[DFAPacketizer] Track resources for packetized instructions
[llvm-core.git] / lib / Target / Hexagon / HexagonVLIWPacketizer.cpp
blob7024dafd47969e2f628ab5dc072302fac45f708e
1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
17 //===----------------------------------------------------------------------===//
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
53 using namespace llvm;
55 #define DEBUG_TYPE "packets"
57 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
58 cl::ZeroOrMore, cl::init(false),
59 cl::desc("Disable Hexagon packetizer pass"));
61 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
62 cl::ZeroOrMore, cl::init(true),
63 cl::desc("Allow slot1 store and slot0 load"));
65 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
66 cl::ZeroOrMore, cl::Hidden, cl::init(true),
67 cl::desc("Allow non-solo packetization of volatile memory references"));
69 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
70 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
72 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
73 cl::init(false), cl::Hidden, cl::ZeroOrMore,
74 cl::desc("Disable vector double new-value-stores"));
76 extern cl::opt<bool> ScheduleInlineAsm;
78 namespace llvm {
80 FunctionPass *createHexagonPacketizer(bool Minimal);
81 void initializeHexagonPacketizerPass(PassRegistry&);
83 } // end namespace llvm
85 namespace {
87 class HexagonPacketizer : public MachineFunctionPass {
88 public:
89 static char ID;
91 HexagonPacketizer(bool Min = false)
92 : MachineFunctionPass(ID), Minimal(Min) {}
94 void getAnalysisUsage(AnalysisUsage &AU) const override {
95 AU.setPreservesCFG();
96 AU.addRequired<AAResultsWrapperPass>();
97 AU.addRequired<MachineBranchProbabilityInfo>();
98 AU.addRequired<MachineDominatorTree>();
99 AU.addRequired<MachineLoopInfo>();
100 AU.addPreserved<MachineDominatorTree>();
101 AU.addPreserved<MachineLoopInfo>();
102 MachineFunctionPass::getAnalysisUsage(AU);
105 StringRef getPassName() const override { return "Hexagon Packetizer"; }
106 bool runOnMachineFunction(MachineFunction &Fn) override;
108 MachineFunctionProperties getRequiredProperties() const override {
109 return MachineFunctionProperties().set(
110 MachineFunctionProperties::Property::NoVRegs);
113 private:
114 const HexagonInstrInfo *HII;
115 const HexagonRegisterInfo *HRI;
116 const bool Minimal;
119 } // end anonymous namespace
121 char HexagonPacketizer::ID = 0;
123 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
124 "Hexagon Packetizer", false, false)
125 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
126 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
127 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
128 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
129 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
130 "Hexagon Packetizer", false, false)
132 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
133 MachineLoopInfo &MLI, AliasAnalysis *AA,
134 const MachineBranchProbabilityInfo *MBPI, bool Minimal)
135 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
136 Minimal(Minimal) {
137 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
138 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
140 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
141 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
142 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
145 // Check if FirstI modifies a register that SecondI reads.
146 static bool hasWriteToReadDep(const MachineInstr &FirstI,
147 const MachineInstr &SecondI,
148 const TargetRegisterInfo *TRI) {
149 for (auto &MO : FirstI.operands()) {
150 if (!MO.isReg() || !MO.isDef())
151 continue;
152 Register R = MO.getReg();
153 if (SecondI.readsRegister(R, TRI))
154 return true;
156 return false;
160 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
161 MachineBasicBlock::iterator BundleIt, bool Before) {
162 MachineBasicBlock::instr_iterator InsertPt;
163 if (Before)
164 InsertPt = BundleIt.getInstrIterator();
165 else
166 InsertPt = std::next(BundleIt).getInstrIterator();
168 MachineBasicBlock &B = *MI.getParent();
169 // The instruction should at least be bundled with the preceding instruction
170 // (there will always be one, i.e. BUNDLE, if nothing else).
171 assert(MI.isBundledWithPred());
172 if (MI.isBundledWithSucc()) {
173 MI.clearFlag(MachineInstr::BundledSucc);
174 MI.clearFlag(MachineInstr::BundledPred);
175 } else {
176 // If it's not bundled with the successor (i.e. it is the last one
177 // in the bundle), then we can simply unbundle it from the predecessor,
178 // which will take care of updating the predecessor's flag.
179 MI.unbundleFromPred();
181 B.splice(InsertPt, &B, MI.getIterator());
183 // Get the size of the bundle without asserting.
184 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
185 MachineBasicBlock::const_instr_iterator E = B.instr_end();
186 unsigned Size = 0;
187 for (++I; I != E && I->isBundledWithPred(); ++I)
188 ++Size;
190 // If there are still two or more instructions, then there is nothing
191 // else to be done.
192 if (Size > 1)
193 return BundleIt;
195 // Otherwise, extract the single instruction out and delete the bundle.
196 MachineBasicBlock::iterator NextIt = std::next(BundleIt);
197 MachineInstr &SingleI = *BundleIt->getNextNode();
198 SingleI.unbundleFromPred();
199 assert(!SingleI.isBundledWithSucc());
200 BundleIt->eraseFromParent();
201 return NextIt;
204 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
205 auto &HST = MF.getSubtarget<HexagonSubtarget>();
206 HII = HST.getInstrInfo();
207 HRI = HST.getRegisterInfo();
208 auto &MLI = getAnalysis<MachineLoopInfo>();
209 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
210 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
212 if (EnableGenAllInsnClass)
213 HII->genAllInsnTimingClasses(MF);
215 // Instantiate the packetizer.
216 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
217 skipFunction(MF.getFunction());
218 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
220 // DFA state table should not be empty.
221 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
223 // Loop over all basic blocks and remove KILL pseudo-instructions
224 // These instructions confuse the dependence analysis. Consider:
225 // D0 = ... (Insn 0)
226 // R0 = KILL R0, D0 (Insn 1)
227 // R0 = ... (Insn 2)
228 // Here, Insn 1 will result in the dependence graph not emitting an output
229 // dependence between Insn 0 and Insn 2. This can lead to incorrect
230 // packetization
231 for (MachineBasicBlock &MB : MF) {
232 auto End = MB.end();
233 auto MI = MB.begin();
234 while (MI != End) {
235 auto NextI = std::next(MI);
236 if (MI->isKill()) {
237 MB.erase(MI);
238 End = MB.end();
240 MI = NextI;
244 // Loop over all of the basic blocks.
245 for (auto &MB : MF) {
246 auto Begin = MB.begin(), End = MB.end();
247 while (Begin != End) {
248 // Find the first non-boundary starting from the end of the last
249 // scheduling region.
250 MachineBasicBlock::iterator RB = Begin;
251 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
252 ++RB;
253 // Find the first boundary starting from the beginning of the new
254 // region.
255 MachineBasicBlock::iterator RE = RB;
256 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
257 ++RE;
258 // Add the scheduling boundary if it's not block end.
259 if (RE != End)
260 ++RE;
261 // If RB == End, then RE == End.
262 if (RB != End)
263 Packetizer.PacketizeMIs(&MB, RB, RE);
265 Begin = RE;
269 Packetizer.unpacketizeSoloInstrs(MF);
270 return true;
273 // Reserve resources for a constant extender. Trigger an assertion if the
274 // reservation fails.
