1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/IRBuilder.h"
26 #define DEBUG_TYPE "expandmemcmp"
28 STATISTIC(NumMemCmpCalls
, "Number of memcmp calls");
29 STATISTIC(NumMemCmpNotConstant
, "Number of memcmp calls without constant size");
30 STATISTIC(NumMemCmpGreaterThanMax
,
31 "Number of memcmp calls with size greater than max size");
32 STATISTIC(NumMemCmpInlined
, "Number of inlined memcmp calls");
34 static cl::opt
<unsigned> MemCmpEqZeroNumLoadsPerBlock(
35 "memcmp-num-loads-per-block", cl::Hidden
, cl::init(1),
36 cl::desc("The number of loads per basic block for inline expansion of "
37 "memcmp that is only being compared against zero."));
39 static cl::opt
<unsigned> MaxLoadsPerMemcmp(
40 "max-loads-per-memcmp", cl::Hidden
,
41 cl::desc("Set maximum number of loads used in expanded memcmp"));
43 static cl::opt
<unsigned> MaxLoadsPerMemcmpOptSize(
44 "max-loads-per-memcmp-opt-size", cl::Hidden
,
45 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
50 // This class provides helper functions to expand a memcmp library call into an
52 class MemCmpExpansion
{
54 BasicBlock
*BB
= nullptr;
55 PHINode
*PhiSrc1
= nullptr;
56 PHINode
*PhiSrc2
= nullptr;
58 ResultBlock() = default;
65 uint64_t NumLoadsNonOneByte
;
66 const uint64_t NumLoadsPerBlockForZeroCmp
;
67 std::vector
<BasicBlock
*> LoadCmpBlocks
;
70 const bool IsUsedForZeroCmp
;
73 // Represents the decomposition in blocks of the expansion. For example,
74 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
75 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
77 LoadEntry(unsigned LoadSize
, uint64_t Offset
)
78 : LoadSize(LoadSize
), Offset(Offset
) {
81 // The size of the load for this block, in bytes.
83 // The offset of this load from the base pointer, in bytes.
86 using LoadEntryVector
= SmallVector
<LoadEntry
, 8>;
87 LoadEntryVector LoadSequence
;
89 void createLoadCmpBlocks();
90 void createResultBlock();
91 void setupResultBlockPHINodes();
92 void setupEndBlockPHINodes();
93 Value
*getCompareLoadPairs(unsigned BlockIndex
, unsigned &LoadIndex
);
94 void emitLoadCompareBlock(unsigned BlockIndex
);
95 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex
,
97 void emitLoadCompareByteBlock(unsigned BlockIndex
, unsigned OffsetBytes
);
98 void emitMemCmpResultBlock();
99 Value
*getMemCmpExpansionZeroCase();
100 Value
*getMemCmpEqZeroOneBlock();
101 Value
*getMemCmpOneBlock();
102 Value
*getPtrToElementAtOffset(Value
*Source
, Type
*LoadSizeType
,
103 uint64_t OffsetBytes
);
105 static LoadEntryVector
106 computeGreedyLoadSequence(uint64_t Size
, llvm::ArrayRef
<unsigned> LoadSizes
,
107 unsigned MaxNumLoads
, unsigned &NumLoadsNonOneByte
);
108 static LoadEntryVector
109 computeOverlappingLoadSequence(uint64_t Size
, unsigned MaxLoadSize
,
110 unsigned MaxNumLoads
,
111 unsigned &NumLoadsNonOneByte
);
114 MemCmpExpansion(CallInst
*CI
, uint64_t Size
,
115 const TargetTransformInfo::MemCmpExpansionOptions
&Options
,
116 const bool IsUsedForZeroCmp
, const DataLayout
&TheDataLayout
);
118 unsigned getNumBlocks();
119 uint64_t getNumLoads() const { return LoadSequence
.size(); }
121 Value
*getMemCmpExpansion();
124 MemCmpExpansion::LoadEntryVector
MemCmpExpansion::computeGreedyLoadSequence(
125 uint64_t Size
, llvm::ArrayRef
<unsigned> LoadSizes
,
126 const unsigned MaxNumLoads
, unsigned &NumLoadsNonOneByte
) {
127 NumLoadsNonOneByte
= 0;
128 LoadEntryVector LoadSequence
;
130 while (Size
&& !LoadSizes
.empty()) {
131 const unsigned LoadSize
= LoadSizes
.front();
132 const uint64_t NumLoadsForThisSize
= Size
/ LoadSize
;
133 if (LoadSequence
.size() + NumLoadsForThisSize
> MaxNumLoads
) {
134 // Do not expand if the total number of loads is larger than what the
135 // target allows. Note that it's important that we exit before completing
136 // the expansion to avoid using a ton of memory to store the expansion for
140 if (NumLoadsForThisSize
> 0) {
141 for (uint64_t I
= 0; I
< NumLoadsForThisSize
; ++I
) {
142 LoadSequence
.push_back({LoadSize
, Offset
});
146 ++NumLoadsNonOneByte
;
147 Size
= Size
% LoadSize
;
149 LoadSizes
= LoadSizes
.drop_front();
154 MemCmpExpansion::LoadEntryVector
155 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size
,
156 const unsigned MaxLoadSize
,
157 const unsigned MaxNumLoads
,
158 unsigned &NumLoadsNonOneByte
) {
159 // These are already handled by the greedy approach.
