[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / CodeGen / CodeGenPrepare.cpp
blob511b7f738574586f0d94d09f5b8b73e852a53f42
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Argument.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InlineAsm.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <utility>
99 #include <vector>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
104 #define DEBUG_TYPE "codegenprepare"
106 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
107 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
108 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
109 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
110 "sunken Cmps");
111 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
112 "of sunken Casts");
113 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
114 "computations were sunk");
115 STATISTIC(NumMemoryInstsPhiCreated,
116 "Number of phis created when address "
117 "computations were sunk to memory instructions");
118 STATISTIC(NumMemoryInstsSelectCreated,
119 "Number of select created when address "
120 "computations were sunk to memory instructions");
121 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
122 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
123 STATISTIC(NumAndsAdded,
124 "Number of and mask instructions added to form ext loads");
125 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
126 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
127 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
128 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
129 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
131 static cl::opt<bool> DisableBranchOpts(
132 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
133 cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 static cl::opt<bool>
136 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
137 cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 static cl::opt<bool> DisableSelectToBranch(
140 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
141 cl::desc("Disable select to branch conversion."));
143 static cl::opt<bool> AddrSinkUsingGEPs(
144 "addr-sink-using-gep", cl::Hidden, cl::init(true),
145 cl::desc("Address sinking in CGP using GEPs."));
147 static cl::opt<bool> EnableAndCmpSinking(
148 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
149 cl::desc("Enable sinkinig and/cmp into branches."));
151 static cl::opt<bool> DisableStoreExtract(
152 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
153 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 static cl::opt<bool> StressStoreExtract(
156 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
157 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 static cl::opt<bool> DisableExtLdPromotion(
160 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
161 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 "CodeGenPrepare"));
164 static cl::opt<bool> StressExtLdPromotion(
165 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
166 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
167 "optimization in CodeGenPrepare"));
169 static cl::opt<bool> DisablePreheaderProtect(
170 "disable-preheader-prot", cl::Hidden, cl::init(false),
171 cl::desc("Disable protection against removing loop preheaders"));
173 static cl::opt<bool> ProfileGuidedSectionPrefix(
174 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
175 cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 static cl::opt<unsigned> FreqRatioToSkipMerge(
178 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
179 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
180 "(frequency of destination block) is greater than this ratio"));
182 static cl::opt<bool> ForceSplitStore(
183 "force-split-store", cl::Hidden, cl::init(false),
184 cl::desc("Force store splitting no matter what the target query says."));
186 static cl::opt<bool>
187 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
188 cl::desc("Enable merging of redundant sexts when one is dominating"
189 " the other."), cl::init(true));
191 static cl::opt<bool> DisableComplexAddrModes(
192 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
193 cl::desc("Disables combining addressing modes with different parts "
194 "in optimizeMemoryInst."));
196 static cl::opt<bool>
197 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
198 cl::desc("Allow creation of Phis in Address sinking."));
200 static cl::opt<bool>
201 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
202 cl::desc("Allow creation of selects in Address sinking."));
204 static cl::opt<bool> AddrSinkCombineBaseReg(
205 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
206 cl::desc("Allow combining of BaseReg field in Address sinking."));
208 static cl::opt<bool> AddrSinkCombineBaseGV(
209 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
210 cl::desc("Allow combining of BaseGV field in Address sinking."));
212 static cl::opt<bool> AddrSinkCombineBaseOffs(
213 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
214 cl::desc("Allow combining of BaseOffs field in Address sinking."));
216 static cl::opt<bool> AddrSinkCombineScaledReg(
217 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
218 cl::desc("Allow combining of ScaledReg field in Address sinking."));
220 static cl::opt<bool>
221 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
222 cl::init(true),
223 cl::desc("Enable splitting large offset of GEP."));
225 namespace {
227 enum ExtType {
228 ZeroExtension, // Zero extension has been seen.
229 SignExtension, // Sign extension has been seen.
230 BothExtension // This extension type is used if we saw sext after
231 // ZeroExtension had been set, or if we saw zext after
232 // SignExtension had been set. It makes the type
233 // information of a promoted instruction invalid.
236 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
237 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
238 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
239 using SExts = SmallVector<Instruction *, 16>;
240 using ValueToSExts = DenseMap<Value *, SExts>;
242 class TypePromotionTransaction;
244 class CodeGenPrepare : public FunctionPass {
245 const TargetMachine *TM = nullptr;
246 const TargetSubtargetInfo *SubtargetInfo;
247 const TargetLowering *TLI = nullptr;
248 const TargetRegisterInfo *TRI;
249 const TargetTransformInfo *TTI = nullptr;
250 const TargetLibraryInfo *TLInfo;
251 const LoopInfo *LI;
252 std::unique_ptr<BlockFrequencyInfo> BFI;
253 std::unique_ptr<BranchProbabilityInfo> BPI;
255 /// As we scan instructions optimizing them, this is the next instruction
256 /// to optimize. Transforms that can invalidate this should update it.
257 BasicBlock::iterator CurInstIterator;
259 /// Keeps track of non-local addresses that have been sunk into a block.
260 /// This allows us to avoid inserting duplicate code for blocks with
261 /// multiple load/stores of the same address. The usage of WeakTrackingVH
262 /// enables SunkAddrs to be treated as a cache whose entries can be
263 /// invalidated if a sunken address computation has been erased.
264 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
266 /// Keeps track of all instructions inserted for the current function.
267 SetOfInstrs InsertedInsts;
269 /// Keeps track of the type of the related instruction before their
270 /// promotion for the current function.
271 InstrToOrigTy PromotedInsts;
273 /// Keep track of instructions removed during promotion.
274 SetOfInstrs RemovedInsts;
276 /// Keep track of sext chains based on their initial value.
277 DenseMap<Value *, Instruction *> SeenChainsForSExt;
279 /// Keep track of GEPs accessing the same data structures such as structs or
280 /// arrays that are candidates to be split later because of their large
281 /// size.
282 MapVector<
283 AssertingVH<Value>,
284 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
285 LargeOffsetGEPMap;
287 /// Keep track of new GEP base after splitting the GEPs having large offset.
288 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
290 /// Map serial numbers to Large offset GEPs.
291 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
293 /// Keep track of SExt promoted.
294 ValueToSExts ValToSExtendedUses;
296 /// True if optimizing for size.
297 bool OptSize;
299 /// DataLayout for the Function being processed.
300 const DataLayout *DL = nullptr;
302 /// Building the dominator tree can be expensive, so we only build it
303 /// lazily and update it when required.
304 std::unique_ptr<DominatorTree> DT;
306 public:
307 static char ID; // Pass identification, replacement for typeid
309 CodeGenPrepare() : FunctionPass(ID) {
310 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
313 bool runOnFunction(Function &F) override;
315 StringRef getPassName() const override { return "CodeGen Prepare"; }
317 void getAnalysisUsage(AnalysisUsage &AU) const override {
318 // FIXME: When we can selectively preserve passes, preserve the domtree.
319 AU.addRequired<ProfileSummaryInfoWrapperPass>();
320 AU.addRequired<TargetLibraryInfoWrapperPass>();
321 AU.addRequired<TargetTransformInfoWrapperPass>();
322 AU.addRequired<LoopInfoWrapperPass>();
325 private:
326 template <typename F>
327 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
328 // Substituting can cause recursive simplifications, which can invalidate
329 // our iterator. Use a WeakTrackingVH to hold onto it in case this
330 // happens.
331 Value *CurValue = &*CurInstIterator;
332 WeakTrackingVH IterHandle(CurValue);
334 f();
336 // If the iterator instruction was recursively deleted, start over at the
337 // start of the block.
338 if (IterHandle != CurValue) {
339 CurInstIterator = BB->begin();
340 SunkAddrs.clear();
344 // Get the DominatorTree, building if necessary.
345 DominatorTree &getDT(Function &F) {
346 if (!DT)
347 DT = llvm::make_unique<DominatorTree>(F);
348 return *DT;
351 bool eliminateFallThrough(Function &F);
352 bool eliminateMostlyEmptyBlocks(Function &F);
353 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
354 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
355 void eliminateMostlyEmptyBlock(BasicBlock *BB);
356 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
357 bool isPreheader);
358 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
359 bool optimizeInst(Instruction *I, bool &ModifiedDT);
360 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
361 Type *AccessTy, unsigned AddrSpace);
362 bool optimizeInlineAsmInst(CallInst *CS);
363 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
364 bool optimizeExt(Instruction *&I);
365 bool optimizeExtUses(Instruction *I);
366 bool optimizeLoadExt(LoadInst *Load);
367 bool optimizeShiftInst(BinaryOperator *BO);
368 bool optimizeSelectInst(SelectInst *SI);
369 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
370 bool optimizeSwitchInst(SwitchInst *SI);
371 bool optimizeExtractElementInst(Instruction *Inst);
372 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
373 bool placeDbgValues(Function &F);
374 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
375 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
376 bool tryToPromoteExts(TypePromotionTransaction &TPT,
377 const SmallVectorImpl<Instruction *> &Exts,
378 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
379 unsigned CreatedInstsCost = 0);
380 bool mergeSExts(Function &F);
381 bool splitLargeGEPOffsets();
382 bool performAddressTypePromotion(
383 Instruction *&Inst,
384 bool AllowPromotionWithoutCommonHeader,
385 bool HasPromoted, TypePromotionTransaction &TPT,
386 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
387 bool splitBranchCondition(Function &F, bool &ModifiedDT);
388 bool simplifyOffsetableRelocate(Instruction &I);
390 bool tryToSinkFreeOperands(Instruction *I);
391 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
392 Intrinsic::ID IID);
393 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
394 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
395 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
398 } // end anonymous namespace
400 char CodeGenPrepare::ID = 0;
402 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
403 "Optimize for code generation", false, false)
404 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
405 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
406 "Optimize for code generation", false, false)
408 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
410 bool CodeGenPrepare::runOnFunction(Function &F) {
411 if (skipFunction(F))
412 return false;
414 DL = &F.getParent()->getDataLayout();
416 bool EverMadeChange = false;
417 // Clear per function information.
418 InsertedInsts.clear();
419 PromotedInsts.clear();
421 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
422 TM = &TPC->getTM<TargetMachine>();
423 SubtargetInfo = TM->getSubtargetImpl(F);
424 TLI = SubtargetInfo->getTargetLowering();
425 TRI = SubtargetInfo->getRegisterInfo();
427 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
428 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
429 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
430 BPI.reset(new BranchProbabilityInfo(F, *LI));
431 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
432 OptSize = F.hasOptSize();
434 ProfileSummaryInfo *PSI =
435 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
436 if (ProfileGuidedSectionPrefix) {
437 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
438 F.setSectionPrefix(".hot");
439 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
440 F.setSectionPrefix(".unlikely");
443 /// This optimization identifies DIV instructions that can be
444 /// profitably bypassed and carried out with a shorter, faster divide.
445 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
446 TLI->isSlowDivBypassed()) {
447 const DenseMap<unsigned int, unsigned int> &BypassWidths =
448 TLI->getBypassSlowDivWidths();
449 BasicBlock* BB = &*F.begin();
450 while (BB != nullptr) {
451 // bypassSlowDivision may create new BBs, but we don't want to reapply the
452 // optimization to those blocks.
453 BasicBlock* Next = BB->getNextNode();
454 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
455 BB = Next;
459 // Eliminate blocks that contain only PHI nodes and an
460 // unconditional branch.
461 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
463 bool ModifiedDT = false;
464 if (!DisableBranchOpts)
465 EverMadeChange |= splitBranchCondition(F, ModifiedDT);
467 // Split some critical edges where one of the sources is an indirect branch,
468 // to help generate sane code for PHIs involving such edges.
469 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
471 bool MadeChange = true;
472 while (MadeChange) {
473 MadeChange = false;
474 DT.reset();
475 for (Function::iterator I = F.begin(); I != F.end(); ) {
476 BasicBlock *BB = &*I++;
477 bool ModifiedDTOnIteration = false;
478 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
480 // Restart BB iteration if the dominator tree of the Function was changed
481 if (ModifiedDTOnIteration)
482 break;
484 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
485 MadeChange |= mergeSExts(F);
486 if (!LargeOffsetGEPMap.empty())
487 MadeChange |= splitLargeGEPOffsets();
489 // Really free removed instructions during promotion.
490 for (Instruction *I : RemovedInsts)
491 I->deleteValue();
493 EverMadeChange |= MadeChange;
494 SeenChainsForSExt.clear();
495 ValToSExtendedUses.clear();
496 RemovedInsts.clear();
497 LargeOffsetGEPMap.clear();
498 LargeOffsetGEPID.clear();
501 SunkAddrs.clear();
503 if (!DisableBranchOpts) {
504 MadeChange = false;
505 // Use a set vector to get deterministic iteration order. The order the
506 // blocks are removed may affect whether or not PHI nodes in successors
507 // are removed.
508 SmallSetVector<BasicBlock*, 8> WorkList;
509 for (BasicBlock &BB : F) {
510 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
511 MadeChange |= ConstantFoldTerminator(&BB, true);
512 if (!MadeChange) continue;
514 for (SmallVectorImpl<BasicBlock*>::iterator
515 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
516 if (pred_begin(*II) == pred_end(*II))
517 WorkList.insert(*II);
520 // Delete the dead blocks and any of their dead successors.
521 MadeChange |= !WorkList.empty();
522 while (!WorkList.empty()) {
523 BasicBlock *BB = WorkList.pop_back_val();
524 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
526 DeleteDeadBlock(BB);
528 for (SmallVectorImpl<BasicBlock*>::iterator
529 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
530 if (pred_begin(*II) == pred_end(*II))
531 WorkList.insert(*II);
534 // Merge pairs of basic blocks with unconditional branches, connected by
535 // a single edge.
536 if (EverMadeChange || MadeChange)
537 MadeChange |= eliminateFallThrough(F);
539 EverMadeChange |= MadeChange;
542 if (!DisableGCOpts) {
543 SmallVector<Instruction *, 2> Statepoints;
544 for (BasicBlock &BB : F)
545 for (Instruction &I : BB)
546 if (isStatepoint(I))
547 Statepoints.push_back(&I);
548 for (auto &I : Statepoints)
549 EverMadeChange |= simplifyOffsetableRelocate(*I);
552 // Do this last to clean up use-before-def scenarios introduced by other
553 // preparatory transforms.
554 EverMadeChange |= placeDbgValues(F);
556 return EverMadeChange;
559 /// Merge basic blocks which are connected by a single edge, where one of the
560 /// basic blocks has a single successor pointing to the other basic block,
561 /// which has a single predecessor.
562 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
563 bool Changed = false;
564 // Scan all of the blocks in the function, except for the entry block.
565 // Use a temporary array to avoid iterator being invalidated when
566 // deleting blocks.
567 SmallVector<WeakTrackingVH, 16> Blocks;
568 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
569 Blocks.push_back(&Block);
571 for (auto &Block : Blocks) {
572 auto *BB = cast_or_null<BasicBlock>(Block);
573 if (!BB)
574 continue;
575 // If the destination block has a single pred, then this is a trivial
576 // edge, just collapse it.
577 BasicBlock *SinglePred = BB->getSinglePredecessor();
579 // Don't merge if BB's address is taken.
580 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
582 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
583 if (Term && !Term->isConditional()) {
584 Changed = true;
585 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
587 // Merge BB into SinglePred and delete it.
588 MergeBlockIntoPredecessor(BB);
591 return Changed;
594 /// Find a destination block from BB if BB is mergeable empty block.
595 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
596 // If this block doesn't end with an uncond branch, ignore it.
597 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
598 if (!BI || !BI->isUnconditional())
599 return nullptr;
601 // If the instruction before the branch (skipping debug info) isn't a phi
602 // node, then other stuff is happening here.
603 BasicBlock::iterator BBI = BI->getIterator();
604 if (BBI != BB->begin()) {
605 --BBI;
606 while (isa<DbgInfoIntrinsic>(BBI)) {
607 if (BBI == BB->begin())
608 break;
609 --BBI;
611 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
612 return nullptr;
615 // Do not break infinite loops.
616 BasicBlock *DestBB = BI->getSuccessor(0);
617 if (DestBB == BB)
618 return nullptr;
620 if (!canMergeBlocks(BB, DestBB))
621 DestBB = nullptr;
623 return DestBB;
626 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
627 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
628 /// edges in ways that are non-optimal for isel. Start by eliminating these
629 /// blocks so we can split them the way we want them.
630 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
631 SmallPtrSet<BasicBlock *, 16> Preheaders;
632 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
633 while (!LoopList.empty()) {
634 Loop *L = LoopList.pop_back_val();
635 LoopList.insert(LoopList.end(), L->begin(), L->end());
636 if (BasicBlock *Preheader = L->getLoopPreheader())
637 Preheaders.insert(Preheader);
640 bool MadeChange = false;
641 // Copy blocks into a temporary array to avoid iterator invalidation issues
642 // as we remove them.
643 // Note that this intentionally skips the entry block.
644 SmallVector<WeakTrackingVH, 16> Blocks;
645 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
646 Blocks.push_back(&Block);
648 for (auto &Block : Blocks) {
649 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
650 if (!BB)
651 continue;
652 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
653 if (!DestBB ||
654 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
655 continue;
657 eliminateMostlyEmptyBlock(BB);
658 MadeChange = true;
660 return MadeChange;
663 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
664 BasicBlock *DestBB,
665 bool isPreheader) {
666 // Do not delete loop preheaders if doing so would create a critical edge.
667 // Loop preheaders can be good locations to spill registers. If the
668 // preheader is deleted and we create a critical edge, registers may be
669 // spilled in the loop body instead.
670 if (!DisablePreheaderProtect && isPreheader &&
671 !(BB->getSinglePredecessor() &&
672 BB->getSinglePredecessor()->getSingleSuccessor()))
673 return false;
675 // Skip merging if the block's successor is also a successor to any callbr
676 // that leads to this block.
677 // FIXME: Is this really needed? Is this a correctness issue?
678 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
679 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
680 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
681 if (DestBB == CBI->getSuccessor(i))
682 return false;
685 // Try to skip merging if the unique predecessor of BB is terminated by a
686 // switch or indirect branch instruction, and BB is used as an incoming block
687 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
688 // add COPY instructions in the predecessor of BB instead of BB (if it is not
689 // merged). Note that the critical edge created by merging such blocks wont be
690 // split in MachineSink because the jump table is not analyzable. By keeping
691 // such empty block (BB), ISel will place COPY instructions in BB, not in the
692 // predecessor of BB.
693 BasicBlock *Pred = BB->getUniquePredecessor();
694 if (!Pred ||
695 !(isa<SwitchInst>(Pred->getTerminator()) ||
696 isa<IndirectBrInst>(Pred->getTerminator())))
697 return true;
699 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
700 return true;
702 // We use a simple cost heuristic which determine skipping merging is
703 // profitable if the cost of skipping merging is less than the cost of
704 // merging : Cost(skipping merging) < Cost(merging BB), where the
705 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
706 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
707 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
708 // Freq(Pred) / Freq(BB) > 2.
709 // Note that if there are multiple empty blocks sharing the same incoming
710 // value for the PHIs in the DestBB, we consider them together. In such
711 // case, Cost(merging BB) will be the sum of their frequencies.
713 if (!isa<PHINode>(DestBB->begin()))
714 return true;
716 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
718 // Find all other incoming blocks from which incoming values of all PHIs in
719 // DestBB are the same as the ones from BB.
720 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
721 ++PI) {
722 BasicBlock *DestBBPred = *PI;
723 if (DestBBPred == BB)
724 continue;
726 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
727 return DestPN.getIncomingValueForBlock(BB) ==
728 DestPN.getIncomingValueForBlock(DestBBPred);
730 SameIncomingValueBBs.insert(DestBBPred);
733 // See if all BB's incoming values are same as the value from Pred. In this
734 // case, no reason to skip merging because COPYs are expected to be place in
735 // Pred already.
736 if (SameIncomingValueBBs.count(Pred))
737 return true;
739 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
740 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
742 for (auto SameValueBB : SameIncomingValueBBs)
743 if (SameValueBB->getUniquePredecessor() == Pred &&
744 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
745 BBFreq += BFI->getBlockFreq(SameValueBB);
747 return PredFreq.getFrequency() <=
748 BBFreq.getFrequency() * FreqRatioToSkipMerge;
751 /// Return true if we can merge BB into DestBB if there is a single
752 /// unconditional branch between them, and BB contains no other non-phi
753 /// instructions.
754 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
755 const BasicBlock *DestBB) const {
756 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
757 // the successor. If there are more complex condition (e.g. preheaders),
758 // don't mess around with them.
759 for (const PHINode &PN : BB->phis()) {
760 for (const User *U : PN.users()) {
761 const Instruction *UI = cast<Instruction>(U);
762 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
763 return false;
764 // If User is inside DestBB block and it is a PHINode then check
765 // incoming value. If incoming value is not from BB then this is
766 // a complex condition (e.g. preheaders) we want to avoid here.
767 if (UI->getParent() == DestBB) {
768 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
769 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
770 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
771 if (Insn && Insn->getParent() == BB &&
772 Insn->getParent() != UPN->getIncomingBlock(I))
773 return false;
779 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
780 // and DestBB may have conflicting incoming values for the block. If so, we
781 // can't merge the block.
782 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
783 if (!DestBBPN) return true; // no conflict.
785 // Collect the preds of BB.
786 SmallPtrSet<const BasicBlock*, 16> BBPreds;
787 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
788 // It is faster to get preds from a PHI than with pred_iterator.
789 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
790 BBPreds.insert(BBPN->getIncomingBlock(i));
791 } else {
792 BBPreds.insert(pred_begin(BB), pred_end(BB));
795 // Walk the preds of DestBB.
796 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
797 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
798 if (BBPreds.count(Pred)) { // Common predecessor?
799 for (const PHINode &PN : DestBB->phis()) {
800 const Value *V1 = PN.getIncomingValueForBlock(Pred);
801 const Value *V2 = PN.getIncomingValueForBlock(BB);
803 // If V2 is a phi node in BB, look up what the mapped value will be.
804 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
805 if (V2PN->getParent() == BB)
806 V2 = V2PN->getIncomingValueForBlock(Pred);
808 // If there is a conflict, bail out.
809 if (V1 != V2) return false;
814 return true;
817 /// Eliminate a basic block that has only phi's and an unconditional branch in
818 /// it.
819 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
820 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
821 BasicBlock *DestBB = BI->getSuccessor(0);
823 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
824 << *BB << *DestBB);
826 // If the destination block has a single pred, then this is a trivial edge,
827 // just collapse it.
828 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
829 if (SinglePred != DestBB) {
830 assert(SinglePred == BB &&
831 "Single predecessor not the same as predecessor");
832 // Merge DestBB into SinglePred/BB and delete it.
833 MergeBlockIntoPredecessor(DestBB);
834 // Note: BB(=SinglePred) will not be deleted on this path.
835 // DestBB(=its single successor) is the one that was deleted.
836 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
837 return;
841 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
842 // to handle the new incoming edges it is about to have.
843 for (PHINode &PN : DestBB->phis()) {
844 // Remove the incoming value for BB, and remember it.
845 Value *InVal = PN.removeIncomingValue(BB, false);
847 // Two options: either the InVal is a phi node defined in BB or it is some
848 // value that dominates BB.
849 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
850 if (InValPhi && InValPhi->getParent() == BB) {
851 // Add all of the input values of the input PHI as inputs of this phi.
852 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
853 PN.addIncoming(InValPhi->getIncomingValue(i),
854 InValPhi->getIncomingBlock(i));
855 } else {
856 // Otherwise, add one instance of the dominating value for each edge that
857 // we will be adding.
858 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
859 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
860 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
861 } else {
862 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
863 PN.addIncoming(InVal, *PI);
868 // The PHIs are now updated, change everything that refers to BB to use
869 // DestBB and remove BB.
870 BB->replaceAllUsesWith(DestBB);
871 BB->eraseFromParent();
872 ++NumBlocksElim;
874 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
877 // Computes a map of base pointer relocation instructions to corresponding
878 // derived pointer relocation instructions given a vector of all relocate calls
879 static void computeBaseDerivedRelocateMap(
880 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
881 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
882 &RelocateInstMap) {
883 // Collect information in two maps: one primarily for locating the base object
884 // while filling the second map; the second map is the final structure holding
885 // a mapping between Base and corresponding Derived relocate calls
886 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
887 for (auto *ThisRelocate : AllRelocateCalls) {
888 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
889 ThisRelocate->getDerivedPtrIndex());
890 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
892 for (auto &Item : RelocateIdxMap) {
893 std::pair<unsigned, unsigned> Key = Item.first;
894 if (Key.first == Key.second)
895 // Base relocation: nothing to insert
896 continue;
898 GCRelocateInst *I = Item.second;
899 auto BaseKey = std::make_pair(Key.first, Key.first);
901 // We're iterating over RelocateIdxMap so we cannot modify it.
902 auto MaybeBase = RelocateIdxMap.find(BaseKey);
903 if (MaybeBase == RelocateIdxMap.end())
904 // TODO: We might want to insert a new base object relocate and gep off
905 // that, if there are enough derived object relocates.
906 continue;
908 RelocateInstMap[MaybeBase->second].push_back(I);
912 // Accepts a GEP and extracts the operands into a vector provided they're all
913 // small integer constants
914 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
915 SmallVectorImpl<Value *> &OffsetV) {
916 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
917 // Only accept small constant integer operands
918 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
919 if (!Op || Op->getZExtValue() > 20)
920 return false;
923 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
924 OffsetV.push_back(GEP->getOperand(i));
925 return true;
928 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
929 // replace, computes a replacement, and affects it.
930 static bool
931 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
932 const SmallVectorImpl<GCRelocateInst *> &Targets) {
933 bool MadeChange = false;
934 // We must ensure the relocation of derived pointer is defined after
935 // relocation of base pointer. If we find a relocation corresponding to base
936 // defined earlier than relocation of base then we move relocation of base
937 // right before found relocation. We consider only relocation in the same
938 // basic block as relocation of base. Relocations from other basic block will
939 // be skipped by optimization and we do not care about them.
940 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
941 &*R != RelocatedBase; ++R)
942 if (auto RI = dyn_cast<GCRelocateInst>(R))
943 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
944 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
945 RelocatedBase->moveBefore(RI);
946 break;
949 for (GCRelocateInst *ToReplace : Targets) {
950 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
951 "Not relocating a derived object of the original base object");
952 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
953 // A duplicate relocate call. TODO: coalesce duplicates.
954 continue;
957 if (RelocatedBase->getParent() != ToReplace->getParent()) {
958 // Base and derived relocates are in different basic blocks.
959 // In this case transform is only valid when base dominates derived
960 // relocate. However it would be too expensive to check dominance
961 // for each such relocate, so we skip the whole transformation.
962 continue;
965 Value *Base = ToReplace->getBasePtr();
966 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
967 if (!Derived || Derived->getPointerOperand() != Base)
968 continue;
970 SmallVector<Value *, 2> OffsetV;
971 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
972 continue;
974 // Create a Builder and replace the target callsite with a gep
975 assert(RelocatedBase->getNextNode() &&
976 "Should always have one since it's not a terminator");
978 // Insert after RelocatedBase
979 IRBuilder<> Builder(RelocatedBase->getNextNode());
980 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
982 // If gc_relocate does not match the actual type, cast it to the right type.
983 // In theory, there must be a bitcast after gc_relocate if the type does not
984 // match, and we should reuse it to get the derived pointer. But it could be
985 // cases like this:
986 // bb1:
987 // ...
988 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
989 // br label %merge
991 // bb2:
992 // ...
993 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
994 // br label %merge
996 // merge:
997 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
998 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1000 // In this case, we can not find the bitcast any more. So we insert a new bitcast
1001 // no matter there is already one or not. In this way, we can handle all cases, and
1002 // the extra bitcast should be optimized away in later passes.
