1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
50 /// In detail, this pass does following things:
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 /// __THREW__ and __threwValue will be set in invoke wrappers
54 /// in JS glue code. For what invoke wrappers are, refer to 3). These
55 /// variables are used for both exceptions and setjmp/longjmps.
56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 /// means nothing occurred, 1 means an exception occurred, and other numbers
58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
61 /// * Exception handling
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
65 /// The global variables in 1) will exist in wasm address space,
66 /// but their values should be set in JS code, so these functions
67 /// as interfaces to JS glue code. These functions are equivalent to the
68 /// following JS functions, which actually exist in asm.js version of JS
71 /// function setThrew(threw, value) {
72 /// if (__THREW__ == 0) {
73 /// __THREW__ = threw;
74 /// __threwValue = value;
78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
80 /// In exception handling, getTempRet0 indicates the type of an exception
81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
88 /// call @__invoke_SIG(func, arg1, arg2)
89 /// %__THREW__.val = __THREW__;
91 /// if (%__THREW__.val == 1)
95 /// SIG is a mangled string generated based on the LLVM IR-level function
96 /// signature. After LLVM IR types are lowered to the target wasm types,
97 /// the names for these wrappers will change based on wasm types as well,
98 /// as in invoke_vi (function takes an int and returns void). The bodies of
99 /// these wrappers will be generated in JS glue code, and inside those
100 /// wrappers we use JS try-catch to generate actual exception effects. It
101 /// also calls the original callee function. An example wrapper in JS code
102 /// would look like this:
103 /// function invoke_vi(index,a1) {
105 /// Module["dynCall_vi"](index,a1); // This calls original callee
107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 /// asm["setThrew"](1, 0); // setThrew is called here
111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 /// so we can jump to the right BB based on this value.
115 /// %val = landingpad catch c1 catch c2 catch c3 ...
118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 /// %val = {%fmc, getTempRet0()}
121 /// Here N is a number calculated based on the number of clauses.
122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
127 /// call @__resumeException(%a)
128 /// where __resumeException() is a function in JS glue code.
131 /// call @llvm.eh.typeid.for(type) (intrinsic)
133 /// call @llvm_eh_typeid_for(type)
134 /// llvm_eh_typeid_for function will be generated in JS glue code.
136 /// * Setjmp / Longjmp handling
138 /// In case calls to longjmp() exists
141 /// longjmp(buf, value)
143 /// emscripten_longjmp_jmpbuf(buf, value)
144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
146 /// In case calls to setjmp() exists
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 /// sejmpTableSize as follows:
150 /// setjmpTableSize = 4;
151 /// setjmpTable = (int *) malloc(40);
152 /// setjmpTable[0] = 0;
153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 /// setjmpTableSize = getTempRet0();
161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 /// is incrementally assigned from 0) and its label (a unique number that
163 /// represents each callsite of setjmp). When we need more entries in
164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 /// return the new table address, and assign the new table size in
166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 /// buf. A BB with setjmp is split into two after setjmp call in order to
168 /// make the post-setjmp BB the possible destination of longjmp BB.
171 /// 4) Lower every call that might longjmp into
173 /// call @__invoke_SIG(func, arg1, arg2)
174 /// %__THREW__.val = __THREW__;
176 /// if (%__THREW__.val != 0 & __threwValue != 0) {
177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 /// setjmpTableSize);
180 /// emscripten_longjmp(%__THREW__.val, __threwValue);
181 /// setTempRet0(__threwValue);
185 /// longjmp_result = getTempRet0();
187 /// label 1: goto post-setjmp BB 1
188 /// label 2: goto post-setjmp BB 2
190 /// default: goto splitted next BB
192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 /// will be the address of matching jmp_buf buffer and __threwValue be the
195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 /// each setjmp callsite. Label 0 means this longjmp buffer does not
198 /// correspond to one of the setjmp callsites in this function, so in this
199 /// case we just chain the longjmp to the caller. (Here we call
200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered
203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 /// can't translate an int value to a jmp_buf.)
205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right
206 /// post-setjmp BB based on the label.
208 ///===----------------------------------------------------------------------===//
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 using namespace llvm
;
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 static cl::list
<std::string
>
222 EHWhitelist("emscripten-cxx-exceptions-whitelist",
223 cl::desc("The list of function names in which Emscripten-style "
224 "exception handling is enabled (see emscripten "
225 "EMSCRIPTEN_CATCHING_WHITELIST options)"),
229 class WebAssemblyLowerEmscriptenEHSjLj final
: public ModulePass
{
230 bool EnableEH
; // Enable exception handling
231 bool EnableSjLj
; // Enable setjmp/longjmp handling
233 GlobalVariable
*ThrewGV
= nullptr;
234 GlobalVariable
*ThrewValueGV
= nullptr;
235 Function
*GetTempRet0Func
= nullptr;
236 Function
*SetTempRet0Func
= nullptr;
237 Function
*ResumeF
= nullptr;
238 Function
*EHTypeIDF
= nullptr;
239 Function
*EmLongjmpF
= nullptr;
240 Function
*EmLongjmpJmpbufF
= nullptr;
241 Function
*SaveSetjmpF
= nullptr;
242 Function
*TestSetjmpF
= nullptr;
244 // __cxa_find_matching_catch_N functions.
245 // Indexed by the number of clauses in an original landingpad instruction.