275 void HexagonPacketizerList::reserveResourcesForConstExt() {
276 if (!tryAllocateResourcesForConstExt(true))
277 llvm_unreachable("Resources not available");
280 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
281 return tryAllocateResourcesForConstExt(false);
284 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
285 // return true, otherwise, return false.
286 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
287 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
288 bool Avail = ResourceTracker->canReserveResources(*ExtMI);
289 if (Reserve && Avail)
290 ResourceTracker->reserveResources(*ExtMI);
291 MF.DeleteMachineInstr(ExtMI);
292 return Avail;
295 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
296 SDep::Kind DepType, unsigned DepReg) {
297 // Check for LR dependence.
298 if (DepReg == HRI->getRARegister())
299 return true;
301 if (HII->isDeallocRet(MI))
302 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
303 return true;
305 // Call-like instructions can be packetized with preceding instructions
306 // that define registers implicitly used or modified by the call. Explicit
307 // uses are still prohibited, as in the case of indirect calls:
308 // r0 = ...
309 // J2_jumpr r0
310 if (DepType == SDep::Data) {
311 for (const MachineOperand MO : MI.operands())
312 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
313 return true;
316 return false;
319 static bool isRegDependence(const SDep::Kind DepType) {
320 return DepType == SDep::Data || DepType == SDep::Anti ||
321 DepType == SDep::Output;
324 static bool isDirectJump(const MachineInstr &MI) {
325 return MI.getOpcode() == Hexagon::J2_jump;
328 static bool isSchedBarrier(const MachineInstr &MI) {
329 switch (MI.getOpcode()) {
330 case Hexagon::Y2_barrier:
331 return true;
333 return false;
336 static bool isControlFlow(const MachineInstr &MI) {
337 return MI.getDesc().isTerminator() || MI.getDesc().isCall();
340 /// Returns true if the instruction modifies a callee-saved register.
341 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
342 const TargetRegisterInfo *TRI) {
343 const MachineFunction &MF = *MI.getParent()->getParent();
344 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
345 if (MI.modifiesRegister(*CSR, TRI))
346 return true;
347 return false;
350 // Returns true if an instruction can be promoted to .new predicate or
351 // new-value store.
352 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
353 const TargetRegisterClass *NewRC) {
354 // Vector stores can be predicated, and can be new-value stores, but
355 // they cannot be predicated on a .new predicate value.
356 if (NewRC == &Hexagon::PredRegsRegClass) {
357 if (HII->isHVXVec(MI) && MI.mayStore())
358 return false;
359 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
361 // If the class is not PredRegs, it could only apply to new-value stores.
362 return HII->mayBeNewStore(MI);
365 // Promote an instructiont to its .cur form.
366 // At this time, we have already made a call to canPromoteToDotCur and made
367 // sure that it can *indeed* be promoted.
368 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
369 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
370 const TargetRegisterClass* RC) {
371 assert(DepType == SDep::Data);
372 int CurOpcode = HII->getDotCurOp(MI);
373 MI.setDesc(HII->get(CurOpcode));
374 return true;
377 void HexagonPacketizerList::cleanUpDotCur() {
378 MachineInstr *MI = nullptr;
379 for (auto BI : CurrentPacketMIs) {
380 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
381 if (HII->isDotCurInst(*BI)) {
382 MI = BI;
383 continue;
385 if (MI) {
386 for (auto &MO : BI->operands())
387 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
388 return;
391 if (!MI)
392 return;
393 // We did not find a use of the CUR, so de-cur it.
394 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
395 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
398 // Check to see if an instruction can be dot cur.
399 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
400 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
401 const TargetRegisterClass *RC) {
402 if (!HII->isHVXVec(MI))
403 return false;
404 if (!HII->isHVXVec(*MII))
405 return false;
407 // Already a dot new instruction.
408 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
409 return false;
411 if (!HII->mayBeCurLoad(MI))
412 return false;
414 // The "cur value" cannot come from inline asm.
415 if (PacketSU->getInstr()->isInlineAsm())
416 return false;
418 // Make sure candidate instruction uses cur.
419 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
420 dbgs() << "in packet\n";);
421 MachineInstr &MJ = *MII;
422 LLVM_DEBUG({
423 dbgs() << "Checking CUR against ";
424 MJ.dump();
426 Register DestReg = MI.getOperand(0).getReg();
427 bool FoundMatch = false;
428 for (auto &MO : MJ.operands())
429 if (MO.isReg() && MO.getReg() == DestReg)
430 FoundMatch = true;
431 if (!FoundMatch)
432 return false;
434 // Check for existing uses of a vector register within the packet which
435 // would be affected by converting a vector load into .cur formt.
436 for (auto BI : CurrentPacketMIs) {
437 LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
438 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
439 return false;
442 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
443 // We can convert the opcode into a .cur.
444 return true;
447 // Promote an instruction to its .new form. At this time, we have already
448 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
449 // promoted.
450 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
451 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
452 const TargetRegisterClass* RC) {
453 assert(DepType == SDep::Data);
454 int NewOpcode;
455 if (RC == &Hexagon::PredRegsRegClass)
456 NewOpcode = HII->getDotNewPredOp(MI, MBPI);
457 else
458 NewOpcode = HII->getDotNewOp(MI);
459 MI.setDesc(HII->get(NewOpcode));
460 return true;
463 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
464 int NewOpcode = HII->getDotOldOp(MI);
465 MI.setDesc(HII->get(NewOpcode));
466 return true;
469 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
470 unsigned Opc = MI.getOpcode();
471 switch (Opc) {
472 case Hexagon::S2_storerd_io:
473 case Hexagon::S2_storeri_io:
474 case Hexagon::S2_storerh_io:
475 case Hexagon::S2_storerb_io:
476 break;
477 default:
478 llvm_unreachable("Unexpected instruction");
480 unsigned FrameSize = MF.getFrameInfo().getStackSize();
481 MachineOperand &Off = MI.getOperand(1);
482 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
483 if (HII->isValidOffset(Opc, NewOff, HRI)) {
484 Off.setImm(NewOff);
485 return true;
487 return false;
490 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
491 unsigned Opc = MI.getOpcode();
492 switch (Opc) {
493 case Hexagon::S2_storerd_io:
494 case Hexagon::S2_storeri_io:
495 case Hexagon::S2_storerh_io:
496 case Hexagon::S2_storerb_io:
497 break;
498 default:
499 llvm_unreachable("Unexpected instruction");
501 unsigned FrameSize = MF.getFrameInfo().getStackSize();
502 MachineOperand &Off = MI.getOperand(1);
503 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
506 /// Return true if we can update the offset in MI so that MI and MJ
507 /// can be packetized together.
508 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
509 assert(SUI->getInstr() && SUJ->getInstr());
510 MachineInstr &MI = *SUI->getInstr();
511 MachineInstr &MJ = *SUJ->getInstr();
513 unsigned BPI, OPI;
514 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
515 return false;
516 unsigned BPJ, OPJ;
517 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
518 return false;
519 Register Reg = MI.getOperand(BPI).getReg();
520 if (Reg != MJ.getOperand(BPJ).getReg())
521 return false;
522 // Make sure that the dependences do not restrict adding MI to the packet.