1003 Value *ActualRelocatedBase = RelocatedBase;
1004 if (RelocatedBase->getType() != Base->getType()) {
1005 ActualRelocatedBase =
1006 Builder.CreateBitCast(RelocatedBase, Base->getType());
1008 Value *Replacement = Builder.CreateGEP(
1009 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1010 Replacement->takeName(ToReplace);
1011 // If the newly generated derived pointer's type does not match the original derived
1012 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1013 Value *ActualReplacement = Replacement;
1014 if (Replacement->getType() != ToReplace->getType()) {
1015 ActualReplacement =
1016 Builder.CreateBitCast(Replacement, ToReplace->getType());
1018 ToReplace->replaceAllUsesWith(ActualReplacement);
1019 ToReplace->eraseFromParent();
1021 MadeChange = true;
1023 return MadeChange;
1026 // Turns this:
1028 // %base = ...
1029 // %ptr = gep %base + 15
1030 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1031 // %base' = relocate(%tok, i32 4, i32 4)
1032 // %ptr' = relocate(%tok, i32 4, i32 5)
1033 // %val = load %ptr'
1035 // into this:
1037 // %base = ...
1038 // %ptr = gep %base + 15
1039 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1040 // %base' = gc.relocate(%tok, i32 4, i32 4)
1041 // %ptr' = gep %base' + 15
1042 // %val = load %ptr'
1043 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1044 bool MadeChange = false;
1045 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1047 for (auto *U : I.users())
1048 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1049 // Collect all the relocate calls associated with a statepoint
1050 AllRelocateCalls.push_back(Relocate);
1052 // We need atleast one base pointer relocation + one derived pointer
1053 // relocation to mangle
1054 if (AllRelocateCalls.size() < 2)
1055 return false;
1057 // RelocateInstMap is a mapping from the base relocate instruction to the
1058 // corresponding derived relocate instructions
1059 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1060 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1061 if (RelocateInstMap.empty())
1062 return false;
1064 for (auto &Item : RelocateInstMap)
1065 // Item.first is the RelocatedBase to offset against
1066 // Item.second is the vector of Targets to replace
1067 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1068 return MadeChange;
1071 /// Sink the specified cast instruction into its user blocks.
1072 static bool SinkCast(CastInst *CI) {
1073 BasicBlock *DefBB = CI->getParent();
1075 /// InsertedCasts - Only insert a cast in each block once.
1076 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1078 bool MadeChange = false;
1079 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1080 UI != E; ) {
1081 Use &TheUse = UI.getUse();
1082 Instruction *User = cast<Instruction>(*UI);
1084 // Figure out which BB this cast is used in. For PHI's this is the
1085 // appropriate predecessor block.
1086 BasicBlock *UserBB = User->getParent();
1087 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1088 UserBB = PN->getIncomingBlock(TheUse);
1091 // Preincrement use iterator so we don't invalidate it.
1092 ++UI;
1094 // The first insertion point of a block containing an EH pad is after the
1095 // pad. If the pad is the user, we cannot sink the cast past the pad.
1096 if (User->isEHPad())
1097 continue;
1099 // If the block selected to receive the cast is an EH pad that does not
1100 // allow non-PHI instructions before the terminator, we can't sink the
1101 // cast.
1102 if (UserBB->getTerminator()->isEHPad())
1103 continue;
1105 // If this user is in the same block as the cast, don't change the cast.
1106 if (UserBB == DefBB) continue;
1108 // If we have already inserted a cast into this block, use it.
1109 CastInst *&InsertedCast = InsertedCasts[UserBB];
1111 if (!InsertedCast) {
1112 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1113 assert(InsertPt != UserBB->end());
1114 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1115 CI->getType(), "", &*InsertPt);
1116 InsertedCast->setDebugLoc(CI->getDebugLoc());
1119 // Replace a use of the cast with a use of the new cast.
1120 TheUse = InsertedCast;
1121 MadeChange = true;
1122 ++NumCastUses;
1125 // If we removed all uses, nuke the cast.
1126 if (CI->use_empty()) {
1127 salvageDebugInfo(*CI);
1128 CI->eraseFromParent();
1129 MadeChange = true;
1132 return MadeChange;
1135 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1136 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1137 /// reduce the number of virtual registers that must be created and coalesced.
1139 /// Return true if any changes are made.
1140 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1141 const DataLayout &DL) {
1142 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1143 // than sinking only nop casts, but is helpful on some platforms.
1144 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1145 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1146 ASC->getDestAddressSpace()))
1147 return false;
1150 // If this is a noop copy,
1151 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1152 EVT DstVT = TLI.getValueType(DL, CI->getType());
1154 // This is an fp<->int conversion?
1155 if (SrcVT.isInteger() != DstVT.isInteger())
1156 return false;
1158 // If this is an extension, it will be a zero or sign extension, which
1159 // isn't a noop.
1160 if (SrcVT.bitsLT(DstVT)) return false;
1162 // If these values will be promoted, find out what they will be promoted
1163 // to. This helps us consider truncates on PPC as noop copies when they
1164 // are.
1165 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1166 TargetLowering::TypePromoteInteger)
1167 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1168 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1169 TargetLowering::TypePromoteInteger)
1170 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1172 // If, after promotion, these are the same types, this is a noop copy.
1173 if (SrcVT != DstVT)
1174 return false;
1176 return SinkCast(CI);
1179 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1180 CmpInst *Cmp,
1181 Intrinsic::ID IID) {
1182 if (BO->getParent() != Cmp->getParent()) {
1183 // We used to use a dominator tree here to allow multi-block optimization.
1184 // But that was problematic because:
1185 // 1. It could cause a perf regression by hoisting the math op into the
1186 // critical path.
1187 // 2. It could cause a perf regression by creating a value that was live
1188 // across multiple blocks and increasing register pressure.
1189 // 3. Use of a dominator tree could cause large compile-time regression.
1190 // This is because we recompute the DT on every change in the main CGP
1191 // run-loop. The recomputing is probably unnecessary in many cases, so if
1192 // that was fixed, using a DT here would be ok.
1193 return false;
1196 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1197 Value *Arg0 = BO->getOperand(0);
1198 Value *Arg1 = BO->getOperand(1);
1199 if (BO->getOpcode() == Instruction::Add &&
1200 IID == Intrinsic::usub_with_overflow) {
1201 assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1202 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1205 // Insert at the first instruction of the pair.
1206 Instruction *InsertPt = nullptr;
1207 for (Instruction &Iter : *Cmp->getParent()) {
1208 if (&Iter == BO || &Iter == Cmp) {
1209 InsertPt = &Iter;
1210 break;
1213 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1215 IRBuilder<> Builder(InsertPt);
1216 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1217 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1218 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1219 BO->replaceAllUsesWith(Math);
1220 Cmp->replaceAllUsesWith(OV);
1221 BO->eraseFromParent();
1222 Cmp->eraseFromParent();
1223 return true;
1226 /// Match special-case patterns that check for unsigned add overflow.
1227 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1228 BinaryOperator *&Add) {
1229 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1230 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1231 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1233 // We are not expecting non-canonical/degenerate code. Just bail out.
1234 if (isa<Constant>(A))
1235 return false;
1237 ICmpInst::Predicate Pred = Cmp->getPredicate();
1238 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1239 B = ConstantInt::get(B->getType(), 1);
1240 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1241 B = ConstantInt::get(B->getType(), -1);
1242 else
1243 return false;
1245 // Check the users of the variable operand of the compare looking for an add
1246 // with the adjusted constant.
1247 for (User *U : A->users()) {
1248 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1249 Add = cast<BinaryOperator>(U);
1250 return true;
1253 return false;
1256 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1257 /// intrinsic. Return true if any changes were made.
1258 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1259 bool &ModifiedDT) {
1260 Value *A, *B;
1261 BinaryOperator *Add;
1262 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1263 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1264 return false;
1266 if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1267 TLI->getValueType(*DL, Add->getType())))
1268 return false;
1270 // We don't want to move around uses of condition values this late, so we
1271 // check if it is legal to create the call to the intrinsic in the basic
1272 // block containing the icmp.
1273 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1274 return false;
1276 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1277 return false;
1279 // Reset callers - do not crash by iterating over a dead instruction.
1280 ModifiedDT = true;
1281 return true;
1284 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1285 bool &ModifiedDT) {
1286 // We are not expecting non-canonical/degenerate code. Just bail out.
1287 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1288 if (isa<Constant>(A) && isa<Constant>(B))
1289 return false;
1291 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1292 ICmpInst::Predicate Pred = Cmp->getPredicate();
1293 if (Pred == ICmpInst::ICMP_UGT) {
1294 std::swap(A, B);
1295 Pred = ICmpInst::ICMP_ULT;
1297 // Convert special-case: (A == 0) is the same as (A u< 1).
1298 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1299 B = ConstantInt::get(B->getType(), 1);
1300 Pred = ICmpInst::ICMP_ULT;
1302 // Convert special-case: (A != 0) is the same as (0 u< A).
1303 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1304 std::swap(A, B);
1305 Pred = ICmpInst::ICMP_ULT;
1307 if (Pred != ICmpInst::ICMP_ULT)
1308 return false;
1310 // Walk the users of a variable operand of a compare looking for a subtract or
1311 // add with that same operand. Also match the 2nd operand of the compare to
1312 // the add/sub, but that may be a negated constant operand of an add.
1313 Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1314 BinaryOperator *Sub = nullptr;
1315 for (User *U : CmpVariableOperand->users()) {
1316 // A - B, A u< B --> usubo(A, B)
1317 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1318 Sub = cast<BinaryOperator>(U);
1319 break;
1322 // A + (-C), A u< C (canonicalized form of (sub A, C))
1323 const APInt *CmpC, *AddC;
1324 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1325 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1326 Sub = cast<BinaryOperator>(U);
1327 break;
1330 if (!Sub)
1331 return false;
1333 if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1334 TLI->getValueType(*DL, Sub->getType())))
1335 return false;
1337 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1338 return false;
1340 // Reset callers - do not crash by iterating over a dead instruction.
1341 ModifiedDT = true;
1342 return true;
1345 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1346 /// registers that must be created and coalesced. This is a clear win except on
1347 /// targets with multiple condition code registers (PowerPC), where it might
1348 /// lose; some adjustment may be wanted there.
1350 /// Return true if any changes are made.
1351 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1352 if (TLI.hasMultipleConditionRegisters())
1353 return false;
1355 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1356 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1357 return false;
1359 // Only insert a cmp in each block once.
1360 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1362 bool MadeChange = false;
1363 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1364 UI != E; ) {
1365 Use &TheUse = UI.getUse();
1366 Instruction *User = cast<Instruction>(*UI);
1368 // Preincrement use iterator so we don't invalidate it.
1369 ++UI;
1371 // Don't bother for PHI nodes.
1372 if (isa<PHINode>(User))
1373 continue;
1375 // Figure out which BB this cmp is used in.
1376 BasicBlock *UserBB = User->getParent();
1377 BasicBlock *DefBB = Cmp->getParent();
1379 // If this user is in the same block as the cmp, don't change the cmp.
1380 if (UserBB == DefBB) continue;
1382 // If we have already inserted a cmp into this block, use it.
1383 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1385 if (!InsertedCmp) {
1386 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1387 assert(InsertPt != UserBB->end());
1388 InsertedCmp =
1389 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1390 Cmp->getOperand(0), Cmp->getOperand(1), "",
1391 &*InsertPt);
1392 // Propagate the debug info.
1393 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1396 // Replace a use of the cmp with a use of the new cmp.
1397 TheUse = InsertedCmp;
1398 MadeChange = true;
1399 ++NumCmpUses;
1402 // If we removed all uses, nuke the cmp.
1403 if (Cmp->use_empty()) {
1404 Cmp->eraseFromParent();
1405 MadeChange = true;
1408 return MadeChange;
1411 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1412 if (sinkCmpExpression(Cmp, *TLI))
1413 return true;
1415 if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1416 return true;
1418 if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1419 return true;
1421 return false;
1424 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1425 /// used in a compare to allow isel to generate better code for targets where
1426 /// this operation can be combined.
1428 /// Return true if any changes are made.
1429 static bool sinkAndCmp0Expression(Instruction *AndI,
1430 const TargetLowering &TLI,
1431 SetOfInstrs &InsertedInsts) {
1432 // Double-check that we're not trying to optimize an instruction that was
1433 // already optimized by some other part of this pass.
1434 assert(!InsertedInsts.count(AndI) &&
1435 "Attempting to optimize already optimized and instruction");
1436 (void) InsertedInsts;
1438 // Nothing to do for single use in same basic block.
1439 if (AndI->hasOneUse() &&
1440 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1441 return false;
1443 // Try to avoid cases where sinking/duplicating is likely to increase register
1444 // pressure.
1445 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1446 !isa<ConstantInt>(AndI->getOperand(1)) &&
1447 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1448 return false;
1450 for (auto *U : AndI->users()) {
1451 Instruction *User = cast<Instruction>(U);
1453 // Only sink 'and' feeding icmp with 0.
1454 if (!isa<ICmpInst>(User))
1455 return false;
1457 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1458 if (!CmpC || !CmpC->isZero())
1459 return false;
1462 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1463 return false;
1465 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1466 LLVM_DEBUG(AndI->getParent()->dump());
1468 // Push the 'and' into the same block as the icmp 0. There should only be
1469 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1470 // others, so we don't need to keep track of which BBs we insert into.
1471 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1472 UI != E; ) {
1473 Use &TheUse = UI.getUse();
1474 Instruction *User = cast<Instruction>(*UI);
1476 // Preincrement use iterator so we don't invalidate it.
1477 ++UI;
1479 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1481 // Keep the 'and' in the same place if the use is already in the same block.
1482 Instruction *InsertPt =
1483 User->getParent() == AndI->getParent() ? AndI : User;
1484 Instruction *InsertedAnd =
1485 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1486 AndI->getOperand(1), "", InsertPt);
1487 // Propagate the debug info.
1488 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1490 // Replace a use of the 'and' with a use of the new 'and'.
1491 TheUse = InsertedAnd;
1492 ++NumAndUses;
1493 LLVM_DEBUG(User->getParent()->dump());
1496 // We removed all uses, nuke the and.
1497 AndI->eraseFromParent();
1498 return true;
1501 /// Check if the candidates could be combined with a shift instruction, which
1502 /// includes:
1503 /// 1. Truncate instruction
1504 /// 2. And instruction and the imm is a mask of the low bits:
1505 /// imm & (imm+1) == 0
1506 static bool isExtractBitsCandidateUse(Instruction *User) {
1507 if (!isa<TruncInst>(User)) {
1508 if (User->getOpcode() != Instruction::And ||
1509 !isa<ConstantInt>(User->getOperand(1)))
1510 return false;
1512 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1514 if ((Cimm & (Cimm + 1)).getBoolValue())
1515 return false;
1517 return true;
1520 /// Sink both shift and truncate instruction to the use of truncate's BB.
1521 static bool
1522 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1523 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1524 const TargetLowering &TLI, const DataLayout &DL) {
1525 BasicBlock *UserBB = User->getParent();
1526 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1527 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1528 bool MadeChange = false;
1530 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1531 TruncE = TruncI->user_end();
1532 TruncUI != TruncE;) {
1534 Use &TruncTheUse = TruncUI.getUse();
1535 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1536 // Preincrement use iterator so we don't invalidate it.
1538 ++TruncUI;
1540 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1541 if (!ISDOpcode)
1542 continue;
1544 // If the use is actually a legal node, there will not be an
1545 // implicit truncate.
1546 // FIXME: always querying the result type is just an
1547 // approximation; some nodes' legality is determined by the
1548 // operand or other means. There's no good way to find out though.
1549 if (TLI.isOperationLegalOrCustom(
1550 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1551 continue;
1553 // Don't bother for PHI nodes.
1554 if (isa<PHINode>(TruncUser))
1555 continue;
1557 BasicBlock *TruncUserBB = TruncUser->getParent();
1559 if (UserBB == TruncUserBB)
1560 continue;
1562 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1563 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1565 if (!InsertedShift && !InsertedTrunc) {
1566 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1567 assert(InsertPt != TruncUserBB->end());
1568 // Sink the shift
1569 if (ShiftI->getOpcode() == Instruction::AShr)
1570 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1571 "", &*InsertPt);
1572 else
1573 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1574 "", &*InsertPt);
1575 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1577 // Sink the trunc
1578 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1579 TruncInsertPt++;
1580 assert(TruncInsertPt != TruncUserBB->end());
1582 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1583 TruncI->getType(), "", &*TruncInsertPt);
1584 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1586 MadeChange = true;
1588 TruncTheUse = InsertedTrunc;
1591 return MadeChange;
1594 /// Sink the shift *right* instruction into user blocks if the uses could
1595 /// potentially be combined with this shift instruction and generate BitExtract
1596 /// instruction. It will only be applied if the architecture supports BitExtract
1597 /// instruction. Here is an example:
1598 /// BB1:
1599 /// %x.extract.shift = lshr i64 %arg1, 32
1600 /// BB2:
1601 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1602 /// ==>
1604 /// BB2:
1605 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1606 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1608 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1609 /// instruction.
1610 /// Return true if any changes are made.
1611 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1612 const TargetLowering &TLI,
1613 const DataLayout &DL) {
1614 BasicBlock *DefBB = ShiftI->getParent();
1616 /// Only insert instructions in each block once.
1617 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1619 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1621 bool MadeChange = false;
1622 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1623 UI != E;) {
1624 Use &TheUse = UI.getUse();
1625 Instruction *User = cast<Instruction>(*UI);
1626 // Preincrement use iterator so we don't invalidate it.
1627 ++UI;
1629 // Don't bother for PHI nodes.
1630 if (isa<PHINode>(User))
1631 continue;
1633 if (!isExtractBitsCandidateUse(User))
1634 continue;
1636 BasicBlock *UserBB = User->getParent();
1638 if (UserBB == DefBB) {
1639 // If the shift and truncate instruction are in the same BB. The use of
1640 // the truncate(TruncUse) may still introduce another truncate if not
1641 // legal. In this case, we would like to sink both shift and truncate
1642 // instruction to the BB of TruncUse.
1643 // for example:
1644 // BB1:
1645 // i64 shift.result = lshr i64 opnd, imm
1646 // trunc.result = trunc shift.result to i16
1648 // BB2:
1649 // ----> We will have an implicit truncate here if the architecture does
1650 // not have i16 compare.
1651 // cmp i16 trunc.result, opnd2
1653 if (isa<TruncInst>(User) && shiftIsLegal
1654 // If the type of the truncate is legal, no truncate will be
1655 // introduced in other basic blocks.
1657 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1658 MadeChange =
1659 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1661 continue;
1663 // If we have already inserted a shift into this block, use it.
1664 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1666 if (!InsertedShift) {
1667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1668 assert(InsertPt != UserBB->end());
1670 if (ShiftI->getOpcode() == Instruction::AShr)
1671 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1672 "", &*InsertPt);
1673 else
1674 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1675 "", &*InsertPt);
1676 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1678 MadeChange = true;
1681 // Replace a use of the shift with a use of the new shift.
1682 TheUse = InsertedShift;
1685 // If we removed all uses, nuke the shift.
1686 if (ShiftI->use_empty()) {
1687 salvageDebugInfo(*ShiftI);
1688 ShiftI->eraseFromParent();
1691 return MadeChange;
1694 /// If counting leading or trailing zeros is an expensive operation and a zero
1695 /// input is defined, add a check for zero to avoid calling the intrinsic.
1697 /// We want to transform:
1698 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1700 /// into:
1701 /// entry:
1702 /// %cmpz = icmp eq i64 %A, 0
1703 /// br i1 %cmpz, label %cond.end, label %cond.false
1704 /// cond.false:
1705 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1706 /// br label %cond.end
1707 /// cond.end:
1708 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1710 /// If the transform is performed, return true and set ModifiedDT to true.
1711 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1712 const TargetLowering *TLI,
1713 const DataLayout *DL,
1714 bool &ModifiedDT) {
1715 if (!TLI || !DL)
1716 return false;
1718 // If a zero input is undefined, it doesn't make sense to despeculate that.
1719 if (match(CountZeros->getOperand(1), m_One()))
1720 return false;
1722 // If it's cheap to speculate, there's nothing to do.
1723 auto IntrinsicID = CountZeros->getIntrinsicID();
1724 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1725 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1726 return false;
1728 // Only handle legal scalar cases. Anything else requires too much work.
1729 Type *Ty = CountZeros->getType();
1730 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1731 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1732 return false;
1734 // The intrinsic will be sunk behind a compare against zero and branch.
1735 BasicBlock *StartBlock = CountZeros->getParent();
1736 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1738 // Create another block after the count zero intrinsic. A PHI will be added
1739 // in this block to select the result of the intrinsic or the bit-width
1740 // constant if the input to the intrinsic is zero.
1741 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1742 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1744 // Set up a builder to create a compare, conditional branch, and PHI.
1745 IRBuilder<> Builder(CountZeros->getContext());
1746 Builder.SetInsertPoint(StartBlock->getTerminator());
1747 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1749 // Replace the unconditional branch that was created by the first split with
1750 // a compare against zero and a conditional branch.
1751 Value *Zero = Constant::getNullValue(Ty);
1752 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1753 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1754 StartBlock->getTerminator()->eraseFromParent();
1756 // Create a PHI in the end block to select either the output of the intrinsic
1757 // or the bit width of the operand.
1758 Builder.SetInsertPoint(&EndBlock->front());
1759 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1760 CountZeros->replaceAllUsesWith(PN);
1761 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1762 PN->addIncoming(BitWidth, StartBlock);
1763 PN->addIncoming(CountZeros, CallBlock);
1765 // We are explicitly handling the zero case, so we can set the intrinsic's
1766 // undefined zero argument to 'true'. This will also prevent reprocessing the
1767 // intrinsic; we only despeculate when a zero input is defined.
1768 CountZeros->setArgOperand(1, Builder.getTrue());
1769 ModifiedDT = true;
1770 return true;
1773 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1774 BasicBlock *BB = CI->getParent();
1776 // Lower inline assembly if we can.
1777 // If we found an inline asm expession, and if the target knows how to
1778 // lower it to normal LLVM code, do so now.
1779 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1780 if (TLI->ExpandInlineAsm(CI)) {
1781 // Avoid invalidating the iterator.
1782 CurInstIterator = BB->begin();
1783 // Avoid processing instructions out of order, which could cause
1784 // reuse before a value is defined.
1785 SunkAddrs.clear();
1786 return true;
1788 // Sink address computing for memory operands into the block.
1789 if (optimizeInlineAsmInst(CI))
1790 return true;
1793 // Align the pointer arguments to this call if the target thinks it's a good
1794 // idea
1795 unsigned MinSize, PrefAlign;
1796 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1797 for (auto &Arg : CI->arg_operands()) {
1798 // We want to align both objects whose address is used directly and
1799 // objects whose address is used in casts and GEPs, though it only makes
1800 // sense for GEPs if the offset is a multiple of the desired alignment and
1801 // if size - offset meets the size threshold.
1802 if (!Arg->getType()->isPointerTy())
1803 continue;
1804 APInt Offset(DL->getIndexSizeInBits(
1805 cast<PointerType>(Arg->getType())->getAddressSpace()),
1807 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1808 uint64_t Offset2 = Offset.getLimitedValue();
1809 if ((Offset2 & (PrefAlign-1)) != 0)
1810 continue;
1811 AllocaInst *AI;
1812 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1813 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1814 AI->setAlignment(PrefAlign);
1815 // Global variables can only be aligned if they are defined in this
1816 // object (i.e. they are uniquely initialized in this object), and
1817 // over-aligning global variables that have an explicit section is
1818 // forbidden.
1819 GlobalVariable *GV;
1820 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1821 GV->getPointerAlignment(*DL) < PrefAlign &&
1822 DL->getTypeAllocSize(GV->getValueType()) >=
1823 MinSize + Offset2)
1824 GV->setAlignment(PrefAlign);
1826 // If this is a memcpy (or similar) then we may be able to improve the
1827 // alignment
1828 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1829 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1830 if (DestAlign > MI->getDestAlignment())
1831 MI->setDestAlignment(DestAlign);
1832 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1833 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1834 if (SrcAlign > MTI->getSourceAlignment())
1835 MTI->setSourceAlignment(SrcAlign);
1840 // If we have a cold call site, try to sink addressing computation into the
1841 // cold block. This interacts with our handling for loads and stores to
1842 // ensure that we can fold all uses of a potential addressing computation
1843 // into their uses. TODO: generalize this to work over profiling data
1844 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1845 for (auto &Arg : CI->arg_operands()) {
1846 if (!Arg->getType()->isPointerTy())
1847 continue;
1848 unsigned AS = Arg->getType()->getPointerAddressSpace();
1849 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1852 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1853 if (II) {
1854 switch (II->getIntrinsicID()) {
1855 default: break;
1856 case Intrinsic::experimental_widenable_condition: {
1857 // Give up on future widening oppurtunties so that we can fold away dead
1858 // paths and merge blocks before going into block-local instruction
1859 // selection.
1860 if (II->use_empty()) {
1861 II->eraseFromParent();
1862 return true;
1864 Constant *RetVal = ConstantInt::getTrue(II->getContext());
1865 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1866 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1868 return true;
1870 case Intrinsic::objectsize: {
1871 // Lower all uses of llvm.objectsize.*
1872 Value *RetVal =
1873 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1875 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1876 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1878 return true;
1880 case Intrinsic::is_constant: {
1881 // If is_constant hasn't folded away yet, lower it to false now.
1882 Constant *RetVal = ConstantInt::get(II->getType(), 0);
1883 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1884 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1886 return true;
1888 case Intrinsic::aarch64_stlxr:
1889 case Intrinsic::aarch64_stxr: {
1890 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1891 if (!ExtVal || !ExtVal->hasOneUse() ||
1892 ExtVal->getParent() == CI->getParent())
1893 return false;
1894 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1895 ExtVal->moveBefore(CI);
1896 // Mark this instruction as "inserted by CGP", so that other
1897 // optimizations don't touch it.
1898 InsertedInsts.insert(ExtVal);
1899 return true;
1902 case Intrinsic::launder_invariant_group:
1903 case Intrinsic::strip_invariant_group: {
1904 Value *ArgVal = II->getArgOperand(0);
1905 auto it = LargeOffsetGEPMap.find(II);
1906 if (it != LargeOffsetGEPMap.end()) {
1907 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1908 // Make sure not to have to deal with iterator invalidation
1909 // after possibly adding ArgVal to LargeOffsetGEPMap.
1910 auto GEPs = std::move(it->second);
1911 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1912 LargeOffsetGEPMap.erase(II);
1915 II->replaceAllUsesWith(ArgVal);
1916 II->eraseFromParent();
1917 return true;
1919 case Intrinsic::cttz:
1920 case Intrinsic::ctlz:
1921 // If counting zeros is expensive, try to avoid it.
1922 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1925 if (TLI) {
1926 SmallVector<Value*, 2> PtrOps;
1927 Type *AccessTy;
1928 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1929 while (!PtrOps.empty()) {
1930 Value *PtrVal = PtrOps.pop_back_val();
1931 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1932 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1933 return true;
1938 // From here on out we're working with named functions.
1939 if (!CI->getCalledFunction()) return false;
1941 // Lower all default uses of _chk calls. This is very similar
1942 // to what InstCombineCalls does, but here we are only lowering calls
1943 // to fortified library functions (e.g. __memcpy_chk) that have the default
1944 // "don't know" as the objectsize. Anything else should be left alone.