246 DenseMap
<int, Function
*> FindMatchingCatches
;
247 // Map of <function signature string, invoke_ wrappers>
248 StringMap
<Function
*> InvokeWrappers
;
249 // Set of whitelisted function names for exception handling
250 std::set
<std::string
> EHWhitelistSet
;
252 StringRef
getPassName() const override
{
253 return "WebAssembly Lower Emscripten Exceptions";
256 bool runEHOnFunction(Function
&F
);
257 bool runSjLjOnFunction(Function
&F
);
258 Function
*getFindMatchingCatch(Module
&M
, unsigned NumClauses
);
260 template <typename CallOrInvoke
> Value
*wrapInvoke(CallOrInvoke
*CI
);
261 void wrapTestSetjmp(BasicBlock
*BB
, Instruction
*InsertPt
, Value
*Threw
,
262 Value
*SetjmpTable
, Value
*SetjmpTableSize
, Value
*&Label
,
263 Value
*&LongjmpResult
, BasicBlock
*&EndBB
);
264 template <typename CallOrInvoke
> Function
*getInvokeWrapper(CallOrInvoke
*CI
);
266 bool areAllExceptionsAllowed() const { return EHWhitelistSet
.empty(); }
267 bool canLongjmp(Module
&M
, const Value
*Callee
) const;
268 bool isEmAsmCall(Module
&M
, const Value
*Callee
) const;
270 void rebuildSSA(Function
&F
);
275 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH
= true, bool EnableSjLj
= true)
276 : ModulePass(ID
), EnableEH(EnableEH
), EnableSjLj(EnableSjLj
) {
277 EHWhitelistSet
.insert(EHWhitelist
.begin(), EHWhitelist
.end());
279 bool runOnModule(Module
&M
) override
;
281 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
282 AU
.addRequired
<DominatorTreeWrapperPass
>();
285 } // End anonymous namespace
287 char WebAssemblyLowerEmscriptenEHSjLj::ID
= 0;
288 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj
, DEBUG_TYPE
,
289 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
292 ModulePass
*llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH
,
294 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH
, EnableSjLj
);
297 static bool canThrow(const Value
*V
) {
298 if (const auto *F
= dyn_cast
<const Function
>(V
)) {
299 // Intrinsics cannot throw
300 if (F
->isIntrinsic())
302 StringRef Name
= F
->getName();
303 // leave setjmp and longjmp (mostly) alone, we process them properly later
304 if (Name
== "setjmp" || Name
== "longjmp")
306 return !F
->doesNotThrow();
308 // not a function, so an indirect call - can throw, we can't tell
312 // Get a global variable with the given name. If it doesn't exist declare it,
313 // which will generate an import and asssumes that it will exist at link time.
314 static GlobalVariable
*getGlobalVariableI32(Module
&M
, IRBuilder
<> &IRB
,
318 dyn_cast
<GlobalVariable
>(M
.getOrInsertGlobal(Name
, IRB
.getInt32Ty()));
320 report_fatal_error(Twine("unable to create global: ") + Name
);
325 // Simple function name mangler.
326 // This function simply takes LLVM's string representation of parameter types
327 // and concatenate them with '_'. There are non-alphanumeric characters but llc
328 // is ok with it, and we need to postprocess these names after the lowering
330 static std::string
getSignature(FunctionType
*FTy
) {
332 raw_string_ostream
OS(Sig
);
333 OS
<< *FTy
->getReturnType();
334 for (Type
*ParamTy
: FTy
->params())
335 OS
<< "_" << *ParamTy
;
339 Sig
.erase(remove_if(Sig
, isspace
), Sig
.end());
340 // When s2wasm parses .s file, a comma means the end of an argument. So a
341 // mangled function name can contain any character but a comma.
342 std::replace(Sig
.begin(), Sig
.end(), ',', '.');
346 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
347 // This is because a landingpad instruction contains two more arguments, a
348 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
349 // functions are named after the number of arguments in the original landingpad
352 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module
&M
,
353 unsigned NumClauses
) {
354 if (FindMatchingCatches
.count(NumClauses
))
355 return FindMatchingCatches
[NumClauses
];
356 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(M
.getContext());
357 SmallVector
<Type
*, 16> Args(NumClauses
, Int8PtrTy
);
358 FunctionType
*FTy
= FunctionType::get(Int8PtrTy
, Args
, false);
359 Function
*F
= Function::Create(
360 FTy
, GlobalValue::ExternalLinkage
,
361 "__cxa_find_matching_catch_" + Twine(NumClauses
+ 2), &M
);
362 FindMatchingCatches
[NumClauses
] = F
;
366 // Generate invoke wrapper seqence with preamble and postamble
370 // %__THREW__.val = __THREW__; __THREW__ = 0;
371 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
372 // whether longjmp occurred), for future use.
373 template <typename CallOrInvoke
>
374 Value
*WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke
*CI
) {
375 LLVMContext
&C
= CI
->getModule()->getContext();
377 // If we are calling a function that is noreturn, we must remove that
378 // attribute. The code we insert here does expect it to return, after we
379 // catch the exception.
