
1714 setName(Name);
1717 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1718 const Twine &Name,
1719 BasicBlock *InsertAE)
1720 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1721 ExtractElement,
1722 OperandTraits<ExtractElementInst>::op_begin(this),
1723 2, InsertAE) {
1724 assert(isValidOperands(Val, Index) &&
1725 "Invalid extractelement instruction operands!");
1727 Op<0>() = Val;
1728 Op<1>() = Index;
1729 setName(Name);
1732 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1733 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1734 return false;
1735 return true;
1738 //===----------------------------------------------------------------------===//
1739 // InsertElementInst Implementation
1740 //===----------------------------------------------------------------------===//
1742 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1743 const Twine &Name,
1744 Instruction *InsertBef)
1745 : Instruction(Vec->getType(), InsertElement,
1746 OperandTraits<InsertElementInst>::op_begin(this),
1747 3, InsertBef) {
1748 assert(isValidOperands(Vec, Elt, Index) &&
1749 "Invalid insertelement instruction operands!");
1750 Op<0>() = Vec;
1751 Op<1>() = Elt;
1752 Op<2>() = Index;
1753 setName(Name);
1756 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1757 const Twine &Name,
1758 BasicBlock *InsertAE)
1759 : Instruction(Vec->getType(), InsertElement,
1760 OperandTraits<InsertElementInst>::op_begin(this),
1761 3, InsertAE) {
1762 assert(isValidOperands(Vec, Elt, Index) &&
1763 "Invalid insertelement instruction operands!");
1765 Op<0>() = Vec;
1766 Op<1>() = Elt;
1767 Op<2>() = Index;
1768 setName(Name);
1771 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1772 const Value *Index) {
1773 if (!Vec->getType()->isVectorTy())
1774 return false; // First operand of insertelement must be vector type.
1776 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1777 return false;// Second operand of insertelement must be vector element type.
1779 if (!Index->getType()->isIntegerTy())
1780 return false; // Third operand of insertelement must be i32.
1781 return true;
1784 //===----------------------------------------------------------------------===//
1785 // ShuffleVectorInst Implementation
1786 //===----------------------------------------------------------------------===//
1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1789 const Twine &Name,
1790 Instruction *InsertBefore)
1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1792 cast<VectorType>(Mask->getType())->getElementCount()),
1793 ShuffleVector,
1794 OperandTraits<ShuffleVectorInst>::op_begin(this),
1795 OperandTraits<ShuffleVectorInst>::operands(this),
1796 InsertBefore) {
1797 assert(isValidOperands(V1, V2, Mask) &&
1798 "Invalid shuffle vector instruction operands!");
1799 Op<0>() = V1;
1800 Op<1>() = V2;
1801 Op<2>() = Mask;
1802 setName(Name);
1805 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1806 const Twine &Name,
1807 BasicBlock *InsertAtEnd)
1808 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1809 cast<VectorType>(Mask->getType())->getElementCount()),
1810 ShuffleVector,
1811 OperandTraits<ShuffleVectorInst>::op_begin(this),
1812 OperandTraits<ShuffleVectorInst>::operands(this),
1813 InsertAtEnd) {
1814 assert(isValidOperands(V1, V2, Mask) &&
1815 "Invalid shuffle vector instruction operands!");
1817 Op<0>() = V1;
1818 Op<1>() = V2;
1819 Op<2>() = Mask;
1820 setName(Name);
1823 void ShuffleVectorInst::commute() {
1824 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1825 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1826 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1827 Type *Int32Ty = Type::getInt32Ty(getContext());
1828 for (int i = 0; i != NumMaskElts; ++i) {
1829 int MaskElt = getMaskValue(i);
1830 if (MaskElt == -1) {
1831 NewMask[i] = UndefValue::get(Int32Ty);
1832 continue;
1834 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1835 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1836 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1838 Op<2>() = ConstantVector::get(NewMask);
1839 Op<0>().swap(Op<1>());
1842 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1843 const Value *Mask) {
1844 // V1 and V2 must be vectors of the same type.
1845 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1846 return false;
1848 // Mask must be vector of i32.
1849 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1850 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1851 return false;
1853 // Check to see if Mask is valid.
1854 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1855 return true;
1857 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1858 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1859 for (Value *Op : MV->operands()) {
1860 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1861 if (CI->uge(V1Size*2))
1862 return false;
1863 } else if (!isa<UndefValue>(Op)) {
1864 return false;
1867 return true;
1870 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1871 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1872 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1873 if (CDS->getElementAsInteger(i) >= V1Size*2)
1874 return false;
1875 return true;
1878 // The bitcode reader can create a place holder for a forward reference
1879 // used as the shuffle mask. When this occurs, the shuffle mask will
1880 // fall into this case and fail. To avoid this error, do this bit of
1881 // ugliness to allow such a mask pass.
1882 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1883 if (CE->getOpcode() == Instruction::UserOp1)
1884 return true;
1886 return false;
1889 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1890 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1891 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1892 return CDS->getElementAsInteger(i);
1893 Constant *C = Mask->getAggregateElement(i);
1894 if (isa<UndefValue>(C))
1895 return -1;
1896 return cast<ConstantInt>(C)->getZExtValue();
1899 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1900 SmallVectorImpl<int> &Result) {
1901 unsigned NumElts = Mask->getType()->getVectorNumElements();
1903 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1904 for (unsigned i = 0; i != NumElts; ++i)
1905 Result.push_back(CDS->getElementAsInteger(i));
1906 return;
1908 for (unsigned i = 0; i != NumElts; ++i) {
1909 Constant *C = Mask->getAggregateElement(i);
1910 Result.push_back(isa<UndefValue>(C) ? -1 :
1911 cast<ConstantInt>(C)->getZExtValue());
1915 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1916 assert(!Mask.empty() && "Shuffle mask must contain elements");
1917 bool UsesLHS = false;
1918 bool UsesRHS = false;
1919 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1920 if (Mask[i] == -1)
1921 continue;
1922 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1923 "Out-of-bounds shuffle mask element");
1924 UsesLHS |= (Mask[i] < NumOpElts);
1925 UsesRHS |= (Mask[i] >= NumOpElts);
1926 if (UsesLHS && UsesRHS)
1927 return false;
1929 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1930 return true;
1933 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1934 // We don't have vector operand size information, so assume operands are the
1935 // same size as the mask.
1936 return isSingleSourceMaskImpl(Mask, Mask.size());
1939 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1940 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1941 return false;
1942 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1943 if (Mask[i] == -1)
1944 continue;
1945 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1946 return false;
1948 return true;
1951 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1952 // We don't have vector operand size information, so assume operands are the
1953 // same size as the mask.
1954 return isIdentityMaskImpl(Mask, Mask.size());
1957 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1958 if (!isSingleSourceMask(Mask))
1959 return false;
1960 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1961 if (Mask[i] == -1)
1962 continue;
1963 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1964 return false;
1966 return true;
1969 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1970 if (!isSingleSourceMask(Mask))
1971 return false;
1972 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1973 if (Mask[i] == -1)
1974 continue;
1975 if (Mask[i] != 0 && Mask[i] != NumElts)
1976 return false;
1978 return true;
1981 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1982 // Select is differentiated from identity. It requires using both sources.
1983 if (isSingleSourceMask(Mask))
1984 return false;
1985 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1986 if (Mask[i] == -1)
1987 continue;
1988 if (Mask[i] != i && Mask[i] != (NumElts + i))
1989 return false;
1991 return true;
1994 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1995 // Example masks that will return true:
1996 // v1 = <a, b, c, d>
1997 // v2 = <e, f, g, h>
1998 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1999 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2001 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2002 int NumElts = Mask.size();
2003 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2004 return false;
2006 // 2. The first element of the mask must be either a 0 or a 1.
2007 if (Mask[0] != 0 && Mask[0] != 1)
2008 return false;
2010 // 3. The difference between the first 2 elements must be equal to the
2011 // number of elements in the mask.
2012 if ((Mask[1] - Mask[0]) != NumElts)
2013 return false;
2015 // 4. The difference between consecutive even-numbered and odd-numbered
2016 // elements must be equal to 2.
2017 for (int i = 2; i < NumElts; ++i) {
2018 int MaskEltVal = Mask[i];
2019 if (MaskEltVal == -1)
2020 return false;
2021 int MaskEltPrevVal = Mask[i - 2];
2022 if (MaskEltVal - MaskEltPrevVal != 2)
2023 return false;
2025 return true;
2028 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2029 int NumSrcElts, int &Index) {
2030 // Must extract from a single source.
2031 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2032 return false;
2034 // Must be smaller (else this is an Identity shuffle).
2035 if (NumSrcElts <= (int)Mask.size())
2036 return false;
2038 // Find start of extraction, accounting that we may start with an UNDEF.
