1 //===-- WebAssemblyFixFunctionBitcasts.cpp - Fix function bitcasts --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Fix bitcasted functions.
12 /// WebAssembly requires caller and callee signatures to match, however in LLVM,
13 /// some amount of slop is vaguely permitted. Detect mismatch by looking for
14 /// bitcasts of functions and rewrite them to use wrapper functions instead.
16 /// This doesn't catch all cases, such as when a function's address is taken in
17 /// one place and casted in another, but it works for many common cases.
19 /// Note that LLVM already optimizes away function bitcasts in common cases by
20 /// dropping arguments as needed, so this pass only ends up getting used in less
23 //===----------------------------------------------------------------------===//
25 #include "WebAssembly.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
36 #define DEBUG_TYPE "wasm-fix-function-bitcasts"
39 class FixFunctionBitcasts final
: public ModulePass
{
40 StringRef
getPassName() const override
{
41 return "WebAssembly Fix Function Bitcasts";
44 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
46 ModulePass::getAnalysisUsage(AU
);
49 bool runOnModule(Module
&M
) override
;
53 FixFunctionBitcasts() : ModulePass(ID
) {}
55 } // End anonymous namespace
57 char FixFunctionBitcasts::ID
= 0;
58 INITIALIZE_PASS(FixFunctionBitcasts
, DEBUG_TYPE
,
59 "Fix mismatching bitcasts for WebAssembly", false, false)
61 ModulePass
*llvm::createWebAssemblyFixFunctionBitcasts() {
62 return new FixFunctionBitcasts();
65 // Recursively descend the def-use lists from V to find non-bitcast users of
67 static void findUses(Value
*V
, Function
&F
,
68 SmallVectorImpl
<std::pair
<Use
*, Function
*>> &Uses
,
69 SmallPtrSetImpl
<Constant
*> &ConstantBCs
) {
70 for (Use
&U
: V
->uses()) {
71 if (auto *BC
= dyn_cast
<BitCastOperator
>(U
.getUser()))
72 findUses(BC
, F
, Uses
, ConstantBCs
);
73 else if (auto *A
= dyn_cast
<GlobalAlias
>(U
.getUser()))
74 findUses(A
, F
, Uses
, ConstantBCs
);
75 else if (U
.get()->getType() != F
.getType()) {
76 CallSite
CS(U
.getUser());
78 // Skip uses that aren't immediately called
80 Value
*Callee
= CS
.getCalledValue();
82 // Skip calls where the function isn't the callee
84 if (isa
<Constant
>(U
.get())) {
85 // Only add constant bitcasts to the list once; they get RAUW'd
86 auto C
= ConstantBCs
.insert(cast
<Constant
>(U
.get()));
90 Uses
.push_back(std::make_pair(&U
, &F
));
95 // Create a wrapper function with type Ty that calls F (which may have a
96 // different type). Attempt to support common bitcasted function idioms:
97 // - Call with more arguments than needed: arguments are dropped
98 // - Call with fewer arguments than needed: arguments are filled in with undef
99 // - Return value is not needed: drop it
100 // - Return value needed but not present: supply an undef
102 // If the all the argument types of trivially castable to one another (i.e.
103 // I32 vs pointer type) then we don't create a wrapper at all (return nullptr
106 // If there is a type mismatch that we know would result in an invalid wasm
107 // module then generate wrapper that contains unreachable (i.e. abort at
108 // runtime). Such programs are deep into undefined behaviour territory,
109 // but we choose to fail at runtime rather than generate and invalid module
110 // or fail at compiler time. The reason we delay the error is that we want
111 // to support the CMake which expects to be able to compile and link programs
112 // that refer to functions with entirely incorrect signatures (this is how
113 // CMake detects the existence of a function in a toolchain).
115 // For bitcasts that involve struct types we don't know at this stage if they
116 // would be equivalent at the wasm level and so we can't know if we need to
117 // generate a wrapper.
118 static Function
*createWrapper(Function
*F
, FunctionType
*Ty
) {
119 Module
*M
= F
->getParent();
121 Function
*Wrapper
= Function::Create(Ty
, Function::PrivateLinkage
,
122 F
->getName() + "_bitcast", M
);
123 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "body", Wrapper
);
124 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
126 // Determine what arguments to pass.