380 if (CI
->doesNotReturn()) {
381 if (auto *F
= dyn_cast
<Function
>(CI
->getCalledValue()))
382 F
->removeFnAttr(Attribute::NoReturn
);
383 CI
->removeAttribute(AttributeList::FunctionIndex
, Attribute::NoReturn
);
387 IRB
.SetInsertPoint(CI
);
391 IRB
.CreateStore(IRB
.getInt32(0), ThrewGV
);
393 // Invoke function wrapper in JavaScript
394 SmallVector
<Value
*, 16> Args
;
395 // Put the pointer to the callee as first argument, so it can be called
396 // within the invoke wrapper later
397 Args
.push_back(CI
->getCalledValue());
398 Args
.append(CI
->arg_begin(), CI
->arg_end());
399 CallInst
*NewCall
= IRB
.CreateCall(getInvokeWrapper(CI
), Args
);
400 NewCall
->takeName(CI
);
401 NewCall
->setCallingConv(CallingConv::WASM_EmscriptenInvoke
);
402 NewCall
->setDebugLoc(CI
->getDebugLoc());
404 // Because we added the pointer to the callee as first argument, all
405 // argument attribute indices have to be incremented by one.
406 SmallVector
<AttributeSet
, 8> ArgAttributes
;
407 const AttributeList
&InvokeAL
= CI
->getAttributes();
409 // No attributes for the callee pointer.
410 ArgAttributes
.push_back(AttributeSet());
411 // Copy the argument attributes from the original
412 for (unsigned I
= 0, E
= CI
->getNumArgOperands(); I
< E
; ++I
)
413 ArgAttributes
.push_back(InvokeAL
.getParamAttributes(I
));
415 AttrBuilder
FnAttrs(InvokeAL
.getFnAttributes());
416 if (FnAttrs
.contains(Attribute::AllocSize
)) {
417 // The allocsize attribute (if any) referes to parameters by index and needs
420 Optional
<unsigned> NEltArg
;
421 std::tie(SizeArg
, NEltArg
) = FnAttrs
.getAllocSizeArgs();
423 if (NEltArg
.hasValue())
424 NEltArg
= NEltArg
.getValue() + 1;
425 FnAttrs
.addAllocSizeAttr(SizeArg
, NEltArg
);
428 // Reconstruct the AttributesList based on the vector we constructed.
429 AttributeList NewCallAL
=
430 AttributeList::get(C
, AttributeSet::get(C
, FnAttrs
),
431 InvokeAL
.getRetAttributes(), ArgAttributes
);
432 NewCall
->setAttributes(NewCallAL
);
434 CI
->replaceAllUsesWith(NewCall
);
437 // %__THREW__.val = __THREW__; __THREW__ = 0;
439 IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewGV
, ThrewGV
->getName() + ".val");
440 IRB
.CreateStore(IRB
.getInt32(0), ThrewGV
);
444 // Get matching invoke wrapper based on callee signature
445 template <typename CallOrInvoke
>
446 Function
*WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke
*CI
) {
447 Module
*M
= CI
->getModule();
448 SmallVector
<Type
*, 16> ArgTys
;
449 Value
*Callee
= CI
->getCalledValue();
450 FunctionType
*CalleeFTy
;
451 if (auto *F
= dyn_cast
<Function
>(Callee
))
452 CalleeFTy
= F
->getFunctionType();
454 auto *CalleeTy
= cast
<PointerType
>(Callee
->getType())->getElementType();
455 CalleeFTy
= dyn_cast
<FunctionType
>(CalleeTy
);
458 std::string Sig
= getSignature(CalleeFTy
);
459 if (InvokeWrappers
.find(Sig
) != InvokeWrappers
.end())
460 return InvokeWrappers
[Sig
];
462 // Put the pointer to the callee as first argument
463 ArgTys
.push_back(PointerType::getUnqual(CalleeFTy
));
464 // Add argument types
465 ArgTys
.append(CalleeFTy
->param_begin(), CalleeFTy
->param_end());
467 FunctionType
*FTy
= FunctionType::get(CalleeFTy
->getReturnType(), ArgTys
,
468 CalleeFTy
->isVarArg());
470 Function::Create(FTy
, GlobalValue::ExternalLinkage
, "__invoke_" + Sig
, M
);
471 InvokeWrappers
[Sig
] = F
;
475 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module
&M
,
476 const Value
*Callee
) const {
477 if (auto *CalleeF
= dyn_cast
<Function
>(Callee
))
478 if (CalleeF
->isIntrinsic())
481 // Attempting to transform inline assembly will result in something like:
482 // call void @__invoke_void(void ()* asm ...)
483 // which is invalid because inline assembly blocks do not have addresses
484 // and can't be passed by pointer. The result is a crash with illegal IR.
485 if (isa
<InlineAsm
>(Callee
))
487 StringRef CalleeName
= Callee
->getName();
489 // The reason we include malloc/free here is to exclude the malloc/free
490 // calls generated in setjmp prep / cleanup routines.