2039 int SubIndex = -1;
2040 for (int i = 0, e = Mask.size(); i != e; ++i) {
2041 int M = Mask[i];
2042 if (M < 0)
2043 continue;
2044 int Offset = (M % NumSrcElts) - i;
2045 if (0 <= SubIndex && SubIndex != Offset)
2046 return false;
2047 SubIndex = Offset;
2050 if (0 <= SubIndex) {
2051 Index = SubIndex;
2052 return true;
2054 return false;
2057 bool ShuffleVectorInst::isIdentityWithPadding() const {
2058 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2059 int NumMaskElts = getType()->getVectorNumElements();
2060 if (NumMaskElts <= NumOpElts)
2061 return false;
2063 // The first part of the mask must choose elements from exactly 1 source op.
2064 SmallVector<int, 16> Mask = getShuffleMask();
2065 if (!isIdentityMaskImpl(Mask, NumOpElts))
2066 return false;
2068 // All extending must be with undef elements.
2069 for (int i = NumOpElts; i < NumMaskElts; ++i)
2070 if (Mask[i] != -1)
2071 return false;
2073 return true;
2076 bool ShuffleVectorInst::isIdentityWithExtract() const {
2077 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2078 int NumMaskElts = getType()->getVectorNumElements();
2079 if (NumMaskElts >= NumOpElts)
2080 return false;
2082 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2085 bool ShuffleVectorInst::isConcat() const {
2086 // Vector concatenation is differentiated from identity with padding.
2087 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2088 return false;
2090 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2091 int NumMaskElts = getType()->getVectorNumElements();
2092 if (NumMaskElts != NumOpElts * 2)
2093 return false;
2095 // Use the mask length rather than the operands' vector lengths here. We
2096 // already know that the shuffle returns a vector twice as long as the inputs,
2097 // and neither of the inputs are undef vectors. If the mask picks consecutive
2098 // elements from both inputs, then this is a concatenation of the inputs.
2099 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2102 //===----------------------------------------------------------------------===//
2103 // InsertValueInst Class
2104 //===----------------------------------------------------------------------===//
2106 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2107 const Twine &Name) {
2108 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2110 // There's no fundamental reason why we require at least one index
2111 // (other than weirdness with &*IdxBegin being invalid; see
2112 // getelementptr's init routine for example). But there's no
2113 // present need to support it.
2114 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2116 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2117 Val->getType() && "Inserted value must match indexed type!");
2118 Op<0>() = Agg;
2119 Op<1>() = Val;
2121 Indices.append(Idxs.begin(), Idxs.end());
2122 setName(Name);
2125 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2126 : Instruction(IVI.getType(), InsertValue,
2127 OperandTraits<InsertValueInst>::op_begin(this), 2),
2128 Indices(IVI.Indices) {
2129 Op<0>() = IVI.getOperand(0);
2130 Op<1>() = IVI.getOperand(1);
2131 SubclassOptionalData = IVI.SubclassOptionalData;
2134 //===----------------------------------------------------------------------===//
2135 // ExtractValueInst Class
2136 //===----------------------------------------------------------------------===//
2138 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2139 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2141 // There's no fundamental reason why we require at least one index.
2142 // But there's no present need to support it.
2143 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2145 Indices.append(Idxs.begin(), Idxs.end());
2146 setName(Name);
2149 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2150 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2151 Indices(EVI.Indices) {
2152 SubclassOptionalData = EVI.SubclassOptionalData;
2155 // getIndexedType - Returns the type of the element that would be extracted
2156 // with an extractvalue instruction with the specified parameters.
2158 // A null type is returned if the indices are invalid for the specified
2159 // pointer type.
2161 Type *ExtractValueInst::getIndexedType(Type *Agg,
2162 ArrayRef<unsigned> Idxs) {
2163 for (unsigned Index : Idxs) {
2164 // We can't use CompositeType::indexValid(Index) here.
2165 // indexValid() always returns true for arrays because getelementptr allows
2166 // out-of-bounds indices. Since we don't allow those for extractvalue and
2167 // insertvalue we need to check array indexing manually.
2168 // Since the only other types we can index into are struct types it's just
2169 // as easy to check those manually as well.
2170 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2171 if (Index >= AT->getNumElements())
2172 return nullptr;
2173 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2174 if (Index >= ST->getNumElements())
2175 return nullptr;
2176 } else {
2177 // Not a valid type to index into.
2178 return nullptr;
2181 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2183 return const_cast<Type*>(Agg);
2186 //===----------------------------------------------------------------------===//
2187 // UnaryOperator Class
2188 //===----------------------------------------------------------------------===//
2190 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2191 Type *Ty, const Twine &Name,
2192 Instruction *InsertBefore)
2193 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2194 Op<0>() = S;
2195 setName(Name);
2196 AssertOK();
2199 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2200 Type *Ty, const Twine &Name,
2201 BasicBlock *InsertAtEnd)
2202 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2203 Op<0>() = S;
2204 setName(Name);
2205 AssertOK();
2208 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2209 const Twine &Name,
2210 Instruction *InsertBefore) {
2211 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2214 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2215 const Twine &Name,
2216 BasicBlock *InsertAtEnd) {
2217 UnaryOperator *Res = Create(Op, S, Name);
2218 InsertAtEnd->getInstList().push_back(Res);
2219 return Res;
2222 void UnaryOperator::AssertOK() {
2223 Value *LHS = getOperand(0);
2224 (void)LHS; // Silence warnings.
2225 #ifndef NDEBUG
2226 switch (getOpcode()) {
2227 case FNeg:
2228 assert(getType() == LHS->getType() &&
2229 "Unary operation should return same type as operand!");
2230 assert(getType()->isFPOrFPVectorTy() &&
2231 "Tried to create a floating-point operation on a "
2232 "non-floating-point type!");
2233 break;
2234 default: llvm_unreachable("Invalid opcode provided");
2236 #endif
2239 //===----------------------------------------------------------------------===//
2240 // BinaryOperator Class
2241 //===----------------------------------------------------------------------===//
2243 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2244 Type *Ty, const Twine &Name,
2245 Instruction *InsertBefore)
2246 : Instruction(Ty, iType,
2247 OperandTraits<BinaryOperator>::op_begin(this),
2248 OperandTraits<BinaryOperator>::operands(this),
2249 InsertBefore) {
2250 Op<0>() = S1;
2251 Op<1>() = S2;
2252 setName(Name);
2253 AssertOK();
2256 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2257 Type *Ty, const Twine &Name,
2258 BasicBlock *InsertAtEnd)
2259 : Instruction(Ty, iType,
2260 OperandTraits<BinaryOperator>::op_begin(this),
2261 OperandTraits<BinaryOperator>::operands(this),
2262 InsertAtEnd) {
2263 Op<0>() = S1;
2264 Op<1>() = S2;
2265 setName(Name);
2266 AssertOK();
2269 void BinaryOperator::AssertOK() {
2270 Value *LHS = getOperand(0), *RHS = getOperand(1);
2271 (void)LHS; (void)RHS; // Silence warnings.
2272 assert(LHS->getType() == RHS->getType() &&
2273 "Binary operator operand types must match!");
2274 #ifndef NDEBUG
2275 switch (getOpcode()) {
2276 case Add: case Sub:
2277 case Mul:
2278 assert(getType() == LHS->getType() &&
2279 "Arithmetic operation should return same type as operands!");
2280 assert(getType()->isIntOrIntVectorTy() &&
2281 "Tried to create an integer operation on a non-integer type!");
2282 break;
2283 case FAdd: case FSub:
2284 case FMul:
2285 assert(getType() == LHS->getType() &&
2286 "Arithmetic operation should return same type as operands!");
2287 assert(getType()->isFPOrFPVectorTy() &&
2288 "Tried to create a floating-point operation on a "
2289 "non-floating-point type!");
2290 break;
2291 case UDiv:
2292 case SDiv:
2293 assert(getType() == LHS->getType() &&
2294 "Arithmetic operation should return same type as operands!");
2295 assert(getType()->isIntOrIntVectorTy() &&
2296 "Incorrect operand type (not integer) for S/UDIV");
2297 break;
2298 case FDiv:
2299 assert(getType() == LHS->getType() &&
2300 "Arithmetic operation should return same type as operands!");
2301 assert(getType()->isFPOrFPVectorTy() &&
2302 "Incorrect operand type (not floating point) for FDIV");
2303 break;
2304 case URem:
2305 case SRem:
2306 assert(getType() == LHS->getType() &&
2307 "Arithmetic operation should return same type as operands!");
2308 assert(getType()->isIntOrIntVectorTy() &&
2309 "Incorrect operand type (not integer) for S/UREM");
2310 break;
2311 case FRem:
2312 assert(getType() == LHS->getType() &&
2313 "Arithmetic operation should return same type as operands!");
2314 assert(getType()->isFPOrFPVectorTy() &&
2315 "Incorrect operand type (not floating point) for FREM");
2316 break;
2317 case Shl:
2318 case LShr:
2319 case AShr:
2320 assert(getType() == LHS->getType() &&
2321 "Shift operation should return same type as operands!");
2322 assert(getType()->isIntOrIntVectorTy() &&
2323 "Tried to create a shift operation on a non-integral type!");
2324 break;
2325 case And: case Or:
2326 case Xor:
2327 assert(getType() == LHS->getType() &&
2328 "Logical operation should return same type as operands!");
2329 assert(getType()->isIntOrIntVectorTy() &&
2330 "Tried to create a logical operation on a non-integral type!");
2331 break;
2332 default: llvm_unreachable("Invalid opcode provided");
2334 #endif
2337 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2338 const Twine &Name,
2339 Instruction *InsertBefore) {
2340 assert(S1->getType() == S2->getType() &&
2341 "Cannot create binary operator with two operands of differing type!");
2342 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2345 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2346 const Twine &Name,
2347 BasicBlock *InsertAtEnd) {
2348 BinaryOperator *Res = Create(Op, S1, S2, Name);
2349 InsertAtEnd->getInstList().push_back(Res);
2350 return Res;
2353 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2354 Instruction *InsertBefore) {
2355 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2356 return new BinaryOperator(Instruction::Sub,
2357 zero, Op,
2358 Op->getType(), Name, InsertBefore);
2361 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2362 BasicBlock *InsertAtEnd) {
2363 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2364 return new BinaryOperator(Instruction::Sub,
2365 zero, Op,
2366 Op->getType(), Name, InsertAtEnd);
2369 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2370 Instruction *InsertBefore) {
2371 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2372 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2375 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2376 BasicBlock *InsertAtEnd) {
2377 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2378 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2381 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2382 Instruction *InsertBefore) {
2383 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2384 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2387 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2388 BasicBlock *InsertAtEnd) {
2389 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2390 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2393 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2394 Instruction *InsertBefore) {
2395 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2396 return new BinaryOperator(Instruction::FSub, zero, Op,
2397 Op->getType(), Name, InsertBefore);
2400 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2401 BasicBlock *InsertAtEnd) {
2402 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2403 return new BinaryOperator(Instruction::FSub, zero, Op,
2404 Op->getType(), Name, InsertAtEnd);
2407 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2408 Instruction *InsertBefore) {
2409 Constant *C = Constant::getAllOnesValue(Op->getType());
2410 return new BinaryOperator(Instruction::Xor, Op, C,
2411 Op->getType(), Name, InsertBefore);
2414 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2415 BasicBlock *InsertAtEnd) {
2416 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2417 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2418 Op->getType(), Name, InsertAtEnd);
2421 // Exchange the two operands to this instruction. This instruction is safe to
2422 // use on any binary instruction and does not modify the semantics of the
2423 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2424 // is changed.