127 SmallVector
<Value
*, 4> Args
;
128 Function::arg_iterator AI
= Wrapper
->arg_begin();
129 Function::arg_iterator AE
= Wrapper
->arg_end();
130 FunctionType::param_iterator PI
= F
->getFunctionType()->param_begin();
131 FunctionType::param_iterator PE
= F
->getFunctionType()->param_end();
132 bool TypeMismatch
= false;
133 bool WrapperNeeded
= false;
135 Type
*ExpectedRtnType
= F
->getFunctionType()->getReturnType();
136 Type
*RtnType
= Ty
->getReturnType();
138 if ((F
->getFunctionType()->getNumParams() != Ty
->getNumParams()) ||
139 (F
->getFunctionType()->isVarArg() != Ty
->isVarArg()) ||
140 (ExpectedRtnType
!= RtnType
))
141 WrapperNeeded
= true;
143 for (; AI
!= AE
&& PI
!= PE
; ++AI
, ++PI
) {
144 Type
*ArgType
= AI
->getType();
145 Type
*ParamType
= *PI
;
147 if (ArgType
== ParamType
) {
148 Args
.push_back(&*AI
);
150 if (CastInst::isBitOrNoopPointerCastable(ArgType
, ParamType
, DL
)) {
151 Instruction
*PtrCast
=
152 CastInst::CreateBitOrPointerCast(AI
, ParamType
, "cast");
153 BB
->getInstList().push_back(PtrCast
);
154 Args
.push_back(PtrCast
);
155 } else if (ArgType
->isStructTy() || ParamType
->isStructTy()) {
156 LLVM_DEBUG(dbgs() << "createWrapper: struct param type in bitcast: "
157 << F
->getName() << "\n");
158 WrapperNeeded
= false;
160 LLVM_DEBUG(dbgs() << "createWrapper: arg type mismatch calling: "
161 << F
->getName() << "\n");
162 LLVM_DEBUG(dbgs() << "Arg[" << Args
.size() << "] Expected: "
163 << *ParamType
<< " Got: " << *ArgType
<< "\n");
170 if (WrapperNeeded
&& !TypeMismatch
) {
171 for (; PI
!= PE
; ++PI
)
172 Args
.push_back(UndefValue::get(*PI
));
174 for (; AI
!= AE
; ++AI
)
175 Args
.push_back(&*AI
);
177 CallInst
*Call
= CallInst::Create(F
, Args
, "", BB
);
179 Type
*ExpectedRtnType
= F
->getFunctionType()->getReturnType();
180 Type
*RtnType
= Ty
->getReturnType();
181 // Determine what value to return.
182 if (RtnType
->isVoidTy()) {
183 ReturnInst::Create(M
->getContext(), BB
);
184 } else if (ExpectedRtnType
->isVoidTy()) {
185 LLVM_DEBUG(dbgs() << "Creating dummy return: " << *RtnType
<< "\n");
186 ReturnInst::Create(M
->getContext(), UndefValue::get(RtnType
), BB
);
187 } else if (RtnType
== ExpectedRtnType
) {
188 ReturnInst::Create(M
->getContext(), Call
, BB
);
189 } else if (CastInst::isBitOrNoopPointerCastable(ExpectedRtnType
, RtnType
,
192 CastInst::CreateBitOrPointerCast(Call
, RtnType
, "cast");
193 BB
->getInstList().push_back(Cast
);
194 ReturnInst::Create(M
->getContext(), Cast
, BB
);
195 } else if (RtnType
->isStructTy() || ExpectedRtnType
->isStructTy()) {
196 LLVM_DEBUG(dbgs() << "createWrapper: struct return type in bitcast: "
197 << F
->getName() << "\n");
198 WrapperNeeded
= false;
200 LLVM_DEBUG(dbgs() << "createWrapper: return type mismatch calling: "
201 << F
->getName() << "\n");
202 LLVM_DEBUG(dbgs() << "Expected: " << *ExpectedRtnType
203 << " Got: " << *RtnType
<< "\n");
209 // Create a new wrapper that simply contains `unreachable`.