491 if (CalleeName
== "setjmp" || CalleeName
== "malloc" || CalleeName
== "free")
494 // There are functions in JS glue code
495 if (CalleeName
== "__resumeException" || CalleeName
== "llvm_eh_typeid_for" ||
496 CalleeName
== "saveSetjmp" || CalleeName
== "testSetjmp" ||
497 CalleeName
== "getTempRet0" || CalleeName
== "setTempRet0")
500 // __cxa_find_matching_catch_N functions cannot longjmp
501 if (Callee
->getName().startswith("__cxa_find_matching_catch_"))
504 // Exception-catching related functions
505 if (CalleeName
== "__cxa_begin_catch" || CalleeName
== "__cxa_end_catch" ||
506 CalleeName
== "__cxa_allocate_exception" || CalleeName
== "__cxa_throw" ||
507 CalleeName
== "__clang_call_terminate")
510 // Otherwise we don't know
514 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module
&M
,
515 const Value
*Callee
) const {
516 StringRef CalleeName
= Callee
->getName();
517 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
518 return CalleeName
== "emscripten_asm_const_int" ||
519 CalleeName
== "emscripten_asm_const_double" ||
520 CalleeName
== "emscripten_asm_const_int_sync_on_main_thread" ||
521 CalleeName
== "emscripten_asm_const_double_sync_on_main_thread" ||
522 CalleeName
== "emscripten_asm_const_async_on_main_thread";
525 // Generate testSetjmp function call seqence with preamble and postamble.
526 // The code this generates is equivalent to the following JavaScript code:
527 // if (%__THREW__.val != 0 & threwValue != 0) {
528 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
530 // emscripten_longjmp(%__THREW__.val, threwValue);
531 // setTempRet0(threwValue);
535 // %longjmp_result = getTempRet0();
537 // As output parameters. returns %label, %longjmp_result, and the BB the last
538 // instruction (%longjmp_result = ...) is in.
539 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
540 BasicBlock
*BB
, Instruction
*InsertPt
, Value
*Threw
, Value
*SetjmpTable
,
541 Value
*SetjmpTableSize
, Value
*&Label
, Value
*&LongjmpResult
,
542 BasicBlock
*&EndBB
) {
543 Function
*F
= BB
->getParent();
544 LLVMContext
&C
= BB
->getModule()->getContext();
546 IRB
.SetInsertPoint(InsertPt
);
548 // if (%__THREW__.val != 0 & threwValue != 0)
549 IRB
.SetInsertPoint(BB
);
550 BasicBlock
*ThenBB1
= BasicBlock::Create(C
, "if.then1", F
);
551 BasicBlock
*ElseBB1
= BasicBlock::Create(C
, "if.else1", F
);
552 BasicBlock
*EndBB1
= BasicBlock::Create(C
, "if.end", F
);
553 Value
*ThrewCmp
= IRB
.CreateICmpNE(Threw
, IRB
.getInt32(0));
554 Value
*ThrewValue
= IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewValueGV
,
555 ThrewValueGV
->getName() + ".val");
556 Value
*ThrewValueCmp
= IRB
.CreateICmpNE(ThrewValue
, IRB
.getInt32(0));
557 Value
*Cmp1
= IRB
.CreateAnd(ThrewCmp
, ThrewValueCmp
, "cmp1");
558 IRB
.CreateCondBr(Cmp1
, ThenBB1
, ElseBB1
);
560 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
562 IRB
.SetInsertPoint(ThenBB1
);
563 BasicBlock
*ThenBB2
= BasicBlock::Create(C
, "if.then2", F
);
564 BasicBlock
*EndBB2
= BasicBlock::Create(C
, "if.end2", F
);
565 Value
*ThrewInt
= IRB
.CreateIntToPtr(Threw
, Type::getInt32PtrTy(C
),
566 Threw
->getName() + ".i32p");
567 Value
*LoadedThrew
= IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewInt
,
568 ThrewInt
->getName() + ".loaded");
569 Value
*ThenLabel
= IRB
.CreateCall(
570 TestSetjmpF
, {LoadedThrew
, SetjmpTable
, SetjmpTableSize
}, "label");
571 Value
*Cmp2
= IRB
.CreateICmpEQ(ThenLabel
, IRB
.getInt32(0));
572 IRB
.CreateCondBr(Cmp2
, ThenBB2
, EndBB2
);
574 // emscripten_longjmp(%__THREW__.val, threwValue);
575 IRB
.SetInsertPoint(ThenBB2
);
576 IRB
.CreateCall(EmLongjmpF
, {Threw
, ThrewValue
});
577 IRB
.CreateUnreachable();
579 // setTempRet0(threwValue);
580 IRB
.SetInsertPoint(EndBB2
);
581 IRB
.CreateCall(SetTempRet0Func
, ThrewValue
);
582 IRB
.CreateBr(EndBB1
);
584 IRB
.SetInsertPoint(ElseBB1
);
585 IRB
.CreateBr(EndBB1
);
587 // longjmp_result = getTempRet0();
588 IRB
.SetInsertPoint(EndBB1
);
589 PHINode
*LabelPHI
= IRB
.CreatePHI(IRB
.getInt32Ty(), 2, "label");
590 LabelPHI
->addIncoming(ThenLabel
, EndBB2
);
592 LabelPHI
->addIncoming(IRB
.getInt32(-1), ElseBB1
);
594 // Output parameter assignment
597 LongjmpResult
= IRB
.CreateCall(GetTempRet0Func
, None
, "longjmp_result");
600 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function
&F
) {
601 DominatorTree
&DT
= getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