1945 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1946 if (Value *V = Simplifier.optimizeCall(CI)) {
1947 CI->replaceAllUsesWith(V);
1948 CI->eraseFromParent();
1949 return true;
1952 return false;
1955 /// Look for opportunities to duplicate return instructions to the predecessor
1956 /// to enable tail call optimizations. The case it is currently looking for is:
1957 /// @code
1958 /// bb0:
1959 /// %tmp0 = tail call i32 @f0()
1960 /// br label %return
1961 /// bb1:
1962 /// %tmp1 = tail call i32 @f1()
1963 /// br label %return
1964 /// bb2:
1965 /// %tmp2 = tail call i32 @f2()
1966 /// br label %return
1967 /// return:
1968 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1969 /// ret i32 %retval
1970 /// @endcode
1972 /// =>
1974 /// @code
1975 /// bb0:
1976 /// %tmp0 = tail call i32 @f0()
1977 /// ret i32 %tmp0
1978 /// bb1:
1979 /// %tmp1 = tail call i32 @f1()
1980 /// ret i32 %tmp1
1981 /// bb2:
1982 /// %tmp2 = tail call i32 @f2()
1983 /// ret i32 %tmp2
1984 /// @endcode
1985 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1986 if (!TLI)
1987 return false;
1989 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1990 if (!RetI)
1991 return false;
1993 PHINode *PN = nullptr;
1994 BitCastInst *BCI = nullptr;
1995 Value *V = RetI->getReturnValue();
1996 if (V) {
1997 BCI = dyn_cast<BitCastInst>(V);
1998 if (BCI)
1999 V = BCI->getOperand(0);
2001 PN = dyn_cast<PHINode>(V);
2002 if (!PN)
2003 return false;
2006 if (PN && PN->getParent() != BB)
2007 return false;
2009 // Make sure there are no instructions between the PHI and return, or that the
2010 // return is the first instruction in the block.
2011 if (PN) {
2012 BasicBlock::iterator BI = BB->begin();
2013 // Skip over debug and the bitcast.
2014 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2015 if (&*BI != RetI)
2016 return false;
2017 } else {
2018 BasicBlock::iterator BI = BB->begin();
2019 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2020 if (&*BI != RetI)
2021 return false;
2024 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2025 /// call.
2026 const Function *F = BB->getParent();
2027 SmallVector<BasicBlock*, 4> TailCallBBs;
2028 if (PN) {
2029 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2030 // Look through bitcasts.
2031 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2032 CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2033 BasicBlock *PredBB = PN->getIncomingBlock(I);
2034 // Make sure the phi value is indeed produced by the tail call.
2035 if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2036 TLI->mayBeEmittedAsTailCall(CI) &&
2037 attributesPermitTailCall(F, CI, RetI, *TLI))
2038 TailCallBBs.push_back(PredBB);
2040 } else {
2041 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2042 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2043 if (!VisitedBBs.insert(*PI).second)
2044 continue;
2046 BasicBlock::InstListType &InstList = (*PI)->getInstList();
2047 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2048 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2049 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2050 if (RI == RE)
2051 continue;
2053 CallInst *CI = dyn_cast<CallInst>(&*RI);
2054 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2055 attributesPermitTailCall(F, CI, RetI, *TLI))
2056 TailCallBBs.push_back(*PI);
2060 bool Changed = false;
2061 for (auto const &TailCallBB : TailCallBBs) {
2062 // Make sure the call instruction is followed by an unconditional branch to
2063 // the return block.
2064 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2065 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2066 continue;
2068 // Duplicate the return into TailCallBB.
2069 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2070 ModifiedDT = Changed = true;
2071 ++NumRetsDup;
2074 // If we eliminated all predecessors of the block, delete the block now.
2075 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2076 BB->eraseFromParent();
2078 return Changed;
2081 //===----------------------------------------------------------------------===//
2082 // Memory Optimization
2083 //===----------------------------------------------------------------------===//
2085 namespace {
2087 /// This is an extended version of TargetLowering::AddrMode
2088 /// which holds actual Value*'s for register values.
2089 struct ExtAddrMode : public TargetLowering::AddrMode {
2090 Value *BaseReg = nullptr;
2091 Value *ScaledReg = nullptr;
2092 Value *OriginalValue = nullptr;
2093 bool InBounds = true;
2095 enum FieldName {
2096 NoField = 0x00,
2097 BaseRegField = 0x01,
2098 BaseGVField = 0x02,
2099 BaseOffsField = 0x04,
2100 ScaledRegField = 0x08,
2101 ScaleField = 0x10,
2102 MultipleFields = 0xff
2106 ExtAddrMode() = default;
2108 void print(raw_ostream &OS) const;
2109 void dump() const;
2111 FieldName compare(const ExtAddrMode &other) {
2112 // First check that the types are the same on each field, as differing types
2113 // is something we can't cope with later on.
2114 if (BaseReg && other.BaseReg &&
2115 BaseReg->getType() != other.BaseReg->getType())
2116 return MultipleFields;
2117 if (BaseGV && other.BaseGV &&
2118 BaseGV->getType() != other.BaseGV->getType())
2119 return MultipleFields;
2120 if (ScaledReg && other.ScaledReg &&
2121 ScaledReg->getType() != other.ScaledReg->getType())
2122 return MultipleFields;
2124 // Conservatively reject 'inbounds' mismatches.
2125 if (InBounds != other.InBounds)
2126 return MultipleFields;
2128 // Check each field to see if it differs.
2129 unsigned Result = NoField;
2130 if (BaseReg != other.BaseReg)
2131 Result |= BaseRegField;
2132 if (BaseGV != other.BaseGV)
2133 Result |= BaseGVField;
2134 if (BaseOffs != other.BaseOffs)
2135 Result |= BaseOffsField;
2136 if (ScaledReg != other.ScaledReg)
2137 Result |= ScaledRegField;
2138 // Don't count 0 as being a different scale, because that actually means
2139 // unscaled (which will already be counted by having no ScaledReg).
2140 if (Scale && other.Scale && Scale != other.Scale)
2141 Result |= ScaleField;
2143 if (countPopulation(Result) > 1)
2144 return MultipleFields;
2145 else
2146 return static_cast<FieldName>(Result);
2149 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2150 // with no offset.
2151 bool isTrivial() {
2152 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2153 // trivial if at most one of these terms is nonzero, except that BaseGV and
2154 // BaseReg both being zero actually means a null pointer value, which we
2155 // consider to be 'non-zero' here.
2156 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2159 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2160 switch (Field) {
2161 default:
2162 return nullptr;
2163 case BaseRegField:
2164 return BaseReg;
2165 case BaseGVField:
2166 return BaseGV;
2167 case ScaledRegField:
2168 return ScaledReg;
2169 case BaseOffsField:
2170 return ConstantInt::get(IntPtrTy, BaseOffs);
2174 void SetCombinedField(FieldName Field, Value *V,
2175 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2176 switch (Field) {
2177 default:
2178 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2179 break;
2180 case ExtAddrMode::BaseRegField:
2181 BaseReg = V;
2182 break;
2183 case ExtAddrMode::BaseGVField:
2184 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2185 // in the BaseReg field.
2186 assert(BaseReg == nullptr);
2187 BaseReg = V;
2188 BaseGV = nullptr;
2189 break;
2190 case ExtAddrMode::ScaledRegField:
2191 ScaledReg = V;
2192 // If we have a mix of scaled and unscaled addrmodes then we want scale
2193 // to be the scale and not zero.
2194 if (!Scale)
2195 for (const ExtAddrMode &AM : AddrModes)
2196 if (AM.Scale) {
2197 Scale = AM.Scale;
2198 break;
2200 break;
2201 case ExtAddrMode::BaseOffsField:
2202 // The offset is no longer a constant, so it goes in ScaledReg with a
2203 // scale of 1.
2204 assert(ScaledReg == nullptr);
2205 ScaledReg = V;
2206 Scale = 1;
2207 BaseOffs = 0;
2208 break;
2213 } // end anonymous namespace
2215 #ifndef NDEBUG
2216 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2217 AM.print(OS);
2218 return OS;
2220 #endif
2222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2223 void ExtAddrMode::print(raw_ostream &OS) const {
2224 bool NeedPlus = false;
2225 OS << "[";
2226 if (InBounds)
2227 OS << "inbounds ";
2228 if (BaseGV) {
2229 OS << (NeedPlus ? " + " : "")
2230 << "GV:";
2231 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2232 NeedPlus = true;
2235 if (BaseOffs) {
2236 OS << (NeedPlus ? " + " : "")
2237 << BaseOffs;
2238 NeedPlus = true;
2241 if (BaseReg) {
2242 OS << (NeedPlus ? " + " : "")
2243 << "Base:";
2244 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2245 NeedPlus = true;
2247 if (Scale) {
2248 OS << (NeedPlus ? " + " : "")
2249 << Scale << "*";
2250 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2253 OS << ']';
2256 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2257 print(dbgs());
2258 dbgs() << '\n';
2260 #endif
2262 namespace {
2264 /// This class provides transaction based operation on the IR.
2265 /// Every change made through this class is recorded in the internal state and
2266 /// can be undone (rollback) until commit is called.
2267 class TypePromotionTransaction {
2268 /// This represents the common interface of the individual transaction.
2269 /// Each class implements the logic for doing one specific modification on
2270 /// the IR via the TypePromotionTransaction.
2271 class TypePromotionAction {
2272 protected:
2273 /// The Instruction modified.
2274 Instruction *Inst;
2276 public:
2277 /// Constructor of the action.
2278 /// The constructor performs the related action on the IR.
2279 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2281 virtual ~TypePromotionAction() = default;
2283 /// Undo the modification done by this action.
2284 /// When this method is called, the IR must be in the same state as it was
2285 /// before this action was applied.
2286 /// \pre Undoing the action works if and only if the IR is in the exact same
2287 /// state as it was directly after this action was applied.
2288 virtual void undo() = 0;
2290 /// Advocate every change made by this action.
2291 /// When the results on the IR of the action are to be kept, it is important
2292 /// to call this function, otherwise hidden information may be kept forever.
2293 virtual void commit() {
2294 // Nothing to be done, this action is not doing anything.
2298 /// Utility to remember the position of an instruction.
2299 class InsertionHandler {
2300 /// Position of an instruction.
2301 /// Either an instruction:
2302 /// - Is the first in a basic block: BB is used.
2303 /// - Has a previous instruction: PrevInst is used.
2304 union {
2305 Instruction *PrevInst;
2306 BasicBlock *BB;
2307 } Point;
2309 /// Remember whether or not the instruction had a previous instruction.
2310 bool HasPrevInstruction;
2312 public:
2313 /// Record the position of \p Inst.
2314 InsertionHandler(Instruction *Inst) {
2315 BasicBlock::iterator It = Inst->getIterator();
2316 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2317 if (HasPrevInstruction)
2318 Point.PrevInst = &*--It;
2319 else
2320 Point.BB = Inst->getParent();
2323 /// Insert \p Inst at the recorded position.
2324 void insert(Instruction *Inst) {
2325 if (HasPrevInstruction) {
2326 if (Inst->getParent())
2327 Inst->removeFromParent();
2328 Inst->insertAfter(Point.PrevInst);
2329 } else {
2330 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2331 if (Inst->getParent())
2332 Inst->moveBefore(Position);
2333 else
2334 Inst->insertBefore(Position);
2339 /// Move an instruction before another.
2340 class InstructionMoveBefore : public TypePromotionAction {
2341 /// Original position of the instruction.
2342 InsertionHandler Position;
2344 public:
2345 /// Move \p Inst before \p Before.
2346 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2347 : TypePromotionAction(Inst), Position(Inst) {
2348 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2349 << "\n");
2350 Inst->moveBefore(Before);
2353 /// Move the instruction back to its original position.
2354 void undo() override {
2355 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2356 Position.insert(Inst);
2360 /// Set the operand of an instruction with a new value.
2361 class OperandSetter : public TypePromotionAction {
2362 /// Original operand of the instruction.
2363 Value *Origin;
2365 /// Index of the modified instruction.
2366 unsigned Idx;
2368 public:
2369 /// Set \p Idx operand of \p Inst with \p NewVal.
2370 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2371 : TypePromotionAction(Inst), Idx(Idx) {
2372 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2373 << "for:" << *Inst << "\n"
2374 << "with:" << *NewVal << "\n");
2375 Origin = Inst->getOperand(Idx);
2376 Inst->setOperand(Idx, NewVal);
2379 /// Restore the original value of the instruction.
2380 void undo() override {
2381 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2382 << "for: " << *Inst << "\n"
2383 << "with: " << *Origin << "\n");
2384 Inst->setOperand(Idx, Origin);
2388 /// Hide the operands of an instruction.
2389 /// Do as if this instruction was not using any of its operands.
2390 class OperandsHider : public TypePromotionAction {
2391 /// The list of original operands.
2392 SmallVector<Value *, 4> OriginalValues;
2394 public:
2395 /// Remove \p Inst from the uses of the operands of \p Inst.
2396 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2397 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2398 unsigned NumOpnds = Inst->getNumOperands();
2399 OriginalValues.reserve(NumOpnds);
2400 for (unsigned It = 0; It < NumOpnds; ++It) {
2401 // Save the current operand.
2402 Value *Val = Inst->getOperand(It);
2403 OriginalValues.push_back(Val);
2404 // Set a dummy one.
2405 // We could use OperandSetter here, but that would imply an overhead
2406 // that we are not willing to pay.
2407 Inst->setOperand(It, UndefValue::get(Val->getType()));
2411 /// Restore the original list of uses.
2412 void undo() override {
2413 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2414 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2415 Inst->setOperand(It, OriginalValues[It]);
2419 /// Build a truncate instruction.
2420 class TruncBuilder : public TypePromotionAction {
2421 Value *Val;
2423 public:
2424 /// Build a truncate instruction of \p Opnd producing a \p Ty
2425 /// result.
2426 /// trunc Opnd to Ty.
2427 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2428 IRBuilder<> Builder(Opnd);
2429 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2430 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2433 /// Get the built value.
2434 Value *getBuiltValue() { return Val; }
2436 /// Remove the built instruction.
2437 void undo() override {
2438 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2439 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2440 IVal->eraseFromParent();
2444 /// Build a sign extension instruction.
2445 class SExtBuilder : public TypePromotionAction {
2446 Value *Val;
2448 public:
2449 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2450 /// result.
2451 /// sext Opnd to Ty.
2452 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2453 : TypePromotionAction(InsertPt) {
2454 IRBuilder<> Builder(InsertPt);
2455 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2456 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2459 /// Get the built value.
2460 Value *getBuiltValue() { return Val; }
2462 /// Remove the built instruction.
2463 void undo() override {
2464 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2465 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2466 IVal->eraseFromParent();
2470 /// Build a zero extension instruction.
2471 class ZExtBuilder : public TypePromotionAction {
2472 Value *Val;
2474 public:
2475 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2476 /// result.
2477 /// zext Opnd to Ty.
2478 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2479 : TypePromotionAction(InsertPt) {
2480 IRBuilder<> Builder(InsertPt);
2481 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2482 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2485 /// Get the built value.
2486 Value *getBuiltValue() { return Val; }
2488 /// Remove the built instruction.
2489 void undo() override {
2490 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2491 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2492 IVal->eraseFromParent();
2496 /// Mutate an instruction to another type.
2497 class TypeMutator : public TypePromotionAction {
2498 /// Record the original type.
2499 Type *OrigTy;
2501 public:
2502 /// Mutate the type of \p Inst into \p NewTy.
2503 TypeMutator(Instruction *Inst, Type *NewTy)
2504 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2505 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2506 << "\n");
2507 Inst->mutateType(NewTy);
2510 /// Mutate the instruction back to its original type.
2511 void undo() override {
2512 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2513 << "\n");
2514 Inst->mutateType(OrigTy);
2518 /// Replace the uses of an instruction by another instruction.
2519 class UsesReplacer : public TypePromotionAction {
2520 /// Helper structure to keep track of the replaced uses.
2521 struct InstructionAndIdx {
2522 /// The instruction using the instruction.
2523 Instruction *Inst;
2525 /// The index where this instruction is used for Inst.
2526 unsigned Idx;
2528 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2529 : Inst(Inst), Idx(Idx) {}
2532 /// Keep track of the original uses (pair Instruction, Index).
2533 SmallVector<InstructionAndIdx, 4> OriginalUses;
2534 /// Keep track of the debug users.
2535 SmallVector<DbgValueInst *, 1> DbgValues;
2537 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2539 public:
2540 /// Replace all the use of \p Inst by \p New.
2541 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2542 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2543 << "\n");
2544 // Record the original uses.
2545 for (Use &U : Inst->uses()) {
2546 Instruction *UserI = cast<Instruction>(U.getUser());
2547 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2549 // Record the debug uses separately. They are not in the instruction's
2550 // use list, but they are replaced by RAUW.
2551 findDbgValues(DbgValues, Inst);
2553 // Now, we can replace the uses.
2554 Inst->replaceAllUsesWith(New);
2557 /// Reassign the original uses of Inst to Inst.
2558 void undo() override {
2559 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2560 for (use_iterator UseIt = OriginalUses.begin(),
2561 EndIt = OriginalUses.end();
2562 UseIt != EndIt; ++UseIt) {
2563 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2565 // RAUW has replaced all original uses with references to the new value,
2566 // including the debug uses. Since we are undoing the replacements,
2567 // the original debug uses must also be reinstated to maintain the
2568 // correctness and utility of debug value instructions.
2569 for (auto *DVI: DbgValues) {
2570 LLVMContext &Ctx = Inst->getType()->getContext();
2571 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2572 DVI->setOperand(0, MV);
2577 /// Remove an instruction from the IR.
2578 class InstructionRemover : public TypePromotionAction {
2579 /// Original position of the instruction.
2580 InsertionHandler Inserter;
2582 /// Helper structure to hide all the link to the instruction. In other
2583 /// words, this helps to do as if the instruction was removed.
2584 OperandsHider Hider;
2586 /// Keep track of the uses replaced, if any.
2587 UsesReplacer *Replacer = nullptr;
2589 /// Keep track of instructions removed.
2590 SetOfInstrs &RemovedInsts;
2592 public:
2593 /// Remove all reference of \p Inst and optionally replace all its
2594 /// uses with New.
2595 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2596 /// \pre If !Inst->use_empty(), then New != nullptr
2597 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2598 Value *New = nullptr)
2599 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2600 RemovedInsts(RemovedInsts) {
2601 if (New)
2602 Replacer = new UsesReplacer(Inst, New);
2603 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2604 RemovedInsts.insert(Inst);
2605 /// The instructions removed here will be freed after completing
2606 /// optimizeBlock() for all blocks as we need to keep track of the
2607 /// removed instructions during promotion.
2608 Inst->removeFromParent();
2611 ~InstructionRemover() override { delete Replacer; }
2613 /// Resurrect the instruction and reassign it to the proper uses if
2614 /// new value was provided when build this action.
2615 void undo() override {
2616 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2617 Inserter.insert(Inst);
2618 if (Replacer)
2619 Replacer->undo();
2620 Hider.undo();
2621 RemovedInsts.erase(Inst);
2625 public:
2626 /// Restoration point.
2627 /// The restoration point is a pointer to an action instead of an iterator
2628 /// because the iterator may be invalidated but not the pointer.
2629 using ConstRestorationPt = const TypePromotionAction *;
2631 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2632 : RemovedInsts(RemovedInsts) {}
2634 /// Advocate every changes made in that transaction.
2635 void commit();
2637 /// Undo all the changes made after the given point.
2638 void rollback(ConstRestorationPt Point);
2640 /// Get the current restoration point.
2641 ConstRestorationPt getRestorationPoint() const;
2643 /// \name API for IR modification with state keeping to support rollback.
2644 /// @{
2645 /// Same as Instruction::setOperand.
2646 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2648 /// Same as Instruction::eraseFromParent.
2649 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2651 /// Same as Value::replaceAllUsesWith.
2652 void replaceAllUsesWith(Instruction *Inst, Value *New);
2654 /// Same as Value::mutateType.
2655 void mutateType(Instruction *Inst, Type *NewTy);
2657 /// Same as IRBuilder::createTrunc.
2658 Value *createTrunc(Instruction *Opnd, Type *Ty);
2660 /// Same as IRBuilder::createSExt.
2661 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2663 /// Same as IRBuilder::createZExt.
2664 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2666 /// Same as Instruction::moveBefore.
2667 void moveBefore(Instruction *Inst, Instruction *Before);
2668 /// @}
2670 private:
2671 /// The ordered list of actions made so far.
2672 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2674 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2676 SetOfInstrs &RemovedInsts;
2679 } // end anonymous namespace
2681 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2682 Value *NewVal) {
2683 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2684 Inst, Idx, NewVal));
2687 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2688 Value *NewVal) {
2689 Actions.push_back(
2690 llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2691 Inst, RemovedInsts, NewVal));
2694 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2695 Value *New) {
2696 Actions.push_back(
2697 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2700 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2701 Actions.push_back(
2702 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2705 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2706 Type *Ty) {
2707 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2708 Value *Val = Ptr->getBuiltValue();
2709 Actions.push_back(std::move(Ptr));
2710 return Val;
2713 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2714 Value *Opnd, Type *Ty) {
2715 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2716 Value *Val = Ptr->getBuiltValue();
2717 Actions.push_back(std::move(Ptr));
2718 return Val;
2721 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2722 Value *Opnd, Type *Ty) {
2723 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2724 Value *Val = Ptr->getBuiltValue();
2725 Actions.push_back(std::move(Ptr));
2726 return Val;
2729 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2730 Instruction *Before) {
2731 Actions.push_back(
2732 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2733 Inst, Before));
2736 TypePromotionTransaction::ConstRestorationPt
2737 TypePromotionTransaction::getRestorationPoint() const {
2738 return !Actions.empty() ? Actions.back().get() : nullptr;
2741 void TypePromotionTransaction::commit() {
2742 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2743 ++It)
2744 (*It)->commit();
2745 Actions.clear();
2748 void TypePromotionTransaction::rollback(
2749 TypePromotionTransaction::ConstRestorationPt Point) {
2750 while (!Actions.empty() && Point != Actions.back().get()) {
2751 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2752 Curr->undo();
2756 namespace {
2758 /// A helper class for matching addressing modes.
2760 /// This encapsulates the logic for matching the target-legal addressing modes.
2761 class AddressingModeMatcher {
2762 SmallVectorImpl<Instruction*> &AddrModeInsts;
2763 const TargetLowering &TLI;
2764 const TargetRegisterInfo &TRI;
2765 const DataLayout &DL;
2767 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2768 /// the memory instruction that we're computing this address for.
2769 Type *AccessTy;
2770 unsigned AddrSpace;
2771 Instruction *MemoryInst;
2773 /// This is the addressing mode that we're building up. This is
2774 /// part of the return value of this addressing mode matching stuff.
2775 ExtAddrMode &AddrMode;
2777 /// The instructions inserted by other CodeGenPrepare optimizations.
2778 const SetOfInstrs &InsertedInsts;
2780 /// A map from the instructions to their type before promotion.
2781 InstrToOrigTy &PromotedInsts;
2783 /// The ongoing transaction where every action should be registered.
2784 TypePromotionTransaction &TPT;
2786 // A GEP which has too large offset to be folded into the addressing mode.
2787 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2789 /// This is set to true when we should not do profitability checks.
2790 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2791 bool IgnoreProfitability;
2793 AddressingModeMatcher(
2794 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2795 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2796 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2797 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2798 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2799 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2800 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2801 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2802 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2803 IgnoreProfitability = false;
2806 public:
2807 /// Find the maximal addressing mode that a load/store of V can fold,
2808 /// give an access type of AccessTy. This returns a list of involved
2809 /// instructions in AddrModeInsts.
2810 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2811 /// optimizations.
2812 /// \p PromotedInsts maps the instructions to their type before promotion.
2813 /// \p The ongoing transaction where every action should be registered.
2814 static ExtAddrMode
2815 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2816 SmallVectorImpl<Instruction *> &AddrModeInsts,
2817 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2818 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2819 TypePromotionTransaction &TPT,
2820 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2821 ExtAddrMode Result;
2823 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2824 MemoryInst, Result, InsertedInsts,
2825 PromotedInsts, TPT, LargeOffsetGEP)
2826 .matchAddr(V, 0);
2827 (void)Success; assert(Success && "Couldn't select *anything*?");
2828 return Result;
2831 private:
2832 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2833 bool matchAddr(Value *Addr, unsigned Depth);
2834 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2835 bool *MovedAway = nullptr);
2836 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2837 ExtAddrMode &AMBefore,
2838 ExtAddrMode &AMAfter);
2839 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2840 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2841 Value *PromotedOperand) const;
2844 class PhiNodeSet;
2846 /// An iterator for PhiNodeSet.
2847 class PhiNodeSetIterator {
2848 PhiNodeSet * const Set;
2849 size_t CurrentIndex = 0;
2851 public:
2852 /// The constructor. Start should point to either a valid element, or be equal
2853 /// to the size of the underlying SmallVector of the PhiNodeSet.
2854 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2855 PHINode * operator*() const;
2856 PhiNodeSetIterator& operator++();
2857 bool operator==(const PhiNodeSetIterator &RHS) const;
2858 bool operator!=(const PhiNodeSetIterator &RHS) const;
2861 /// Keeps a set of PHINodes.
2863 /// This is a minimal set implementation for a specific use case:
2864 /// It is very fast when there are very few elements, but also provides good
2865 /// performance when there are many. It is similar to SmallPtrSet, but also
2866 /// provides iteration by insertion order, which is deterministic and stable
2867 /// across runs. It is also similar to SmallSetVector, but provides removing
2868 /// elements in O(1) time. This is achieved by not actually removing the element
2869 /// from the underlying vector, so comes at the cost of using more memory, but
2870 /// that is fine, since PhiNodeSets are used as short lived objects.
2871 class PhiNodeSet {
2872 friend class PhiNodeSetIterator;
2874 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2875 using iterator = PhiNodeSetIterator;
2877 /// Keeps the elements in the order of their insertion in the underlying
2878 /// vector. To achieve constant time removal, it never deletes any element.
2879 SmallVector<PHINode *, 32> NodeList;
2881 /// Keeps the elements in the underlying set implementation. This (and not the
2882 /// NodeList defined above) is the source of truth on whether an element
2883 /// is actually in the collection.
2884 MapType NodeMap;
2886 /// Points to the first valid (not deleted) element when the set is not empty
2887 /// and the value is not zero. Equals to the size of the underlying vector
2888 /// when the set is empty. When the value is 0, as in the beginning, the
2889 /// first element may or may not be valid.
2890 size_t FirstValidElement = 0;
2892 public:
2893 /// Inserts a new element to the collection.
2894 /// \returns true if the element is actually added, i.e. was not in the
2895 /// collection before the operation.
2896 bool insert(PHINode *Ptr) {
2897 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2898 NodeList.push_back(Ptr);
2899 return true;
2901 return false;
2904 /// Removes the element from the collection.
2905 /// \returns whether the element is actually removed, i.e. was in the
2906 /// collection before the operation.
2907 bool erase(PHINode *Ptr) {
2908 auto it = NodeMap.find(Ptr);
2909 if (it != NodeMap.end()) {
2910 NodeMap.erase(Ptr);
2911 SkipRemovedElements(FirstValidElement);
2912 return true;
2914 return false;
2917 /// Removes all elements and clears the collection.
2918 void clear() {
2919 NodeMap.clear();
2920 NodeList.clear();
2921 FirstValidElement = 0;
2924 /// \returns an iterator that will iterate the elements in the order of
2925 /// insertion.
2926 iterator begin() {
2927 if (FirstValidElement == 0)
2928 SkipRemovedElements(FirstValidElement);
2929 return PhiNodeSetIterator(this, FirstValidElement);
2932 /// \returns an iterator that points to the end of the collection.
2933 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2935 /// Returns the number of elements in the collection.
2936 size_t size() const {
2937 return NodeMap.size();
2940 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2941 size_t count(PHINode *Ptr) const {
2942 return NodeMap.count(Ptr);
2945 private:
2946 /// Updates the CurrentIndex so that it will point to a valid element.