523 // That is, ignore anti dependences, and make sure the only data dependence
524 // involves the specific register.
525 for (const auto &PI : SUI->Preds)
526 if (PI.getKind() != SDep::Anti &&
527 (PI.getKind() != SDep::Data || PI.getReg() != Reg))
528 return false;
529 int Incr;
530 if (!HII->getIncrementValue(MJ, Incr))
531 return false;
533 int64_t Offset = MI.getOperand(OPI).getImm();
534 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
535 return false;
537 MI.getOperand(OPI).setImm(Offset + Incr);
538 ChangedOffset = Offset;
539 return true;
542 /// Undo the changed offset. This is needed if the instruction cannot be
543 /// added to the current packet due to a different instruction.
544 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
545 unsigned BP, OP;
546 if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
547 llvm_unreachable("Unable to find base and offset operands.");
548 MI.getOperand(OP).setImm(ChangedOffset);
551 enum PredicateKind {
552 PK_False,
553 PK_True,
554 PK_Unknown
557 /// Returns true if an instruction is predicated on p0 and false if it's
558 /// predicated on !p0.
559 static PredicateKind getPredicateSense(const MachineInstr &MI,
560 const HexagonInstrInfo *HII) {
561 if (!HII->isPredicated(MI))
562 return PK_Unknown;
563 if (HII->isPredicatedTrue(MI))
564 return PK_True;
565 return PK_False;
568 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
569 const HexagonInstrInfo *HII) {
570 assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
571 #ifndef NDEBUG
572 // Post Increment means duplicates. Use dense map to find duplicates in the
573 // list. Caution: Densemap initializes with the minimum of 64 buckets,
574 // whereas there are at most 5 operands in the post increment.
575 DenseSet<unsigned> DefRegsSet;
576 for (auto &MO : MI.operands())
577 if (MO.isReg() && MO.isDef())
578 DefRegsSet.insert(MO.getReg());
580 for (auto &MO : MI.operands())
581 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
582 return MO;
583 #else
584 if (MI.mayLoad()) {
585 const MachineOperand &Op1 = MI.getOperand(1);
586 // The 2nd operand is always the post increment operand in load.
587 assert(Op1.isReg() && "Post increment operand has be to a register.");
588 return Op1;
590 if (MI.getDesc().mayStore()) {
591 const MachineOperand &Op0 = MI.getOperand(0);
592 // The 1st operand is always the post increment operand in store.
593 assert(Op0.isReg() && "Post increment operand has be to a register.");
594 return Op0;
596 #endif
597 // we should never come here.
598 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
601 // Get the value being stored.
602 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
603 // value being stored is always the last operand.
604 return MI.getOperand(MI.getNumOperands()-1);
607 static bool isLoadAbsSet(const MachineInstr &MI) {
608 unsigned Opc = MI.getOpcode();
609 switch (Opc) {
610 case Hexagon::L4_loadrd_ap:
611 case Hexagon::L4_loadrb_ap:
612 case Hexagon::L4_loadrh_ap:
613 case Hexagon::L4_loadrub_ap:
614 case Hexagon::L4_loadruh_ap:
615 case Hexagon::L4_loadri_ap:
616 return true;
618 return false;
621 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
622 assert(isLoadAbsSet(MI));
623 return MI.getOperand(1);
626 // Can be new value store?
627 // Following restrictions are to be respected in convert a store into
628 // a new value store.
629 // 1. If an instruction uses auto-increment, its address register cannot
630 // be a new-value register. Arch Spec 5.4.2.1
631 // 2. If an instruction uses absolute-set addressing mode, its address
632 // register cannot be a new-value register. Arch Spec 5.4.2.1.
633 // 3. If an instruction produces a 64-bit result, its registers cannot be used
634 // as new-value registers. Arch Spec 5.4.2.2.
635 // 4. If the instruction that sets the new-value register is conditional, then
636 // the instruction that uses the new-value register must also be conditional,
637 // and both must always have their predicates evaluate identically.
638 // Arch Spec 5.4.2.3.
639 // 5. There is an implied restriction that a packet cannot have another store,
640 // if there is a new value store in the packet. Corollary: if there is
641 // already a store in a packet, there can not be a new value store.
642 // Arch Spec: 3.4.4.2
643 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
644 const MachineInstr &PacketMI, unsigned DepReg) {
645 // Make sure we are looking at the store, that can be promoted.
646 if (!HII->mayBeNewStore(MI))
647 return false;
649 // Make sure there is dependency and can be new value'd.
650 const MachineOperand &Val = getStoreValueOperand(MI);
651 if (Val.isReg() && Val.getReg() != DepReg)
652 return false;
654 const MCInstrDesc& MCID = PacketMI.getDesc();
656 // First operand is always the result.
657 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
658 // Double regs can not feed into new value store: PRM section: 5.4.2.2.
659 if (PacketRC == &Hexagon::DoubleRegsRegClass)
660 return false;
662 // New-value stores are of class NV (slot 0), dual stores require class ST
663 // in slot 0 (PRM 5.5).
664 for (auto I : CurrentPacketMIs) {
665 SUnit *PacketSU = MIToSUnit.find(I)->second;
666 if (PacketSU->getInstr()->mayStore())
667 return false;
670 // Make sure it's NOT the post increment register that we are going to
671 // new value.
672 if (HII->isPostIncrement(MI) &&
673 getPostIncrementOperand(MI, HII).getReg() == DepReg) {
674 return false;
677 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
678 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
679 // If source is post_inc, or absolute-set addressing, it can not feed
680 // into new value store
681 // r3 = memw(r2++#4)
682 // memw(r30 + #-1404) = r2.new -> can not be new value store
683 // arch spec section: 5.4.2.1.
684 return false;
687 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
688 return false;
690 // If the source that feeds the store is predicated, new value store must
691 // also be predicated.
692 if (HII->isPredicated(PacketMI)) {
693 if (!HII->isPredicated(MI))
694 return false;
696 // Check to make sure that they both will have their predicates
697 // evaluate identically.
698 unsigned predRegNumSrc = 0;
699 unsigned predRegNumDst = 0;
700 const TargetRegisterClass* predRegClass = nullptr;
702 // Get predicate register used in the source instruction.
703 for (auto &MO : PacketMI.operands()) {
704 if (!MO.isReg())
705 continue;
706 predRegNumSrc = MO.getReg();
707 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
708 if (predRegClass == &Hexagon::PredRegsRegClass)
709 break;
711 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
712 "predicate register not found in a predicated PacketMI instruction");
714 // Get predicate register used in new-value store instruction.
715 for (auto &MO : MI.operands()) {
716 if (!MO.isReg())
717 continue;
718 predRegNumDst = MO.getReg();
719 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
720 if (predRegClass == &Hexagon::PredRegsRegClass)
721 break;
723 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
724 "predicate register not found in a predicated MI instruction");
726 // New-value register producer and user (store) need to satisfy these
727 // constraints:
728 // 1) Both instructions should be predicated on the same register.
729 // 2) If producer of the new-value register is .new predicated then store
730 // should also be .new predicated and if producer is not .new predicated
731 // then store should not be .new predicated.
732 // 3) Both new-value register producer and user should have same predicate
733 // sense, i.e, either both should be negated or both should be non-negated.