602 DT
.recalculate(F
); // CFG has been changed
604 for (BasicBlock
&BB
: F
) {
605 for (Instruction
&I
: BB
) {
606 SSA
.Initialize(I
.getType(), I
.getName());
607 SSA
.AddAvailableValue(&BB
, &I
);
608 for (auto UI
= I
.use_begin(), UE
= I
.use_end(); UI
!= UE
;) {
611 auto *User
= cast
<Instruction
>(U
.getUser());
612 if (auto *UserPN
= dyn_cast
<PHINode
>(User
))
613 if (UserPN
->getIncomingBlock(U
) == &BB
)
616 if (DT
.dominates(&I
, User
))
618 SSA
.RewriteUseAfterInsertions(U
);
624 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module
&M
) {
625 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
627 LLVMContext
&C
= M
.getContext();
630 Function
*SetjmpF
= M
.getFunction("setjmp");
631 Function
*LongjmpF
= M
.getFunction("longjmp");
632 bool SetjmpUsed
= SetjmpF
&& !SetjmpF
->use_empty();
633 bool LongjmpUsed
= LongjmpF
&& !LongjmpF
->use_empty();
634 bool DoSjLj
= EnableSjLj
&& (SetjmpUsed
|| LongjmpUsed
);
636 // Declare (or get) global variables __THREW__, __threwValue, and
637 // getTempRet0/setTempRet0 function which are used in common for both
638 // exception handling and setjmp/longjmp handling
639 ThrewGV
= getGlobalVariableI32(M
, IRB
, "__THREW__");
640 ThrewValueGV
= getGlobalVariableI32(M
, IRB
, "__threwValue");
642 Function::Create(FunctionType::get(IRB
.getInt32Ty(), false),
643 GlobalValue::ExternalLinkage
, "getTempRet0", &M
);
644 SetTempRet0Func
= Function::Create(
645 FunctionType::get(IRB
.getVoidTy(), IRB
.getInt32Ty(), false),
646 GlobalValue::ExternalLinkage
, "setTempRet0", &M
);
647 GetTempRet0Func
->setDoesNotThrow();
648 SetTempRet0Func
->setDoesNotThrow();
650 bool Changed
= false;
652 // Exception handling
654 // Register __resumeException function
655 FunctionType
*ResumeFTy
=
656 FunctionType::get(IRB
.getVoidTy(), IRB
.getInt8PtrTy(), false);
657 ResumeF
= Function::Create(ResumeFTy
, GlobalValue::ExternalLinkage
,
658 "__resumeException", &M
);
660 // Register llvm_eh_typeid_for function
661 FunctionType
*EHTypeIDTy
=
662 FunctionType::get(IRB
.getInt32Ty(), IRB
.getInt8PtrTy(), false);
663 EHTypeIDF
= Function::Create(EHTypeIDTy
, GlobalValue::ExternalLinkage
,
664 "llvm_eh_typeid_for", &M
);
666 for (Function
&F
: M
) {
667 if (F
.isDeclaration())
669 Changed
|= runEHOnFunction(F
);
673 // Setjmp/longjmp handling
675 Changed
= true; // We have setjmp or longjmp somewhere
678 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
679 // defined in JS code
680 EmLongjmpJmpbufF
= Function::Create(LongjmpF
->getFunctionType(),
681 GlobalValue::ExternalLinkage
,
682 "emscripten_longjmp_jmpbuf", &M
);
684 LongjmpF
->replaceAllUsesWith(EmLongjmpJmpbufF
);
688 // Register saveSetjmp function
689 FunctionType
*SetjmpFTy
= SetjmpF
->getFunctionType();
690 SmallVector
<Type
*, 4> Params
= {SetjmpFTy
->getParamType(0),
691 IRB
.getInt32Ty(), Type::getInt32PtrTy(C
),
694 FunctionType::get(Type::getInt32PtrTy(C
), Params
, false);
696 Function::Create(FTy
, GlobalValue::ExternalLinkage
, "saveSetjmp", &M
);
698 // Register testSetjmp function
699 Params
= {IRB
.getInt32Ty(), Type::getInt32PtrTy(C
), IRB
.getInt32Ty()};
700 FTy
= FunctionType::get(IRB
.getInt32Ty(), Params
, false);
702 Function::Create(FTy
, GlobalValue::ExternalLinkage
, "testSetjmp", &M
);
704 FTy
= FunctionType::get(IRB
.getVoidTy(),
705 {IRB
.getInt32Ty(), IRB
.getInt32Ty()}, false);
706 EmLongjmpF
= Function::Create(FTy
, GlobalValue::ExternalLinkage
,
707 "emscripten_longjmp", &M
);
709 // Only traverse functions that uses setjmp in order not to insert
710 // unnecessary prep / cleanup code in every function
711 SmallPtrSet
<Function
*, 8> SetjmpUsers
;
712 for (User
*U
: SetjmpF
->users()) {
713 auto *UI
= cast
<Instruction
>(U
);
714 SetjmpUsers
.insert(UI
->getFunction());
716 for (Function
*F
: SetjmpUsers
)
717 runSjLjOnFunction(*F
);
722 // Delete unused global variables and functions
724 ResumeF
->eraseFromParent();
726 EHTypeIDF
->eraseFromParent();
728 EmLongjmpF
->eraseFromParent();
730 SaveSetjmpF
->eraseFromParent();
732 TestSetjmpF
->eraseFromParent();
739 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function
&F
) {
740 Module
&M
= *F
.getParent();
741 LLVMContext
&C
= F
.getContext();
743 bool Changed
= false;
744 SmallVector
<Instruction
*, 64> ToErase
;
745 SmallPtrSet
<LandingPadInst
*, 32> LandingPads
;
746 bool AllowExceptions
=
747 areAllExceptionsAllowed() || EHWhitelistSet