2948 /// If the element of NodeList at CurrentIndex is valid, it does not
2949 /// change it. If there are no more valid elements, it updates CurrentIndex
2950 /// to point to the end of the NodeList.
2951 void SkipRemovedElements(size_t &CurrentIndex) {
2952 while (CurrentIndex < NodeList.size()) {
2953 auto it = NodeMap.find(NodeList[CurrentIndex]);
2954 // If the element has been deleted and added again later, NodeMap will
2955 // point to a different index, so CurrentIndex will still be invalid.
2956 if (it != NodeMap.end() && it->second == CurrentIndex)
2957 break;
2958 ++CurrentIndex;
2963 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2964 : Set(Set), CurrentIndex(Start) {}
2966 PHINode * PhiNodeSetIterator::operator*() const {
2967 assert(CurrentIndex < Set->NodeList.size() &&
2968 "PhiNodeSet access out of range");
2969 return Set->NodeList[CurrentIndex];
2972 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2973 assert(CurrentIndex < Set->NodeList.size() &&
2974 "PhiNodeSet access out of range");
2975 ++CurrentIndex;
2976 Set->SkipRemovedElements(CurrentIndex);
2977 return *this;
2980 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2981 return CurrentIndex == RHS.CurrentIndex;
2984 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2985 return !((*this) == RHS);
2988 /// Keep track of simplification of Phi nodes.
2989 /// Accept the set of all phi nodes and erase phi node from this set
2990 /// if it is simplified.
2991 class SimplificationTracker {
2992 DenseMap<Value *, Value *> Storage;
2993 const SimplifyQuery &SQ;
2994 // Tracks newly created Phi nodes. The elements are iterated by insertion
2995 // order.
2996 PhiNodeSet AllPhiNodes;
2997 // Tracks newly created Select nodes.
2998 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3000 public:
3001 SimplificationTracker(const SimplifyQuery &sq)
3002 : SQ(sq) {}
3004 Value *Get(Value *V) {
3005 do {
3006 auto SV = Storage.find(V);
3007 if (SV == Storage.end())
3008 return V;
3009 V = SV->second;
3010 } while (true);
3013 Value *Simplify(Value *Val) {
3014 SmallVector<Value *, 32> WorkList;
3015 SmallPtrSet<Value *, 32> Visited;
3016 WorkList.push_back(Val);
3017 while (!WorkList.empty()) {
3018 auto P = WorkList.pop_back_val();
3019 if (!Visited.insert(P).second)
3020 continue;
3021 if (auto *PI = dyn_cast<Instruction>(P))
3022 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3023 for (auto *U : PI->users())
3024 WorkList.push_back(cast<Value>(U));
3025 Put(PI, V);
3026 PI->replaceAllUsesWith(V);
3027 if (auto *PHI = dyn_cast<PHINode>(PI))
3028 AllPhiNodes.erase(PHI);
3029 if (auto *Select = dyn_cast<SelectInst>(PI))
3030 AllSelectNodes.erase(Select);
3031 PI->eraseFromParent();
3034 return Get(Val);
3037 void Put(Value *From, Value *To) {
3038 Storage.insert({ From, To });
3041 void ReplacePhi(PHINode *From, PHINode *To) {
3042 Value* OldReplacement = Get(From);
3043 while (OldReplacement != From) {
3044 From = To;
3045 To = dyn_cast<PHINode>(OldReplacement);
3046 OldReplacement = Get(From);
3048 assert(Get(To) == To && "Replacement PHI node is already replaced.");
3049 Put(From, To);
3050 From->replaceAllUsesWith(To);
3051 AllPhiNodes.erase(From);
3052 From->eraseFromParent();
3055 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3057 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3059 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3061 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3063 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3065 void destroyNewNodes(Type *CommonType) {
3066 // For safe erasing, replace the uses with dummy value first.
3067 auto Dummy = UndefValue::get(CommonType);
3068 for (auto I : AllPhiNodes) {
3069 I->replaceAllUsesWith(Dummy);
3070 I->eraseFromParent();
3072 AllPhiNodes.clear();
3073 for (auto I : AllSelectNodes) {
3074 I->replaceAllUsesWith(Dummy);
3075 I->eraseFromParent();
3077 AllSelectNodes.clear();
3081 /// A helper class for combining addressing modes.
3082 class AddressingModeCombiner {
3083 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3084 typedef std::pair<PHINode *, PHINode *> PHIPair;
3086 private:
3087 /// The addressing modes we've collected.
3088 SmallVector<ExtAddrMode, 16> AddrModes;
3090 /// The field in which the AddrModes differ, when we have more than one.
3091 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3093 /// Are the AddrModes that we have all just equal to their original values?
3094 bool AllAddrModesTrivial = true;
3096 /// Common Type for all different fields in addressing modes.
3097 Type *CommonType;
3099 /// SimplifyQuery for simplifyInstruction utility.
3100 const SimplifyQuery &SQ;
3102 /// Original Address.
3103 Value *Original;
3105 public:
3106 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3107 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3109 /// Get the combined AddrMode
3110 const ExtAddrMode &getAddrMode() const {
3111 return AddrModes[0];
3114 /// Add a new AddrMode if it's compatible with the AddrModes we already
3115 /// have.
3116 /// \return True iff we succeeded in doing so.
3117 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3118 // Take note of if we have any non-trivial AddrModes, as we need to detect
3119 // when all AddrModes are trivial as then we would introduce a phi or select
3120 // which just duplicates what's already there.
3121 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3123 // If this is the first addrmode then everything is fine.
3124 if (AddrModes.empty()) {
3125 AddrModes.emplace_back(NewAddrMode);
3126 return true;
3129 // Figure out how different this is from the other address modes, which we
3130 // can do just by comparing against the first one given that we only care
3131 // about the cumulative difference.
3132 ExtAddrMode::FieldName ThisDifferentField =
3133 AddrModes[0].compare(NewAddrMode);
3134 if (DifferentField == ExtAddrMode::NoField)
3135 DifferentField = ThisDifferentField;
3136 else if (DifferentField != ThisDifferentField)
3137 DifferentField = ExtAddrMode::MultipleFields;
3139 // If NewAddrMode differs in more than one dimension we cannot handle it.
3140 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3142 // If Scale Field is different then we reject.
3143 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3145 // We also must reject the case when base offset is different and
3146 // scale reg is not null, we cannot handle this case due to merge of
3147 // different offsets will be used as ScaleReg.
3148 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3149 !NewAddrMode.ScaledReg);
3151 // We also must reject the case when GV is different and BaseReg installed
3152 // due to we want to use base reg as a merge of GV values.
3153 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3154 !NewAddrMode.HasBaseReg);
3156 // Even if NewAddMode is the same we still need to collect it due to
3157 // original value is different. And later we will need all original values
3158 // as anchors during finding the common Phi node.
3159 if (CanHandle)
3160 AddrModes.emplace_back(NewAddrMode);
3161 else
3162 AddrModes.clear();
3164 return CanHandle;
3167 /// Combine the addressing modes we've collected into a single
3168 /// addressing mode.
3169 /// \return True iff we successfully combined them or we only had one so
3170 /// didn't need to combine them anyway.
3171 bool combineAddrModes() {
3172 // If we have no AddrModes then they can't be combined.
3173 if (AddrModes.size() == 0)
3174 return false;
3176 // A single AddrMode can trivially be combined.
3177 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3178 return true;
3180 // If the AddrModes we collected are all just equal to the value they are
3181 // derived from then combining them wouldn't do anything useful.
3182 if (AllAddrModesTrivial)
3183 return false;
3185 if (!addrModeCombiningAllowed())
3186 return false;
3188 // Build a map between <original value, basic block where we saw it> to
3189 // value of base register.
3190 // Bail out if there is no common type.
3191 FoldAddrToValueMapping Map;
3192 if (!initializeMap(Map))
3193 return false;
3195 Value *CommonValue = findCommon(Map);
3196 if (CommonValue)
3197 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3198 return CommonValue != nullptr;
3201 private:
3202 /// Initialize Map with anchor values. For address seen
3203 /// we set the value of different field saw in this address.
3204 /// At the same time we find a common type for different field we will
3205 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3206 /// Return false if there is no common type found.
3207 bool initializeMap(FoldAddrToValueMapping &Map) {
3208 // Keep track of keys where the value is null. We will need to replace it
3209 // with constant null when we know the common type.
3210 SmallVector<Value *, 2> NullValue;
3211 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3212 for (auto &AM : AddrModes) {
3213 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3214 if (DV) {
3215 auto *Type = DV->getType();
3216 if (CommonType && CommonType != Type)
3217 return false;
3218 CommonType = Type;
3219 Map[AM.OriginalValue] = DV;
3220 } else {
3221 NullValue.push_back(AM.OriginalValue);
3224 assert(CommonType && "At least one non-null value must be!");
3225 for (auto *V : NullValue)
3226 Map[V] = Constant::getNullValue(CommonType);
3227 return true;
3230 /// We have mapping between value A and other value B where B was a field in
3231 /// addressing mode represented by A. Also we have an original value C
3232 /// representing an address we start with. Traversing from C through phi and
3233 /// selects we ended up with A's in a map. This utility function tries to find
3234 /// a value V which is a field in addressing mode C and traversing through phi
3235 /// nodes and selects we will end up in corresponded values B in a map.
3236 /// The utility will create a new Phi/Selects if needed.
3237 // The simple example looks as follows:
3238 // BB1:
3239 // p1 = b1 + 40
3240 // br cond BB2, BB3
3241 // BB2:
3242 // p2 = b2 + 40
3243 // br BB3
3244 // BB3:
3245 // p = phi [p1, BB1], [p2, BB2]
3246 // v = load p
3247 // Map is
3248 // p1 -> b1
3249 // p2 -> b2
3250 // Request is
3251 // p -> ?
3252 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3253 Value *findCommon(FoldAddrToValueMapping &Map) {
3254 // Tracks the simplification of newly created phi nodes. The reason we use
3255 // this mapping is because we will add new created Phi nodes in AddrToBase.
3256 // Simplification of Phi nodes is recursive, so some Phi node may
3257 // be simplified after we added it to AddrToBase. In reality this
3258 // simplification is possible only if original phi/selects were not
3259 // simplified yet.
3260 // Using this mapping we can find the current value in AddrToBase.
3261 SimplificationTracker ST(SQ);
3263 // First step, DFS to create PHI nodes for all intermediate blocks.
3264 // Also fill traverse order for the second step.
3265 SmallVector<Value *, 32> TraverseOrder;
3266 InsertPlaceholders(Map, TraverseOrder, ST);
3268 // Second Step, fill new nodes by merged values and simplify if possible.
3269 FillPlaceholders(Map, TraverseOrder, ST);
3271 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3272 ST.destroyNewNodes(CommonType);
3273 return nullptr;
3276 // Now we'd like to match New Phi nodes to existed ones.
3277 unsigned PhiNotMatchedCount = 0;
3278 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3279 ST.destroyNewNodes(CommonType);
3280 return nullptr;
3283 auto *Result = ST.Get(Map.find(Original)->second);
3284 if (Result) {
3285 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3286 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3288 return Result;
3291 /// Try to match PHI node to Candidate.
3292 /// Matcher tracks the matched Phi nodes.
3293 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3294 SmallSetVector<PHIPair, 8> &Matcher,
3295 PhiNodeSet &PhiNodesToMatch) {
3296 SmallVector<PHIPair, 8> WorkList;
3297 Matcher.insert({ PHI, Candidate });
3298 SmallSet<PHINode *, 8> MatchedPHIs;
3299 MatchedPHIs.insert(PHI);
3300 WorkList.push_back({ PHI, Candidate });
3301 SmallSet<PHIPair, 8> Visited;
3302 while (!WorkList.empty()) {
3303 auto Item = WorkList.pop_back_val();
3304 if (!Visited.insert(Item).second)
3305 continue;
3306 // We iterate over all incoming values to Phi to compare them.
3307 // If values are different and both of them Phi and the first one is a
3308 // Phi we added (subject to match) and both of them is in the same basic
3309 // block then we can match our pair if values match. So we state that
3310 // these values match and add it to work list to verify that.
3311 for (auto B : Item.first->blocks()) {
3312 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3313 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3314 if (FirstValue == SecondValue)
3315 continue;
3317 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3318 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3320 // One of them is not Phi or
3321 // The first one is not Phi node from the set we'd like to match or
3322 // Phi nodes from different basic blocks then
3323 // we will not be able to match.
3324 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3325 FirstPhi->getParent() != SecondPhi->getParent())
3326 return false;
3328 // If we already matched them then continue.
3329 if (Matcher.count({ FirstPhi, SecondPhi }))
3330 continue;
3331 // So the values are different and does not match. So we need them to
3332 // match. (But we register no more than one match per PHI node, so that
3333 // we won't later try to replace them twice.)
3334 if (!MatchedPHIs.insert(FirstPhi).second)
3335 Matcher.insert({ FirstPhi, SecondPhi });
3336 // But me must check it.
3337 WorkList.push_back({ FirstPhi, SecondPhi });
3340 return true;
3343 /// For the given set of PHI nodes (in the SimplificationTracker) try
3344 /// to find their equivalents.
3345 /// Returns false if this matching fails and creation of new Phi is disabled.
3346 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3347 unsigned &PhiNotMatchedCount) {
3348 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3349 // order, so the replacements (ReplacePhi) are also done in a deterministic
3350 // order.
3351 SmallSetVector<PHIPair, 8> Matched;
3352 SmallPtrSet<PHINode *, 8> WillNotMatch;
3353 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3354 while (PhiNodesToMatch.size()) {
3355 PHINode *PHI = *PhiNodesToMatch.begin();
3357 // Add us, if no Phi nodes in the basic block we do not match.
3358 WillNotMatch.clear();
3359 WillNotMatch.insert(PHI);
3361 // Traverse all Phis until we found equivalent or fail to do that.
3362 bool IsMatched = false;
3363 for (auto &P : PHI->getParent()->phis()) {
3364 if (&P == PHI)
3365 continue;
3366 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3367 break;
3368 // If it does not match, collect all Phi nodes from matcher.
3369 // if we end up with no match, them all these Phi nodes will not match
3370 // later.
3371 for (auto M : Matched)
3372 WillNotMatch.insert(M.first);
3373 Matched.clear();
3375 if (IsMatched) {
3376 // Replace all matched values and erase them.
3377 for (auto MV : Matched)
3378 ST.ReplacePhi(MV.first, MV.second);
3379 Matched.clear();
3380 continue;
3382 // If we are not allowed to create new nodes then bail out.
3383 if (!AllowNewPhiNodes)
3384 return false;
3385 // Just remove all seen values in matcher. They will not match anything.
3386 PhiNotMatchedCount += WillNotMatch.size();
3387 for (auto *P : WillNotMatch)
3388 PhiNodesToMatch.erase(P);
3390 return true;
3392 /// Fill the placeholders with values from predecessors and simplify them.
3393 void FillPlaceholders(FoldAddrToValueMapping &Map,
3394 SmallVectorImpl<Value *> &TraverseOrder,
3395 SimplificationTracker &ST) {
3396 while (!TraverseOrder.empty()) {
3397 Value *Current = TraverseOrder.pop_back_val();
3398 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3399 Value *V = Map[Current];
3401 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3402 // CurrentValue also must be Select.
3403 auto *CurrentSelect = cast<SelectInst>(Current);
3404 auto *TrueValue = CurrentSelect->getTrueValue();
3405 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3406 Select->setTrueValue(ST.Get(Map[TrueValue]));
3407 auto *FalseValue = CurrentSelect->getFalseValue();
3408 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3409 Select->setFalseValue(ST.Get(Map[FalseValue]));
3410 } else {
3411 // Must be a Phi node then.
3412 PHINode *PHI = cast<PHINode>(V);
3413 auto *CurrentPhi = dyn_cast<PHINode>(Current);
3414 // Fill the Phi node with values from predecessors.
3415 for (auto B : predecessors(PHI->getParent())) {
3416 Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3417 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3418 PHI->addIncoming(ST.Get(Map[PV]), B);
3421 Map[Current] = ST.Simplify(V);
3425 /// Starting from original value recursively iterates over def-use chain up to
3426 /// known ending values represented in a map. For each traversed phi/select
3427 /// inserts a placeholder Phi or Select.
3428 /// Reports all new created Phi/Select nodes by adding them to set.
3429 /// Also reports and order in what values have been traversed.
3430 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3431 SmallVectorImpl<Value *> &TraverseOrder,
3432 SimplificationTracker &ST) {
3433 SmallVector<Value *, 32> Worklist;
3434 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3435 "Address must be a Phi or Select node");
3436 auto *Dummy = UndefValue::get(CommonType);
3437 Worklist.push_back(Original);
3438 while (!Worklist.empty()) {
3439 Value *Current = Worklist.pop_back_val();
3440 // if it is already visited or it is an ending value then skip it.
3441 if (Map.find(Current) != Map.end())
3442 continue;
3443 TraverseOrder.push_back(Current);
3445 // CurrentValue must be a Phi node or select. All others must be covered
3446 // by anchors.
3447 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3448 // Is it OK to get metadata from OrigSelect?!
3449 // Create a Select placeholder with dummy value.
3450 SelectInst *Select = SelectInst::Create(
3451 CurrentSelect->getCondition(), Dummy, Dummy,
3452 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3453 Map[Current] = Select;
3454 ST.insertNewSelect(Select);
3455 // We are interested in True and False values.
3456 Worklist.push_back(CurrentSelect->getTrueValue());
3457 Worklist.push_back(CurrentSelect->getFalseValue());
3458 } else {
3459 // It must be a Phi node then.
3460 PHINode *CurrentPhi = cast<PHINode>(Current);
3461 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3462 PHINode *PHI =
3463 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3464 Map[Current] = PHI;
3465 ST.insertNewPhi(PHI);
3466 for (Value *P : CurrentPhi->incoming_values())
3467 Worklist.push_back(P);
3472 bool addrModeCombiningAllowed() {
3473 if (DisableComplexAddrModes)
3474 return false;
3475 switch (DifferentField) {
3476 default:
3477 return false;
3478 case ExtAddrMode::BaseRegField:
3479 return AddrSinkCombineBaseReg;
3480 case ExtAddrMode::BaseGVField:
3481 return AddrSinkCombineBaseGV;
3482 case ExtAddrMode::BaseOffsField:
3483 return AddrSinkCombineBaseOffs;
3484 case ExtAddrMode::ScaledRegField:
3485 return AddrSinkCombineScaledReg;
3489 } // end anonymous namespace
3491 /// Try adding ScaleReg*Scale to the current addressing mode.
3492 /// Return true and update AddrMode if this addr mode is legal for the target,
3493 /// false if not.
3494 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3495 unsigned Depth) {
3496 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3497 // mode. Just process that directly.
3498 if (Scale == 1)
3499 return matchAddr(ScaleReg, Depth);
3501 // If the scale is 0, it takes nothing to add this.
3502 if (Scale == 0)
3503 return true;
3505 // If we already have a scale of this value, we can add to it, otherwise, we
3506 // need an available scale field.
3507 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3508 return false;
3510 ExtAddrMode TestAddrMode = AddrMode;
3512 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3513 // [A+B + A*7] -> [B+A*8].
3514 TestAddrMode.Scale += Scale;
3515 TestAddrMode.ScaledReg = ScaleReg;
3517 // If the new address isn't legal, bail out.
3518 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3519 return false;
3521 // It was legal, so commit it.
3522 AddrMode = TestAddrMode;
3524 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3525 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3526 // X*Scale + C*Scale to addr mode.
3527 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3528 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3529 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3530 TestAddrMode.InBounds = false;
3531 TestAddrMode.ScaledReg = AddLHS;
3532 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3534 // If this addressing mode is legal, commit it and remember that we folded
3535 // this instruction.
3536 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3537 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3538 AddrMode = TestAddrMode;
3539 return true;
3543 // Otherwise, not (x+c)*scale, just return what we have.
3544 return true;
3547 /// This is a little filter, which returns true if an addressing computation
3548 /// involving I might be folded into a load/store accessing it.
3549 /// This doesn't need to be perfect, but needs to accept at least
3550 /// the set of instructions that MatchOperationAddr can.
3551 static bool MightBeFoldableInst(Instruction *I) {
3552 switch (I->getOpcode()) {
3553 case Instruction::BitCast:
3554 case Instruction::AddrSpaceCast:
3555 // Don't touch identity bitcasts.
3556 if (I->getType() == I->getOperand(0)->getType())
3557 return false;
3558 return I->getType()->isIntOrPtrTy();
3559 case Instruction::PtrToInt:
3560 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3561 return true;
3562 case Instruction::IntToPtr:
3563 // We know the input is intptr_t, so this is foldable.
3564 return true;
3565 case Instruction::Add:
3566 return true;
3567 case Instruction::Mul:
3568 case Instruction::Shl:
3569 // Can only handle X*C and X << C.
3570 return isa<ConstantInt>(I->getOperand(1));
3571 case Instruction::GetElementPtr:
3572 return true;
3573 default:
3574 return false;
3578 /// Check whether or not \p Val is a legal instruction for \p TLI.
3579 /// \note \p Val is assumed to be the product of some type promotion.
3580 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3581 /// to be legal, as the non-promoted value would have had the same state.
3582 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3583 const DataLayout &DL, Value *Val) {
3584 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3585 if (!PromotedInst)
3586 return false;
3587 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3588 // If the ISDOpcode is undefined, it was undefined before the promotion.
3589 if (!ISDOpcode)
3590 return true;
3591 // Otherwise, check if the promoted instruction is legal or not.
3592 return TLI.isOperationLegalOrCustom(
3593 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3596 namespace {
3598 /// Hepler class to perform type promotion.
3599 class TypePromotionHelper {
3600 /// Utility function to add a promoted instruction \p ExtOpnd to
3601 /// \p PromotedInsts and record the type of extension we have seen.
3602 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3603 Instruction *ExtOpnd,
3604 bool IsSExt) {
3605 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3606 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3607 if (It != PromotedInsts.end()) {
3608 // If the new extension is same as original, the information in
3609 // PromotedInsts[ExtOpnd] is still correct.
3610 if (It->second.getInt() == ExtTy)
3611 return;
3613 // Now the new extension is different from old extension, we make
3614 // the type information invalid by setting extension type to
3615 // BothExtension.
3616 ExtTy = BothExtension;
3618 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3621 /// Utility function to query the original type of instruction \p Opnd
3622 /// with a matched extension type. If the extension doesn't match, we
3623 /// cannot use the information we had on the original type.
3624 /// BothExtension doesn't match any extension type.
3625 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3626 Instruction *Opnd,
3627 bool IsSExt) {
3628 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3629 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3630 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3631 return It->second.getPointer();
3632 return nullptr;
3635 /// Utility function to check whether or not a sign or zero extension
3636 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3637 /// either using the operands of \p Inst or promoting \p Inst.
3638 /// The type of the extension is defined by \p IsSExt.
3639 /// In other words, check if:
3640 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3641 /// #1 Promotion applies:
3642 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3643 /// #2 Operand reuses:
3644 /// ext opnd1 to ConsideredExtType.
3645 /// \p PromotedInsts maps the instructions to their type before promotion.
3646 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3647 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3649 /// Utility function to determine if \p OpIdx should be promoted when
3650 /// promoting \p Inst.
3651 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3652 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3655 /// Utility function to promote the operand of \p Ext when this
3656 /// operand is a promotable trunc or sext or zext.
3657 /// \p PromotedInsts maps the instructions to their type before promotion.
3658 /// \p CreatedInstsCost[out] contains the cost of all instructions
3659 /// created to promote the operand of Ext.
3660 /// Newly added extensions are inserted in \p Exts.
3661 /// Newly added truncates are inserted in \p Truncs.
3662 /// Should never be called directly.
3663 /// \return The promoted value which is used instead of Ext.
3664 static Value *promoteOperandForTruncAndAnyExt(
3665 Instruction *Ext, TypePromotionTransaction &TPT,
3666 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3667 SmallVectorImpl<Instruction *> *Exts,
3668 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3670 /// Utility function to promote the operand of \p Ext when this
3671 /// operand is promotable and is not a supported trunc or sext.
3672 /// \p PromotedInsts maps the instructions to their type before promotion.
3673 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3674 /// created to promote the operand of Ext.
3675 /// Newly added extensions are inserted in \p Exts.
3676 /// Newly added truncates are inserted in \p Truncs.
3677 /// Should never be called directly.
3678 /// \return The promoted value which is used instead of Ext.
3679 static Value *promoteOperandForOther(Instruction *Ext,
3680 TypePromotionTransaction &TPT,
3681 InstrToOrigTy &PromotedInsts,
3682 unsigned &CreatedInstsCost,
3683 SmallVectorImpl<Instruction *> *Exts,
3684 SmallVectorImpl<Instruction *> *Truncs,
3685 const TargetLowering &TLI, bool IsSExt);
3687 /// \see promoteOperandForOther.
3688 static Value *signExtendOperandForOther(
3689 Instruction *Ext, TypePromotionTransaction &TPT,
3690 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3691 SmallVectorImpl<Instruction *> *Exts,
3692 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3693 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3694 Exts, Truncs, TLI, true);
3697 /// \see promoteOperandForOther.
3698 static Value *zeroExtendOperandForOther(
3699 Instruction *Ext, TypePromotionTransaction &TPT,
3700 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3701 SmallVectorImpl<Instruction *> *Exts,
3702 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3703 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3704 Exts, Truncs, TLI, false);
3707 public:
3708 /// Type for the utility function that promotes the operand of Ext.
3709 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3710 InstrToOrigTy &PromotedInsts,
3711 unsigned &CreatedInstsCost,
3712 SmallVectorImpl<Instruction *> *Exts,
3713 SmallVectorImpl<Instruction *> *Truncs,
3714 const TargetLowering &TLI);
3716 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3717 /// action to promote the operand of \p Ext instead of using Ext.
3718 /// \return NULL if no promotable action is possible with the current
3719 /// sign extension.
3720 /// \p InsertedInsts keeps track of all the instructions inserted by the
3721 /// other CodeGenPrepare optimizations. This information is important
3722 /// because we do not want to promote these instructions as CodeGenPrepare
3723 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3724 /// \p PromotedInsts maps the instructions to their type before promotion.
3725 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3726 const TargetLowering &TLI,
3727 const InstrToOrigTy &PromotedInsts);
3730 } // end anonymous namespace
3732 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3733 Type *ConsideredExtType,
3734 const InstrToOrigTy &PromotedInsts,
3735 bool IsSExt) {
3736 // The promotion helper does not know how to deal with vector types yet.
3737 // To be able to fix that, we would need to fix the places where we
3738 // statically extend, e.g., constants and such.
3739 if (Inst->getType()->isVectorTy())
3740 return false;
3742 // We can always get through zext.
3743 if (isa<ZExtInst>(Inst))
3744 return true;
3746 // sext(sext) is ok too.
3747 if (IsSExt && isa<SExtInst>(Inst))
3748 return true;
3750 // We can get through binary operator, if it is legal. In other words, the
3751 // binary operator must have a nuw or nsw flag.
3752 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3753 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3754 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3755 (IsSExt && BinOp->hasNoSignedWrap())))
3756 return true;
3758 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3759 if ((Inst->getOpcode() == Instruction::And ||
3760 Inst->getOpcode() == Instruction::Or))
3761 return true;
3763 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3764 if (Inst->getOpcode() == Instruction::Xor) {
3765 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3766 // Make sure it is not a NOT.
3767 if (Cst && !Cst->getValue().isAllOnesValue())
3768 return true;
3771 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3772 // It may change a poisoned value into a regular value, like
3773 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3774 // poisoned value regular value
3775 // It should be OK since undef covers valid value.