734 if (predRegNumDst != predRegNumSrc ||
735 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
736 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
737 return false;
740 // Make sure that other than the new-value register no other store instruction
741 // register has been modified in the same packet. Predicate registers can be
742 // modified by they should not be modified between the producer and the store
743 // instruction as it will make them both conditional on different values.
744 // We already know this to be true for all the instructions before and
745 // including PacketMI. Howerver, we need to perform the check for the
746 // remaining instructions in the packet.
748 unsigned StartCheck = 0;
750 for (auto I : CurrentPacketMIs) {
751 SUnit *TempSU = MIToSUnit.find(I)->second;
752 MachineInstr &TempMI = *TempSU->getInstr();
754 // Following condition is true for all the instructions until PacketMI is
755 // reached (StartCheck is set to 0 before the for loop).
756 // StartCheck flag is 1 for all the instructions after PacketMI.
757 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
758 continue; // encountering PacketMI.
760 StartCheck = 1;
761 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
762 continue;
764 for (auto &MO : MI.operands())
765 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
766 return false;
769 // Make sure that for non-POST_INC stores:
770 // 1. The only use of reg is DepReg and no other registers.
771 // This handles base+index registers.
772 // The following store can not be dot new.
773 // Eg. r0 = add(r0, #3)
774 // memw(r1+r0<<#2) = r0
775 if (!HII->isPostIncrement(MI)) {
776 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
777 const MachineOperand &MO = MI.getOperand(opNum);
778 if (MO.isReg() && MO.getReg() == DepReg)
779 return false;
783 // If data definition is because of implicit definition of the register,
784 // do not newify the store. Eg.
785 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
786 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
787 for (auto &MO : PacketMI.operands()) {
788 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
789 return false;
790 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
791 continue;
792 Register R = MO.getReg();
793 if (R == DepReg || HRI->isSuperRegister(DepReg, R))
794 return false;
797 // Handle imp-use of super reg case. There is a target independent side
798 // change that should prevent this situation but I am handling it for
799 // just-in-case. For example, we cannot newify R2 in the following case:
800 // %r3 = A2_tfrsi 0;
801 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
802 for (auto &MO : MI.operands()) {
803 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
804 return false;
807 // Can be dot new store.
808 return true;
811 // Can this MI to promoted to either new value store or new value jump.
812 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
813 const SUnit *PacketSU, unsigned DepReg,
814 MachineBasicBlock::iterator &MII) {
815 if (!HII->mayBeNewStore(MI))
816 return false;
818 // Check to see the store can be new value'ed.
819 MachineInstr &PacketMI = *PacketSU->getInstr();
820 if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
821 return true;
823 // Check to see the compare/jump can be new value'ed.
824 // This is done as a pass on its own. Don't need to check it here.
825 return false;
828 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
829 unsigned DepReg) {
830 for (auto &MO : I.operands()) {
831 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
832 return true;
833 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
834 continue;
835 if (CheckDef == MO.isDef())
836 return true;
838 return false;
841 // Check to see if an instruction can be dot new.
842 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
843 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
844 const TargetRegisterClass* RC) {
845 // Already a dot new instruction.
846 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
847 return false;
849 if (!isNewifiable(MI, RC))
850 return false;
852 const MachineInstr &PI = *PacketSU->getInstr();
854 // The "new value" cannot come from inline asm.
855 if (PI.isInlineAsm())
856 return false;
858 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
859 // sense.
860 if (PI.isImplicitDef())
861 return false;
863 // If dependency is trough an implicitly defined register, we should not
864 // newify the use.
865 if (isImplicitDependency(PI, true, DepReg) ||
866 isImplicitDependency(MI, false, DepReg))
867 return false;
869 const MCInstrDesc& MCID = PI.getDesc();
870 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
871 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
872 return false;
874 // predicate .new
875 if (RC == &Hexagon::PredRegsRegClass)
876 return HII->predCanBeUsedAsDotNew(PI, DepReg);
878 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
879 return false;
881 // Create a dot new machine instruction to see if resources can be
882 // allocated. If not, bail out now.
883 int NewOpcode = HII->getDotNewOp(MI);
884 const MCInstrDesc &D = HII->get(NewOpcode);
885 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
886 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
887 MF.DeleteMachineInstr(NewMI);
888 if (!ResourcesAvailable)
889 return false;
891 // New Value Store only. New Value Jump generated as a separate pass.
892 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
893 return false;
895 return true;
898 // Go through the packet instructions and search for an anti dependency between
899 // them and DepReg from MI. Consider this case:
900 // Trying to add
901 // a) %r1 = TFRI_cdNotPt %p3, 2
902 // to this packet:
903 // {
904 // b) %p0 = C2_or killed %p3, killed %p0
905 // c) %p3 = C2_tfrrp %r23
906 // d) %r1 = C2_cmovenewit %p3, 4
907 // }
908 // The P3 from a) and d) will be complements after
909 // a)'s P3 is converted to .new form
910 // Anti-dep between c) and b) is irrelevant for this case
911 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
912 unsigned DepReg) {
913 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
915 for (auto I : CurrentPacketMIs) {
916 // We only care for dependencies to predicated instructions
917 if (!HII->isPredicated(*I))
918 continue;
920 // Scheduling Unit for current insn in the packet
921 SUnit *PacketSU = MIToSUnit.find(I)->second;
923 // Look at dependencies between current members of the packet and
924 // predicate defining instruction MI. Make sure that dependency is
925 // on the exact register we care about.
926 if (PacketSU->isSucc(PacketSUDep)) {
927 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
928 auto &Dep = PacketSU->Succs[i];
929 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
930 Dep.getReg() == DepReg)
931 return true;
936 return false;
939 /// Gets the predicate register of a predicated instruction.
940 static unsigned getPredicatedRegister(MachineInstr &MI,
941 const HexagonInstrInfo *QII) {
942 /// We use the following rule: The first predicate register that is a use is
943 /// the predicate register of a predicated instruction.
944 assert(QII->isPredicated(MI) && "Must be predicated instruction");
946 for (auto &Op : MI.operands()) {
947 if (Op.isReg() && Op.getReg() && Op.isUse() &&
948 Hexagon::PredRegsRegClass.contains(Op.getReg()))
949 return Op.getReg();
952 llvm_unreachable("Unknown instruction operand layout");
953 return 0;
956 // Given two predicated instructions, this function detects whether
957 // the predicates are complements.
958 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
959 MachineInstr &MI2) {
960 // If we don't know the predicate sense of the instructions bail out early, we
961 // need it later.
962 if (getPredicateSense(MI1, HII) == PK_Unknown ||
963 getPredicateSense(MI2, HII) == PK_Unknown)
964 return false;
966 // Scheduling unit for candidate.
967 SUnit *SU = MIToSUnit[&MI1];
969 // One corner case deals with the following scenario:
970 // Trying to add
971 // a) %r24 = A2_tfrt %p0, %r25
972 // to this packet:
973 // {
974 // b) %r25 = A2_tfrf %p0, %r24
975 // c) %p0 = C2_cmpeqi %r26, 1
976 // }
978 // On general check a) and b) are complements, but presence of c) will
979 // convert a) to .new form, and then it is not a complement.
980 // We attempt to detect it by analyzing existing dependencies in the packet.