.count(F
.getName());
749 for (BasicBlock
&BB
: F
) {
750 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
754 LandingPads
.insert(II
->getLandingPadInst());
755 IRB
.SetInsertPoint(II
);
757 bool NeedInvoke
= AllowExceptions
&& canThrow(II
->getCalledValue());
759 // Wrap invoke with invoke wrapper and generate preamble/postamble
760 Value
*Threw
= wrapInvoke(II
);
761 ToErase
.push_back(II
);
763 // Insert a branch based on __THREW__ variable
764 Value
*Cmp
= IRB
.CreateICmpEQ(Threw
, IRB
.getInt32(1), "cmp");
765 IRB
.CreateCondBr(Cmp
, II
->getUnwindDest(), II
->getNormalDest());
768 // This can't throw, and we don't need this invoke, just replace it with a
770 SmallVector
<Value
*, 16> Args(II
->arg_begin(), II
->arg_end());
772 IRB
.CreateCall(II
->getFunctionType(), II
->getCalledValue(), Args
);
773 NewCall
->takeName(II
);
774 NewCall
->setCallingConv(II
->getCallingConv());
775 NewCall
->setDebugLoc(II
->getDebugLoc());
776 NewCall
->setAttributes(II
->getAttributes());
777 II
->replaceAllUsesWith(NewCall
);
778 ToErase
.push_back(II
);
780 IRB
.CreateBr(II
->getNormalDest());
782 // Remove any PHI node entries from the exception destination
783 II
->getUnwindDest()->removePredecessor(&BB
);
787 // Process resume instructions
788 for (BasicBlock
&BB
: F
) {
789 // Scan the body of the basic block for resumes
790 for (Instruction
&I
: BB
) {
791 auto *RI
= dyn_cast
<ResumeInst
>(&I
);
795 // Split the input into legal values
796 Value
*Input
= RI
->getValue();
797 IRB
.SetInsertPoint(RI
);
798 Value
*Low
= IRB
.CreateExtractValue(Input
, 0, "low");
799 // Create a call to __resumeException function
800 IRB
.CreateCall(ResumeF
, {Low
});
801 // Add a terminator to the block
802 IRB
.CreateUnreachable();
803 ToErase
.push_back(RI
);
807 // Process llvm.eh.typeid.for intrinsics
808 for (BasicBlock
&BB
: F
) {
809 for (Instruction
&I
: BB
) {
810 auto *CI
= dyn_cast
<CallInst
>(&I
);
813 const Function
*Callee
= CI
->getCalledFunction();
816 if (Callee
->getIntrinsicID() != Intrinsic::eh_typeid_for
)
819 IRB
.SetInsertPoint(CI
);
821 IRB
.CreateCall(EHTypeIDF
, CI
->getArgOperand(0), "typeid");
822 CI
->replaceAllUsesWith(NewCI
);
823 ToErase
.push_back(CI
);
827 // Look for orphan landingpads, can occur in blocks with no predecessors
828 for (BasicBlock
&BB
: F
) {
829 Instruction
*I
= BB
.getFirstNonPHI();
830 if (auto *LPI
= dyn_cast
<LandingPadInst
>(I
))
831 LandingPads
.insert(LPI
);
834 // Handle all the landingpad for this function together, as multiple invokes
835 // may share a single lp
836 for (LandingPadInst
*LPI
: LandingPads
) {
837 IRB
.SetInsertPoint(LPI
);
838 SmallVector
<Value
*, 16> FMCArgs
;
839 for (unsigned I
= 0, E
= LPI
->getNumClauses(); I
< E
; ++I
) {
840 Constant
*Clause
= LPI
->getClause(I
);
841 // As a temporary workaround for the lack of aggregate varargs support
842 // in the interface between JS and wasm, break out filter operands into
843 // their component elements.
844 if (LPI
->isFilter(I
)) {
845 auto *ATy
= cast
<ArrayType
>(Clause
->getType());
846 for (unsigned J
= 0, E
= ATy
->getNumElements(); J
< E
; ++J
) {
847 Value
*EV
= IRB
.CreateExtractValue(Clause
, makeArrayRef(J
), "filter");
848 FMCArgs
.push_back(EV
);
851 FMCArgs
.push_back(Clause
);
854 // Create a call to __cxa_find_matching_catch_N function
855 Function
*FMCF
= getFindMatchingCatch(M
, FMCArgs
.size());
856 CallInst
*FMCI
= IRB
.CreateCall(FMCF
, FMCArgs
, "fmc");
857 Value
*Undef
= UndefValue::get(LPI
->getType());
858 Value
*Pair0
= IRB
.CreateInsertValue(Undef
, FMCI
, 0, "pair0");
859 Value
*TempRet0
= IRB
.CreateCall(GetTempRet0Func
, None
, "tempret0");
860 Value
*Pair1
= IRB
.CreateInsertValue(Pair0
, TempRet0
, 1, "pair1");
862 LPI
->replaceAllUsesWith(Pair1
);
863 ToErase
.push_back(LPI
);
866 // Erase everything we no longer need in this function
867 for (Instruction
*I
: ToErase
)
868 I
->eraseFromParent();
873 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function
&F
) {
874 Module
&M
= *F
.getParent();
875 LLVMContext
&C
= F
.getContext();
877 SmallVector
<Instruction
*, 64> ToErase
;
878 // Vector of %setjmpTable values
879 std::vector
<Instruction
*> SetjmpTableInsts
;
880 // Vector of %setjmpTableSize values
881 std::vector
<Instruction
*> SetjmpTableSizeInsts
;
883 // Setjmp preparation
885 // This instruction effectively means %setjmpTableSize = 4.