2425 bool BinaryOperator::swapOperands() {
2426 if (!isCommutative())
2427 return true; // Can't commute operands
2428 Op<0>().swap(Op<1>());
2429 return false;
2432 //===----------------------------------------------------------------------===//
2433 // FPMathOperator Class
2434 //===----------------------------------------------------------------------===//
2436 float FPMathOperator::getFPAccuracy() const {
2437 const MDNode *MD =
2438 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2439 if (!MD)
2440 return 0.0;
2441 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2442 return Accuracy->getValueAPF().convertToFloat();
2445 //===----------------------------------------------------------------------===//
2446 // CastInst Class
2447 //===----------------------------------------------------------------------===//
2449 // Just determine if this cast only deals with integral->integral conversion.
2450 bool CastInst::isIntegerCast() const {
2451 switch (getOpcode()) {
2452 default: return false;
2453 case Instruction::ZExt:
2454 case Instruction::SExt:
2455 case Instruction::Trunc:
2456 return true;
2457 case Instruction::BitCast:
2458 return getOperand(0)->getType()->isIntegerTy() &&
2459 getType()->isIntegerTy();
2463 bool CastInst::isLosslessCast() const {
2464 // Only BitCast can be lossless, exit fast if we're not BitCast
2465 if (getOpcode() != Instruction::BitCast)
2466 return false;
2468 // Identity cast is always lossless
2469 Type *SrcTy = getOperand(0)->getType();
2470 Type *DstTy = getType();
2471 if (SrcTy == DstTy)
2472 return true;
2474 // Pointer to pointer is always lossless.
2475 if (SrcTy->isPointerTy())
2476 return DstTy->isPointerTy();
2477 return false; // Other types have no identity values
2480 /// This function determines if the CastInst does not require any bits to be
2481 /// changed in order to effect the cast. Essentially, it identifies cases where
2482 /// no code gen is necessary for the cast, hence the name no-op cast. For
2483 /// example, the following are all no-op casts:
2484 /// # bitcast i32* %x to i8*
2485 /// # bitcast <2 x i32> %x to <4 x i16>
2486 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2487 /// Determine if the described cast is a no-op.
2488 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2489 Type *SrcTy,
2490 Type *DestTy,
2491 const DataLayout &DL) {
2492 switch (Opcode) {
2493 default: llvm_unreachable("Invalid CastOp");
2494 case Instruction::Trunc:
2495 case Instruction::ZExt:
2496 case Instruction::SExt:
2497 case Instruction::FPTrunc:
2498 case Instruction::FPExt:
2499 case Instruction::UIToFP:
2500 case Instruction::SIToFP:
2501 case Instruction::FPToUI:
2502 case Instruction::FPToSI:
2503 case Instruction::AddrSpaceCast:
2504 // TODO: Target informations may give a more accurate answer here.
2505 return false;
2506 case Instruction::BitCast:
2507 return true; // BitCast never modifies bits.
2508 case Instruction::PtrToInt:
2509 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2510 DestTy->getScalarSizeInBits();
2511 case Instruction::IntToPtr:
2512 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2513 SrcTy->getScalarSizeInBits();
2517 bool CastInst::isNoopCast(const DataLayout &DL) const {
2518 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2521 /// This function determines if a pair of casts can be eliminated and what
2522 /// opcode should be used in the elimination. This assumes that there are two
2523 /// instructions like this:
2524 /// * %F = firstOpcode SrcTy %x to MidTy
2525 /// * %S = secondOpcode MidTy %F to DstTy
2526 /// The function returns a resultOpcode so these two casts can be replaced with:
2527 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2528 /// If no such cast is permitted, the function returns 0.
2529 unsigned CastInst::isEliminableCastPair(
2530 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2531 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2532 Type *DstIntPtrTy) {
2533 // Define the 144 possibilities for these two cast instructions. The values
2534 // in this matrix determine what to do in a given situation and select the
2535 // case in the switch below. The rows correspond to firstOp, the columns
2536 // correspond to secondOp. In looking at the table below, keep in mind
2537 // the following cast properties:
2539 // Size Compare Source Destination
2540 // Operator Src ? Size Type Sign Type Sign
2541 // -------- ------------ ------------------- ---------------------
2542 // TRUNC > Integer Any Integral Any
2543 // ZEXT < Integral Unsigned Integer Any
2544 // SEXT < Integral Signed Integer Any
2545 // FPTOUI n/a FloatPt n/a Integral Unsigned
2546 // FPTOSI n/a FloatPt n/a Integral Signed
2547 // UITOFP n/a Integral Unsigned FloatPt n/a
2548 // SITOFP n/a Integral Signed FloatPt n/a
2549 // FPTRUNC > FloatPt n/a FloatPt n/a
2550 // FPEXT < FloatPt n/a FloatPt n/a
2551 // PTRTOINT n/a Pointer n/a Integral Unsigned
2552 // INTTOPTR n/a Integral Unsigned Pointer n/a
2553 // BITCAST = FirstClass n/a FirstClass n/a
2554 // ADDRSPCST n/a Pointer n/a Pointer n/a
2556 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2557 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2558 // into "fptoui double to i64", but this loses information about the range
2559 // of the produced value (we no longer know the top-part is all zeros).
2560 // Further this conversion is often much more expensive for typical hardware,
2561 // and causes issues when building libgcc. We disallow fptosi+sext for the
2562 // same reason.
2563 const unsigned numCastOps =
2564 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2565 static const uint8_t CastResults[numCastOps][numCastOps] = {
2566 // T F F U S F F P I B A -+
2567 // R Z S P P I I T P 2 N T S |
2568 // U E E 2 2 2 2 R E I T C C +- secondOp
2569 // N X X U S F F N X N 2 V V |
2570 // C T T I I P P C T T P T T -+
2571 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2572 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2573 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2574 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2575 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2576 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2577 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2578 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2579 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2580 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2581 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2582 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2583 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2586 // TODO: This logic could be encoded into the table above and handled in the
2587 // switch below.
2588 // If either of the casts are a bitcast from scalar to vector, disallow the
2589 // merging. However, any pair of bitcasts are allowed.
2590 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2591 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2592 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2594 // Check if any of the casts convert scalars <-> vectors.
2595 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2596 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2597 if (!AreBothBitcasts)
2598 return 0;
2600 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2601 [secondOp-Instruction::CastOpsBegin];
2602 switch (ElimCase) {
2603 case 0:
2604 // Categorically disallowed.
2605 return 0;
2606 case 1:
2607 // Allowed, use first cast's opcode.
2608 return firstOp;
2609 case 2:
2610 // Allowed, use second cast's opcode.
2611 return secondOp;
2612 case 3:
2613 // No-op cast in second op implies firstOp as long as the DestTy
2614 // is integer and we are not converting between a vector and a
2615 // non-vector type.
2616 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2617 return firstOp;
2618 return 0;
2619 case 4:
2620 // No-op cast in second op implies firstOp as long as the DestTy
2621 // is floating point.