982 // Analyze relationships between all existing members of the packet.
983 // Look for Anti dependecy on the same predicate reg as used in the
984 // candidate.
985 for (auto I : CurrentPacketMIs) {
986 // Scheduling Unit for current insn in the packet.
987 SUnit *PacketSU = MIToSUnit.find(I)->second;
989 // If this instruction in the packet is succeeded by the candidate...
990 if (PacketSU->isSucc(SU)) {
991 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
992 auto Dep = PacketSU->Succs[i];
993 // The corner case exist when there is true data dependency between
994 // candidate and one of current packet members, this dep is on
995 // predicate reg, and there already exist anti dep on the same pred in
996 // the packet.
997 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
998 Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
999 // Here I know that I is predicate setting instruction with true
1000 // data dep to candidate on the register we care about - c) in the
1001 // above example. Now I need to see if there is an anti dependency
1002 // from c) to any other instruction in the same packet on the pred
1003 // reg of interest.
1004 if (restrictingDepExistInPacket(*I, Dep.getReg()))
1005 return false;
1011 // If the above case does not apply, check regular complement condition.
1012 // Check that the predicate register is the same and that the predicate
1013 // sense is different We also need to differentiate .old vs. .new: !p0
1014 // is not complementary to p0.new.
1015 unsigned PReg1 = getPredicatedRegister(MI1, HII);
1016 unsigned PReg2 = getPredicatedRegister(MI2, HII);
1017 return PReg1 == PReg2 &&
1018 Hexagon::PredRegsRegClass.contains(PReg1) &&
1019 Hexagon::PredRegsRegClass.contains(PReg2) &&
1020 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1021 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1024 // Initialize packetizer flags.
1025 void HexagonPacketizerList::initPacketizerState() {
1026 Dependence = false;
1027 PromotedToDotNew = false;
1028 GlueToNewValueJump = false;
1029 GlueAllocframeStore = false;
1030 FoundSequentialDependence = false;
1031 ChangedOffset = INT64_MAX;
1034 // Ignore bundling of pseudo instructions.
1035 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1036 const MachineBasicBlock *) {
1037 if (MI.isDebugInstr())
1038 return true;
1040 if (MI.isCFIInstruction())
1041 return false;
1043 // We must print out inline assembly.
1044 if (MI.isInlineAsm())
1045 return false;
1047 if (MI.isImplicitDef())
1048 return false;
1050 // We check if MI has any functional units mapped to it. If it doesn't,
1051 // we ignore the instruction.
1052 const MCInstrDesc& TID = MI.getDesc();
1053 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1054 unsigned FuncUnits = IS->getUnits();
1055 return !FuncUnits;
1058 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1059 // Ensure any bundles created by gather packetize remain seperate.
1060 if (MI.isBundle())
1061 return true;
1063 if (MI.isEHLabel() || MI.isCFIInstruction())
1064 return true;
1066 // Consider inline asm to not be a solo instruction by default.
1067 // Inline asm will be put in a packet temporarily, but then it will be
1068 // removed, and placed outside of the packet (before or after, depending
1069 // on dependencies). This is to reduce the impact of inline asm as a
1070 // "packet splitting" instruction.
1071 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1072 return true;
1074 if (isSchedBarrier(MI))
1075 return true;
1077 if (HII->isSolo(MI))
1078 return true;
1080 if (MI.getOpcode() == Hexagon::A2_nop)
1081 return true;
1083 return false;
1086 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1087 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
1088 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1089 // For full test call this function twice:
1090 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1091 // Doing the test only one way saves the amount of code in this function,
1092 // since every test would need to be repeated with the MI and MJ reversed.
1093 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1094 const HexagonInstrInfo &HII) {
1095 const MachineFunction *MF = MI.getParent()->getParent();
1096 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1097 HII.isHVXMemWithAIndirect(MI, MJ))
1098 return true;
1100 // An inline asm cannot be together with a branch, because we may not be
1101 // able to remove the asm out after packetizing (i.e. if the asm must be
1102 // moved past the bundle). Similarly, two asms cannot be together to avoid
1103 // complications when determining their relative order outside of a bundle.
1104 if (MI.isInlineAsm())
1105 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1106 MJ.isCall() || MJ.isTerminator();
1108 // New-value stores cannot coexist with any other stores.
1109 if (HII.isNewValueStore(MI) && MJ.mayStore())
1110 return true;
1112 switch (MI.getOpcode()) {
1113 case Hexagon::S2_storew_locked:
1114 case Hexagon::S4_stored_locked:
1115 case Hexagon::L2_loadw_locked:
1116 case Hexagon::L4_loadd_locked:
1117 case Hexagon::Y2_dccleana:
1118 case Hexagon::Y2_dccleaninva:
1119 case Hexagon::Y2_dcinva:
1120 case Hexagon::Y2_dczeroa:
1121 case Hexagon::Y4_l2fetch:
1122 case Hexagon::Y5_l2fetch: {
1123 // These instructions can only be grouped with ALU32 or non-floating-point
1124 // XTYPE instructions. Since there is no convenient way of identifying fp
1125 // XTYPE instructions, only allow grouping with ALU32 for now.
1126 unsigned TJ = HII.getType(MJ);
1127 if (TJ != HexagonII::TypeALU32_2op &&
1128 TJ != HexagonII::TypeALU32_3op &&
1129 TJ != HexagonII::TypeALU32_ADDI)
1130 return true;
1131 break;
1133 default:
1134 break;
1137 // "False" really means that the quick check failed to determine if
1138 // I and J cannot coexist.
1139 return false;
1142 // Full, symmetric check.
1143 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1144 const MachineInstr &MJ) {
1145 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1148 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1149 for (auto &B : MF) {
1150 MachineBasicBlock::iterator BundleIt;
1151 MachineBasicBlock::instr_iterator NextI;
1152 for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
1153 NextI = std::next(I);
1154 MachineInstr &MI = *I;
1155 if (MI.isBundle())
1156 BundleIt = I;
1157 if (!MI.isInsideBundle())
1158 continue;
1160 // Decide on where to insert the instruction that we are pulling out.
1161 // Debug instructions always go before the bundle, but the placement of
1162 // INLINE_ASM depends on potential dependencies. By default, try to
1163 // put it before the bundle, but if the asm writes to a register that
1164 // other instructions in the bundle read, then we need to place it
1165 // after the bundle (to preserve the bundle semantics).
1166 bool InsertBeforeBundle;
1167 if (MI.isInlineAsm())
1168 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1169 else if (MI.isDebugValue())
1170 InsertBeforeBundle = true;
1171 else
1172 continue;
1174 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1179 // Check if a given instruction is of class "system".
1180 static bool isSystemInstr(const MachineInstr &MI) {
1181 unsigned Opc = MI.getOpcode();
1182 switch (Opc) {
1183 case Hexagon::Y2_barrier:
1184 case Hexagon::Y2_dcfetchbo:
1185 case Hexagon::Y4_l2fetch:
1186 case Hexagon::Y5_l2fetch:
1187 return true;
1189 return false;
1192 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1193 const MachineInstr &J) {
1194 // The dependence graph may not include edges between dead definitions,
1195 // so without extra checks, we could end up packetizing two instruction
1196 // defining the same (dead) register.