886 // We create this as an instruction intentionally, and we don't want to fold
887 // this instruction to a constant 4, because this value will be used in
888 // SSAUpdater.AddAvailableValue(...) later.
889 BasicBlock
&EntryBB
= F
.getEntryBlock();
890 BinaryOperator
*SetjmpTableSize
= BinaryOperator::Create(
891 Instruction::Add
, IRB
.getInt32(4), IRB
.getInt32(0), "setjmpTableSize",
892 &*EntryBB
.getFirstInsertionPt());
893 // setjmpTable = (int *) malloc(40);
894 Instruction
*SetjmpTable
= CallInst::CreateMalloc(
895 SetjmpTableSize
, IRB
.getInt32Ty(), IRB
.getInt32Ty(), IRB
.getInt32(40),
896 nullptr, nullptr, "setjmpTable");
897 // setjmpTable[0] = 0;
898 IRB
.SetInsertPoint(SetjmpTableSize
);
899 IRB
.CreateStore(IRB
.getInt32(0), SetjmpTable
);
900 SetjmpTableInsts
.push_back(SetjmpTable
);
901 SetjmpTableSizeInsts
.push_back(SetjmpTableSize
);
903 // Setjmp transformation
904 std::vector
<PHINode
*> SetjmpRetPHIs
;
905 Function
*SetjmpF
= M
.getFunction("setjmp");
906 for (User
*U
: SetjmpF
->users()) {
907 auto *CI
= dyn_cast
<CallInst
>(U
);
909 report_fatal_error("Does not support indirect calls to setjmp");
911 BasicBlock
*BB
= CI
->getParent();
912 if (BB
->getParent() != &F
) // in other function
915 // The tail is everything right after the call, and will be reached once
916 // when setjmp is called, and later when longjmp returns to the setjmp
917 BasicBlock
*Tail
= SplitBlock(BB
, CI
->getNextNode());
918 // Add a phi to the tail, which will be the output of setjmp, which
919 // indicates if this is the first call or a longjmp back. The phi directly
920 // uses the right value based on where we arrive from
921 IRB
.SetInsertPoint(Tail
->getFirstNonPHI());
922 PHINode
*SetjmpRet
= IRB
.CreatePHI(IRB
.getInt32Ty(), 2, "setjmp.ret");
924 // setjmp initial call returns 0
925 SetjmpRet
->addIncoming(IRB
.getInt32(0), BB
);
926 // The proper output is now this, not the setjmp call itself
927 CI
->replaceAllUsesWith(SetjmpRet
);
928 // longjmp returns to the setjmp will add themselves to this phi
929 SetjmpRetPHIs
.push_back(SetjmpRet
);
932 // Our index in the function is our place in the array + 1 to avoid index
933 // 0, because index 0 means the longjmp is not ours to handle.
934 IRB
.SetInsertPoint(CI
);
935 Value
*Args
[] = {CI
->getArgOperand(0), IRB
.getInt32(SetjmpRetPHIs
.size()),
936 SetjmpTable
, SetjmpTableSize
};
937 Instruction
*NewSetjmpTable
=
938 IRB
.CreateCall(SaveSetjmpF
, Args
, "setjmpTable");
939 Instruction
*NewSetjmpTableSize
=
940 IRB
.CreateCall(GetTempRet0Func
, None
, "setjmpTableSize");
941 SetjmpTableInsts
.push_back(NewSetjmpTable
);
942 SetjmpTableSizeInsts
.push_back(NewSetjmpTableSize
);
943 ToErase
.push_back(CI
);
946 // Update each call that can longjmp so it can return to a setjmp where
949 // Because we are creating new BBs while processing and don't want to make
950 // all these newly created BBs candidates again for longjmp processing, we
951 // first make the vector of candidate BBs.