2622 if (DstTy->isFloatingPointTy())
2623 return firstOp;
2624 return 0;
2625 case 5:
2626 // No-op cast in first op implies secondOp as long as the SrcTy
2627 // is an integer.
2628 if (SrcTy->isIntegerTy())
2629 return secondOp;
2630 return 0;
2631 case 6:
2632 // No-op cast in first op implies secondOp as long as the SrcTy
2633 // is a floating point.
2634 if (SrcTy->isFloatingPointTy())
2635 return secondOp;
2636 return 0;
2637 case 7: {
2638 // Cannot simplify if address spaces are different!
2639 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2640 return 0;
2642 unsigned MidSize = MidTy->getScalarSizeInBits();
2643 // We can still fold this without knowing the actual sizes as long we
2644 // know that the intermediate pointer is the largest possible
2645 // pointer size.
2646 // FIXME: Is this always true?
2647 if (MidSize == 64)
2648 return Instruction::BitCast;
2650 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2651 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2652 return 0;
2653 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2654 if (MidSize >= PtrSize)
2655 return Instruction::BitCast;
2656 return 0;
2658 case 8: {
2659 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2660 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2661 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2662 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2663 unsigned DstSize = DstTy->getScalarSizeInBits();
2664 if (SrcSize == DstSize)
2665 return Instruction::BitCast;
2666 else if (SrcSize < DstSize)
2667 return firstOp;
2668 return secondOp;
2670 case 9:
2671 // zext, sext -> zext, because sext can't sign extend after zext
2672 return Instruction::ZExt;
2673 case 11: {
2674 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2675 if (!MidIntPtrTy)
2676 return 0;
2677 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2678 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2679 unsigned DstSize = DstTy->getScalarSizeInBits();
2680 if (SrcSize <= PtrSize && SrcSize == DstSize)
2681 return Instruction::BitCast;
2682 return 0;
2684 case 12:
2685 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2686 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2687 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2688 return Instruction::AddrSpaceCast;
2689 return Instruction::BitCast;
2690 case 13:
2691 // FIXME: this state can be merged with (1), but the following assert
2692 // is useful to check the correcteness of the sequence due to semantic
2693 // change of bitcast.
2694 assert(
2695 SrcTy->isPtrOrPtrVectorTy() &&
2696 MidTy->isPtrOrPtrVectorTy() &&
2697 DstTy->isPtrOrPtrVectorTy() &&
2698 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2699 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2700 "Illegal addrspacecast, bitcast sequence!");
2701 // Allowed, use first cast's opcode
2702 return firstOp;
2703 case 14:
2704 // bitcast, addrspacecast -> addrspacecast if the element type of
2705 // bitcast's source is the same as that of addrspacecast's destination.
2706 if (SrcTy->getScalarType()->getPointerElementType() ==
2707 DstTy->getScalarType()->getPointerElementType())
2708 return Instruction::AddrSpaceCast;
2709 return 0;
2710 case 15:
2711 // FIXME: this state can be merged with (1), but the following assert
2712 // is useful to check the correcteness of the sequence due to semantic
2713 // change of bitcast.
2714 assert(
2715 SrcTy->isIntOrIntVectorTy() &&
2716 MidTy->isPtrOrPtrVectorTy() &&
2717 DstTy->isPtrOrPtrVectorTy() &&
2718 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2719 "Illegal inttoptr, bitcast sequence!");
2720 // Allowed, use first cast's opcode
2721 return firstOp;
2722 case 16:
2723 // FIXME: this state can be merged with (2), but the following assert
2724 // is useful to check the correcteness of the sequence due to semantic
2725 // change of bitcast.
2726 assert(
2727 SrcTy->isPtrOrPtrVectorTy() &&
2728 MidTy->isPtrOrPtrVectorTy() &&
2729 DstTy->isIntOrIntVectorTy() &&
2730 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2731 "Illegal bitcast, ptrtoint sequence!");
2732 // Allowed, use second cast's opcode
2733 return secondOp;
2734 case 17:
2735 // (sitofp (zext x)) -> (uitofp x)
2736 return Instruction::UIToFP;
2737 case 99:
2738 // Cast combination can't happen (error in input). This is for all cases
2739 // where the MidTy is not the same for the two cast instructions.
2740 llvm_unreachable("Invalid Cast Combination");
2741 default:
2742 llvm_unreachable("Error in CastResults table!!!");
2746 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2747 const Twine &Name, Instruction *InsertBefore) {
2748 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2749 // Construct and return the appropriate CastInst subclass
2750 switch (op) {
2751 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2752 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2753 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2754 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2755 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2756 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2757 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2758 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2759 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2760 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2761 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2762 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2763 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2764 default: llvm_unreachable("Invalid opcode provided");
2768 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2769 const Twine &Name, BasicBlock *InsertAtEnd) {
2770 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2771 // Construct and return the appropriate CastInst subclass
2772 switch (op) {
2773 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2774 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2775 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2776 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2777 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2778 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2779 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2780 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2781 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2782 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2783 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2784 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2785 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2786 default: llvm_unreachable("Invalid opcode provided");
2790 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2791 const Twine &Name,
2792 Instruction *InsertBefore) {
2793 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2794 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2795 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2798 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2799 const Twine &Name,
2800 BasicBlock *InsertAtEnd) {
2801 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2802 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2803 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2806 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2807 const Twine &Name,
2808 Instruction *InsertBefore) {
2809 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2810 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2811 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2814 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2815 const Twine &Name,
2816 BasicBlock *InsertAtEnd) {
2817 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2818 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2819 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2822 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2823 const Twine &Name,
2824 Instruction *InsertBefore) {
2825 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2826 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2827 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2830 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2831 const Twine &Name,
2832 BasicBlock *InsertAtEnd) {
2833 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2834 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2835 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2838 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2839 const Twine &Name,
2840 BasicBlock *InsertAtEnd) {
2841 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2842 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2843 "Invalid cast");
2844 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2845 assert((!Ty->isVectorTy() ||
2846 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2847 "Invalid cast");
2849 if (Ty->isIntOrIntVectorTy())
2850 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2852 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2855 /// Create a BitCast or a PtrToInt cast instruction
2856 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2857 const Twine &Name,
2858 Instruction *InsertBefore) {
2859 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2860 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2861 "Invalid cast");
2862 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2863 assert((!Ty->isVectorTy() ||
2864 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2865 "Invalid cast");
2867 if (Ty->isIntOrIntVectorTy())
2868 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2870 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2873 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2874 Value *S, Type *Ty,
2875 const Twine &Name,
2876 BasicBlock *InsertAtEnd) {
2877 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2878 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2880 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2881 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2883 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2886 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2887 Value *S, Type *Ty,
2888 const Twine &Name,
2889 Instruction *InsertBefore) {
2890 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2891 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2893 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2894 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2896 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2899 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2900 const Twine &Name,
2901 Instruction *InsertBefore) {
2902 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2903 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2904 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2905 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2907 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2910 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2911 bool isSigned, const Twine &Name,
2912 Instruction *InsertBefore) {
2913 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2914 "Invalid integer cast");
2915 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2916 unsigned DstBits = Ty->getScalarSizeInBits();
2917 Instruction::CastOps opcode =
2918 (SrcBits == DstBits ? Instruction::BitCast :
2919 (SrcBits > DstBits ? Instruction::Trunc :
2920 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2921 return Create(opcode, C, Ty, Name, InsertBefore);
2924 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2925 bool isSigned, const Twine &Name,
2926 BasicBlock *InsertAtEnd) {
2927 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2928 "Invalid cast");
2929 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2930 unsigned DstBits = Ty->getScalarSizeInBits();
2931 Instruction::CastOps opcode =
2932 (SrcBits == DstBits ? Instruction::BitCast :
2933 (SrcBits > DstBits ? Instruction::Trunc :
2934 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2935 return Create(opcode, C, Ty, Name, InsertAtEnd);
2938 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2939 const Twine &Name,
2940 Instruction *InsertBefore) {
2941 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2942 "Invalid cast");
2943 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2944 unsigned DstBits = Ty->getScalarSizeInBits();
2945 Instruction::CastOps opcode =
2946 (SrcBits == DstBits ? Instruction::BitCast :
2947 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2948 return Create(opcode, C, Ty, Name, InsertBefore);
2951 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2952 const Twine &Name,
2953 BasicBlock *InsertAtEnd) {
2954 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2955 "Invalid cast");
2956 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2957 unsigned DstBits = Ty->getScalarSizeInBits();
2958 Instruction::CastOps opcode =
2959 (SrcBits == DstBits ? Instruction::BitCast :
2960 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2961 return Create(opcode, C, Ty, Name, InsertAtEnd);
2964 // Check whether it is valid to call getCastOpcode for these types.
2965 // This routine must be kept in sync with getCastOpcode.
2966 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2967 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2968 return false;
2970 if (SrcTy == DestTy)
2971 return true;
2973 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2974 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2975 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2976 // An element by element cast. Valid if casting the elements is valid.
2977 SrcTy = SrcVecTy->getElementType();
2978 DestTy = DestVecTy->getElementType();
2981 // Get the bit sizes, we'll need these
2982 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2983 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2985 // Run through the possibilities ...