160 if (Size
< 2 || MaxLoadSize
< 2)
163 // We try to do as many non-overlapping loads as possible starting from the
165 const uint64_t NumNonOverlappingLoads
= Size
/ MaxLoadSize
;
166 assert(NumNonOverlappingLoads
&& "there must be at least one load");
167 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
168 // an overlapping load.
169 Size
= Size
- NumNonOverlappingLoads
* MaxLoadSize
;
170 // Bail if we do not need an overloapping store, this is already handled by
171 // the greedy approach.
174 // Bail if the number of loads (non-overlapping + potential overlapping one)
175 // is larger than the max allowed.
176 if ((NumNonOverlappingLoads
+ 1) > MaxNumLoads
)
179 // Add non-overlapping loads.
180 LoadEntryVector LoadSequence
;
182 for (uint64_t I
= 0; I
< NumNonOverlappingLoads
; ++I
) {
183 LoadSequence
.push_back({MaxLoadSize
, Offset
});
184 Offset
+= MaxLoadSize
;
187 // Add the last overlapping load.
188 assert(Size
> 0 && Size
< MaxLoadSize
&& "broken invariant");
189 LoadSequence
.push_back({MaxLoadSize
, Offset
- (MaxLoadSize
- Size
)});
190 NumLoadsNonOneByte
= 1;
194 // Initialize the basic block structure required for expansion of memcmp call
195 // with given maximum load size and memcmp size parameter.
196 // This structure includes:
197 // 1. A list of load compare blocks - LoadCmpBlocks.
198 // 2. An EndBlock, split from original instruction point, which is the block to
200 // 3. ResultBlock, block to branch to for early exit when a
201 // LoadCmpBlock finds a difference.
202 MemCmpExpansion::MemCmpExpansion(
203 CallInst
*const CI
, uint64_t Size
,
204 const TargetTransformInfo::MemCmpExpansionOptions
&Options
,
205 const bool IsUsedForZeroCmp
, const DataLayout
&TheDataLayout
)
206 : CI(CI
), Size(Size
), MaxLoadSize(0), NumLoadsNonOneByte(0),
207 NumLoadsPerBlockForZeroCmp(Options
.NumLoadsPerBlock
),
208 IsUsedForZeroCmp(IsUsedForZeroCmp
), DL(TheDataLayout
), Builder(CI
) {
209 assert(Size
> 0 && "zero blocks");
210 // Scale the max size down if the target can load more bytes than we need.
211 llvm::ArrayRef
<unsigned> LoadSizes(Options
.LoadSizes
);
212 while (!LoadSizes
.empty() && LoadSizes
.front() > Size
) {
213 LoadSizes
= LoadSizes
.drop_front();
215 assert(!LoadSizes
.empty() && "cannot load Size bytes");
216 MaxLoadSize
= LoadSizes
.front();
217 // Compute the decomposition.
218 unsigned GreedyNumLoadsNonOneByte
= 0;
219 LoadSequence
= computeGreedyLoadSequence(Size
, LoadSizes
, Options
.MaxNumLoads
,
220 GreedyNumLoadsNonOneByte
);
221 NumLoadsNonOneByte
= GreedyNumLoadsNonOneByte
;
222 assert(LoadSequence
.size() <= Options
.MaxNumLoads
&& "broken invariant");
223 // If we allow overlapping loads and the load sequence is not already optimal,
224 // use overlapping loads.