952 std::vector
<BasicBlock
*> BBs
;
953 for (BasicBlock
&BB
: F
)
956 // BBs.size() will change within the loop, so we query it every time
957 for (unsigned I
= 0; I
< BBs
.size(); I
++) {
958 BasicBlock
*BB
= BBs
[I
];
959 for (Instruction
&I
: *BB
) {
960 assert(!isa
<InvokeInst
>(&I
));
961 auto *CI
= dyn_cast
<CallInst
>(&I
);
965 const Value
*Callee
= CI
->getCalledValue();
966 if (!canLongjmp(M
, Callee
))
968 if (isEmAsmCall(M
, Callee
))
969 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
971 ". Please consider using EM_JS, or move the "
972 "EM_ASM into another function.",
975 Value
*Threw
= nullptr;
977 if (Callee
->getName().startswith("__invoke_")) {
978 // If invoke wrapper has already been generated for this call in
979 // previous EH phase, search for the load instruction
980 // %__THREW__.val = __THREW__;
981 // in postamble after the invoke wrapper call
982 LoadInst
*ThrewLI
= nullptr;
983 StoreInst
*ThrewResetSI
= nullptr;
984 for (auto I
= std::next(BasicBlock::iterator(CI
)), IE
= BB
->end();
986 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
987 if (auto *GV
= dyn_cast
<GlobalVariable
>(LI
->getPointerOperand()))
989 Threw
= ThrewLI
= LI
;
993 // Search for the store instruction after the load above
995 for (auto I
= std::next(BasicBlock::iterator(ThrewLI
)), IE
= BB
->end();
997 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
998 if (auto *GV
= dyn_cast
<GlobalVariable
>(SI
->getPointerOperand()))
999 if (GV
== ThrewGV
&& SI
->getValueOperand() == IRB
.getInt32(0)) {
1004 assert(Threw
&& ThrewLI
&& "Cannot find __THREW__ load after invoke");
1005 assert(ThrewResetSI
&& "Cannot find __THREW__ store after invoke");
1006 Tail
= SplitBlock(BB
, ThrewResetSI
->getNextNode());
1009 // Wrap call with invoke wrapper and generate preamble/postamble
1010 Threw
= wrapInvoke(CI
);
1011 ToErase
.push_back(CI
);
1012 Tail
= SplitBlock(BB
, CI
->getNextNode());
1015 // We need to replace the terminator in Tail - SplitBlock makes BB go
1016 // straight to Tail, we need to check if a longjmp occurred, and go to the
1017 // right setjmp-tail if so
1018 ToErase
.push_back(BB
->getTerminator());
1020 // Generate a function call to testSetjmp function and preamble/postamble
1021 // code to figure out (1) whether longjmp occurred (2) if longjmp
1022 // occurred, which setjmp it corresponds to
1023 Value
*Label
= nullptr;
1024 Value
*LongjmpResult
= nullptr;
1025 BasicBlock
*EndBB
= nullptr;
1026 wrapTestSetjmp(BB
, CI
, Threw
, SetjmpTable
, SetjmpTableSize
, Label
,
1027 LongjmpResult
, EndBB
);
1028 assert(Label
&& LongjmpResult
&& EndBB
);
1030 // Create switch instruction
1031 IRB
.SetInsertPoint(EndBB
);
1032 SwitchInst
*SI
= IRB
.CreateSwitch(Label
, Tail
, SetjmpRetPHIs
.size());
1033 // -1 means no longjmp happened, continue normally (will hit the default
1034 // switch case). 0 means a longjmp that is not ours to handle, needs a
1035 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1037 for (unsigned I
= 0; I
< SetjmpRetPHIs
.size(); I
++) {
1038 SI
->addCase(IRB
.getInt32(I
+ 1), SetjmpRetPHIs
[I
]->getParent());
1039 SetjmpRetPHIs
[I
]->addIncoming(LongjmpResult
, EndBB
);
1042 // We are splitting the block here, and must continue to find other calls
1043 // in the block - which is now split. so continue to traverse in the Tail
1044 BBs
.push_back(Tail
);
1048 // Erase everything we no longer need in this function
1049 for (Instruction
*I
: ToErase
)
1050 I
->eraseFromParent();
1052 // Free setjmpTable buffer before each return instruction
1053 for (BasicBlock
&BB
: F
) {
1054 Instruction
*TI
= BB
.getTerminator();
1055 if (isa
<ReturnInst
>(TI
))
1056 CallInst::CreateFree(SetjmpTable
, TI
);
1059 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1060 // (when buffer reallocation occurs)
1062 // setjmpTableSize = 4;
1063 // setjmpTable = (int *) malloc(40);
1064 // setjmpTable[0] = 0;
1067 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1068 // setjmpTableSize = getTempRet0();
1069 // So we need to make sure the SSA for these variables is valid so that every
1070 // saveSetjmp and testSetjmp calls have the correct arguments.
1071 SSAUpdater SetjmpTableSSA
;
1072 SSAUpdater SetjmpTableSizeSSA
;
1073 SetjmpTableSSA
.Initialize(Type::getInt32PtrTy(C
), "setjmpTable");
1074 SetjmpTableSizeSSA
.Initialize(Type::getInt32Ty(C
), "setjmpTableSize");
1075 for (Instruction
*I
: SetjmpTableInsts
)
1076 SetjmpTableSSA
.AddAvailableValue(I
->getParent(), I
);
1077 for (Instruction
*I
: SetjmpTableSizeInsts
)
1078 SetjmpTableSizeSSA
.AddAvailableValue(I
->getParent(), I
);
1080 for (auto UI
= SetjmpTable
->use_begin(), UE
= SetjmpTable
->use_end();
1082 // Grab the use before incrementing the iterator.
1084 // Increment the iterator before removing the use from the list.
1086 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser()))
1087 if (I
->getParent() != &EntryBB
)
1088 SetjmpTableSSA
.RewriteUse(U
);
1090 for (auto UI
= SetjmpTableSize
->use_begin(), UE
= SetjmpTableSize
->use_end();
1094 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser()))
1095 if (I
->getParent() != &EntryBB
)
1096 SetjmpTableSizeSSA
.RewriteUse(U
);
1099 // Finally, our modifications to the cfg can break dominance of SSA variables.
1100 // For example, in this code,
1101 // if (x()) { .. setjmp() .. }
1102 // if (y()) { .. longjmp() .. }
1103 // We must split the longjmp block, and it can jump into the block splitted
1104 // from setjmp one. But that means that when we split the setjmp block, it's
1105 // first part no longer dominates its second part - there is a theoretically
1106 // possible control flow path where x() is false, then y() is true and we
1107 // reach the second part of the setjmp block, without ever reaching the first
1108 // part. So, we rebuild SSA form here.