2986 if (DestTy->isIntegerTy()) { // Casting to integral
2987 if (SrcTy->isIntegerTy()) // Casting from integral
2988 return true;
2989 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2990 return true;
2991 if (SrcTy->isVectorTy()) // Casting from vector
2992 return DestBits == SrcBits;
2993 // Casting from something else
2994 return SrcTy->isPointerTy();
2996 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2997 if (SrcTy->isIntegerTy()) // Casting from integral
2998 return true;
2999 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
3000 return true;
3001 if (SrcTy->isVectorTy()) // Casting from vector
3002 return DestBits == SrcBits;
3003 // Casting from something else
3004 return false;
3006 if (DestTy->isVectorTy()) // Casting to vector
3007 return DestBits == SrcBits;
3008 if (DestTy->isPointerTy()) { // Casting to pointer
3009 if (SrcTy->isPointerTy()) // Casting from pointer
3010 return true;
3011 return SrcTy->isIntegerTy(); // Casting from integral
3013 if (DestTy->isX86_MMXTy()) {
3014 if (SrcTy->isVectorTy())
3015 return DestBits == SrcBits; // 64-bit vector to MMX
3016 return false;
3017 } // Casting to something else
3018 return false;
3021 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3022 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3023 return false;
3025 if (SrcTy == DestTy)
3026 return true;
3028 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3029 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3030 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3031 // An element by element cast. Valid if casting the elements is valid.
3032 SrcTy = SrcVecTy->getElementType();
3033 DestTy = DestVecTy->getElementType();
3038 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3039 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3040 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3044 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3045 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3047 // Could still have vectors of pointers if the number of elements doesn't
3048 // match
3049 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3050 return false;
3052 if (SrcBits != DestBits)
3053 return false;
3055 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3056 return false;
3058 return true;
3061 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3062 const DataLayout &DL) {
3063 // ptrtoint and inttoptr are not allowed on non-integral pointers
3064 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3065 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3066 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3067 !DL.isNonIntegralPointerType(PtrTy));
3068 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3069 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3070 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3071 !DL.isNonIntegralPointerType(PtrTy));
3073 return isBitCastable(SrcTy, DestTy);
3076 // Provide a way to get a "cast" where the cast opcode is inferred from the
3077 // types and size of the operand. This, basically, is a parallel of the
3078 // logic in the castIsValid function below. This axiom should hold:
3079 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3080 // should not assert in castIsValid. In other words, this produces a "correct"
3081 // casting opcode for the arguments passed to it.
3082 // This routine must be kept in sync with isCastable.
3083 Instruction::CastOps
3084 CastInst::getCastOpcode(
3085 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3086 Type *SrcTy = Src->getType();
3088 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3089 "Only first class types are castable!");
3091 if (SrcTy == DestTy)
3092 return BitCast;
3094 // FIXME: Check address space sizes here
3095 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3096 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3097 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3098 // An element by element cast. Find the appropriate opcode based on the
3099 // element types.
3100 SrcTy = SrcVecTy->getElementType();
3101 DestTy = DestVecTy->getElementType();
3104 // Get the bit sizes, we'll need these
3105 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3106 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3108 // Run through the possibilities ...
3109 if (DestTy->isIntegerTy()) { // Casting to integral
3110 if (SrcTy->isIntegerTy()) { // Casting from integral
3111 if (DestBits < SrcBits)
3112 return Trunc; // int -> smaller int
3113 else if (DestBits > SrcBits) { // its an extension
3114 if (SrcIsSigned)
3115 return SExt; // signed -> SEXT
3116 else
3117 return ZExt; // unsigned -> ZEXT
3118 } else {
3119 return BitCast; // Same size, No-op cast
3121 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3122 if (DestIsSigned)
3123 return FPToSI; // FP -> sint
3124 else
3125 return FPToUI; // FP -> uint
3126 } else if (SrcTy->isVectorTy()) {
3127 assert(DestBits == SrcBits &&
3128 "Casting vector to integer of different width");
3129 return BitCast; // Same size, no-op cast
3130 } else {
3131 assert(SrcTy->isPointerTy() &&
3132 "Casting from a value that is not first-class type");
3133 return PtrToInt; // ptr -> int
3135 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3136 if (SrcTy->isIntegerTy()) { // Casting from integral
3137 if (SrcIsSigned)
3138 return SIToFP; // sint -> FP
3139 else
3140 return UIToFP; // uint -> FP
3141 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3142 if (DestBits < SrcBits) {
3143 return FPTrunc; // FP -> smaller FP
3144 } else if (DestBits > SrcBits) {
3145 return FPExt; // FP -> larger FP
3146 } else {
3147 return BitCast; // same size, no-op cast
3149 } else if (SrcTy->isVectorTy()) {
3150 assert(DestBits == SrcBits &&
3151 "Casting vector to floating point of different width");
3152 return BitCast; // same size, no-op cast
3154 llvm_unreachable("Casting pointer or non-first class to float");
3155 } else if (DestTy->isVectorTy()) {
3156 assert(DestBits == SrcBits &&
3157 "Illegal cast to vector (wrong type or size)");
3158 return BitCast;
3159 } else if (DestTy->isPointerTy()) {
3160 if (SrcTy->isPointerTy()) {
3161 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3162 return AddrSpaceCast;
3163 return BitCast; // ptr -> ptr
3164 } else if (SrcTy->isIntegerTy()) {
3165 return IntToPtr; // int -> ptr
3167 llvm_unreachable("Casting pointer to other than pointer or int");
3168 } else if (DestTy->isX86_MMXTy()) {
3169 if (SrcTy->isVectorTy()) {
3170 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3171 return BitCast; // 64-bit vector to MMX
3173 llvm_unreachable("Illegal cast to X86_MMX");
3175 llvm_unreachable("Casting to type that is not first-class");
3178 //===----------------------------------------------------------------------===//
3179 // CastInst SubClass Constructors
3180 //===----------------------------------------------------------------------===//
3182 /// Check that the construction parameters for a CastInst are correct. This
3183 /// could be broken out into the separate constructors but it is useful to have
3184 /// it in one place and to eliminate the redundant code for getting the sizes
3185 /// of the types involved.
3186 bool
3187 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3188 // Check for type sanity on the arguments
3189 Type *SrcTy = S->getType();
3191 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3192 SrcTy->isAggregateType() || DstTy->isAggregateType())
3193 return false;
3195 // Get the size of the types in bits, we'll need this later
3196 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3197 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3199 // If these are vector types, get the lengths of the vectors (using zero for
3200 // scalar types means that checking that vector lengths match also checks that
3201 // scalars are not being converted to vectors or vectors to scalars).
3202 unsigned SrcLength = SrcTy->isVectorTy() ?
3203 cast<VectorType>(SrcTy)->getNumElements() : 0;
3204 unsigned DstLength = DstTy->isVectorTy() ?
3205 cast<VectorType>(DstTy)->getNumElements() : 0;
3207 // Switch on the opcode provided
3208 switch (op) {
3209 default: return false; // This is an input error
3210 case Instruction::Trunc:
3211 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3212 SrcLength == DstLength && SrcBitSize > DstBitSize;
3213 case Instruction::ZExt:
3214 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3215 SrcLength == DstLength && SrcBitSize < DstBitSize;
3216 case Instruction::SExt:
3217 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3218 SrcLength == DstLength && SrcBitSize < DstBitSize;
3219 case Instruction::FPTrunc:
3220 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3221 SrcLength == DstLength && SrcBitSize > DstBitSize;
3222 case Instruction::FPExt:
3223 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3224 SrcLength == DstLength && SrcBitSize < DstBitSize;
3225 case Instruction::UIToFP:
3226 case Instruction::SIToFP:
3227 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3228 SrcLength == DstLength;
3229 case Instruction::FPToUI:
3230 case Instruction::FPToSI:
3231 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3232 SrcLength == DstLength;
3233 case Instruction::PtrToInt:
3234 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3235 return false;
3236 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3237 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3238 return false;
3239 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3240 case Instruction::IntToPtr:
3241 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3242 return false;
3243 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3244 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3245 return false;
3246 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3247 case Instruction::BitCast: {
3248 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3249 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3251 // BitCast implies a no-op cast of type only. No bits change.
3252 // However, you can't cast pointers to anything but pointers.
3253 if (!SrcPtrTy != !DstPtrTy)
3254 return false;
3256 // For non-pointer cases, the cast is okay if the source and destination bit
3257 // widths are identical.
3258 if (!SrcPtrTy)
3259 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3261 // If both are pointers then the address spaces must match.
3262 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3263 return false;
3265 // A vector of pointers must have the same number of elements.