1197 if (I.isCall() || J.isCall())
1198 return false;
1199 if (HII->isPredicated(I) || HII->isPredicated(J))
1200 return false;
1202 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1203 for (auto &MO : I.operands()) {
1204 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1205 continue;
1206 DeadDefs[MO.getReg()] = true;
1209 for (auto &MO : J.operands()) {
1210 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1211 continue;
1212 Register R = MO.getReg();
1213 if (R != Hexagon::USR_OVF && DeadDefs[R])
1214 return true;
1216 return false;
1219 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1220 const MachineInstr &J) {
1221 // A save callee-save register function call can only be in a packet
1222 // with instructions that don't write to the callee-save registers.
1223 if ((HII->isSaveCalleeSavedRegsCall(I) &&
1224 doesModifyCalleeSavedReg(J, HRI)) ||
1225 (HII->isSaveCalleeSavedRegsCall(J) &&
1226 doesModifyCalleeSavedReg(I, HRI)))
1227 return true;
1229 // Two control flow instructions cannot go in the same packet.
1230 if (isControlFlow(I) && isControlFlow(J))
1231 return true;
1233 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1234 // contain a speculative indirect jump,
1235 // a new-value compare jump or a dealloc_return.
1236 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1237 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1238 return true;
1239 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1240 return true;
1241 return false;
1244 if (HII->isLoopN(I) && isBadForLoopN(J))
1245 return true;
1246 if (HII->isLoopN(J) && isBadForLoopN(I))
1247 return true;
1249 // dealloc_return cannot appear in the same packet as a conditional or
1250 // unconditional jump.
1251 return HII->isDeallocRet(I) &&
1252 (J.isBranch() || J.isCall() || J.isBarrier());
1255 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1256 const MachineInstr &J) {
1257 // Adding I to a packet that has J.
1259 // Regmasks are not reflected in the scheduling dependency graph, so
1260 // we need to check them manually. This code assumes that regmasks only
1261 // occur on calls, and the problematic case is when we add an instruction
1262 // defining a register R to a packet that has a call that clobbers R via
1263 // a regmask. Those cannot be packetized together, because the call will
1264 // be executed last. That's also a reson why it is ok to add a call
1265 // clobbering R to a packet that defines R.
1267 // Look for regmasks in J.
1268 for (const MachineOperand &OpJ : J.operands()) {
1269 if (!OpJ.isRegMask())
1270 continue;
1271 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1272 for (const MachineOperand &OpI : I.operands()) {
1273 if (OpI.isReg()) {
1274 if (OpJ.clobbersPhysReg(OpI.getReg()))
1275 return true;
1276 } else if (OpI.isRegMask()) {
1277 // Both are regmasks. Assume that they intersect.
1278 return true;
1282 return false;
1285 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1286 const MachineInstr &J) {
1287 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1288 bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1289 if ((SysI && StoreJ) || (SysJ && StoreI))
1290 return true;
1292 if (StoreI && StoreJ) {
1293 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1294 return true;
1295 } else {
1296 // A memop cannot be in the same packet with another memop or a store.
1297 // Two stores can be together, but here I and J cannot both be stores.
1298 bool MopStI = HII->isMemOp(I) || StoreI;
1299 bool MopStJ = HII->isMemOp(J) || StoreJ;
1300 if (MopStI && MopStJ)
1301 return true;
1304 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1307 // SUI is the current instruction that is out side of the current packet.
1308 // SUJ is the current instruction inside the current packet against which that
1309 // SUI will be packetized.
1310 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1311 assert(SUI->getInstr() && SUJ->getInstr());
1312 MachineInstr &I = *SUI->getInstr();
1313 MachineInstr &J = *SUJ->getInstr();
1315 // Clear IgnoreDepMIs when Packet starts.
1316 if (CurrentPacketMIs.size() == 1)
1317 IgnoreDepMIs.clear();
1319 MachineBasicBlock::iterator II = I.getIterator();
1321 // Solo instructions cannot go in the packet.
1322 assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1324 if (cannotCoexist(I, J))
1325 return false;
1327 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1328 if (Dependence)
1329 return false;
1331 // Regmasks are not accounted for in the scheduling graph, so we need
1332 // to explicitly check for dependencies caused by them. They should only
1333 // appear on calls, so it's not too pessimistic to reject all regmask
1334 // dependencies.
1335 Dependence = hasRegMaskDependence(I, J);
1336 if (Dependence)
1337 return false;
1339 // Dual-store does not allow second store, if the first store is not
1340 // in SLOT0. New value store, new value jump, dealloc_return and memop
1341 // always take SLOT0. Arch spec 3.4.4.2.
1342 Dependence = hasDualStoreDependence(I, J);
1343 if (Dependence)
1344 return false;
1346 // If an instruction feeds new value jump, glue it.
1347 MachineBasicBlock::iterator NextMII = I.getIterator();
1348 ++NextMII;
1349 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1350 MachineInstr &NextMI = *NextMII;
1352 bool secondRegMatch = false;
1353 const MachineOperand &NOp0 = NextMI.getOperand(0);
1354 const MachineOperand &NOp1 = NextMI.getOperand(1);
1356 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1357 secondRegMatch = true;
1359 for (MachineInstr *PI : CurrentPacketMIs) {
1360 // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1361 if (PI->isCall()) {
1362 Dependence = true;
1363 break;
1365 // Validate:
1366 // 1. Packet does not have a store in it.
1367 // 2. If the first operand of the nvj is newified, and the second
1368 // operand is also a reg, it (second reg) is not defined in
1369 // the same packet.
1370 // 3. If the second operand of the nvj is newified, (which means
1371 // first operand is also a reg), first reg is not defined in
1372 // the same packet.
1373 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1374 HII->isLoopN(*PI)) {
1375 Dependence = true;
1376 break;
1378 // Check #2/#3.
1379 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1380 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1381 Dependence = true;
1382 break;
1386 GlueToNewValueJump = true;
1387 if (Dependence)
1388 return false;
1391 // There no dependency between a prolog instruction and its successor.
1392 if (!SUJ->isSucc(SUI))
1393 return true;
1395 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1396 if (FoundSequentialDependence)
1397 break;
1399 if (SUJ->Succs[i].getSUnit() != SUI)
1400 continue;
1402 SDep::Kind DepType = SUJ->Succs[i].getKind();
1403 // For direct calls:
1404 // Ignore register dependences for call instructions for packetization
1405 // purposes except for those due to r31 and predicate registers.
1407 // For indirect calls:
1408 // Same as direct calls + check for true dependences to the register
1409 // used in the indirect call.
1411 // We completely ignore Order dependences for call instructions.
1413 // For returns:
1414 // Ignore register dependences for return instructions like jumpr,
1415 // dealloc return unless we have dependencies on the explicit uses
1416 // of the registers used by jumpr (like r31) or dealloc return
1417 // (like r29 or r30).
1418 unsigned DepReg = 0;
1419 const TargetRegisterClass *RC = nullptr;
1420 if (DepType == SDep::Data) {
1421 DepReg = SUJ->Succs[i].getReg();
1422 RC = HRI->getMinimalPhysRegClass(DepReg);
1425 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1426 if (!isRegDependence(DepType))
1427 continue;
1428 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1429 continue;
1432 if (DepType == SDep::Data) {
1433 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1434 if (promoteToDotCur(J, DepType, II, RC))
1435 continue;
1438 // Data dpendence ok if we have load.cur.