3776 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3777 return true;
3779 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3780 // It may change a poisoned value into a regular value, like
3781 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3782 // poisoned value regular value
3783 // It should be OK since undef covers valid value.
3784 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3785 const Instruction *ExtInst =
3786 dyn_cast<const Instruction>(*Inst->user_begin());
3787 if (ExtInst->hasOneUse()) {
3788 const Instruction *AndInst =
3789 dyn_cast<const Instruction>(*ExtInst->user_begin());
3790 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3791 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3792 if (Cst &&
3793 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3794 return true;
3799 // Check if we can do the following simplification.
3800 // ext(trunc(opnd)) --> ext(opnd)
3801 if (!isa<TruncInst>(Inst))
3802 return false;
3804 Value *OpndVal = Inst->getOperand(0);
3805 // Check if we can use this operand in the extension.
3806 // If the type is larger than the result type of the extension, we cannot.
3807 if (!OpndVal->getType()->isIntegerTy() ||
3808 OpndVal->getType()->getIntegerBitWidth() >
3809 ConsideredExtType->getIntegerBitWidth())
3810 return false;
3812 // If the operand of the truncate is not an instruction, we will not have
3813 // any information on the dropped bits.
3814 // (Actually we could for constant but it is not worth the extra logic).
3815 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3816 if (!Opnd)
3817 return false;
3819 // Check if the source of the type is narrow enough.
3820 // I.e., check that trunc just drops extended bits of the same kind of
3821 // the extension.
3822 // #1 get the type of the operand and check the kind of the extended bits.
3823 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3824 if (OpndType)
3826 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3827 OpndType = Opnd->getOperand(0)->getType();
3828 else
3829 return false;
3831 // #2 check that the truncate just drops extended bits.
3832 return Inst->getType()->getIntegerBitWidth() >=
3833 OpndType->getIntegerBitWidth();
3836 TypePromotionHelper::Action TypePromotionHelper::getAction(
3837 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3838 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3839 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3840 "Unexpected instruction type");
3841 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3842 Type *ExtTy = Ext->getType();
3843 bool IsSExt = isa<SExtInst>(Ext);
3844 // If the operand of the extension is not an instruction, we cannot
3845 // get through.
3846 // If it, check we can get through.
3847 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3848 return nullptr;
3850 // Do not promote if the operand has been added by codegenprepare.
3851 // Otherwise, it means we are undoing an optimization that is likely to be
3852 // redone, thus causing potential infinite loop.
3853 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3854 return nullptr;
3856 // SExt or Trunc instructions.
3857 // Return the related handler.
3858 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3859 isa<ZExtInst>(ExtOpnd))
3860 return promoteOperandForTruncAndAnyExt;
3862 // Regular instruction.
3863 // Abort early if we will have to insert non-free instructions.
3864 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3865 return nullptr;
3866 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3869 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3870 Instruction *SExt, TypePromotionTransaction &TPT,
3871 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3872 SmallVectorImpl<Instruction *> *Exts,
3873 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3874 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3875 // get through it and this method should not be called.
3876 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3877 Value *ExtVal = SExt;
3878 bool HasMergedNonFreeExt = false;
3879 if (isa<ZExtInst>(SExtOpnd)) {
3880 // Replace s|zext(zext(opnd))
3881 // => zext(opnd).
3882 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3883 Value *ZExt =
3884 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3885 TPT.replaceAllUsesWith(SExt, ZExt);
3886 TPT.eraseInstruction(SExt);
3887 ExtVal = ZExt;
3888 } else {
3889 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3890 // => z|sext(opnd).
3891 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3893 CreatedInstsCost = 0;
3895 // Remove dead code.
3896 if (SExtOpnd->use_empty())
3897 TPT.eraseInstruction(SExtOpnd);
3899 // Check if the extension is still needed.
3900 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3901 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3902 if (ExtInst) {
3903 if (Exts)
3904 Exts->push_back(ExtInst);
3905 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3907 return ExtVal;
3910 // At this point we have: ext ty opnd to ty.
3911 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3912 Value *NextVal = ExtInst->getOperand(0);
3913 TPT.eraseInstruction(ExtInst, NextVal);
3914 return NextVal;
3917 Value *TypePromotionHelper::promoteOperandForOther(
3918 Instruction *Ext, TypePromotionTransaction &TPT,
3919 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3920 SmallVectorImpl<Instruction *> *Exts,
3921 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3922 bool IsSExt) {
3923 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3924 // get through it and this method should not be called.
3925 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3926 CreatedInstsCost = 0;
3927 if (!ExtOpnd->hasOneUse()) {
3928 // ExtOpnd will be promoted.
3929 // All its uses, but Ext, will need to use a truncated value of the
3930 // promoted version.
3931 // Create the truncate now.
3932 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3933 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3934 // Insert it just after the definition.
3935 ITrunc->moveAfter(ExtOpnd);
3936 if (Truncs)
3937 Truncs->push_back(ITrunc);
3940 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3941 // Restore the operand of Ext (which has been replaced by the previous call
3942 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3943 TPT.setOperand(Ext, 0, ExtOpnd);
3946 // Get through the Instruction:
3947 // 1. Update its type.
3948 // 2. Replace the uses of Ext by Inst.
3949 // 3. Extend each operand that needs to be extended.
3951 // Remember the original type of the instruction before promotion.
3952 // This is useful to know that the high bits are sign extended bits.
3953 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3954 // Step #1.
3955 TPT.mutateType(ExtOpnd, Ext->getType());
3956 // Step #2.
3957 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3958 // Step #3.
3959 Instruction *ExtForOpnd = Ext;
3961 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3962 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3963 ++OpIdx) {
3964 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3965 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3966 !shouldExtOperand(ExtOpnd, OpIdx)) {
3967 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3968 continue;
3970 // Check if we can statically extend the operand.
3971 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3972 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3973 LLVM_DEBUG(dbgs() << "Statically extend\n");
3974 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3975 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3976 : Cst->getValue().zext(BitWidth);
3977 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3978 continue;
3980 // UndefValue are typed, so we have to statically sign extend them.
3981 if (isa<UndefValue>(Opnd)) {
3982 LLVM_DEBUG(dbgs() << "Statically extend\n");
3983 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3984 continue;
3987 // Otherwise we have to explicitly sign extend the operand.
3988 // Check if Ext was reused to extend an operand.
3989 if (!ExtForOpnd) {
3990 // If yes, create a new one.
3991 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3992 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3993 : TPT.createZExt(Ext, Opnd, Ext->getType());
3994 if (!isa<Instruction>(ValForExtOpnd)) {
3995 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3996 continue;
3998 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4000 if (Exts)
4001 Exts->push_back(ExtForOpnd);
4002 TPT.setOperand(ExtForOpnd, 0, Opnd);
4004 // Move the sign extension before the insertion point.
4005 TPT.moveBefore(ExtForOpnd, ExtOpnd);
4006 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4007 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4008 // If more sext are required, new instructions will have to be created.
4009 ExtForOpnd = nullptr;
4011 if (ExtForOpnd == Ext) {
4012 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4013 TPT.eraseInstruction(Ext);
4015 return ExtOpnd;
4018 /// Check whether or not promoting an instruction to a wider type is profitable.
4019 /// \p NewCost gives the cost of extension instructions created by the
4020 /// promotion.
4021 /// \p OldCost gives the cost of extension instructions before the promotion
4022 /// plus the number of instructions that have been
4023 /// matched in the addressing mode the promotion.
4024 /// \p PromotedOperand is the value that has been promoted.
4025 /// \return True if the promotion is profitable, false otherwise.
4026 bool AddressingModeMatcher::isPromotionProfitable(
4027 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4028 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4029 << '\n');
4030 // The cost of the new extensions is greater than the cost of the
4031 // old extension plus what we folded.
4032 // This is not profitable.
4033 if (NewCost > OldCost)
4034 return false;
4035 if (NewCost < OldCost)
4036 return true;
4037 // The promotion is neutral but it may help folding the sign extension in
4038 // loads for instance.
4039 // Check that we did not create an illegal instruction.
4040 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4043 /// Given an instruction or constant expr, see if we can fold the operation
4044 /// into the addressing mode. If so, update the addressing mode and return
4045 /// true, otherwise return false without modifying AddrMode.
4046 /// If \p MovedAway is not NULL, it contains the information of whether or
4047 /// not AddrInst has to be folded into the addressing mode on success.
4048 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4049 /// because it has been moved away.
4050 /// Thus AddrInst must not be added in the matched instructions.
4051 /// This state can happen when AddrInst is a sext, since it may be moved away.
4052 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4053 /// not be referenced anymore.
4054 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4055 unsigned Depth,
4056 bool *MovedAway) {
4057 // Avoid exponential behavior on extremely deep expression trees.
4058 if (Depth >= 5) return false;
4060 // By default, all matched instructions stay in place.
4061 if (MovedAway)
4062 *MovedAway = false;
4064 switch (Opcode) {
4065 case Instruction::PtrToInt:
4066 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4067 return matchAddr(AddrInst->getOperand(0), Depth);
4068 case Instruction::IntToPtr: {
4069 auto AS = AddrInst->getType()->getPointerAddressSpace();
4070 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4071 // This inttoptr is a no-op if the integer type is pointer sized.
4072 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4073 return matchAddr(AddrInst->getOperand(0), Depth);
4074 return false;
4076 case Instruction::BitCast:
4077 // BitCast is always a noop, and we can handle it as long as it is
4078 // int->int or pointer->pointer (we don't want int<->fp or something).
4079 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4080 // Don't touch identity bitcasts. These were probably put here by LSR,
4081 // and we don't want to mess around with them. Assume it knows what it
4082 // is doing.
4083 AddrInst->getOperand(0)->getType() != AddrInst->getType())
4084 return matchAddr(AddrInst->getOperand(0), Depth);
4085 return false;
4086 case Instruction::AddrSpaceCast: {
4087 unsigned SrcAS
4088 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4089 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4090 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4091 return matchAddr(AddrInst->getOperand(0), Depth);
4092 return false;
4094 case Instruction::Add: {
4095 // Check to see if we can merge in the RHS then the LHS. If so, we win.
4096 ExtAddrMode BackupAddrMode = AddrMode;
4097 unsigned OldSize = AddrModeInsts.size();
4098 // Start a transaction at this point.
4099 // The LHS may match but not the RHS.
4100 // Therefore, we need a higher level restoration point to undo partially
4101 // matched operation.
4102 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4103 TPT.getRestorationPoint();
4105 AddrMode.InBounds = false;
4106 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4107 matchAddr(AddrInst->getOperand(0), Depth+1))
4108 return true;
4110 // Restore the old addr mode info.
4111 AddrMode = BackupAddrMode;
4112 AddrModeInsts.resize(OldSize);
4113 TPT.rollback(LastKnownGood);
4115 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
4116 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4117 matchAddr(AddrInst->getOperand(1), Depth+1))
4118 return true;
4120 // Otherwise we definitely can't merge the ADD in.
4121 AddrMode = BackupAddrMode;
4122 AddrModeInsts.resize(OldSize);
4123 TPT.rollback(LastKnownGood);
4124 break;
4126 //case Instruction::Or:
4127 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4128 //break;
4129 case Instruction::Mul:
4130 case Instruction::Shl: {
4131 // Can only handle X*C and X << C.
4132 AddrMode.InBounds = false;
4133 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4134 if (!RHS || RHS->getBitWidth() > 64)
4135 return false;
4136 int64_t Scale = RHS->getSExtValue();
4137 if (Opcode == Instruction::Shl)
4138 Scale = 1LL << Scale;
4140 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4142 case Instruction::GetElementPtr: {
4143 // Scan the GEP. We check it if it contains constant offsets and at most
4144 // one variable offset.
4145 int VariableOperand = -1;
4146 unsigned VariableScale = 0;
4148 int64_t ConstantOffset = 0;
4149 gep_type_iterator GTI = gep_type_begin(AddrInst);
4150 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4151 if (StructType *STy = GTI.getStructTypeOrNull()) {
4152 const StructLayout *SL = DL.getStructLayout(STy);
4153 unsigned Idx =
4154 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4155 ConstantOffset += SL->getElementOffset(Idx);
4156 } else {
4157 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4158 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4159 const APInt &CVal = CI->getValue();
4160 if (CVal.getMinSignedBits() <= 64) {
4161 ConstantOffset += CVal.getSExtValue() * TypeSize;
4162 continue;
4165 if (TypeSize) { // Scales of zero don't do anything.
4166 // We only allow one variable index at the moment.
4167 if (VariableOperand != -1)
4168 return false;
4170 // Remember the variable index.
4171 VariableOperand = i;
4172 VariableScale = TypeSize;
4177 // A common case is for the GEP to only do a constant offset. In this case,
4178 // just add it to the disp field and check validity.
4179 if (VariableOperand == -1) {
4180 AddrMode.BaseOffs += ConstantOffset;
4181 if (ConstantOffset == 0 ||
4182 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4183 // Check to see if we can fold the base pointer in too.
4184 if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4185 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4186 AddrMode.InBounds = false;
4187 return true;
4189 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4190 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4191 ConstantOffset > 0) {
4192 // Record GEPs with non-zero offsets as candidates for splitting in the
4193 // event that the offset cannot fit into the r+i addressing mode.
4194 // Simple and common case that only one GEP is used in calculating the
4195 // address for the memory access.
4196 Value *Base = AddrInst->getOperand(0);
4197 auto *BaseI = dyn_cast<Instruction>(Base);
4198 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4199 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4200 (BaseI && !isa<CastInst>(BaseI) &&
4201 !isa<GetElementPtrInst>(BaseI))) {
4202 // Make sure the parent block allows inserting non-PHI instructions
4203 // before the terminator.
4204 BasicBlock *Parent =
4205 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4206 if (!Parent->getTerminator()->isEHPad())
4207 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4210 AddrMode.BaseOffs -= ConstantOffset;
4211 return false;
4214 // Save the valid addressing mode in case we can't match.
4215 ExtAddrMode BackupAddrMode = AddrMode;
4216 unsigned OldSize = AddrModeInsts.size();
4218 // See if the scale and offset amount is valid for this target.
4219 AddrMode.BaseOffs += ConstantOffset;
4220 if (!cast<GEPOperator>(AddrInst)->isInBounds())
4221 AddrMode.InBounds = false;
4223 // Match the base operand of the GEP.
4224 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4225 // If it couldn't be matched, just stuff the value in a register.
4226 if (AddrMode.HasBaseReg) {
4227 AddrMode = BackupAddrMode;
4228 AddrModeInsts.resize(OldSize);
4229 return false;
4231 AddrMode.HasBaseReg = true;
4232 AddrMode.BaseReg = AddrInst->getOperand(0);
4235 // Match the remaining variable portion of the GEP.
4236 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4237 Depth)) {
4238 // If it couldn't be matched, try stuffing the base into a register
4239 // instead of matching it, and retrying the match of the scale.
4240 AddrMode = BackupAddrMode;
4241 AddrModeInsts.resize(OldSize);
4242 if (AddrMode.HasBaseReg)
4243 return false;
4244 AddrMode.HasBaseReg = true;
4245 AddrMode.BaseReg = AddrInst->getOperand(0);
4246 AddrMode.BaseOffs += ConstantOffset;
4247 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4248 VariableScale, Depth)) {
4249 // If even that didn't work, bail.
4250 AddrMode = BackupAddrMode;
4251 AddrModeInsts.resize(OldSize);
4252 return false;
4256 return true;
4258 case Instruction::SExt:
4259 case Instruction::ZExt: {
4260 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4261 if (!Ext)
4262 return false;
4264 // Try to move this ext out of the way of the addressing mode.
4265 // Ask for a method for doing so.
4266 TypePromotionHelper::Action TPH =
4267 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4268 if (!TPH)
4269 return false;
4271 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4272 TPT.getRestorationPoint();
4273 unsigned CreatedInstsCost = 0;
4274 unsigned ExtCost = !TLI.isExtFree(Ext);
4275 Value *PromotedOperand =
4276 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4277 // SExt has been moved away.
4278 // Thus either it will be rematched later in the recursive calls or it is
4279 // gone. Anyway, we must not fold it into the addressing mode at this point.
4280 // E.g.,
4281 // op = add opnd, 1
4282 // idx = ext op
4283 // addr = gep base, idx
4284 // is now:
4285 // promotedOpnd = ext opnd <- no match here
4286 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4287 // addr = gep base, op <- match
4288 if (MovedAway)
4289 *MovedAway = true;
4291 assert(PromotedOperand &&
4292 "TypePromotionHelper should have filtered out those cases");
4294 ExtAddrMode BackupAddrMode = AddrMode;
4295 unsigned OldSize = AddrModeInsts.size();
4297 if (!matchAddr(PromotedOperand, Depth) ||
4298 // The total of the new cost is equal to the cost of the created
4299 // instructions.
4300 // The total of the old cost is equal to the cost of the extension plus
4301 // what we have saved in the addressing mode.
4302 !isPromotionProfitable(CreatedInstsCost,
4303 ExtCost + (AddrModeInsts.size() - OldSize),
4304 PromotedOperand)) {
4305 AddrMode = BackupAddrMode;
4306 AddrModeInsts.resize(OldSize);
4307 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4308 TPT.rollback(LastKnownGood);
4309 return false;
4311 return true;
4314 return false;
4317 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4318 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4319 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4320 /// for the target.
4322 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4323 // Start a transaction at this point that we will rollback if the matching
4324 // fails.
4325 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4326 TPT.getRestorationPoint();
4327 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4328 // Fold in immediates if legal for the target.
4329 AddrMode.BaseOffs += CI->getSExtValue();
4330 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4331 return true;
4332 AddrMode.BaseOffs -= CI->getSExtValue();
4333 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4334 // If this is a global variable, try to fold it into the addressing mode.
4335 if (!AddrMode.BaseGV) {
4336 AddrMode.BaseGV = GV;
4337 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4338 return true;
4339 AddrMode.BaseGV = nullptr;
4341 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4342 ExtAddrMode BackupAddrMode = AddrMode;
4343 unsigned OldSize = AddrModeInsts.size();
4345 // Check to see if it is possible to fold this operation.
4346 bool MovedAway = false;
4347 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4348 // This instruction may have been moved away. If so, there is nothing
4349 // to check here.
4350 if (MovedAway)
4351 return true;
4352 // Okay, it's possible to fold this. Check to see if it is actually
4353 // *profitable* to do so. We use a simple cost model to avoid increasing
4354 // register pressure too much.
4355 if (I->hasOneUse() ||
4356 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4357 AddrModeInsts.push_back(I);
4358 return true;
4361 // It isn't profitable to do this, roll back.
4362 //cerr << "NOT FOLDING: " << *I;
4363 AddrMode = BackupAddrMode;
4364 AddrModeInsts.resize(OldSize);
4365 TPT.rollback(LastKnownGood);
4367 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4368 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4369 return true;
4370 TPT.rollback(LastKnownGood);
4371 } else if (isa<ConstantPointerNull>(Addr)) {
4372 // Null pointer gets folded without affecting the addressing mode.
4373 return true;
4376 // Worse case, the target should support [reg] addressing modes. :)
4377 if (!AddrMode.HasBaseReg) {
4378 AddrMode.HasBaseReg = true;
4379 AddrMode.BaseReg = Addr;
4380 // Still check for legality in case the target supports [imm] but not [i+r].
4381 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4382 return true;
4383 AddrMode.HasBaseReg = false;
4384 AddrMode.BaseReg = nullptr;
4387 // If the base register is already taken, see if we can do [r+r].
4388 if (AddrMode.Scale == 0) {
4389 AddrMode.Scale = 1;
4390 AddrMode.ScaledReg = Addr;
4391 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4392 return true;
4393 AddrMode.Scale = 0;
4394 AddrMode.ScaledReg = nullptr;
4396 // Couldn't match.
4397 TPT.rollback(LastKnownGood);
4398 return false;
4401 /// Check to see if all uses of OpVal by the specified inline asm call are due
4402 /// to memory operands. If so, return true, otherwise return false.
4403 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4404 const TargetLowering &TLI,
4405 const TargetRegisterInfo &TRI) {
4406 const Function *F = CI->getFunction();
4407 TargetLowering::AsmOperandInfoVector TargetConstraints =
4408 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4409 ImmutableCallSite(CI));
4411 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4412 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4414 // Compute the constraint code and ConstraintType to use.
4415 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4417 // If this asm operand is our Value*, and if it isn't an indirect memory
4418 // operand, we can't fold it!
4419 if (OpInfo.CallOperandVal == OpVal &&
4420 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4421 !OpInfo.isIndirect))
4422 return false;
4425 return true;
4428 // Max number of memory uses to look at before aborting the search to conserve
4429 // compile time.
4430 static constexpr int MaxMemoryUsesToScan = 20;
4432 /// Recursively walk all the uses of I until we find a memory use.
4433 /// If we find an obviously non-foldable instruction, return true.
4434 /// Add the ultimately found memory instructions to MemoryUses.
4435 static bool FindAllMemoryUses(
4436 Instruction *I,
4437 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4438 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4439 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4440 // If we already considered this instruction, we're done.
4441 if (!ConsideredInsts.insert(I).second)
4442 return false;
4444 // If this is an obviously unfoldable instruction, bail out.
4445 if (!MightBeFoldableInst(I))
4446 return true;
4448 const bool OptSize = I->getFunction()->hasOptSize();
4450 // Loop over all the uses, recursively processing them.
4451 for (Use &U : I->uses()) {
4452 // Conservatively return true if we're seeing a large number or a deep chain
4453 // of users. This avoids excessive compilation times in pathological cases.
4454 if (SeenInsts++ >= MaxMemoryUsesToScan)
4455 return true;
4457 Instruction *UserI = cast<Instruction>(U.getUser());
4458 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4459 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4460 continue;
4463 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4464 unsigned opNo = U.getOperandNo();
4465 if (opNo != StoreInst::getPointerOperandIndex())
4466 return true; // Storing addr, not into addr.
4467 MemoryUses.push_back(std::make_pair(SI, opNo));
4468 continue;
4471 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4472 unsigned opNo = U.getOperandNo();
4473 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4474 return true; // Storing addr, not into addr.
4475 MemoryUses.push_back(std::make_pair(RMW, opNo));
4476 continue;
4479 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4480 unsigned opNo = U.getOperandNo();
4481 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4482 return true; // Storing addr, not into addr.
4483 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4484 continue;
4487 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4488 // If this is a cold call, we can sink the addressing calculation into
4489 // the cold path. See optimizeCallInst
4490 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4491 continue;
4493 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4494 if (!IA) return true;
4496 // If this is a memory operand, we're cool, otherwise bail out.
4497 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4498 return true;
4499 continue;
4502 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4503 SeenInsts))
4504 return true;
4507 return false;
4510 /// Return true if Val is already known to be live at the use site that we're
4511 /// folding it into. If so, there is no cost to include it in the addressing
4512 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4513 /// instruction already.
4514 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4515 Value *KnownLive2) {
4516 // If Val is either of the known-live values, we know it is live!
4517 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4518 return true;
4520 // All values other than instructions and arguments (e.g. constants) are live.
4521 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4523 // If Val is a constant sized alloca in the entry block, it is live, this is
4524 // true because it is just a reference to the stack/frame pointer, which is
4525 // live for the whole function.
4526 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4527 if (AI->isStaticAlloca())
4528 return true;
4530 // Check to see if this value is already used in the memory instruction's
4531 // block. If so, it's already live into the block at the very least, so we
4532 // can reasonably fold it.
4533 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4536 /// It is possible for the addressing mode of the machine to fold the specified
4537 /// instruction into a load or store that ultimately uses it.
4538 /// However, the specified instruction has multiple uses.
4539 /// Given this, it may actually increase register pressure to fold it
4540 /// into the load. For example, consider this code:
4542 /// X = ...
4543 /// Y = X+1
4544 /// use(Y) -> nonload/store
4545 /// Z = Y+1
4546 /// load Z
4548 /// In this case, Y has multiple uses, and can be folded into the load of Z
4549 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4550 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4551 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4552 /// number of computations either.
4554 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4555 /// X was live across 'load Z' for other reasons, we actually *would* want to
4556 /// fold the addressing mode in the Z case. This would make Y die earlier.
4557 bool AddressingModeMatcher::
4558 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4559 ExtAddrMode &AMAfter) {
4560 if (IgnoreProfitability) return true;
4562 // AMBefore is the addressing mode before this instruction was folded into it,
4563 // and AMAfter is the addressing mode after the instruction was folded. Get
4564 // the set of registers referenced by AMAfter and subtract out those
4565 // referenced by AMBefore: this is the set of values which folding in this
4566 // address extends the lifetime of.
4568 // Note that there are only two potential values being referenced here,
4569 // BaseReg and ScaleReg (global addresses are always available, as are any
4570 // folded immediates).
4571 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4573 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4574 // lifetime wasn't extended by adding this instruction.
4575 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4576 BaseReg = nullptr;
4577 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4578 ScaledReg = nullptr;
4580 // If folding this instruction (and it's subexprs) didn't extend any live
4581 // ranges, we're ok with it.
4582 if (!BaseReg && !ScaledReg)
4583 return true;
4585 // If all uses of this instruction can have the address mode sunk into them,
4586 // we can remove the addressing mode and effectively trade one live register
4587 // for another (at worst.) In this context, folding an addressing mode into
4588 // the use is just a particularly nice way of sinking it.
4589 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4590 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4591 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4592 return false; // Has a non-memory, non-foldable use!
4594 // Now that we know that all uses of this instruction are part of a chain of
4595 // computation involving only operations that could theoretically be folded
4596 // into a memory use, loop over each of these memory operation uses and see
4597 // if they could *actually* fold the instruction. The assumption is that
4598 // addressing modes are cheap and that duplicating the computation involved
4599 // many times is worthwhile, even on a fastpath. For sinking candidates
4600 // (i.e. cold call sites), this serves as a way to prevent excessive code
4601 // growth since most architectures have some reasonable small and fast way to
4602 // compute an effective address. (i.e LEA on x86)
4603 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4604 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4605 Instruction *User = MemoryUses[i].first;
4606 unsigned OpNo = MemoryUses[i].second;
4608 // Get the access type of this use. If the use isn't a pointer, we don't
4609 // know what it accesses.
4610 Value *Address = User->getOperand(OpNo);
4611 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4612 if (!AddrTy)
4613 return false;
4614 Type *AddressAccessTy = AddrTy->getElementType();
4615 unsigned AS = AddrTy->getAddressSpace();
4617 // Do a match against the root of this address, ignoring profitability. This
4618 // will tell us if the addressing mode for the memory operation will
4619 // *actually* cover the shared instruction.
4620 ExtAddrMode Result;
4621 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4623 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4624 TPT.getRestorationPoint();
4625 AddressingModeMatcher Matcher(
4626 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4627 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4628 Matcher.IgnoreProfitability = true;
4629 bool Success = Matcher.matchAddr(Address, 0);
4630 (void)Success; assert(Success && "Couldn't select *anything*?");
4632 // The match was to check the profitability, the changes made are not
4633 // part of the original matcher. Therefore, they should be dropped
4634 // otherwise the original matcher will not present the right state.
4635 TPT.rollback(LastKnownGood);
4637 // If the match didn't cover I, then it won't be shared by it.
4638 if (!is_contained(MatchedAddrModeInsts, I))
4639 return false;
4641 MatchedAddrModeInsts.clear();
4644 return true;
4647 /// Return true if the specified values are defined in a
4648 /// different basic block than BB.
4649 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4650 if (Instruction *I = dyn_cast<Instruction>(V))
4651 return I->getParent() != BB;
4652 return false;
4655 /// Sink addressing mode computation immediate before MemoryInst if doing so
4656 /// can be done without increasing register pressure. The need for the
4657 /// register pressure constraint means this can end up being an all or nothing
4658 /// decision for all uses of the same addressing computation.