3266 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3267 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3268 if (SrcVecTy && DstVecTy)
3269 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3270 if (SrcVecTy)
3271 return SrcVecTy->getNumElements() == 1;
3272 if (DstVecTy)
3273 return DstVecTy->getNumElements() == 1;
3275 return true;
3277 case Instruction::AddrSpaceCast: {
3278 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3279 if (!SrcPtrTy)
3280 return false;
3282 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3283 if (!DstPtrTy)
3284 return false;
3286 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3287 return false;
3289 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3290 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3291 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3293 return false;
3296 return true;
3301 TruncInst::TruncInst(
3302 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3303 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3304 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3307 TruncInst::TruncInst(
3308 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3309 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3310 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3313 ZExtInst::ZExtInst(
3314 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3315 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3319 ZExtInst::ZExtInst(
3320 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3321 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3322 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3324 SExtInst::SExtInst(
3325 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3326 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3327 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3330 SExtInst::SExtInst(
3331 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3332 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3333 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3336 FPTruncInst::FPTruncInst(
3337 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3338 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3339 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3342 FPTruncInst::FPTruncInst(
3343 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3344 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3345 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3348 FPExtInst::FPExtInst(
3349 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3350 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3351 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3354 FPExtInst::FPExtInst(
3355 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3356 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3357 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3360 UIToFPInst::UIToFPInst(
3361 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3362 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3363 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3366 UIToFPInst::UIToFPInst(
3367 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3368 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3369 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3372 SIToFPInst::SIToFPInst(
3373 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3374 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3375 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3378 SIToFPInst::SIToFPInst(
3379 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3380 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3381 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3384 FPToUIInst::FPToUIInst(
3385 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3386 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3387 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3390 FPToUIInst::FPToUIInst(
3391 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3392 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3393 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3396 FPToSIInst::FPToSIInst(
3397 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3398 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3399 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3402 FPToSIInst::FPToSIInst(
3403 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3404 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3405 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3408 PtrToIntInst::PtrToIntInst(
3409 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3410 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3411 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3414 PtrToIntInst::PtrToIntInst(
3415 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3416 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3417 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3420 IntToPtrInst::IntToPtrInst(
3421 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3422 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3423 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3426 IntToPtrInst::IntToPtrInst(
3427 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3428 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3429 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3432 BitCastInst::BitCastInst(
3433 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3434 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3435 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3438 BitCastInst::BitCastInst(
3439 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3440 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3441 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3444 AddrSpaceCastInst::AddrSpaceCastInst(
3445 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3446 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3447 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3450 AddrSpaceCastInst::AddrSpaceCastInst(
3451 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3452 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3453 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3456 //===----------------------------------------------------------------------===//
3457 // CmpInst Classes
3458 //===----------------------------------------------------------------------===//
3460 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3461 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3462 Instruction *FlagsSource)
3463 : Instruction(ty, op,
3464 OperandTraits<CmpInst>::op_begin(this),
3465 OperandTraits<CmpInst>::operands(this),
3466 InsertBefore) {
3467 Op<0>() = LHS;
3468 Op<1>() = RHS;
3469 setPredicate((Predicate)predicate);
3470 setName(Name);
3471 if (FlagsSource)
3472 copyIRFlags(FlagsSource);
3475 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3476 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3477 : Instruction(ty, op,
3478 OperandTraits<CmpInst>::op_begin(this),
3479 OperandTraits<CmpInst>::operands(this),
3480 InsertAtEnd) {
3481 Op<0>() = LHS;
3482 Op<1>() = RHS;
3483 setPredicate((Predicate)predicate);
3484 setName(Name);
3487 CmpInst *
3488 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3489 const Twine &Name, Instruction *InsertBefore) {
3490 if (Op == Instruction::ICmp) {
3491 if (InsertBefore)
3492 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3493 S1, S2, Name);
3494 else
3495 return new ICmpInst(CmpInst::Predicate(predicate),
3496 S1, S2, Name);
3499 if (InsertBefore)
3500 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3501 S1, S2, Name);
3502 else
3503 return new FCmpInst(CmpInst::Predicate(predicate),
3504 S1, S2, Name);
3507 CmpInst *
3508 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3509 const Twine &Name, BasicBlock *InsertAtEnd) {
3510 if (Op == Instruction::ICmp) {
3511 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3512 S1, S2, Name);
3514 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3515 S1, S2, Name);
3518 void CmpInst::swapOperands() {
3519 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3520 IC->swapOperands();
3521 else
3522 cast<FCmpInst>(this)->swapOperands();
3525 bool CmpInst::isCommutative() const {
3526 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3527 return IC->isCommutative();
3528 return cast<FCmpInst>(this)->isCommutative();
3531 bool CmpInst::isEquality() const {
3532 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3533 return IC->isEquality();
3534 return cast<FCmpInst>(this)->isEquality();
3537 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3538 switch (pred) {
3539 default: llvm_unreachable("Unknown cmp predicate!");
3540 case ICMP_EQ: return ICMP_NE;
3541 case ICMP_NE: return ICMP_EQ;
3542 case ICMP_UGT: return ICMP_ULE;
3543 case ICMP_ULT: return ICMP_UGE;
3544 case ICMP_UGE: return ICMP_ULT;
3545 case ICMP_ULE: return ICMP_UGT;
3546 case ICMP_SGT: return ICMP_SLE;
3547 case ICMP_SLT: return ICMP_SGE;
3548 case ICMP_SGE: return ICMP_SLT;
3549 case ICMP_SLE: return ICMP_SGT;
3551 case FCMP_OEQ: return FCMP_UNE;
3552 case FCMP_ONE: return FCMP_UEQ;
3553 case FCMP_OGT: return FCMP_ULE;
3554 case FCMP_OLT: return FCMP_UGE;
3555 case FCMP_OGE: return FCMP_ULT;
3556 case FCMP_OLE: return FCMP_UGT;
3557 case FCMP_UEQ: return FCMP_ONE;
3558 case FCMP_UNE: return FCMP_OEQ;
3559 case FCMP_UGT: return FCMP_OLE;
3560 case FCMP_ULT: return FCMP_OGE;
3561 case FCMP_UGE: return FCMP_OLT;
3562 case FCMP_ULE: return FCMP_OGT;
3563 case FCMP_ORD: return FCMP_UNO;
3564 case FCMP_UNO: return FCMP_ORD;
3565 case FCMP_TRUE: return FCMP_FALSE;
3566 case FCMP_FALSE: return FCMP_TRUE;
3570 StringRef CmpInst::getPredicateName(Predicate Pred) {
3571 switch (Pred) {
3572 default: return "unknown";
3573 case FCmpInst::FCMP_FALSE: return "false";
3574 case FCmpInst::FCMP_OEQ: return "oeq";
3575 case FCmpInst::FCMP_OGT: return "ogt";
3576 case FCmpInst::FCMP_OGE: return "oge";
3577 case FCmpInst::FCMP_OLT: return "olt";
3578 case FCmpInst::FCMP_OLE: return "ole";
3579 case FCmpInst::FCMP_ONE: return "one";
3580 case FCmpInst::FCMP_ORD: return "ord";
3581 case FCmpInst::FCMP_UNO: return "uno";
3582 case FCmpInst::FCMP_UEQ: return "ueq";
3583 case FCmpInst::FCMP_UGT: return "ugt";
3584 case FCmpInst::FCMP_UGE: return "uge";
3585 case FCmpInst::FCMP_ULT: return "ult";
3586 case FCmpInst::FCMP_ULE: return "ule";
3587 case FCmpInst::FCMP_UNE: return "une";
3588 case FCmpInst::FCMP_TRUE: return "true";
3589 case ICmpInst::ICMP_EQ: return "eq";
3590 case ICmpInst::ICMP_NE: return "ne";
3591 case ICmpInst::ICMP_SGT: return "sgt";
3592 case ICmpInst::ICMP_SGE: return "sge";
3593 case ICmpInst::ICMP_SLT: return "slt";
3594 case ICmpInst::ICMP_SLE: return "sle";
3595 case ICmpInst::ICMP_UGT: return "ugt";
3596 case ICmpInst::ICMP_UGE: return "uge";
3597 case ICmpInst::ICMP_ULT: return "ult";
3598 case ICmpInst::ICMP_ULE: return "ule";
3602 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3603 switch (pred) {