1439 if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1440 if (HII->isHVXVec(I))
1441 continue;
1444 // For instructions that can be promoted to dot-new, try to promote.
1445 if (DepType == SDep::Data) {
1446 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1447 if (promoteToDotNew(I, DepType, II, RC)) {
1448 PromotedToDotNew = true;
1449 if (cannotCoexist(I, J))
1450 FoundSequentialDependence = true;
1451 continue;
1454 if (HII->isNewValueJump(I))
1455 continue;
1458 // For predicated instructions, if the predicates are complements then
1459 // there can be no dependence.
1460 if (HII->isPredicated(I) && HII->isPredicated(J) &&
1461 arePredicatesComplements(I, J)) {
1462 // Not always safe to do this translation.
1463 // DAG Builder attempts to reduce dependence edges using transitive
1464 // nature of dependencies. Here is an example:
1466 // r0 = tfr_pt ... (1)
1467 // r0 = tfr_pf ... (2)
1468 // r0 = tfr_pt ... (3)
1470 // There will be an output dependence between (1)->(2) and (2)->(3).
1471 // However, there is no dependence edge between (1)->(3). This results
1472 // in all 3 instructions going in the same packet. We ignore dependce
1473 // only once to avoid this situation.
1474 auto Itr = find(IgnoreDepMIs, &J);
1475 if (Itr != IgnoreDepMIs.end()) {
1476 Dependence = true;
1477 return false;
1479 IgnoreDepMIs.push_back(&I);
1480 continue;
1483 // Ignore Order dependences between unconditional direct branches
1484 // and non-control-flow instructions.
1485 if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1486 DepType == SDep::Order)
1487 continue;
1489 // Ignore all dependences for jumps except for true and output
1490 // dependences.
1491 if (I.isConditionalBranch() && DepType != SDep::Data &&
1492 DepType != SDep::Output)
1493 continue;
1495 if (DepType == SDep::Output) {
1496 FoundSequentialDependence = true;
1497 break;
1500 // For Order dependences:
1501 // 1. Volatile loads/stores can be packetized together, unless other
1502 // rules prevent is.
1503 // 2. Store followed by a load is not allowed.
1504 // 3. Store followed by a store is valid.
1505 // 4. Load followed by any memory operation is allowed.
1506 if (DepType == SDep::Order) {
1507 if (!PacketizeVolatiles) {
1508 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1509 if (OrdRefs) {
1510 FoundSequentialDependence = true;
1511 break;
1514 // J is first, I is second.
1515 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1516 bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1517 bool NVStoreJ = HII->isNewValueStore(J);
1518 bool NVStoreI = HII->isNewValueStore(I);
1519 bool IsVecJ = HII->isHVXVec(J);
1520 bool IsVecI = HII->isHVXVec(I);
1522 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1523 ((LoadJ && StoreI && !NVStoreI) ||
1524 (StoreJ && LoadI && !NVStoreJ)) &&
1525 (J.getOpcode() != Hexagon::S2_allocframe &&
1526 I.getOpcode() != Hexagon::S2_allocframe) &&
1527 (J.getOpcode() != Hexagon::L2_deallocframe &&
1528 I.getOpcode() != Hexagon::L2_deallocframe) &&
1529 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1530 setmemShufDisabled(true);
1531 else
1532 if (StoreJ && LoadI && alias(J, I)) {
1533 FoundSequentialDependence = true;
1534 break;
1537 if (!StoreJ)
1538 if (!LoadJ || (!LoadI && !StoreI)) {
1539 // If J is neither load nor store, assume a dependency.
1540 // If J is a load, but I is neither, also assume a dependency.
1541 FoundSequentialDependence = true;
1542 break;
1544 // Store followed by store: not OK on V2.
1545 // Store followed by load: not OK on all.
1546 // Load followed by store: OK on all.
1547 // Load followed by load: OK on all.
1548 continue;
1551 // Special case for ALLOCFRAME: even though there is dependency
1552 // between ALLOCFRAME and subsequent store, allow it to be packetized
1553 // in a same packet. This implies that the store is using the caller's
1554 // SP. Hence, offset needs to be updated accordingly.
1555 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1556 unsigned Opc = I.getOpcode();
1557 switch (Opc) {
1558 case Hexagon::S2_storerd_io:
1559 case Hexagon::S2_storeri_io:
1560 case Hexagon::S2_storerh_io:
1561 case Hexagon::S2_storerb_io:
1562 if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1563 // Since this store is to be glued with allocframe in the same
1564 // packet, it will use SP of the previous stack frame, i.e.
1565 // caller's SP. Therefore, we need to recalculate offset
1566 // according to this change.
1567 GlueAllocframeStore = useCallersSP(I);
1568 if (GlueAllocframeStore)
1569 continue;
1571 break;
1572 default:
1573 break;
1577 // There are certain anti-dependencies that cannot be ignored.
1578 // Specifically:
1579 // J2_call ... implicit-def %r0 ; SUJ
1580 // R0 = ... ; SUI
1581 // Those cannot be packetized together, since the call will observe
1582 // the effect of the assignment to R0.
1583 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1584 // Check if I defines any volatile register. We should also check
1585 // registers that the call may read, but these happen to be a
1586 // subset of the volatile register set.
1587 for (const MachineOperand &Op : I.operands()) {
1588 if (Op.isReg() && Op.isDef()) {
1589 Register R = Op.getReg();
1590 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1591 continue;
1592 } else if (!Op.isRegMask()) {
1593 // If I has a regmask assume dependency.
1594 continue;
1596 FoundSequentialDependence = true;
1597 break;
1601 // Skip over remaining anti-dependences. Two instructions that are
1602 // anti-dependent can share a packet, since in most such cases all
1603 // operands are read before any modifications take place.
1604 // The exceptions are branch and call instructions, since they are
1605 // executed after all other instructions have completed (at least
1606 // conceptually).
1607 if (DepType != SDep::Anti) {
1608 FoundSequentialDependence = true;
1609 break;
1613 if (FoundSequentialDependence) {
1614 Dependence = true;
1615 return false;
1618 return true;
1621 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1622 assert(SUI->getInstr() && SUJ->getInstr());
1623 MachineInstr &I = *SUI->getInstr();
1624 MachineInstr &J = *SUJ->getInstr();
1626 bool Coexist = !cannotCoexist(I, J);
1628 if (Coexist && !Dependence)
1629 return true;
1631 // Check if the instruction was promoted to a dot-new. If so, demote it
1632 // back into a dot-old.
1633 if (PromotedToDotNew)
1634 demoteToDotOld(I);
1636 cleanUpDotCur();
1637 // Check if the instruction (must be a store) was glued with an allocframe
1638 // instruction. If so, restore its offset to its original value, i.e. use
1639 // current SP instead of caller's SP.
1640 if (GlueAllocframeStore) {
1641 useCalleesSP(I);
1642 GlueAllocframeStore = false;
1645 if (ChangedOffset != INT64_MAX)
1646 undoChangedOffset(I);
1648 if (GlueToNewValueJump) {
1649 // Putting I and J together would prevent the new-value jump from being
1650 // packetized with the producer. In that case I and J must be separated.