4660 /// Load and Store Instructions often have addressing modes that can do
4661 /// significant amounts of computation. As such, instruction selection will try
4662 /// to get the load or store to do as much computation as possible for the
4663 /// program. The problem is that isel can only see within a single block. As
4664 /// such, we sink as much legal addressing mode work into the block as possible.
4666 /// This method is used to optimize both load/store and inline asms with memory
4667 /// operands. It's also used to sink addressing computations feeding into cold
4668 /// call sites into their (cold) basic block.
4670 /// The motivation for handling sinking into cold blocks is that doing so can
4671 /// both enable other address mode sinking (by satisfying the register pressure
4672 /// constraint above), and reduce register pressure globally (by removing the
4673 /// addressing mode computation from the fast path entirely.).
4674 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4675 Type *AccessTy, unsigned AddrSpace) {
4676 Value *Repl = Addr;
4678 // Try to collapse single-value PHI nodes. This is necessary to undo
4679 // unprofitable PRE transformations.
4680 SmallVector<Value*, 8> worklist;
4681 SmallPtrSet<Value*, 16> Visited;
4682 worklist.push_back(Addr);
4684 // Use a worklist to iteratively look through PHI and select nodes, and
4685 // ensure that the addressing mode obtained from the non-PHI/select roots of
4686 // the graph are compatible.
4687 bool PhiOrSelectSeen = false;
4688 SmallVector<Instruction*, 16> AddrModeInsts;
4689 const SimplifyQuery SQ(*DL, TLInfo);
4690 AddressingModeCombiner AddrModes(SQ, Addr);
4691 TypePromotionTransaction TPT(RemovedInsts);
4692 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4693 TPT.getRestorationPoint();
4694 while (!worklist.empty()) {
4695 Value *V = worklist.back();
4696 worklist.pop_back();
4698 // We allow traversing cyclic Phi nodes.
4699 // In case of success after this loop we ensure that traversing through
4700 // Phi nodes ends up with all cases to compute address of the form
4701 // BaseGV + Base + Scale * Index + Offset
4702 // where Scale and Offset are constans and BaseGV, Base and Index
4703 // are exactly the same Values in all cases.
4704 // It means that BaseGV, Scale and Offset dominate our memory instruction
4705 // and have the same value as they had in address computation represented
4706 // as Phi. So we can safely sink address computation to memory instruction.
4707 if (!Visited.insert(V).second)
4708 continue;
4710 // For a PHI node, push all of its incoming values.
4711 if (PHINode *P = dyn_cast<PHINode>(V)) {
4712 for (Value *IncValue : P->incoming_values())
4713 worklist.push_back(IncValue);
4714 PhiOrSelectSeen = true;
4715 continue;
4717 // Similar for select.
4718 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4719 worklist.push_back(SI->getFalseValue());
4720 worklist.push_back(SI->getTrueValue());
4721 PhiOrSelectSeen = true;
4722 continue;
4725 // For non-PHIs, determine the addressing mode being computed. Note that
4726 // the result may differ depending on what other uses our candidate
4727 // addressing instructions might have.
4728 AddrModeInsts.clear();
4729 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4731 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4732 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4733 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4735 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4736 if (GEP && !NewGEPBases.count(GEP)) {
4737 // If splitting the underlying data structure can reduce the offset of a
4738 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4739 // previously split data structures.
4740 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4741 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4742 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4745 NewAddrMode.OriginalValue = V;
4746 if (!AddrModes.addNewAddrMode(NewAddrMode))
4747 break;
4750 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4751 // or we have multiple but either couldn't combine them or combining them
4752 // wouldn't do anything useful, bail out now.
4753 if (!AddrModes.combineAddrModes()) {
4754 TPT.rollback(LastKnownGood);
4755 return false;
4757 TPT.commit();
4759 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4760 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4762 // If all the instructions matched are already in this BB, don't do anything.
4763 // If we saw a Phi node then it is not local definitely, and if we saw a select
4764 // then we want to push the address calculation past it even if it's already
4765 // in this BB.
4766 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4767 return IsNonLocalValue(V, MemoryInst->getParent());
4768 })) {
4769 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4770 << "\n");
4771 return false;
4774 // Insert this computation right after this user. Since our caller is
4775 // scanning from the top of the BB to the bottom, reuse of the expr are
4776 // guaranteed to happen later.
4777 IRBuilder<> Builder(MemoryInst);
4779 // Now that we determined the addressing expression we want to use and know
4780 // that we have to sink it into this block. Check to see if we have already
4781 // done this for some other load/store instr in this block. If so, reuse
4782 // the computation. Before attempting reuse, check if the address is valid
4783 // as it may have been erased.
4785 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4787 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4788 if (SunkAddr) {
4789 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4790 << " for " << *MemoryInst << "\n");
4791 if (SunkAddr->getType() != Addr->getType())
4792 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4793 } else if (AddrSinkUsingGEPs ||
4794 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4795 // By default, we use the GEP-based method when AA is used later. This
4796 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4797 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4798 << " for " << *MemoryInst << "\n");
4799 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4800 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4802 // First, find the pointer.
4803 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4804 ResultPtr = AddrMode.BaseReg;
4805 AddrMode.BaseReg = nullptr;
4808 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4809 // We can't add more than one pointer together, nor can we scale a
4810 // pointer (both of which seem meaningless).
4811 if (ResultPtr || AddrMode.Scale != 1)
4812 return false;
4814 ResultPtr = AddrMode.ScaledReg;
4815 AddrMode.Scale = 0;
4818 // It is only safe to sign extend the BaseReg if we know that the math
4819 // required to create it did not overflow before we extend it. Since
4820 // the original IR value was tossed in favor of a constant back when
4821 // the AddrMode was created we need to bail out gracefully if widths
4822 // do not match instead of extending it.
4824 // (See below for code to add the scale.)
4825 if (AddrMode.Scale) {
4826 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4827 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4828 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4829 return false;
4832 if (AddrMode.BaseGV) {
4833 if (ResultPtr)
4834 return false;
4836 ResultPtr = AddrMode.BaseGV;
4839 // If the real base value actually came from an inttoptr, then the matcher
4840 // will look through it and provide only the integer value. In that case,
4841 // use it here.
4842 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4843 if (!ResultPtr && AddrMode.BaseReg) {
4844 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4845 "sunkaddr");
4846 AddrMode.BaseReg = nullptr;
4847 } else if (!ResultPtr && AddrMode.Scale == 1) {
4848 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4849 "sunkaddr");
4850 AddrMode.Scale = 0;
4854 if (!ResultPtr &&
4855 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4856 SunkAddr = Constant::getNullValue(Addr->getType());
4857 } else if (!ResultPtr) {
4858 return false;
4859 } else {
4860 Type *I8PtrTy =
4861 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4862 Type *I8Ty = Builder.getInt8Ty();
4864 // Start with the base register. Do this first so that subsequent address
4865 // matching finds it last, which will prevent it from trying to match it
4866 // as the scaled value in case it happens to be a mul. That would be
4867 // problematic if we've sunk a different mul for the scale, because then
4868 // we'd end up sinking both muls.
4869 if (AddrMode.BaseReg) {
4870 Value *V = AddrMode.BaseReg;
4871 if (V->getType() != IntPtrTy)
4872 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4874 ResultIndex = V;
4877 // Add the scale value.
4878 if (AddrMode.Scale) {
4879 Value *V = AddrMode.ScaledReg;
4880 if (V->getType() == IntPtrTy) {
4881 // done.
4882 } else {
4883 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4884 cast<IntegerType>(V->getType())->getBitWidth() &&
4885 "We can't transform if ScaledReg is too narrow");
4886 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4889 if (AddrMode.Scale != 1)
4890 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4891 "sunkaddr");
4892 if (ResultIndex)
4893 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4894 else
4895 ResultIndex = V;
4898 // Add in the Base Offset if present.
4899 if (AddrMode.BaseOffs) {
4900 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4901 if (ResultIndex) {
4902 // We need to add this separately from the scale above to help with
4903 // SDAG consecutive load/store merging.
4904 if (ResultPtr->getType() != I8PtrTy)
4905 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4906 ResultPtr =
4907 AddrMode.InBounds
4908 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4909 "sunkaddr")
4910 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4913 ResultIndex = V;
4916 if (!ResultIndex) {
4917 SunkAddr = ResultPtr;
4918 } else {
4919 if (ResultPtr->getType() != I8PtrTy)
4920 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4921 SunkAddr =
4922 AddrMode.InBounds
4923 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4924 "sunkaddr")
4925 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4928 if (SunkAddr->getType() != Addr->getType())
4929 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4931 } else {
4932 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4933 // non-integral pointers, so in that case bail out now.
4934 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4935 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4936 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4937 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4938 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4939 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4940 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4941 (AddrMode.BaseGV &&
4942 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4943 return false;
4945 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4946 << " for " << *MemoryInst << "\n");
4947 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4948 Value *Result = nullptr;
4950 // Start with the base register. Do this first so that subsequent address
4951 // matching finds it last, which will prevent it from trying to match it
4952 // as the scaled value in case it happens to be a mul. That would be
4953 // problematic if we've sunk a different mul for the scale, because then
4954 // we'd end up sinking both muls.
4955 if (AddrMode.BaseReg) {
4956 Value *V = AddrMode.BaseReg;
4957 if (V->getType()->isPointerTy())
4958 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4959 if (V->getType() != IntPtrTy)
4960 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4961 Result = V;
4964 // Add the scale value.
4965 if (AddrMode.Scale) {
4966 Value *V = AddrMode.ScaledReg;
4967 if (V->getType() == IntPtrTy) {
4968 // done.
4969 } else if (V->getType()->isPointerTy()) {
4970 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4971 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4972 cast<IntegerType>(V->getType())->getBitWidth()) {
4973 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4974 } else {
4975 // It is only safe to sign extend the BaseReg if we know that the math
4976 // required to create it did not overflow before we extend it. Since
4977 // the original IR value was tossed in favor of a constant back when
4978 // the AddrMode was created we need to bail out gracefully if widths
4979 // do not match instead of extending it.
4980 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4981 if (I && (Result != AddrMode.BaseReg))
4982 I->eraseFromParent();
4983 return false;
4985 if (AddrMode.Scale != 1)
4986 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4987 "sunkaddr");
4988 if (Result)
4989 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4990 else
4991 Result = V;
4994 // Add in the BaseGV if present.
4995 if (AddrMode.BaseGV) {
4996 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4997 if (Result)
4998 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4999 else
5000 Result = V;
5003 // Add in the Base Offset if present.
5004 if (AddrMode.BaseOffs) {
5005 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5006 if (Result)
5007 Result = Builder.CreateAdd(Result, V, "sunkaddr");
5008 else
5009 Result = V;
5012 if (!Result)
5013 SunkAddr = Constant::getNullValue(Addr->getType());
5014 else
5015 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5018 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5019 // Store the newly computed address into the cache. In the case we reused a
5020 // value, this should be idempotent.
5021 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5023 // If we have no uses, recursively delete the value and all dead instructions
5024 // using it.
5025 if (Repl->use_empty()) {
5026 // This can cause recursive deletion, which can invalidate our iterator.
5027 // Use a WeakTrackingVH to hold onto it in case this happens.
5028 Value *CurValue = &*CurInstIterator;
5029 WeakTrackingVH IterHandle(CurValue);
5030 BasicBlock *BB = CurInstIterator->getParent();
5032 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5034 if (IterHandle != CurValue) {
5035 // If the iterator instruction was recursively deleted, start over at the
5036 // start of the block.
5037 CurInstIterator = BB->begin();
5038 SunkAddrs.clear();
5041 ++NumMemoryInsts;
5042 return true;
5045 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5046 /// address computing into the block when possible / profitable.
5047 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5048 bool MadeChange = false;
5050 const TargetRegisterInfo *TRI =
5051 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5052 TargetLowering::AsmOperandInfoVector TargetConstraints =
5053 TLI->ParseConstraints(*DL, TRI, CS);
5054 unsigned ArgNo = 0;
5055 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5056 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5058 // Compute the constraint code and ConstraintType to use.
5059 TLI->ComputeConstraintToUse(OpInfo, SDValue());
5061 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5062 OpInfo.isIndirect) {
5063 Value *OpVal = CS->getArgOperand(ArgNo++);
5064 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5065 } else if (OpInfo.Type == InlineAsm::isInput)
5066 ArgNo++;
5069 return MadeChange;
5072 /// Check if all the uses of \p Val are equivalent (or free) zero or
5073 /// sign extensions.
5074 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5075 assert(!Val->use_empty() && "Input must have at least one use");
5076 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5077 bool IsSExt = isa<SExtInst>(FirstUser);
5078 Type *ExtTy = FirstUser->getType();
5079 for (const User *U : Val->users()) {
5080 const Instruction *UI = cast<Instruction>(U);
5081 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5082 return false;
5083 Type *CurTy = UI->getType();
5084 // Same input and output types: Same instruction after CSE.
5085 if (CurTy == ExtTy)
5086 continue;
5088 // If IsSExt is true, we are in this situation:
5089 // a = Val
5090 // b = sext ty1 a to ty2
5091 // c = sext ty1 a to ty3
5092 // Assuming ty2 is shorter than ty3, this could be turned into:
5093 // a = Val
5094 // b = sext ty1 a to ty2
5095 // c = sext ty2 b to ty3
5096 // However, the last sext is not free.
5097 if (IsSExt)
5098 return false;
5100 // This is a ZExt, maybe this is free to extend from one type to another.
5101 // In that case, we would not account for a different use.
5102 Type *NarrowTy;
5103 Type *LargeTy;
5104 if (ExtTy->getScalarType()->getIntegerBitWidth() >
5105 CurTy->getScalarType()->getIntegerBitWidth()) {
5106 NarrowTy = CurTy;
5107 LargeTy = ExtTy;
5108 } else {
5109 NarrowTy = ExtTy;
5110 LargeTy = CurTy;
5113 if (!TLI.isZExtFree(NarrowTy, LargeTy))
5114 return false;
5116 // All uses are the same or can be derived from one another for free.
5117 return true;
5120 /// Try to speculatively promote extensions in \p Exts and continue
5121 /// promoting through newly promoted operands recursively as far as doing so is
5122 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5123 /// When some promotion happened, \p TPT contains the proper state to revert
5124 /// them.
5126 /// \return true if some promotion happened, false otherwise.
5127 bool CodeGenPrepare::tryToPromoteExts(
5128 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5129 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5130 unsigned CreatedInstsCost) {
5131 bool Promoted = false;
5133 // Iterate over all the extensions to try to promote them.
5134 for (auto I : Exts) {
5135 // Early check if we directly have ext(load).
5136 if (isa<LoadInst>(I->getOperand(0))) {
5137 ProfitablyMovedExts.push_back(I);
5138 continue;
5141 // Check whether or not we want to do any promotion. The reason we have
5142 // this check inside the for loop is to catch the case where an extension
5143 // is directly fed by a load because in such case the extension can be moved
5144 // up without any promotion on its operands.
5145 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5146 return false;
5148 // Get the action to perform the promotion.
5149 TypePromotionHelper::Action TPH =
5150 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5151 // Check if we can promote.
5152 if (!TPH) {
5153 // Save the current extension as we cannot move up through its operand.
5154 ProfitablyMovedExts.push_back(I);
5155 continue;
5158 // Save the current state.
5159 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5160 TPT.getRestorationPoint();
5161 SmallVector<Instruction *, 4> NewExts;
5162 unsigned NewCreatedInstsCost = 0;
5163 unsigned ExtCost = !TLI->isExtFree(I);
5164 // Promote.
5165 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5166 &NewExts, nullptr, *TLI);
5167 assert(PromotedVal &&
5168 "TypePromotionHelper should have filtered out those cases");
5170 // We would be able to merge only one extension in a load.
5171 // Therefore, if we have more than 1 new extension we heuristically
5172 // cut this search path, because it means we degrade the code quality.
5173 // With exactly 2, the transformation is neutral, because we will merge
5174 // one extension but leave one. However, we optimistically keep going,
5175 // because the new extension may be removed too.
5176 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5177 // FIXME: It would be possible to propagate a negative value instead of
5178 // conservatively ceiling it to 0.
5179 TotalCreatedInstsCost =
5180 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5181 if (!StressExtLdPromotion &&
5182 (TotalCreatedInstsCost > 1 ||
5183 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5184 // This promotion is not profitable, rollback to the previous state, and
5185 // save the current extension in ProfitablyMovedExts as the latest
5186 // speculative promotion turned out to be unprofitable.
5187 TPT.rollback(LastKnownGood);
5188 ProfitablyMovedExts.push_back(I);
5189 continue;
5191 // Continue promoting NewExts as far as doing so is profitable.
5192 SmallVector<Instruction *, 2> NewlyMovedExts;
5193 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5194 bool NewPromoted = false;
5195 for (auto ExtInst : NewlyMovedExts) {
5196 Instruction *MovedExt = cast<Instruction>(ExtInst);
5197 Value *ExtOperand = MovedExt->getOperand(0);
5198 // If we have reached to a load, we need this extra profitability check
5199 // as it could potentially be merged into an ext(load).
5200 if (isa<LoadInst>(ExtOperand) &&
5201 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5202 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5203 continue;
5205 ProfitablyMovedExts.push_back(MovedExt);
5206 NewPromoted = true;
5209 // If none of speculative promotions for NewExts is profitable, rollback
5210 // and save the current extension (I) as the last profitable extension.
5211 if (!NewPromoted) {
5212 TPT.rollback(LastKnownGood);
5213 ProfitablyMovedExts.push_back(I);
5214 continue;
5216 // The promotion is profitable.
5217 Promoted = true;
5219 return Promoted;
5222 /// Merging redundant sexts when one is dominating the other.
5223 bool CodeGenPrepare::mergeSExts(Function &F) {
5224 bool Changed = false;
5225 for (auto &Entry : ValToSExtendedUses) {
5226 SExts &Insts = Entry.second;
5227 SExts CurPts;
5228 for (Instruction *Inst : Insts) {
5229 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5230 Inst->getOperand(0) != Entry.first)
5231 continue;
5232 bool inserted = false;
5233 for (auto &Pt : CurPts) {
5234 if (getDT(F).dominates(Inst, Pt)) {
5235 Pt->replaceAllUsesWith(Inst);
5236 RemovedInsts.insert(Pt);
5237 Pt->removeFromParent();
5238 Pt = Inst;
5239 inserted = true;
5240 Changed = true;
5241 break;
5243 if (!getDT(F).dominates(Pt, Inst))
5244 // Give up if we need to merge in a common dominator as the
5245 // experiments show it is not profitable.
5246 continue;
5247 Inst->replaceAllUsesWith(Pt);
5248 RemovedInsts.insert(Inst);
5249 Inst->removeFromParent();
5250 inserted = true;
5251 Changed = true;
5252 break;
5254 if (!inserted)
5255 CurPts.push_back(Inst);
5258 return Changed;
5261 // Spliting large data structures so that the GEPs accessing them can have
5262 // smaller offsets so that they can be sunk to the same blocks as their users.
5263 // For example, a large struct starting from %base is splitted into two parts
5264 // where the second part starts from %new_base.
5266 // Before:
5267 // BB0:
5268 // %base =
5270 // BB1:
5271 // %gep0 = gep %base, off0
5272 // %gep1 = gep %base, off1
5273 // %gep2 = gep %base, off2
5275 // BB2:
5276 // %load1 = load %gep0
5277 // %load2 = load %gep1
5278 // %load3 = load %gep2
5280 // After:
5281 // BB0:
5282 // %base =
5283 // %new_base = gep %base, off0
5285 // BB1:
5286 // %new_gep0 = %new_base
5287 // %new_gep1 = gep %new_base, off1 - off0
5288 // %new_gep2 = gep %new_base, off2 - off0
5290 // BB2:
5291 // %load1 = load i32, i32* %new_gep0
5292 // %load2 = load i32, i32* %new_gep1
5293 // %load3 = load i32, i32* %new_gep2
5295 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5296 // their offsets are smaller enough to fit into the addressing mode.
5297 bool CodeGenPrepare::splitLargeGEPOffsets() {
5298 bool Changed = false;
5299 for (auto &Entry : LargeOffsetGEPMap) {
5300 Value *OldBase = Entry.first;
5301 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5302 &LargeOffsetGEPs = Entry.second;
5303 auto compareGEPOffset =
5304 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5305 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5306 if (LHS.first == RHS.first)
5307 return false;
5308 if (LHS.second != RHS.second)
5309 return LHS.second < RHS.second;
5310 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5312 // Sorting all the GEPs of the same data structures based on the offsets.
5313 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5314 LargeOffsetGEPs.erase(
5315 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5316 LargeOffsetGEPs.end());
5317 // Skip if all the GEPs have the same offsets.
5318 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5319 continue;
5320 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5321 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5322 Value *NewBaseGEP = nullptr;
5324 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5325 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5326 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5327 int64_t Offset = LargeOffsetGEP->second;
5328 if (Offset != BaseOffset) {
5329 TargetLowering::AddrMode AddrMode;
5330 AddrMode.BaseOffs = Offset - BaseOffset;
5331 // The result type of the GEP might not be the type of the memory
5332 // access.
5333 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5334 GEP->getResultElementType(),
5335 GEP->getAddressSpace())) {
5336 // We need to create a new base if the offset to the current base is
5337 // too large to fit into the addressing mode. So, a very large struct
5338 // may be splitted into several parts.
5339 BaseGEP = GEP;
5340 BaseOffset = Offset;
5341 NewBaseGEP = nullptr;
5345 // Generate a new GEP to replace the current one.
5346 LLVMContext &Ctx = GEP->getContext();
5347 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5348 Type *I8PtrTy =
5349 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5350 Type *I8Ty = Type::getInt8Ty(Ctx);
5352 if (!NewBaseGEP) {
5353 // Create a new base if we don't have one yet. Find the insertion
5354 // pointer for the new base first.
5355 BasicBlock::iterator NewBaseInsertPt;
5356 BasicBlock *NewBaseInsertBB;
5357 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5358 // If the base of the struct is an instruction, the new base will be
5359 // inserted close to it.
5360 NewBaseInsertBB = BaseI->getParent();
5361 if (isa<PHINode>(BaseI))
5362 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5363 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5364 NewBaseInsertBB =
5365 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5366 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5367 } else
5368 NewBaseInsertPt = std::next(BaseI->getIterator());
5369 } else {
5370 // If the current base is an argument or global value, the new base
5371 // will be inserted to the entry block.
5372 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5373 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5375 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5376 // Create a new base.
5377 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5378 NewBaseGEP = OldBase;
5379 if (NewBaseGEP->getType() != I8PtrTy)
5380 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5381 NewBaseGEP =
5382 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5383 NewGEPBases.insert(NewBaseGEP);
5386 IRBuilder<> Builder(GEP);
5387 Value *NewGEP = NewBaseGEP;
5388 if (Offset == BaseOffset) {
5389 if (GEP->getType() != I8PtrTy)
5390 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5391 } else {
5392 // Calculate the new offset for the new GEP.
5393 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5394 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5396 if (GEP->getType() != I8PtrTy)
5397 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5399 GEP->replaceAllUsesWith(NewGEP);
5400 LargeOffsetGEPID.erase(GEP);
5401 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5402 GEP->eraseFromParent();
5403 Changed = true;
5406 return Changed;
5409 /// Return true, if an ext(load) can be formed from an extension in
5410 /// \p MovedExts.
5411 bool CodeGenPrepare::canFormExtLd(
5412 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5413 Instruction *&Inst, bool HasPromoted) {
5414 for (auto *MovedExtInst : MovedExts) {
5415 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5416 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5417 Inst = MovedExtInst;
5418 break;
5421 if (!LI)
5422 return false;
5424 // If they're already in the same block, there's nothing to do.
5425 // Make the cheap checks first if we did not promote.
5426 // If we promoted, we need to check if it is indeed profitable.
5427 if (!HasPromoted && LI->getParent() == Inst->getParent())
5428 return false;
5430 return TLI->isExtLoad(LI, Inst, *DL);
5433 /// Move a zext or sext fed by a load into the same basic block as the load,
5434 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5435 /// extend into the load.
5437 /// E.g.,
5438 /// \code
5439 /// %ld = load i32* %addr
5440 /// %add = add nuw i32 %ld, 4
5441 /// %zext = zext i32 %add to i64
5442 // \endcode
5443 /// =>
5444 /// \code
5445 /// %ld = load i32* %addr
5446 /// %zext = zext i32 %ld to i64
5447 /// %add = add nuw i64 %zext, 4
5448 /// \encode
5449 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5450 /// allow us to match zext(load i32*) to i64.
5452 /// Also, try to promote the computations used to obtain a sign extended
5453 /// value used into memory accesses.
5454 /// E.g.,
5455 /// \code
5456 /// a = add nsw i32 b, 3
5457 /// d = sext i32 a to i64
5458 /// e = getelementptr ..., i64 d
5459 /// \endcode
5460 /// =>
5461 /// \code
5462 /// f = sext i32 b to i64
5463 /// a = add nsw i64 f, 3
5464 /// e = getelementptr ..., i64 a
5465 /// \endcode
5467 /// \p Inst[in/out] the extension may be modified during the process if some
5468 /// promotions apply.
5469 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5470 // ExtLoad formation and address type promotion infrastructure requires TLI to
5471 // be effective.
5472 if (!TLI)
5473 return false;
5475 bool AllowPromotionWithoutCommonHeader = false;
5476 /// See if it is an interesting sext operations for the address type
5477 /// promotion before trying to promote it, e.g., the ones with the right
5478 /// type and used in memory accesses.
5479 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5480 *Inst, AllowPromotionWithoutCommonHeader);
5481 TypePromotionTransaction TPT(RemovedInsts);
5482 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5483 TPT.getRestorationPoint();
5484 SmallVector<Instruction *, 1> Exts;
5485 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5486 Exts.push_back(Inst);
5488 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5490 // Look for a load being extended.
5491 LoadInst *LI = nullptr;
5492 Instruction *ExtFedByLoad;
5494 // Try to promote a chain of computation if it allows to form an extended
5495 // load.
5496 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5497 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5498 TPT.commit();
5499 // Move the extend into the same block as the load
5500 ExtFedByLoad->moveAfter(LI);
5501 // CGP does not check if the zext would be speculatively executed when moved
5502 // to the same basic block as the load. Preserving its original location
5503 // would pessimize the debugging experience, as well as negatively impact
5504 // the quality of sample pgo. We don't want to use "line 0" as that has a
5505 // size cost in the line-table section and logically the zext can be seen as
5506 // part of the load. Therefore we conservatively reuse the same debug
5507 // location for the load and the zext.
5508 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5509 ++NumExtsMoved;
5510 Inst = ExtFedByLoad;
5511 return true;
5514 // Continue promoting SExts if known as considerable depending on targets.
5515 if (ATPConsiderable &&
5516 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5517 HasPromoted, TPT, SpeculativelyMovedExts))
5518 return true;
5520 TPT.rollback(LastKnownGood);
5521 return false;
5524 // Perform address type promotion if doing so is profitable.
5525 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5526 // instructions that sign extended the same initial value. However, if
5527 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5528 // extension is just profitable.
5529 bool CodeGenPrepare::performAddressTypePromotion(
5530 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5531 bool HasPromoted, TypePromotionTransaction &TPT,
5532 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5533 bool Promoted = false;
5534 SmallPtrSet<Instruction *, 1> UnhandledExts;
5535 bool AllSeenFirst = true;
5536 for (auto I : SpeculativelyMovedExts) {
5537 Value *HeadOfChain = I->getOperand(0);
5538 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5539 SeenChainsForSExt.find(HeadOfChain);
5540 // If there is an unhandled SExt which has the same header, try to promote
5541 // it as well.