3604 default: llvm_unreachable("Unknown icmp predicate!");
3605 case ICMP_EQ: case ICMP_NE:
3606 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3607 return pred;
3608 case ICMP_UGT: return ICMP_SGT;
3609 case ICMP_ULT: return ICMP_SLT;
3610 case ICMP_UGE: return ICMP_SGE;
3611 case ICMP_ULE: return ICMP_SLE;
3615 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3616 switch (pred) {
3617 default: llvm_unreachable("Unknown icmp predicate!");
3618 case ICMP_EQ: case ICMP_NE:
3619 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3620 return pred;
3621 case ICMP_SGT: return ICMP_UGT;
3622 case ICMP_SLT: return ICMP_ULT;
3623 case ICMP_SGE: return ICMP_UGE;
3624 case ICMP_SLE: return ICMP_ULE;
3628 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3629 switch (pred) {
3630 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3631 case ICMP_SGT: return ICMP_SGE;
3632 case ICMP_SLT: return ICMP_SLE;
3633 case ICMP_SGE: return ICMP_SGT;
3634 case ICMP_SLE: return ICMP_SLT;
3635 case ICMP_UGT: return ICMP_UGE;
3636 case ICMP_ULT: return ICMP_ULE;
3637 case ICMP_UGE: return ICMP_UGT;
3638 case ICMP_ULE: return ICMP_ULT;
3640 case FCMP_OGT: return FCMP_OGE;
3641 case FCMP_OLT: return FCMP_OLE;
3642 case FCMP_OGE: return FCMP_OGT;
3643 case FCMP_OLE: return FCMP_OLT;
3644 case FCMP_UGT: return FCMP_UGE;
3645 case FCMP_ULT: return FCMP_ULE;
3646 case FCMP_UGE: return FCMP_UGT;
3647 case FCMP_ULE: return FCMP_ULT;
3651 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3652 switch (pred) {
3653 default: llvm_unreachable("Unknown cmp predicate!");
3654 case ICMP_EQ: case ICMP_NE:
3655 return pred;
3656 case ICMP_SGT: return ICMP_SLT;
3657 case ICMP_SLT: return ICMP_SGT;
3658 case ICMP_SGE: return ICMP_SLE;
3659 case ICMP_SLE: return ICMP_SGE;
3660 case ICMP_UGT: return ICMP_ULT;
3661 case ICMP_ULT: return ICMP_UGT;
3662 case ICMP_UGE: return ICMP_ULE;
3663 case ICMP_ULE: return ICMP_UGE;
3665 case FCMP_FALSE: case FCMP_TRUE:
3666 case FCMP_OEQ: case FCMP_ONE:
3667 case FCMP_UEQ: case FCMP_UNE:
3668 case FCMP_ORD: case FCMP_UNO:
3669 return pred;
3670 case FCMP_OGT: return FCMP_OLT;
3671 case FCMP_OLT: return FCMP_OGT;
3672 case FCMP_OGE: return FCMP_OLE;
3673 case FCMP_OLE: return FCMP_OGE;
3674 case FCMP_UGT: return FCMP_ULT;
3675 case FCMP_ULT: return FCMP_UGT;
3676 case FCMP_UGE: return FCMP_ULE;
3677 case FCMP_ULE: return FCMP_UGE;
3681 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3682 switch (pred) {
3683 case ICMP_SGT: return ICMP_SGE;
3684 case ICMP_SLT: return ICMP_SLE;
3685 case ICMP_UGT: return ICMP_UGE;
3686 case ICMP_ULT: return ICMP_ULE;
3687 case FCMP_OGT: return FCMP_OGE;
3688 case FCMP_OLT: return FCMP_OLE;
3689 case FCMP_UGT: return FCMP_UGE;
3690 case FCMP_ULT: return FCMP_ULE;
3691 default: return pred;
3695 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3696 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3698 switch (pred) {
3699 default:
3700 llvm_unreachable("Unknown predicate!");
3701 case CmpInst::ICMP_ULT:
3702 return CmpInst::ICMP_SLT;
3703 case CmpInst::ICMP_ULE:
3704 return CmpInst::ICMP_SLE;
3705 case CmpInst::ICMP_UGT:
3706 return CmpInst::ICMP_SGT;
3707 case CmpInst::ICMP_UGE:
3708 return CmpInst::ICMP_SGE;
3712 bool CmpInst::isUnsigned(Predicate predicate) {
3713 switch (predicate) {
3714 default: return false;
3715 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3716 case ICmpInst::ICMP_UGE: return true;
3720 bool CmpInst::isSigned(Predicate predicate) {
3721 switch (predicate) {
3722 default: return false;
3723 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3724 case ICmpInst::ICMP_SGE: return true;
3728 bool CmpInst::isOrdered(Predicate predicate) {
3729 switch (predicate) {
3730 default: return false;
3731 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3732 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3733 case FCmpInst::FCMP_ORD: return true;
3737 bool CmpInst::isUnordered(Predicate predicate) {
3738 switch (predicate) {
3739 default: return false;
3740 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3741 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3742 case FCmpInst::FCMP_UNO: return true;
3746 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3747 switch(predicate) {
3748 default: return false;
3749 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3750 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3754 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3755 switch(predicate) {
3756 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3757 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3758 default: return false;
3762 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3763 // If the predicates match, then we know the first condition implies the
3764 // second is true.
3765 if (Pred1 == Pred2)
3766 return true;
3768 switch (Pred1) {
3769 default:
3770 break;
3771 case ICMP_EQ:
3772 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3773 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3774 Pred2 == ICMP_SLE;
3775 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3776 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3777 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3778 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3779 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3780 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3781 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3782 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3784 return false;
3787 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3788 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3791 //===----------------------------------------------------------------------===//
3792 // SwitchInst Implementation
3793 //===----------------------------------------------------------------------===//
3795 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3796 assert(Value && Default && NumReserved);
3797 ReservedSpace = NumReserved;
3798 setNumHungOffUseOperands(2);
3799 allocHungoffUses(ReservedSpace);
3801 Op<0>() = Value;
3802 Op<1>() = Default;
3805 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3806 /// switch on and a default destination. The number of additional cases can
3807 /// be specified here to make memory allocation more efficient. This
3808 /// constructor can also autoinsert before another instruction.
3809 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3810 Instruction *InsertBefore)
3811 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3812 nullptr, 0, InsertBefore) {
3813 init(Value, Default, 2+NumCases*2);
3816 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3817 /// switch on and a default destination. The number of additional cases can
3818 /// be specified here to make memory allocation more efficient. This
3819 /// constructor also autoinserts at the end of the specified BasicBlock.
3820 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3821 BasicBlock *InsertAtEnd)
3822 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3823 nullptr, 0, InsertAtEnd) {
3824 init(Value, Default, 2+NumCases*2);
3827 SwitchInst::SwitchInst(const SwitchInst &SI)
3828 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3829 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3830 setNumHungOffUseOperands(SI.getNumOperands());
3831 Use *OL = getOperandList();
3832 const Use *InOL = SI.getOperandList();
3833 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3834 OL[i] = InOL[i];
3835 OL[i+1] = InOL[i+1];
3837 SubclassOptionalData = SI.SubclassOptionalData;
3840 /// addCase - Add an entry to the switch instruction...
3842 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3843 unsigned NewCaseIdx = getNumCases();
3844 unsigned OpNo = getNumOperands();
3845 if (OpNo+2 > ReservedSpace)
3846 growOperands(); // Get more space!
3847 // Initialize some new operands.
3848 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3849 setNumHungOffUseOperands(OpNo+2);
3850 CaseHandle Case(this, NewCaseIdx);
3851 Case.setValue(OnVal);
3852 Case.setSuccessor(Dest);
3855 /// removeCase - This method removes the specified case and its successor
3856 /// from the switch instruction.
3857 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3858 unsigned idx = I->getCaseIndex();
3860 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3862 unsigned NumOps = getNumOperands();
3863 Use *OL = getOperandList();
3865 // Overwrite this case with the end of the list.
3866 if (2 + (idx + 1) * 2 != NumOps) {
3867 OL[2 + idx * 2] = OL[NumOps - 2];
3868 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3871 // Nuke the last value.
3872 OL[NumOps-2].set(nullptr);
3873 OL[NumOps-2+1].set(nullptr);
3874 setNumHungOffUseOperands(NumOps-2);
3876 return CaseIt(this, idx);
3879 /// growOperands - grow operands - This grows the operand list in response
3880 /// to a push_back style of operation. This grows the number of ops by 3 times.
3882 void SwitchInst::growOperands() {
3883 unsigned e = getNumOperands();
3884 unsigned NumOps = e*3;
3886 ReservedSpace = NumOps;
3887 growHungoffUses(ReservedSpace);
3890 MDNode *
3891 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3892 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3893 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3894 if (MDName->getString() == "branch_weights")
3895 return ProfileData;
3896 return nullptr;
3899 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3900 assert(Changed && "called only if metadata has changed");
3902 if (!Weights)
3903 return nullptr;
3905 assert(SI.getNumSuccessors() == Weights->size() &&
3906 "num of prof branch_weights must accord with num of successors");
3908 bool AllZeroes =
3909 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3911 if (AllZeroes || Weights.getValue().size() < 2)
3912 return nullptr;
3914 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3917 void SwitchInstProfUpdateWrapper::init() {
3918 MDNode *ProfileData = getProfBranchWeightsMD(SI);
3919 if (!ProfileData)
3920 return;
3922 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3923 llvm_unreachable("number of prof branch_weights metadata operands does "
3924 "not correspond to number of succesors");
3927 SmallVector<uint32_t, 8> Weights;
3928 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3929 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3930 uint32_t CW = C->getValue().getZExtValue();
3931 Weights.push_back(CW);
3933 this->Weights = std::move(Weights);
3936 SwitchInst::CaseIt
3937 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3938 if (Weights) {
3939 assert(SI.getNumSuccessors() == Weights->size() &&
3940 "num of prof branch_weights must accord with num of successors");
3941 Changed = true;
3942 // Copy the last case to the place of the removed one and shrink.
3943 // This is tightly coupled with the way SwitchInst::removeCase() removes
3944 // the cases in SwitchInst::removeCase(CaseIt).