1651 GlueToNewValueJump = false;
1652 return false;
1655 if (!Coexist)
1656 return false;
1658 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1659 FoundSequentialDependence = false;
1660 Dependence = false;
1661 return true;
1664 return false;
1668 bool HexagonPacketizerList::foundLSInPacket() {
1669 bool FoundLoad = false;
1670 bool FoundStore = false;
1672 for (auto MJ : CurrentPacketMIs) {
1673 unsigned Opc = MJ->getOpcode();
1674 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1675 continue;
1676 if (HII->isMemOp(*MJ))
1677 continue;
1678 if (MJ->mayLoad())
1679 FoundLoad = true;
1680 if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1681 FoundStore = true;
1683 return FoundLoad && FoundStore;
1687 MachineBasicBlock::iterator
1688 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1689 MachineBasicBlock::iterator MII = MI.getIterator();
1690 MachineBasicBlock *MBB = MI.getParent();
1692 if (CurrentPacketMIs.empty())
1693 PacketStalls = false;
1694 PacketStalls |= producesStall(MI);
1696 if (MI.isImplicitDef()) {
1697 // Add to the packet to allow subsequent instructions to be checked
1698 // properly.
1699 CurrentPacketMIs.push_back(&MI);
1700 return MII;
1702 assert(ResourceTracker->canReserveResources(MI));
1704 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1705 bool Good = true;
1707 if (GlueToNewValueJump) {
1708 MachineInstr &NvjMI = *++MII;
1709 // We need to put both instructions in the same packet: MI and NvjMI.
1710 // Either of them can require a constant extender. Try to add both to
1711 // the current packet, and if that fails, end the packet and start a
1712 // new one.
1713 ResourceTracker->reserveResources(MI);
1714 if (ExtMI)
1715 Good = tryAllocateResourcesForConstExt(true);
1717 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1718 if (Good) {
1719 if (ResourceTracker->canReserveResources(NvjMI))
1720 ResourceTracker->reserveResources(NvjMI);
1721 else
1722 Good = false;
1724 if (Good && ExtNvjMI)
1725 Good = tryAllocateResourcesForConstExt(true);
1727 if (!Good) {
1728 endPacket(MBB, MI);
1729 assert(ResourceTracker->canReserveResources(MI));
1730 ResourceTracker->reserveResources(MI);
1731 if (ExtMI) {
1732 assert(canReserveResourcesForConstExt());
1733 tryAllocateResourcesForConstExt(true);
1735 assert(ResourceTracker->canReserveResources(NvjMI));
1736 ResourceTracker->reserveResources(NvjMI);
1737 if (ExtNvjMI) {
1738 assert(canReserveResourcesForConstExt());
1739 reserveResourcesForConstExt();
1742 CurrentPacketMIs.push_back(&MI);
1743 CurrentPacketMIs.push_back(&NvjMI);
1744 return MII;
1747 ResourceTracker->reserveResources(MI);
1748 if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1749 endPacket(MBB, MI);
1750 if (PromotedToDotNew)
1751 demoteToDotOld(MI);
1752 if (GlueAllocframeStore) {
1753 useCalleesSP(MI);
1754 GlueAllocframeStore = false;
1756 ResourceTracker->reserveResources(MI);
1757 reserveResourcesForConstExt();
1760 CurrentPacketMIs.push_back(&MI);
1761 return MII;
1764 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1765 MachineBasicBlock::iterator EndMI) {
1766 // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1767 LLVM_DEBUG({
1768 if (!CurrentPacketMIs.empty()) {
1769 dbgs() << "Finalizing packet:\n";
1770 unsigned Idx = 0;
1771 for (MachineInstr *MI : CurrentPacketMIs) {
1772 unsigned R = ResourceTracker->getUsedResources(Idx++);
1773 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1778 bool memShufDisabled = getmemShufDisabled();
1779 if (memShufDisabled && !foundLSInPacket()) {
1780 setmemShufDisabled(false);
1781 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
1783 memShufDisabled = getmemShufDisabled();
1785 OldPacketMIs.clear();
1786 for (MachineInstr *MI : CurrentPacketMIs) {
1787 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1788 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1789 OldPacketMIs.push_back(&I);
1791 CurrentPacketMIs.clear();
1793 if (OldPacketMIs.size() > 1) {
1794 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1795 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1796 finalizeBundle(*MBB, FirstMI, LastMI);
1797 auto BundleMII = std::prev(FirstMI);
1798 if (memShufDisabled)
1799 HII->setBundleNoShuf(BundleMII);
1801 setmemShufDisabled(false);
1804 ResourceTracker->clearResources();
1805 LLVM_DEBUG(dbgs() << "End packet\n");
1808 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1809 if (Minimal)
1810 return false;
1811 return !producesStall(MI);
1814 // V60 forward scheduling.
1815 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1816 // If the packet already stalls, then ignore the stall from a subsequent
1817 // instruction in the same packet.
1818 if (PacketStalls)
1819 return false;
1821 // Check whether the previous packet is in a different loop. If this is the
1822 // case, there is little point in trying to avoid a stall because that would
1823 // favor the rare case (loop entry) over the common case (loop iteration).
1825 // TODO: We should really be able to check all the incoming edges if this is
1826 // the first packet in a basic block, so we can avoid stalls from the loop
1827 // backedge.
1828 if (!OldPacketMIs.empty()) {
1829 auto *OldBB = OldPacketMIs.front()->getParent();
1830 auto *ThisBB = I.getParent();
1831 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1832 return false;
1835 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1837 // If the latency is 0 and there is a data dependence between this
1838 // instruction and any instruction in the current packet, we disregard any
1839 // potential stalls due to the instructions in the previous packet. Most of
1840 // the instruction pairs that can go together in the same packet have 0
1841 // latency between them. The exceptions are
1842 // 1. NewValueJumps as they're generated much later and the latencies can't
1843 // be changed at that point.
1844 // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1845 // .new). In this case, the latency between .cur and the consumer stays
1846 // non-zero even though we can have both .cur and .new in the same packet.
1847 // Changing the latency to 0 is not an option as it causes software pipeliner
1848 // to not pipeline in some cases.
1850 // For Example:
1851 // {
1852 // I1: v6.cur = vmem(r0++#1)
1853 // I2: v7 = valign(v6,v4,r2)
1854 // I3: vmem(r5++#1) = v7.new
1855 // }
1856 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1858 for (auto J : CurrentPacketMIs) {
1859 SUnit *SUJ = MIToSUnit[J];
1860 for (auto &Pred : SUI->Preds)
1861 if (Pred.getSUnit() == SUJ)
1862 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1863 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1864 return false;
1867 // Check if the latency is greater than one between this instruction and any
1868 // instruction in the previous packet.
1869 for (auto J : OldPacketMIs) {
1870 SUnit *SUJ = MIToSUnit[J];
1871 for (auto &Pred : SUI->Preds)
1872 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1873 return true;
1876 return false;
1879 //===----------------------------------------------------------------------===//
1880 // Public Constructor Functions
1881 //===----------------------------------------------------------------------===//
1883 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1884 return new HexagonPacketizer(Minimal);