5542 if (AlreadySeen != SeenChainsForSExt.end()) {
5543 if (AlreadySeen->second != nullptr)
5544 UnhandledExts.insert(AlreadySeen->second);
5545 AllSeenFirst = false;
5549 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5550 SpeculativelyMovedExts.size() == 1)) {
5551 TPT.commit();
5552 if (HasPromoted)
5553 Promoted = true;
5554 for (auto I : SpeculativelyMovedExts) {
5555 Value *HeadOfChain = I->getOperand(0);
5556 SeenChainsForSExt[HeadOfChain] = nullptr;
5557 ValToSExtendedUses[HeadOfChain].push_back(I);
5559 // Update Inst as promotion happen.
5560 Inst = SpeculativelyMovedExts.pop_back_val();
5561 } else {
5562 // This is the first chain visited from the header, keep the current chain
5563 // as unhandled. Defer to promote this until we encounter another SExt
5564 // chain derived from the same header.
5565 for (auto I : SpeculativelyMovedExts) {
5566 Value *HeadOfChain = I->getOperand(0);
5567 SeenChainsForSExt[HeadOfChain] = Inst;
5569 return false;
5572 if (!AllSeenFirst && !UnhandledExts.empty())
5573 for (auto VisitedSExt : UnhandledExts) {
5574 if (RemovedInsts.count(VisitedSExt))
5575 continue;
5576 TypePromotionTransaction TPT(RemovedInsts);
5577 SmallVector<Instruction *, 1> Exts;
5578 SmallVector<Instruction *, 2> Chains;
5579 Exts.push_back(VisitedSExt);
5580 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5581 TPT.commit();
5582 if (HasPromoted)
5583 Promoted = true;
5584 for (auto I : Chains) {
5585 Value *HeadOfChain = I->getOperand(0);
5586 // Mark this as handled.
5587 SeenChainsForSExt[HeadOfChain] = nullptr;
5588 ValToSExtendedUses[HeadOfChain].push_back(I);
5591 return Promoted;
5594 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5595 BasicBlock *DefBB = I->getParent();
5597 // If the result of a {s|z}ext and its source are both live out, rewrite all
5598 // other uses of the source with result of extension.
5599 Value *Src = I->getOperand(0);
5600 if (Src->hasOneUse())
5601 return false;
5603 // Only do this xform if truncating is free.
5604 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5605 return false;
5607 // Only safe to perform the optimization if the source is also defined in
5608 // this block.
5609 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5610 return false;
5612 bool DefIsLiveOut = false;
5613 for (User *U : I->users()) {
5614 Instruction *UI = cast<Instruction>(U);
5616 // Figure out which BB this ext is used in.
5617 BasicBlock *UserBB = UI->getParent();
5618 if (UserBB == DefBB) continue;
5619 DefIsLiveOut = true;
5620 break;
5622 if (!DefIsLiveOut)
5623 return false;
5625 // Make sure none of the uses are PHI nodes.
5626 for (User *U : Src->users()) {
5627 Instruction *UI = cast<Instruction>(U);
5628 BasicBlock *UserBB = UI->getParent();
5629 if (UserBB == DefBB) continue;
5630 // Be conservative. We don't want this xform to end up introducing
5631 // reloads just before load / store instructions.
5632 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5633 return false;
5636 // InsertedTruncs - Only insert one trunc in each block once.
5637 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5639 bool MadeChange = false;
5640 for (Use &U : Src->uses()) {
5641 Instruction *User = cast<Instruction>(U.getUser());
5643 // Figure out which BB this ext is used in.
5644 BasicBlock *UserBB = User->getParent();
5645 if (UserBB == DefBB) continue;
5647 // Both src and def are live in this block. Rewrite the use.
5648 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5650 if (!InsertedTrunc) {
5651 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5652 assert(InsertPt != UserBB->end());
5653 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5654 InsertedInsts.insert(InsertedTrunc);
5657 // Replace a use of the {s|z}ext source with a use of the result.
5658 U = InsertedTrunc;
5659 ++NumExtUses;
5660 MadeChange = true;
5663 return MadeChange;
5666 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5667 // just after the load if the target can fold this into one extload instruction,
5668 // with the hope of eliminating some of the other later "and" instructions using
5669 // the loaded value. "and"s that are made trivially redundant by the insertion
5670 // of the new "and" are removed by this function, while others (e.g. those whose
5671 // path from the load goes through a phi) are left for isel to potentially
5672 // remove.
5674 // For example:
5676 // b0:
5677 // x = load i32
5678 // ...
5679 // b1:
5680 // y = and x, 0xff
5681 // z = use y
5683 // becomes:
5685 // b0:
5686 // x = load i32
5687 // x' = and x, 0xff
5688 // ...
5689 // b1:
5690 // z = use x'
5692 // whereas:
5694 // b0:
5695 // x1 = load i32
5696 // ...
5697 // b1:
5698 // x2 = load i32
5699 // ...
5700 // b2:
5701 // x = phi x1, x2
5702 // y = and x, 0xff
5704 // becomes (after a call to optimizeLoadExt for each load):
5706 // b0:
5707 // x1 = load i32
5708 // x1' = and x1, 0xff
5709 // ...
5710 // b1:
5711 // x2 = load i32
5712 // x2' = and x2, 0xff
5713 // ...
5714 // b2:
5715 // x = phi x1', x2'
5716 // y = and x, 0xff
5717 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5718 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5719 return false;
5721 // Skip loads we've already transformed.
5722 if (Load->hasOneUse() &&
5723 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5724 return false;
5726 // Look at all uses of Load, looking through phis, to determine how many bits
5727 // of the loaded value are needed.
5728 SmallVector<Instruction *, 8> WorkList;
5729 SmallPtrSet<Instruction *, 16> Visited;
5730 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5731 for (auto *U : Load->users())
5732 WorkList.push_back(cast<Instruction>(U));
5734 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5735 unsigned BitWidth = LoadResultVT.getSizeInBits();
5736 APInt DemandBits(BitWidth, 0);
5737 APInt WidestAndBits(BitWidth, 0);
5739 while (!WorkList.empty()) {
5740 Instruction *I = WorkList.back();
5741 WorkList.pop_back();
5743 // Break use-def graph loops.
5744 if (!Visited.insert(I).second)
5745 continue;
5747 // For a PHI node, push all of its users.
5748 if (auto *Phi = dyn_cast<PHINode>(I)) {
5749 for (auto *U : Phi->users())
5750 WorkList.push_back(cast<Instruction>(U));
5751 continue;
5754 switch (I->getOpcode()) {
5755 case Instruction::And: {
5756 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5757 if (!AndC)
5758 return false;
5759 APInt AndBits = AndC->getValue();
5760 DemandBits |= AndBits;
5761 // Keep track of the widest and mask we see.
5762 if (AndBits.ugt(WidestAndBits))
5763 WidestAndBits = AndBits;
5764 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5765 AndsToMaybeRemove.push_back(I);
5766 break;
5769 case Instruction::Shl: {
5770 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5771 if (!ShlC)
5772 return false;
5773 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5774 DemandBits.setLowBits(BitWidth - ShiftAmt);
5775 break;
5778 case Instruction::Trunc: {
5779 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5780 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5781 DemandBits.setLowBits(TruncBitWidth);
5782 break;
5785 default:
5786 return false;
5790 uint32_t ActiveBits = DemandBits.getActiveBits();
5791 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5792 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5793 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5794 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5795 // followed by an AND.
5796 // TODO: Look into removing this restriction by fixing backends to either
5797 // return false for isLoadExtLegal for i1 or have them select this pattern to
5798 // a single instruction.
5800 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5801 // mask, since these are the only ands that will be removed by isel.
5802 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5803 WidestAndBits != DemandBits)
5804 return false;
5806 LLVMContext &Ctx = Load->getType()->getContext();
5807 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5808 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5810 // Reject cases that won't be matched as extloads.
5811 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5812 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5813 return false;
5815 IRBuilder<> Builder(Load->getNextNode());
5816 auto *NewAnd = dyn_cast<Instruction>(
5817 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5818 // Mark this instruction as "inserted by CGP", so that other
5819 // optimizations don't touch it.
5820 InsertedInsts.insert(NewAnd);
5822 // Replace all uses of load with new and (except for the use of load in the
5823 // new and itself).
5824 Load->replaceAllUsesWith(NewAnd);
5825 NewAnd->setOperand(0, Load);
5827 // Remove any and instructions that are now redundant.
5828 for (auto *And : AndsToMaybeRemove)
5829 // Check that the and mask is the same as the one we decided to put on the
5830 // new and.
5831 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5832 And->replaceAllUsesWith(NewAnd);
5833 if (&*CurInstIterator == And)
5834 CurInstIterator = std::next(And->getIterator());
5835 And->eraseFromParent();
5836 ++NumAndUses;
5839 ++NumAndsAdded;
5840 return true;
5843 /// Check if V (an operand of a select instruction) is an expensive instruction
5844 /// that is only used once.
5845 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5846 auto *I = dyn_cast<Instruction>(V);
5847 // If it's safe to speculatively execute, then it should not have side
5848 // effects; therefore, it's safe to sink and possibly *not* execute.
5849 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5850 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5853 /// Returns true if a SelectInst should be turned into an explicit branch.
5854 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5855 const TargetLowering *TLI,
5856 SelectInst *SI) {
5857 // If even a predictable select is cheap, then a branch can't be cheaper.
5858 if (!TLI->isPredictableSelectExpensive())
5859 return false;
5861 // FIXME: This should use the same heuristics as IfConversion to determine
5862 // whether a select is better represented as a branch.
5864 // If metadata tells us that the select condition is obviously predictable,
5865 // then we want to replace the select with a branch.
5866 uint64_t TrueWeight, FalseWeight;
5867 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5868 uint64_t Max = std::max(TrueWeight, FalseWeight);
5869 uint64_t Sum = TrueWeight + FalseWeight;
5870 if (Sum != 0) {
5871 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5872 if (Probability > TLI->getPredictableBranchThreshold())
5873 return true;
5877 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5879 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5880 // comparison condition. If the compare has more than one use, there's
5881 // probably another cmov or setcc around, so it's not worth emitting a branch.
5882 if (!Cmp || !Cmp->hasOneUse())
5883 return false;
5885 // If either operand of the select is expensive and only needed on one side
5886 // of the select, we should form a branch.
5887 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5888 sinkSelectOperand(TTI, SI->getFalseValue()))
5889 return true;
5891 return false;
5894 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5895 /// false value of \p SI. If the true/false value of \p SI is defined by any
5896 /// select instructions in \p Selects, look through the defining select
5897 /// instruction until the true/false value is not defined in \p Selects.
5898 static Value *getTrueOrFalseValue(
5899 SelectInst *SI, bool isTrue,
5900 const SmallPtrSet<const Instruction *, 2> &Selects) {
5901 Value *V = nullptr;
5903 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5904 DefSI = dyn_cast<SelectInst>(V)) {
5905 assert(DefSI->getCondition() == SI->getCondition() &&
5906 "The condition of DefSI does not match with SI");
5907 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5910 assert(V && "Failed to get select true/false value");
5911 return V;
5914 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
5915 assert(Shift->isShift() && "Expected a shift");
5917 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
5918 // general vector shifts, and (3) the shift amount is a select-of-splatted
5919 // values, hoist the shifts before the select:
5920 // shift Op0, (select Cond, TVal, FVal) -->
5921 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
5923 // This is inverting a generic IR transform when we know that the cost of a
5924 // general vector shift is more than the cost of 2 shift-by-scalars.
5925 // We can't do this effectively in SDAG because we may not be able to
5926 // determine if the select operands are splats from within a basic block.
5927 Type *Ty = Shift->getType();
5928 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
5929 return false;
5930 Value *Cond, *TVal, *FVal;
5931 if (!match(Shift->getOperand(1),
5932 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
5933 return false;
5934 if (!isSplatValue(TVal) || !isSplatValue(FVal))
5935 return false;
5937 IRBuilder<> Builder(Shift);
5938 BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
5939 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
5940 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
5941 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
5942 Shift->replaceAllUsesWith(NewSel);
5943 Shift->eraseFromParent();
5944 return true;
5947 /// If we have a SelectInst that will likely profit from branch prediction,
5948 /// turn it into a branch.
5949 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5950 // If branch conversion isn't desirable, exit early.
5951 if (DisableSelectToBranch || OptSize || !TLI)
5952 return false;
5954 // Find all consecutive select instructions that share the same condition.
5955 SmallVector<SelectInst *, 2> ASI;
5956 ASI.push_back(SI);
5957 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5958 It != SI->getParent()->end(); ++It) {
5959 SelectInst *I = dyn_cast<SelectInst>(&*It);
5960 if (I && SI->getCondition() == I->getCondition()) {
5961 ASI.push_back(I);
5962 } else {
5963 break;
5967 SelectInst *LastSI = ASI.back();
5968 // Increment the current iterator to skip all the rest of select instructions
5969 // because they will be either "not lowered" or "all lowered" to branch.
5970 CurInstIterator = std::next(LastSI->getIterator());
5972 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5974 // Can we convert the 'select' to CF ?
5975 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5976 return false;
5978 TargetLowering::SelectSupportKind SelectKind;
5979 if (VectorCond)
5980 SelectKind = TargetLowering::VectorMaskSelect;
5981 else if (SI->getType()->isVectorTy())
5982 SelectKind = TargetLowering::ScalarCondVectorVal;
5983 else
5984 SelectKind = TargetLowering::ScalarValSelect;
5986 if (TLI->isSelectSupported(SelectKind) &&
5987 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5988 return false;
5990 // The DominatorTree needs to be rebuilt by any consumers after this
5991 // transformation. We simply reset here rather than setting the ModifiedDT
5992 // flag to avoid restarting the function walk in runOnFunction for each
5993 // select optimized.
5994 DT.reset();
5996 // Transform a sequence like this:
5997 // start:
5998 // %cmp = cmp uge i32 %a, %b
5999 // %sel = select i1 %cmp, i32 %c, i32 %d
6001 // Into:
6002 // start:
6003 // %cmp = cmp uge i32 %a, %b
6004 // br i1 %cmp, label %select.true, label %select.false
6005 // select.true:
6006 // br label %select.end
6007 // select.false:
6008 // br label %select.end
6009 // select.end:
6010 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6012 // In addition, we may sink instructions that produce %c or %d from
6013 // the entry block into the destination(s) of the new branch.
6014 // If the true or false blocks do not contain a sunken instruction, that
6015 // block and its branch may be optimized away. In that case, one side of the
6016 // first branch will point directly to select.end, and the corresponding PHI
6017 // predecessor block will be the start block.
6019 // First, we split the block containing the select into 2 blocks.
6020 BasicBlock *StartBlock = SI->getParent();
6021 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6022 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6024 // Delete the unconditional branch that was just created by the split.
6025 StartBlock->getTerminator()->eraseFromParent();
6027 // These are the new basic blocks for the conditional branch.
6028 // At least one will become an actual new basic block.
6029 BasicBlock *TrueBlock = nullptr;
6030 BasicBlock *FalseBlock = nullptr;
6031 BranchInst *TrueBranch = nullptr;
6032 BranchInst *FalseBranch = nullptr;
6034 // Sink expensive instructions into the conditional blocks to avoid executing
6035 // them speculatively.
6036 for (SelectInst *SI : ASI) {
6037 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6038 if (TrueBlock == nullptr) {
6039 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6040 EndBlock->getParent(), EndBlock);
6041 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6042 TrueBranch->setDebugLoc(SI->getDebugLoc());
6044 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6045 TrueInst->moveBefore(TrueBranch);
6047 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6048 if (FalseBlock == nullptr) {
6049 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6050 EndBlock->getParent(), EndBlock);
6051 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6052 FalseBranch->setDebugLoc(SI->getDebugLoc());
6054 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6055 FalseInst->moveBefore(FalseBranch);
6059 // If there was nothing to sink, then arbitrarily choose the 'false' side
6060 // for a new input value to the PHI.
6061 if (TrueBlock == FalseBlock) {
6062 assert(TrueBlock == nullptr &&
6063 "Unexpected basic block transform while optimizing select");
6065 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6066 EndBlock->getParent(), EndBlock);
6067 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6068 FalseBranch->setDebugLoc(SI->getDebugLoc());
6071 // Insert the real conditional branch based on the original condition.
6072 // If we did not create a new block for one of the 'true' or 'false' paths
6073 // of the condition, it means that side of the branch goes to the end block
6074 // directly and the path originates from the start block from the point of
6075 // view of the new PHI.
6076 BasicBlock *TT, *FT;
6077 if (TrueBlock == nullptr) {
6078 TT = EndBlock;
6079 FT = FalseBlock;
6080 TrueBlock = StartBlock;
6081 } else if (FalseBlock == nullptr) {
6082 TT = TrueBlock;
6083 FT = EndBlock;
6084 FalseBlock = StartBlock;
6085 } else {
6086 TT = TrueBlock;
6087 FT = FalseBlock;
6089 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6091 SmallPtrSet<const Instruction *, 2> INS;
6092 INS.insert(ASI.begin(), ASI.end());
6093 // Use reverse iterator because later select may use the value of the
6094 // earlier select, and we need to propagate value through earlier select
6095 // to get the PHI operand.
6096 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6097 SelectInst *SI = *It;
6098 // The select itself is replaced with a PHI Node.
6099 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6100 PN->takeName(SI);
6101 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6102 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6103 PN->setDebugLoc(SI->getDebugLoc());
6105 SI->replaceAllUsesWith(PN);
6106 SI->eraseFromParent();
6107 INS.erase(SI);
6108 ++NumSelectsExpanded;
6111 // Instruct OptimizeBlock to skip to the next block.
6112 CurInstIterator = StartBlock->end();
6113 return true;
6116 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6117 SmallVector<int, 16> Mask(SVI->getShuffleMask());
6118 int SplatElem = -1;
6119 for (unsigned i = 0; i < Mask.size(); ++i) {
6120 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6121 return false;
6122 SplatElem = Mask[i];
6125 return true;
6128 /// Some targets have expensive vector shifts if the lanes aren't all the same
6129 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6130 /// it's often worth sinking a shufflevector splat down to its use so that
6131 /// codegen can spot all lanes are identical.
6132 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6133 BasicBlock *DefBB = SVI->getParent();
6135 // Only do this xform if variable vector shifts are particularly expensive.
6136 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6137 return false;
6139 // We only expect better codegen by sinking a shuffle if we can recognise a
6140 // constant splat.
6141 if (!isBroadcastShuffle(SVI))
6142 return false;
6144 // InsertedShuffles - Only insert a shuffle in each block once.
6145 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6147 bool MadeChange = false;
6148 for (User *U : SVI->users()) {
6149 Instruction *UI = cast<Instruction>(U);
6151 // Figure out which BB this ext is used in.
6152 BasicBlock *UserBB = UI->getParent();
6153 if (UserBB == DefBB) continue;
6155 // For now only apply this when the splat is used by a shift instruction.
6156 if (!UI->isShift()) continue;
6158 // Everything checks out, sink the shuffle if the user's block doesn't
6159 // already have a copy.
6160 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6162 if (!InsertedShuffle) {
6163 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6164 assert(InsertPt != UserBB->end());
6165 InsertedShuffle =
6166 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6167 SVI->getOperand(2), "", &*InsertPt);
6168 InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6171 UI->replaceUsesOfWith(SVI, InsertedShuffle);
6172 MadeChange = true;
6175 // If we removed all uses, nuke the shuffle.
6176 if (SVI->use_empty()) {
6177 SVI->eraseFromParent();
6178 MadeChange = true;
6181 return MadeChange;
6184 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6185 // If the operands of I can be folded into a target instruction together with
6186 // I, duplicate and sink them.
6187 SmallVector<Use *, 4> OpsToSink;
6188 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6189 return false;
6191 // OpsToSink can contain multiple uses in a use chain (e.g.
6192 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6193 // uses must come first, which means they are sunk first, temporarily creating
6194 // invalid IR. This will be fixed once their dominated users are sunk and
6195 // updated.
6196 BasicBlock *TargetBB = I->getParent();
6197 bool Changed = false;
6198 SmallVector<Use *, 4> ToReplace;
6199 for (Use *U : OpsToSink) {
6200 auto *UI = cast<Instruction>(U->get());
6201 if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6202 continue;
6203 ToReplace.push_back(U);
6206 SmallPtrSet<Instruction *, 4> MaybeDead;
6207 for (Use *U : ToReplace) {
6208 auto *UI = cast<Instruction>(U->get());
6209 Instruction *NI = UI->clone();
6210 MaybeDead.insert(UI);
6211 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6212 NI->insertBefore(I);
6213 InsertedInsts.insert(NI);
6214 U->set(NI);
6215 Changed = true;
6218 // Remove instructions that are dead after sinking.
6219 for (auto *I : MaybeDead)
6220 if (!I->hasNUsesOrMore(1))
6221 I->eraseFromParent();
6223 return Changed;
6226 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6227 if (!TLI || !DL)
6228 return false;
6230 Value *Cond = SI->getCondition();
6231 Type *OldType = Cond->getType();
6232 LLVMContext &Context = Cond->getContext();
6233 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6234 unsigned RegWidth = RegType.getSizeInBits();
6236 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6237 return false;
6239 // If the register width is greater than the type width, expand the condition
6240 // of the switch instruction and each case constant to the width of the
6241 // register. By widening the type of the switch condition, subsequent
6242 // comparisons (for case comparisons) will not need to be extended to the
6243 // preferred register width, so we will potentially eliminate N-1 extends,
6244 // where N is the number of cases in the switch.
6245 auto *NewType = Type::getIntNTy(Context, RegWidth);
6247 // Zero-extend the switch condition and case constants unless the switch
6248 // condition is a function argument that is already being sign-extended.
6249 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6250 // everything instead.
6251 Instruction::CastOps ExtType = Instruction::ZExt;
6252 if (auto *Arg = dyn_cast<Argument>(Cond))
6253 if (Arg->hasSExtAttr())
6254 ExtType = Instruction::SExt;
6256 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6257 ExtInst->insertBefore(SI);
6258 ExtInst->setDebugLoc(SI->getDebugLoc());
6259 SI->setCondition(ExtInst);
6260 for (auto Case : SI->cases()) {
6261 APInt NarrowConst = Case.getCaseValue()->getValue();
6262 APInt WideConst = (ExtType == Instruction::ZExt) ?
6263 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6264 Case.setValue(ConstantInt::get(Context, WideConst));
6267 return true;
6271 namespace {
6273 /// Helper class to promote a scalar operation to a vector one.
6274 /// This class is used to move downward extractelement transition.
6275 /// E.g.,
6276 /// a = vector_op <2 x i32>
6277 /// b = extractelement <2 x i32> a, i32 0
6278 /// c = scalar_op b
6279 /// store c
6281 /// =>
6282 /// a = vector_op <2 x i32>
6283 /// c = vector_op a (equivalent to scalar_op on the related lane)
6284 /// * d = extractelement <2 x i32> c, i32 0
6285 /// * store d
6286 /// Assuming both extractelement and store can be combine, we get rid of the
6287 /// transition.
6288 class VectorPromoteHelper {
6289 /// DataLayout associated with the current module.
6290 const DataLayout &DL;
6292 /// Used to perform some checks on the legality of vector operations.
6293 const TargetLowering &TLI;
6295 /// Used to estimated the cost of the promoted chain.
6296 const TargetTransformInfo &TTI;
6298 /// The transition being moved downwards.
6299 Instruction *Transition;
6301 /// The sequence of instructions to be promoted.
6302 SmallVector<Instruction *, 4> InstsToBePromoted;
6304 /// Cost of combining a store and an extract.
6305 unsigned StoreExtractCombineCost;
6307 /// Instruction that will be combined with the transition.
6308 Instruction *CombineInst = nullptr;
6310 /// The instruction that represents the current end of the transition.
6311 /// Since we are faking the promotion until we reach the end of the chain
6312 /// of computation, we need a way to get the current end of the transition.
6313 Instruction *getEndOfTransition() const {
6314 if (InstsToBePromoted.empty())
6315 return Transition;
6316 return InstsToBePromoted.back();
6319 /// Return the index of the original value in the transition.
6320 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6321 /// c, is at index 0.
6322 unsigned getTransitionOriginalValueIdx() const {
6323 assert(isa<ExtractElementInst>(Transition) &&
6324 "Other kind of transitions are not supported yet");
6325 return 0;
6328 /// Return the index of the index in the transition.
6329 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6330 /// is at index 1.
6331 unsigned getTransitionIdx() const {
6332 assert(isa<ExtractElementInst>(Transition) &&
6333 "Other kind of transitions are not supported yet");
6334 return 1;
6337 /// Get the type of the transition.
6338 /// This is the type of the original value.
6339 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6340 /// transition is <2 x i32>.
6341 Type *getTransitionType() const {
6342 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6345 /// Promote \p ToBePromoted by moving \p Def downward through.
6346 /// I.e., we have the following sequence:
6347 /// Def = Transition <ty1> a to <ty2>
6348 /// b = ToBePromoted <ty2> Def, ...
6349 /// =>
6350 /// b = ToBePromoted <ty1> a, ...
6351 /// Def = Transition <ty1> ToBePromoted to <ty2>
6352 void promoteImpl(Instruction *ToBePromoted);
6354 /// Check whether or not it is profitable to promote all the
6355 /// instructions enqueued to be promoted.
6356 bool isProfitableToPromote() {
6357 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6358 unsigned Index = isa<ConstantInt>(ValIdx)
6359 ? cast<ConstantInt>(ValIdx)->getZExtValue()
6360 : -1;
6361 Type *PromotedType = getTransitionType();
6363 StoreInst *ST = cast<StoreInst>(CombineInst);
6364 unsigned AS = ST->getPointerAddressSpace();
6365 unsigned Align = ST->getAlignment();
6366 // Check if this store is supported.
6367 if (!TLI.allowsMisalignedMemoryAccesses(
6368 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6369 Align)) {
6370 // If this is not supported, there is no way we can combine
6371 // the extract with the store.
6372 return false;
6375 // The scalar chain of computation has to pay for the transition
6376 // scalar to vector.
6377 // The vector chain has to account for the combining cost.
6378 uint64_t ScalarCost =
6379 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6380 uint64_t VectorCost = StoreExtractCombineCost;
6381 for (const auto &Inst : InstsToBePromoted) {
6382 // Compute the cost.
6383 // By construction, all instructions being promoted are arithmetic ones.
6384 // Moreover, one argument is a constant that can be viewed as a splat
6385 // constant.
6386 Value *Arg0 = Inst->getOperand(0);
6387 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6388 isa<ConstantFP>(Arg0);
6389 TargetTransformInfo::OperandValueKind Arg0OVK =
6390 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6391 : TargetTransformInfo::OK_AnyValue;
6392 TargetTransformInfo::OperandValueKind Arg1OVK =
6393 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6394 : TargetTransformInfo::OK_AnyValue;
6395 ScalarCost += TTI.getArithmeticInstrCost(
6396 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6397 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6398 Arg0OVK, Arg1OVK);
6400 LLVM_DEBUG(
6401 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6402 << ScalarCost << "\nVector: " << VectorCost << '\n');
6403 return ScalarCost > VectorCost;
6406 /// Generate a constant vector with \p Val with the same
6407 /// number of elements as the transition.
6408 /// \p UseSplat defines whether or not \p Val should be replicated
6409 /// across the whole vector.
6410 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6411 /// otherwise we generate a vector with as many undef as possible:
6412 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6413 /// used at the index of the extract.
6414 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6415 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6416 if (!UseSplat) {
6417 // If we cannot determine where the constant must be, we have to
6418 // use a splat constant.