3945 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3946 Weights.getValue().pop_back();
3948 return SI.removeCase(I);
3951 void SwitchInstProfUpdateWrapper::addCase(
3952 ConstantInt *OnVal, BasicBlock *Dest,
3953 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3954 SI.addCase(OnVal, Dest);
3956 if (!Weights && W && *W) {
3957 Changed = true;
3958 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3959 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3960 } else if (Weights) {
3961 Changed = true;
3962 Weights.getValue().push_back(W ? *W : 0);
3964 if (Weights)
3965 assert(SI.getNumSuccessors() == Weights->size() &&
3966 "num of prof branch_weights must accord with num of successors");
3969 SymbolTableList<Instruction>::iterator
3970 SwitchInstProfUpdateWrapper::eraseFromParent() {
3971 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3972 Changed = false;
3973 if (Weights)
3974 Weights->resize(0);
3975 return SI.eraseFromParent();
3978 SwitchInstProfUpdateWrapper::CaseWeightOpt
3979 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3980 if (!Weights)
3981 return None;
3982 return Weights.getValue()[idx];
3985 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3986 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3987 if (!W)
3988 return;
3990 if (!Weights && *W)
3991 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3993 if (Weights) {
3994 auto &OldW = Weights.getValue()[idx];
3995 if (*W != OldW) {
3996 Changed = true;
3997 OldW = *W;
4002 SwitchInstProfUpdateWrapper::CaseWeightOpt
4003 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4004 unsigned idx) {
4005 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4006 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4007 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4008 ->getValue()
4009 .getZExtValue();
4011 return None;
4014 //===----------------------------------------------------------------------===//
4015 // IndirectBrInst Implementation
4016 //===----------------------------------------------------------------------===//
4018 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4019 assert(Address && Address->getType()->isPointerTy() &&
4020 "Address of indirectbr must be a pointer");
4021 ReservedSpace = 1+NumDests;
4022 setNumHungOffUseOperands(1);
4023 allocHungoffUses(ReservedSpace);
4025 Op<0>() = Address;
4029 /// growOperands - grow operands - This grows the operand list in response
4030 /// to a push_back style of operation. This grows the number of ops by 2 times.
4032 void IndirectBrInst::growOperands() {
4033 unsigned e = getNumOperands();
4034 unsigned NumOps = e*2;
4036 ReservedSpace = NumOps;
4037 growHungoffUses(ReservedSpace);
4040 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4041 Instruction *InsertBefore)
4042 : Instruction(Type::getVoidTy(Address->getContext()),
4043 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4044 init(Address, NumCases);
4047 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4048 BasicBlock *InsertAtEnd)
4049 : Instruction(Type::getVoidTy(Address->getContext()),
4050 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4051 init(Address, NumCases);
4054 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4055 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4056 nullptr, IBI.getNumOperands()) {
4057 allocHungoffUses(IBI.getNumOperands());
4058 Use *OL = getOperandList();
4059 const Use *InOL = IBI.getOperandList();
4060 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4061 OL[i] = InOL[i];
4062 SubclassOptionalData = IBI.SubclassOptionalData;
4065 /// addDestination - Add a destination.
4067 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4068 unsigned OpNo = getNumOperands();
4069 if (OpNo+1 > ReservedSpace)
4070 growOperands(); // Get more space!
4071 // Initialize some new operands.
4072 assert(OpNo < ReservedSpace && "Growing didn't work!");
4073 setNumHungOffUseOperands(OpNo+1);
4074 getOperandList()[OpNo] = DestBB;
4077 /// removeDestination - This method removes the specified successor from the
4078 /// indirectbr instruction.
4079 void IndirectBrInst::removeDestination(unsigned idx) {
4080 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4082 unsigned NumOps = getNumOperands();
4083 Use *OL = getOperandList();
4085 // Replace this value with the last one.
4086 OL[idx+1] = OL[NumOps-1];
4088 // Nuke the last value.
4089 OL[NumOps-1].set(nullptr);
4090 setNumHungOffUseOperands(NumOps-1);
4093 //===----------------------------------------------------------------------===//
4094 // cloneImpl() implementations
4095 //===----------------------------------------------------------------------===//
4097 // Define these methods here so vtables don't get emitted into every translation
4098 // unit that uses these classes.
4100 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4101 return new (getNumOperands()) GetElementPtrInst(*this);
4104 UnaryOperator *UnaryOperator::cloneImpl() const {
4105 return Create(getOpcode(), Op<0>());
4108 BinaryOperator *BinaryOperator::cloneImpl() const {
4109 return Create(getOpcode(), Op<0>(), Op<1>());
4112 FCmpInst *FCmpInst::cloneImpl() const {
4113 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4116 ICmpInst *ICmpInst::cloneImpl() const {
4117 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4120 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4121 return new ExtractValueInst(*this);
4124 InsertValueInst *InsertValueInst::cloneImpl() const {
4125 return new InsertValueInst(*this);
4128 AllocaInst *AllocaInst::cloneImpl() const {
4129 AllocaInst *Result = new AllocaInst(getAllocatedType(),
4130 getType()->getAddressSpace(),
4131 (Value *)getOperand(0), getAlignment());
4132 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4133 Result->setSwiftError(isSwiftError());
4134 return Result;
4137 LoadInst *LoadInst::cloneImpl() const {
4138 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4139 MaybeAlign(getAlignment()), getOrdering(),
4140 getSyncScopeID());
4143 StoreInst *StoreInst::cloneImpl() const {
4144 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4145 MaybeAlign(getAlignment()), getOrdering(),
4146 getSyncScopeID());
4149 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4150 AtomicCmpXchgInst *Result =
4151 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4152 getSuccessOrdering(), getFailureOrdering(),
4153 getSyncScopeID());
4154 Result->setVolatile(isVolatile());
4155 Result->setWeak(isWeak());
4156 return Result;
4159 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4160 AtomicRMWInst *Result =
4161 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4162 getOrdering(), getSyncScopeID());
4163 Result->setVolatile(isVolatile());
4164 return Result;
4167 FenceInst *FenceInst::cloneImpl() const {
4168 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4171 TruncInst *TruncInst::cloneImpl() const {
4172 return new TruncInst(getOperand(0), getType());
4175 ZExtInst *ZExtInst::cloneImpl() const {
4176 return new ZExtInst(getOperand(0), getType());
4179 SExtInst *SExtInst::cloneImpl() const {
4180 return new SExtInst(getOperand(0), getType());
4183 FPTruncInst *FPTruncInst::cloneImpl() const {
4184 return new FPTruncInst(getOperand(0), getType());
4187 FPExtInst *FPExtInst::cloneImpl() const {
4188 return new FPExtInst(getOperand(0), getType());
4191 UIToFPInst *UIToFPInst::cloneImpl() const {
4192 return new UIToFPInst(getOperand(0), getType());
4195 SIToFPInst *SIToFPInst::cloneImpl() const {
4196 return new SIToFPInst(getOperand(0), getType());
4199 FPToUIInst *FPToUIInst::cloneImpl() const {
4200 return new FPToUIInst(getOperand(0), getType());
4203 FPToSIInst *FPToSIInst::cloneImpl() const {
4204 return new FPToSIInst(getOperand(0), getType());
4207 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4208 return new PtrToIntInst(getOperand(0), getType());
4211 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4212 return new IntToPtrInst(getOperand(0), getType());
4215 BitCastInst *BitCastInst::cloneImpl() const {
4216 return new BitCastInst(getOperand(0), getType());
4219 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4220 return new AddrSpaceCastInst(getOperand(0), getType());
4223 CallInst *CallInst::cloneImpl() const {
4224 if (hasOperandBundles()) {
4225 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4226 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4228 return new(getNumOperands()) CallInst(*this);
4231 SelectInst *SelectInst::cloneImpl() const {
4232 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4235 VAArgInst *VAArgInst::cloneImpl() const {
4236 return new VAArgInst(getOperand(0), getType());
4239 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4240 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4243 InsertElementInst *InsertElementInst::cloneImpl() const {
4244 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4247 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4248 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4251 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4253 LandingPadInst *LandingPadInst::cloneImpl() const {
4254 return new LandingPadInst(*this);
4257 ReturnInst *ReturnInst::cloneImpl() const {
4258 return new(getNumOperands()) ReturnInst(*this);
4261 BranchInst *BranchInst::cloneImpl() const {
4262 return new(getNumOperands()) BranchInst(*this);
4265 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4267 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4268 return new IndirectBrInst(*this);
4271 InvokeInst *InvokeInst::cloneImpl() const {
4272 if (hasOperandBundles()) {
4273 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4274 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4276 return new(getNumOperands()) InvokeInst(*this);
4279 CallBrInst *CallBrInst::cloneImpl() const {
4280 if (hasOperandBundles()) {
4281 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4282 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4284 return new (getNumOperands()) CallBrInst(*this);
4287 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4289 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4290 return new (getNumOperands()) CleanupReturnInst(*this);
4293 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4294 return new (getNumOperands()) CatchReturnInst(*this);
4297 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4298 return new CatchSwitchInst(*this);
4301 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4302 return new (getNumOperands()) FuncletPadInst(*this);
4305 UnreachableInst *UnreachableInst::cloneImpl() const {
4306 LLVMContext &Context = getContext();
4307 return new UnreachableInst(Context);