210 Wrapper
->eraseFromParent();
211 Wrapper
= Function::Create(Ty
, Function::PrivateLinkage
,
212 F
->getName() + "_bitcast_invalid", M
);
213 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "body", Wrapper
);
214 new UnreachableInst(M
->getContext(), BB
);
215 Wrapper
->setName(F
->getName() + "_bitcast_invalid");
216 } else if (!WrapperNeeded
) {
217 LLVM_DEBUG(dbgs() << "createWrapper: no wrapper needed: " << F
->getName()
219 Wrapper
->eraseFromParent();
222 LLVM_DEBUG(dbgs() << "createWrapper: " << F
->getName() << "\n");
226 // Test whether a main function with type FuncTy should be rewritten to have
228 static bool shouldFixMainFunction(FunctionType
*FuncTy
, FunctionType
*MainTy
) {
229 // Only fix the main function if it's the standard zero-arg form. That way,
230 // the standard cases will work as expected, and users will see signature
231 // mismatches from the linker for non-standard cases.
232 return FuncTy
->getReturnType() == MainTy
->getReturnType() &&
233 FuncTy
->getNumParams() == 0 &&
237 bool FixFunctionBitcasts::runOnModule(Module
&M
) {
238 LLVM_DEBUG(dbgs() << "********** Fix Function Bitcasts **********\n");
240 Function
*Main
= nullptr;
241 CallInst
*CallMain
= nullptr;
242 SmallVector
<std::pair
<Use
*, Function
*>, 0> Uses
;
243 SmallPtrSet
<Constant
*, 2> ConstantBCs
;
245 // Collect all the places that need wrappers.
246 for (Function
&F
: M
) {
247 findUses(&F
, F
, Uses
, ConstantBCs
);
249 // If we have a "main" function, and its type isn't
250 // "int main(int argc, char *argv[])", create an artificial call with it
251 // bitcasted to that type so that we generate a wrapper for it, so that
252 // the C runtime can call it.
253 if (F
.getName() == "main") {
255 LLVMContext
&C
= M
.getContext();
256 Type
*MainArgTys
[] = {Type::getInt32Ty(C
),
257 PointerType::get(Type::getInt8PtrTy(C
), 0)};
258 FunctionType
*MainTy
= FunctionType::get(Type::getInt32Ty(C
), MainArgTys
,
260 if (shouldFixMainFunction(F
.getFunctionType(), MainTy
)) {
261 LLVM_DEBUG(dbgs() << "Found `main` function with incorrect type: "
262 << *F
.getFunctionType() << "\n");
263 Value
*Args
[] = {UndefValue::get(MainArgTys
[0]),
264 UndefValue::get(MainArgTys
[1])};
266 ConstantExpr::getBitCast(Main
, PointerType::get(MainTy
, 0));
267 CallMain
= CallInst::Create(MainTy
, Casted
, Args
, "call_main");
268 Use
*UseMain
= &CallMain
->getOperandUse(2);
269 Uses
.push_back(std::make_pair(UseMain
, &F
));
274 DenseMap
<std::pair
<Function
*, FunctionType
*>, Function
*> Wrappers
;
276 for (auto &UseFunc
: Uses
) {
277 Use
*U
= UseFunc
.first
;
278 Function
*F
= UseFunc
.second
;
279 auto *PTy
= cast
<PointerType
>(U
->get()->getType());
280 auto *Ty
= dyn_cast
<FunctionType
>(PTy
->getElementType());
282 // If the function is casted to something like i8* as a "generic pointer"
283 // to be later casted to something else, we can't generate a wrapper for it.
284 // Just ignore such casts for now.
288 auto Pair
= Wrappers
.insert(std::make_pair(std::make_pair(F
, Ty
), nullptr));
290 Pair
.first
->second
= createWrapper(F
, Ty
);
292 Function
*Wrapper
= Pair
.first
->second
;
296 if (isa
<Constant
>(U
->get()))
297 U
->get()->replaceAllUsesWith(Wrapper
);
302 // If we created a wrapper for main, rename the wrapper so that it's the
303 // one that gets called from startup.
305 Main
->setName("__original_main");
307 cast
<Function
>(CallMain
->getCalledValue()->stripPointerCasts());
309 if (Main
->isDeclaration()) {
310 // The wrapper is not needed in this case as we don't need to export
311 // it to anyone else.
312 MainWrapper
->eraseFromParent();
314 // Otherwise give the wrapper the same linkage as the original main
315 // function, so that it can be called from the same places.
316 MainWrapper
->setName("main");
317 MainWrapper
->setLinkage(Main
->getLinkage());
318 MainWrapper
->setVisibility(Main
->getVisibility());