6419 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6420 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6421 ExtractIdx = CstVal->getSExtValue();
6422 else
6423 UseSplat = true;
6426 unsigned End = getTransitionType()->getVectorNumElements();
6427 if (UseSplat)
6428 return ConstantVector::getSplat(End, Val);
6430 SmallVector<Constant *, 4> ConstVec;
6431 UndefValue *UndefVal = UndefValue::get(Val->getType());
6432 for (unsigned Idx = 0; Idx != End; ++Idx) {
6433 if (Idx == ExtractIdx)
6434 ConstVec.push_back(Val);
6435 else
6436 ConstVec.push_back(UndefVal);
6438 return ConstantVector::get(ConstVec);
6441 /// Check if promoting to a vector type an operand at \p OperandIdx
6442 /// in \p Use can trigger undefined behavior.
6443 static bool canCauseUndefinedBehavior(const Instruction *Use,
6444 unsigned OperandIdx) {
6445 // This is not safe to introduce undef when the operand is on
6446 // the right hand side of a division-like instruction.
6447 if (OperandIdx != 1)
6448 return false;
6449 switch (Use->getOpcode()) {
6450 default:
6451 return false;
6452 case Instruction::SDiv:
6453 case Instruction::UDiv:
6454 case Instruction::SRem:
6455 case Instruction::URem:
6456 return true;
6457 case Instruction::FDiv:
6458 case Instruction::FRem:
6459 return !Use->hasNoNaNs();
6461 llvm_unreachable(nullptr);
6464 public:
6465 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6466 const TargetTransformInfo &TTI, Instruction *Transition,
6467 unsigned CombineCost)
6468 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6469 StoreExtractCombineCost(CombineCost) {
6470 assert(Transition && "Do not know how to promote null");
6473 /// Check if we can promote \p ToBePromoted to \p Type.
6474 bool canPromote(const Instruction *ToBePromoted) const {
6475 // We could support CastInst too.
6476 return isa<BinaryOperator>(ToBePromoted);
6479 /// Check if it is profitable to promote \p ToBePromoted
6480 /// by moving downward the transition through.
6481 bool shouldPromote(const Instruction *ToBePromoted) const {
6482 // Promote only if all the operands can be statically expanded.
6483 // Indeed, we do not want to introduce any new kind of transitions.
6484 for (const Use &U : ToBePromoted->operands()) {
6485 const Value *Val = U.get();
6486 if (Val == getEndOfTransition()) {
6487 // If the use is a division and the transition is on the rhs,
6488 // we cannot promote the operation, otherwise we may create a
6489 // division by zero.
6490 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6491 return false;
6492 continue;
6494 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6495 !isa<ConstantFP>(Val))
6496 return false;
6498 // Check that the resulting operation is legal.
6499 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6500 if (!ISDOpcode)
6501 return false;
6502 return StressStoreExtract ||
6503 TLI.isOperationLegalOrCustom(
6504 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6507 /// Check whether or not \p Use can be combined
6508 /// with the transition.
6509 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6510 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6512 /// Record \p ToBePromoted as part of the chain to be promoted.
6513 void enqueueForPromotion(Instruction *ToBePromoted) {
6514 InstsToBePromoted.push_back(ToBePromoted);
6517 /// Set the instruction that will be combined with the transition.
6518 void recordCombineInstruction(Instruction *ToBeCombined) {
6519 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6520 CombineInst = ToBeCombined;
6523 /// Promote all the instructions enqueued for promotion if it is
6524 /// is profitable.
6525 /// \return True if the promotion happened, false otherwise.
6526 bool promote() {
6527 // Check if there is something to promote.
6528 // Right now, if we do not have anything to combine with,
6529 // we assume the promotion is not profitable.
6530 if (InstsToBePromoted.empty() || !CombineInst)
6531 return false;
6533 // Check cost.
6534 if (!StressStoreExtract && !isProfitableToPromote())
6535 return false;
6537 // Promote.
6538 for (auto &ToBePromoted : InstsToBePromoted)
6539 promoteImpl(ToBePromoted);
6540 InstsToBePromoted.clear();
6541 return true;
6545 } // end anonymous namespace
6547 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6548 // At this point, we know that all the operands of ToBePromoted but Def
6549 // can be statically promoted.
6550 // For Def, we need to use its parameter in ToBePromoted:
6551 // b = ToBePromoted ty1 a
6552 // Def = Transition ty1 b to ty2
6553 // Move the transition down.
6554 // 1. Replace all uses of the promoted operation by the transition.
6555 // = ... b => = ... Def.
6556 assert(ToBePromoted->getType() == Transition->getType() &&
6557 "The type of the result of the transition does not match "
6558 "the final type");
6559 ToBePromoted->replaceAllUsesWith(Transition);
6560 // 2. Update the type of the uses.
6561 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6562 Type *TransitionTy = getTransitionType();
6563 ToBePromoted->mutateType(TransitionTy);
6564 // 3. Update all the operands of the promoted operation with promoted
6565 // operands.
6566 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6567 for (Use &U : ToBePromoted->operands()) {
6568 Value *Val = U.get();
6569 Value *NewVal = nullptr;
6570 if (Val == Transition)
6571 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6572 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6573 isa<ConstantFP>(Val)) {
6574 // Use a splat constant if it is not safe to use undef.
6575 NewVal = getConstantVector(
6576 cast<Constant>(Val),
6577 isa<UndefValue>(Val) ||
6578 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6579 } else
6580 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6581 "this?");
6582 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6584 Transition->moveAfter(ToBePromoted);
6585 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6588 /// Some targets can do store(extractelement) with one instruction.
6589 /// Try to push the extractelement towards the stores when the target
6590 /// has this feature and this is profitable.
6591 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6592 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6593 if (DisableStoreExtract || !TLI ||
6594 (!StressStoreExtract &&
6595 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6596 Inst->getOperand(1), CombineCost)))
6597 return false;
6599 // At this point we know that Inst is a vector to scalar transition.
6600 // Try to move it down the def-use chain, until:
6601 // - We can combine the transition with its single use
6602 // => we got rid of the transition.
6603 // - We escape the current basic block
6604 // => we would need to check that we are moving it at a cheaper place and
6605 // we do not do that for now.
6606 BasicBlock *Parent = Inst->getParent();
6607 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6608 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6609 // If the transition has more than one use, assume this is not going to be
6610 // beneficial.
6611 while (Inst->hasOneUse()) {
6612 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6613 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6615 if (ToBePromoted->getParent() != Parent) {
6616 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6617 << ToBePromoted->getParent()->getName()
6618 << ") than the transition (" << Parent->getName()
6619 << ").\n");
6620 return false;
6623 if (VPH.canCombine(ToBePromoted)) {
6624 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6625 << "will be combined with: " << *ToBePromoted << '\n');
6626 VPH.recordCombineInstruction(ToBePromoted);
6627 bool Changed = VPH.promote();
6628 NumStoreExtractExposed += Changed;
6629 return Changed;
6632 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6633 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6634 return false;
6636 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6638 VPH.enqueueForPromotion(ToBePromoted);
6639 Inst = ToBePromoted;
6641 return false;
6644 /// For the instruction sequence of store below, F and I values
6645 /// are bundled together as an i64 value before being stored into memory.
6646 /// Sometimes it is more efficient to generate separate stores for F and I,
6647 /// which can remove the bitwise instructions or sink them to colder places.
6649 /// (store (or (zext (bitcast F to i32) to i64),
6650 /// (shl (zext I to i64), 32)), addr) -->
6651 /// (store F, addr) and (store I, addr+4)
6653 /// Similarly, splitting for other merged store can also be beneficial, like:
6654 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6655 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6656 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6657 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6658 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6660 /// We allow each target to determine specifically which kind of splitting is
6661 /// supported.
6663 /// The store patterns are commonly seen from the simple code snippet below
6664 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6665 /// void goo(const std::pair<int, float> &);
6666 /// hoo() {
6667 /// ...
6668 /// goo(std::make_pair(tmp, ftmp));
6669 /// ...
6670 /// }
6672 /// Although we already have similar splitting in DAG Combine, we duplicate
6673 /// it in CodeGenPrepare to catch the case in which pattern is across
6674 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6675 /// during code expansion.
6676 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6677 const TargetLowering &TLI) {
6678 // Handle simple but common cases only.
6679 Type *StoreType = SI.getValueOperand()->getType();
6680 if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6681 DL.getTypeSizeInBits(StoreType) == 0)
6682 return false;
6684 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6685 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6686 if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6687 return false;
6689 // Don't split the store if it is volatile.
6690 if (SI.isVolatile())
6691 return false;
6693 // Match the following patterns:
6694 // (store (or (zext LValue to i64),
6695 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6696 // or
6697 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6698 // (zext LValue to i64),
6699 // Expect both operands of OR and the first operand of SHL have only
6700 // one use.
6701 Value *LValue, *HValue;
6702 if (!match(SI.getValueOperand(),
6703 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6704 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6705 m_SpecificInt(HalfValBitSize))))))
6706 return false;
6708 // Check LValue and HValue are int with size less or equal than 32.
6709 if (!LValue->getType()->isIntegerTy() ||
6710 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6711 !HValue->getType()->isIntegerTy() ||
6712 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6713 return false;
6715 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6716 // as the input of target query.
6717 auto *LBC = dyn_cast<BitCastInst>(LValue);
6718 auto *HBC = dyn_cast<BitCastInst>(HValue);
6719 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6720 : EVT::getEVT(LValue->getType());
6721 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6722 : EVT::getEVT(HValue->getType());
6723 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6724 return false;
6726 // Start to split store.
6727 IRBuilder<> Builder(SI.getContext());
6728 Builder.SetInsertPoint(&SI);
6730 // If LValue/HValue is a bitcast in another BB, create a new one in current
6731 // BB so it may be merged with the splitted stores by dag combiner.
6732 if (LBC && LBC->getParent() != SI.getParent())
6733 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6734 if (HBC && HBC->getParent() != SI.getParent())
6735 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6737 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6738 auto CreateSplitStore = [&](Value *V, bool Upper) {
6739 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6740 Value *Addr = Builder.CreateBitCast(
6741 SI.getOperand(1),
6742 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6743 if ((IsLE && Upper) || (!IsLE && !Upper))
6744 Addr = Builder.CreateGEP(
6745 SplitStoreType, Addr,
6746 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6747 Builder.CreateAlignedStore(
6748 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6751 CreateSplitStore(LValue, false);
6752 CreateSplitStore(HValue, true);
6754 // Delete the old store.
6755 SI.eraseFromParent();
6756 return true;
6759 // Return true if the GEP has two operands, the first operand is of a sequential
6760 // type, and the second operand is a constant.
6761 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6762 gep_type_iterator I = gep_type_begin(*GEP);
6763 return GEP->getNumOperands() == 2 &&
6764 I.isSequential() &&
6765 isa<ConstantInt>(GEP->getOperand(1));
6768 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6769 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6770 // reducing liveness interference across those edges benefits global register
6771 // allocation. Currently handles only certain cases.
6773 // For example, unmerge %GEPI and %UGEPI as below.
6775 // ---------- BEFORE ----------
6776 // SrcBlock:
6777 // ...
6778 // %GEPIOp = ...
6779 // ...
6780 // %GEPI = gep %GEPIOp, Idx
6781 // ...
6782 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6783 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6784 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6785 // %UGEPI)
6787 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6788 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6789 // ...
6791 // DstBi:
6792 // ...
6793 // %UGEPI = gep %GEPIOp, UIdx
6794 // ...
6795 // ---------------------------
6797 // ---------- AFTER ----------
6798 // SrcBlock:
6799 // ... (same as above)
6800 // (* %GEPI is still alive on the indirectbr edges)
6801 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6802 // unmerging)
6803 // ...
6805 // DstBi:
6806 // ...
6807 // %UGEPI = gep %GEPI, (UIdx-Idx)
6808 // ...
6809 // ---------------------------
6811 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6812 // no longer alive on them.
6814 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6815 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6816 // not to disable further simplications and optimizations as a result of GEP
6817 // merging.
6819 // Note this unmerging may increase the length of the data flow critical path
6820 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6821 // between the register pressure and the length of data-flow critical
6822 // path. Restricting this to the uncommon IndirectBr case would minimize the
6823 // impact of potentially longer critical path, if any, and the impact on compile
6824 // time.
6825 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6826 const TargetTransformInfo *TTI) {
6827 BasicBlock *SrcBlock = GEPI->getParent();
6828 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6829 // (non-IndirectBr) cases exit early here.
6830 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6831 return false;
6832 // Check that GEPI is a simple gep with a single constant index.
6833 if (!GEPSequentialConstIndexed(GEPI))
6834 return false;
6835 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6836 // Check that GEPI is a cheap one.
6837 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6838 > TargetTransformInfo::TCC_Basic)
6839 return false;
6840 Value *GEPIOp = GEPI->getOperand(0);
6841 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6842 if (!isa<Instruction>(GEPIOp))
6843 return false;
6844 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6845 if (GEPIOpI->getParent() != SrcBlock)
6846 return false;
6847 // Check that GEP is used outside the block, meaning it's alive on the
6848 // IndirectBr edge(s).
6849 if (find_if(GEPI->users(), [&](User *Usr) {
6850 if (auto *I = dyn_cast<Instruction>(Usr)) {
6851 if (I->getParent() != SrcBlock) {
6852 return true;
6855 return false;
6856 }) == GEPI->users().end())
6857 return false;
6858 // The second elements of the GEP chains to be unmerged.
6859 std::vector<GetElementPtrInst *> UGEPIs;
6860 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6861 // on IndirectBr edges.
6862 for (User *Usr : GEPIOp->users()) {
6863 if (Usr == GEPI) continue;
6864 // Check if Usr is an Instruction. If not, give up.
6865 if (!isa<Instruction>(Usr))
6866 return false;
6867 auto *UI = cast<Instruction>(Usr);
6868 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6869 if (UI->getParent() == SrcBlock)
6870 continue;
6871 // Check if Usr is a GEP. If not, give up.
6872 if (!isa<GetElementPtrInst>(Usr))
6873 return false;
6874 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6875 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6876 // the pointer operand to it. If so, record it in the vector. If not, give
6877 // up.
6878 if (!GEPSequentialConstIndexed(UGEPI))
6879 return false;
6880 if (UGEPI->getOperand(0) != GEPIOp)
6881 return false;
6882 if (GEPIIdx->getType() !=
6883 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6884 return false;
6885 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6886 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6887 > TargetTransformInfo::TCC_Basic)
6888 return false;
6889 UGEPIs.push_back(UGEPI);
6891 if (UGEPIs.size() == 0)
6892 return false;
6893 // Check the materializing cost of (Uidx-Idx).
6894 for (GetElementPtrInst *UGEPI : UGEPIs) {
6895 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6896 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6897 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6898 if (ImmCost > TargetTransformInfo::TCC_Basic)
6899 return false;
6901 // Now unmerge between GEPI and UGEPIs.
6902 for (GetElementPtrInst *UGEPI : UGEPIs) {
6903 UGEPI->setOperand(0, GEPI);
6904 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6905 Constant *NewUGEPIIdx =
6906 ConstantInt::get(GEPIIdx->getType(),
6907 UGEPIIdx->getValue() - GEPIIdx->getValue());
6908 UGEPI->setOperand(1, NewUGEPIIdx);
6909 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6910 // inbounds to avoid UB.
6911 if (!GEPI->isInBounds()) {
6912 UGEPI->setIsInBounds(false);
6915 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6916 // alive on IndirectBr edges).
6917 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6918 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6919 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6920 return true;
6923 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6924 // Bail out if we inserted the instruction to prevent optimizations from
6925 // stepping on each other's toes.
6926 if (InsertedInsts.count(I))
6927 return false;
6929 // TODO: Move into the switch on opcode below here.
6930 if (PHINode *P = dyn_cast<PHINode>(I)) {
6931 // It is possible for very late stage optimizations (such as SimplifyCFG)
6932 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6933 // trivial PHI, go ahead and zap it here.
6934 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6935 LargeOffsetGEPMap.erase(P);
6936 P->replaceAllUsesWith(V);
6937 P->eraseFromParent();
6938 ++NumPHIsElim;
6939 return true;
6941 return false;
6944 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6945 // If the source of the cast is a constant, then this should have
6946 // already been constant folded. The only reason NOT to constant fold
6947 // it is if something (e.g. LSR) was careful to place the constant
6948 // evaluation in a block other than then one that uses it (e.g. to hoist
6949 // the address of globals out of a loop). If this is the case, we don't
6950 // want to forward-subst the cast.
6951 if (isa<Constant>(CI->getOperand(0)))
6952 return false;
6954 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6955 return true;
6957 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6958 /// Sink a zext or sext into its user blocks if the target type doesn't
6959 /// fit in one register
6960 if (TLI &&
6961 TLI->getTypeAction(CI->getContext(),
6962 TLI->getValueType(*DL, CI->getType())) ==
6963 TargetLowering::TypeExpandInteger) {
6964 return SinkCast(CI);
6965 } else {
6966 bool MadeChange = optimizeExt(I);
6967 return MadeChange | optimizeExtUses(I);
6970 return false;
6973 if (auto *Cmp = dyn_cast<CmpInst>(I))
6974 if (TLI && optimizeCmp(Cmp, ModifiedDT))
6975 return true;
6977 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6978 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6979 if (TLI) {
6980 bool Modified = optimizeLoadExt(LI);
6981 unsigned AS = LI->getPointerAddressSpace();
6982 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6983 return Modified;
6985 return false;
6988 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6989 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6990 return true;
6991 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6992 if (TLI) {
6993 unsigned AS = SI->getPointerAddressSpace();
6994 return optimizeMemoryInst(I, SI->getOperand(1),
6995 SI->getOperand(0)->getType(), AS);
6997 return false;
7000 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7001 unsigned AS = RMW->getPointerAddressSpace();
7002 return optimizeMemoryInst(I, RMW->getPointerOperand(),
7003 RMW->getType(), AS);
7006 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7007 unsigned AS = CmpX->getPointerAddressSpace();
7008 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7009 CmpX->getCompareOperand()->getType(), AS);
7012 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7014 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7015 EnableAndCmpSinking && TLI)
7016 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7018 // TODO: Move this into the switch on opcode - it handles shifts already.
7019 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7020 BinOp->getOpcode() == Instruction::LShr)) {
7021 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7022 if (TLI && CI && TLI->hasExtractBitsInsn())
7023 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7024 return true;
7027 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7028 if (GEPI->hasAllZeroIndices()) {
7029 /// The GEP operand must be a pointer, so must its result -> BitCast
7030 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7031 GEPI->getName(), GEPI);
7032 NC->setDebugLoc(GEPI->getDebugLoc());
7033 GEPI->replaceAllUsesWith(NC);
7034 GEPI->eraseFromParent();
7035 ++NumGEPsElim;
7036 optimizeInst(NC, ModifiedDT);
7037 return true;
7039 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7040 return true;
7042 return false;
7045 if (tryToSinkFreeOperands(I))
7046 return true;
7048 switch (I->getOpcode()) {
7049 case Instruction::Shl:
7050 case Instruction::LShr:
7051 case Instruction::AShr:
7052 return optimizeShiftInst(cast<BinaryOperator>(I));
7053 case Instruction::Call:
7054 return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7055 case Instruction::Select:
7056 return optimizeSelectInst(cast<SelectInst>(I));
7057 case Instruction::ShuffleVector:
7058 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7059 case Instruction::Switch:
7060 return optimizeSwitchInst(cast<SwitchInst>(I));
7061 case Instruction::ExtractElement:
7062 return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7065 return false;
7068 /// Given an OR instruction, check to see if this is a bitreverse
7069 /// idiom. If so, insert the new intrinsic and return true.
7070 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7071 const TargetLowering &TLI) {
7072 if (!I.getType()->isIntegerTy() ||
7073 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7074 TLI.getValueType(DL, I.getType(), true)))
7075 return false;
7077 SmallVector<Instruction*, 4> Insts;
7078 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7079 return false;
7080 Instruction *LastInst = Insts.back();
7081 I.replaceAllUsesWith(LastInst);
7082 RecursivelyDeleteTriviallyDeadInstructions(&I);
7083 return true;
7086 // In this pass we look for GEP and cast instructions that are used
7087 // across basic blocks and rewrite them to improve basic-block-at-a-time
7088 // selection.
7089 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7090 SunkAddrs.clear();
7091 bool MadeChange = false;
7093 CurInstIterator = BB.begin();
7094 while (CurInstIterator != BB.end()) {
7095 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7096 if (ModifiedDT)
7097 return true;
7100 bool MadeBitReverse = true;
7101 while (TLI && MadeBitReverse) {
7102 MadeBitReverse = false;
7103 for (auto &I : reverse(BB)) {
7104 if (makeBitReverse(I, *DL, *TLI)) {
7105 MadeBitReverse = MadeChange = true;
7106 ModifiedDT = true;
7107 break;
7111 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7113 return MadeChange;
7116 // llvm.dbg.value is far away from the value then iSel may not be able
7117 // handle it properly. iSel will drop llvm.dbg.value if it can not
7118 // find a node corresponding to the value.
7119 bool CodeGenPrepare::placeDbgValues(Function &F) {
7120 bool MadeChange = false;
7121 for (BasicBlock &BB : F) {
7122 Instruction *PrevNonDbgInst = nullptr;
7123 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7124 Instruction *Insn = &*BI++;
7125 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7126 // Leave dbg.values that refer to an alloca alone. These
7127 // intrinsics describe the address of a variable (= the alloca)
7128 // being taken. They should not be moved next to the alloca
7129 // (and to the beginning of the scope), but rather stay close to
7130 // where said address is used.
7131 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7132 PrevNonDbgInst = Insn;
7133 continue;
7136 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7137 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7138 // If VI is a phi in a block with an EHPad terminator, we can't insert
7139 // after it.
7140 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7141 continue;
7142 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7143 << *DVI << ' ' << *VI);
7144 DVI->removeFromParent();
7145 if (isa<PHINode>(VI))
7146 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7147 else
7148 DVI->insertAfter(VI);
7149 MadeChange = true;
7150 ++NumDbgValueMoved;
7154 return MadeChange;
7157 /// Scale down both weights to fit into uint32_t.
7158 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7159 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7160 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7161 NewTrue = NewTrue / Scale;
7162 NewFalse = NewFalse / Scale;
7165 /// Some targets prefer to split a conditional branch like:
7166 /// \code
7167 /// %0 = icmp ne i32 %a, 0
7168 /// %1 = icmp ne i32 %b, 0
7169 /// %or.cond = or i1 %0, %1
7170 /// br i1 %or.cond, label %TrueBB, label %FalseBB
7171 /// \endcode
7172 /// into multiple branch instructions like:
7173 /// \code
7174 /// bb1:
7175 /// %0 = icmp ne i32 %a, 0
7176 /// br i1 %0, label %TrueBB, label %bb2
7177 /// bb2:
7178 /// %1 = icmp ne i32 %b, 0
7179 /// br i1 %1, label %TrueBB, label %FalseBB
7180 /// \endcode
7181 /// This usually allows instruction selection to do even further optimizations
7182 /// and combine the compare with the branch instruction. Currently this is
7183 /// applied for targets which have "cheap" jump instructions.
7185 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7187 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7188 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7189 return false;
7191 bool MadeChange = false;
7192 for (auto &BB : F) {
7193 // Does this BB end with the following?
7194 // %cond1 = icmp|fcmp|binary instruction ...
7195 // %cond2 = icmp|fcmp|binary instruction ...
7196 // %cond.or = or|and i1 %cond1, cond2
7197 // br i1 %cond.or label %dest1, label %dest2"
7198 BinaryOperator *LogicOp;
7199 BasicBlock *TBB, *FBB;
7200 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7201 continue;
7203 auto *Br1 = cast<BranchInst>(BB.getTerminator());
7204 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7205 continue;
7207 unsigned Opc;
7208 Value *Cond1, *Cond2;
7209 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7210 m_OneUse(m_Value(Cond2)))))
7211 Opc = Instruction::And;
7212 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7213 m_OneUse(m_Value(Cond2)))))
7214 Opc = Instruction::Or;
7215 else
7216 continue;
7218 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7219 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
7220 continue;
7222 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7224 // Create a new BB.
7225 auto TmpBB =
7226 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7227 BB.getParent(), BB.getNextNode());
7229 // Update original basic block by using the first condition directly by the
7230 // branch instruction and removing the no longer needed and/or instruction.
7231 Br1->setCondition(Cond1);
7232 LogicOp->eraseFromParent();
7234 // Depending on the condition we have to either replace the true or the
7235 // false successor of the original branch instruction.
7236 if (Opc == Instruction::And)
7237 Br1->setSuccessor(0, TmpBB);
7238 else
7239 Br1->setSuccessor(1, TmpBB);
7241 // Fill in the new basic block.
7242 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7243 if (auto *I = dyn_cast<Instruction>(Cond2)) {
7244 I->removeFromParent();
7245 I->insertBefore(Br2);
7248 // Update PHI nodes in both successors. The original BB needs to be
7249 // replaced in one successor's PHI nodes, because the branch comes now from
7250 // the newly generated BB (NewBB). In the other successor we need to add one
7251 // incoming edge to the PHI nodes, because both branch instructions target
7252 // now the same successor. Depending on the original branch condition
7253 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7254 // we perform the correct update for the PHI nodes.
7255 // This doesn't change the successor order of the just created branch
7256 // instruction (or any other instruction).
7257 if (Opc == Instruction::Or)
7258 std::swap(TBB, FBB);
7260 // Replace the old BB with the new BB.
7261 TBB->replacePhiUsesWith(&BB, TmpBB);
7263 // Add another incoming edge form the new BB.
7264 for (PHINode &PN : FBB->phis()) {
7265 auto *Val = PN.getIncomingValueForBlock(&BB);
7266 PN.addIncoming(Val, TmpBB);
7269 // Update the branch weights (from SelectionDAGBuilder::
7270 // FindMergedConditions).
7271 if (Opc == Instruction::Or) {
7272 // Codegen X | Y as:
7273 // BB1:
7274 // jmp_if_X TBB
7275 // jmp TmpBB
7276 // TmpBB:
7277 // jmp_if_Y TBB
7278 // jmp FBB
7281 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7282 // The requirement is that
7283 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7284 // = TrueProb for original BB.
7285 // Assuming the original weights are A and B, one choice is to set BB1's
7286 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7287 // assumes that
7288 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7289 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7290 // TmpBB, but the math is more complicated.
7291 uint64_t TrueWeight, FalseWeight;
7292 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7293 uint64_t NewTrueWeight = TrueWeight;
7294 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7295 scaleWeights(NewTrueWeight, NewFalseWeight);
7296 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7297 .createBranchWeights(TrueWeight, FalseWeight));
7299 NewTrueWeight = TrueWeight;
7300 NewFalseWeight = 2 * FalseWeight;
7301 scaleWeights(NewTrueWeight, NewFalseWeight);
7302 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7303 .createBranchWeights(TrueWeight, FalseWeight));
7305 } else {
7306 // Codegen X & Y as:
7307 // BB1:
7308 // jmp_if_X TmpBB
7309 // jmp FBB
7310 // TmpBB:
7311 // jmp_if_Y TBB
7312 // jmp FBB
7314 // This requires creation of TmpBB after CurBB.
7316 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7317 // The requirement is that
7318 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7319 // = FalseProb for original BB.
7320 // Assuming the original weights are A and B, one choice is to set BB1's
7321 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7322 // assumes that
7323 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7324 uint64_t TrueWeight, FalseWeight;
7325 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7326 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7327 uint64_t NewFalseWeight = FalseWeight;
7328 scaleWeights(NewTrueWeight, NewFalseWeight);
7329 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7330 .createBranchWeights(TrueWeight, FalseWeight));
7332 NewTrueWeight = 2 * TrueWeight;
7333 NewFalseWeight = FalseWeight;
7334 scaleWeights(NewTrueWeight, NewFalseWeight);
7335 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7336 .createBranchWeights(TrueWeight, FalseWeight));
7340 ModifiedDT = true;
7341 MadeChange = true;
7343 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7344 TmpBB->dump());
7346 return MadeChange;