225 if (Options
.AllowOverlappingLoads
&&
226 (LoadSequence
.empty() || LoadSequence
.size() > 2)) {
227 unsigned OverlappingNumLoadsNonOneByte
= 0;
228 auto OverlappingLoads
= computeOverlappingLoadSequence(
229 Size
, MaxLoadSize
, Options
.MaxNumLoads
, OverlappingNumLoadsNonOneByte
);
230 if (!OverlappingLoads
.empty() &&
231 (LoadSequence
.empty() ||
232 OverlappingLoads
.size() < LoadSequence
.size())) {
233 LoadSequence
= OverlappingLoads
;
234 NumLoadsNonOneByte
= OverlappingNumLoadsNonOneByte
;
237 assert(LoadSequence
.size() <= Options
.MaxNumLoads
&& "broken invariant");
240 unsigned MemCmpExpansion::getNumBlocks() {
241 if (IsUsedForZeroCmp
)
242 return getNumLoads() / NumLoadsPerBlockForZeroCmp
+
243 (getNumLoads() % NumLoadsPerBlockForZeroCmp
!= 0 ? 1 : 0);
244 return getNumLoads();
247 void MemCmpExpansion::createLoadCmpBlocks() {
248 for (unsigned i
= 0; i
< getNumBlocks(); i
++) {
249 BasicBlock
*BB
= BasicBlock::Create(CI
->getContext(), "loadbb",
250 EndBlock
->getParent(), EndBlock
);
251 LoadCmpBlocks
.push_back(BB
);
255 void MemCmpExpansion::createResultBlock() {
256 ResBlock
.BB
= BasicBlock::Create(CI
->getContext(), "res_block",
257 EndBlock
->getParent(), EndBlock
);
260 /// Return a pointer to an element of type `LoadSizeType` at offset
262 Value
*MemCmpExpansion::getPtrToElementAtOffset(Value
*Source
,
264 uint64_t OffsetBytes
) {
265 if (OffsetBytes
> 0) {
266 auto *ByteType
= Type::getInt8Ty(CI
->getContext());
267 Source
= Builder
.CreateGEP(
268 ByteType
, Builder
.CreateBitCast(Source
, ByteType
->getPointerTo()),
269 ConstantInt::get(ByteType
, OffsetBytes
));
271 return Builder
.CreateBitCast(Source
, LoadSizeType
->getPointerTo());
274 // This function creates the IR instructions for loading and comparing 1 byte.
275 // It loads 1 byte from each source of the memcmp parameters with the given
276 // GEPIndex. It then subtracts the two loaded values and adds this result to the
277 // final phi node for selecting the memcmp result.
278 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex
,
279 unsigned OffsetBytes
) {
280 Builder
.SetInsertPoint(LoadCmpBlocks
[BlockIndex
]);
281 Type
*LoadSizeType
= Type::getInt8Ty(CI
->getContext());
283 getPtrToElementAtOffset(CI
->getArgOperand(0), LoadSizeType
, OffsetBytes
);
285 getPtrToElementAtOffset(CI
->getArgOperand(1), LoadSizeType
, OffsetBytes
);
287 Value
*LoadSrc1
= Builder
.CreateLoad(LoadSizeType
, Source1
);
288 Value
*LoadSrc2
= Builder
.CreateLoad(LoadSizeType
, Source2
);
290 LoadSrc1
= Builder
.CreateZExt(LoadSrc1
, Type::getInt32Ty(CI
->getContext()));
291 LoadSrc2
= Builder
.CreateZExt(LoadSrc2
, Type::getInt32Ty(CI
->getContext()));
292 Value
*Diff
= Builder
.CreateSub(LoadSrc1
, LoadSrc2
);
294 PhiRes
->addIncoming(Diff
, LoadCmpBlocks
[BlockIndex
]);
296 if (BlockIndex
< (LoadCmpBlocks
.size() - 1)) {
297 // Early exit branch if difference found to EndBlock. Otherwise, continue to
298 // next LoadCmpBlock,
299 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::ICMP_NE
, Diff
,
300 ConstantInt::get(Diff
->getType(), 0));
302 BranchInst::Create(EndBlock
, LoadCmpBlocks
[BlockIndex
+ 1], Cmp
);
303 Builder
.Insert(CmpBr
);
305 // The last block has an unconditional branch to EndBlock.
306 BranchInst
*CmpBr
= BranchInst::Create(EndBlock
);
307 Builder
.Insert(CmpBr
);
311 /// Generate an equality comparison for one or more pairs of loaded values.
312 /// This is used in the case where the memcmp() call is compared equal or not
314 Value
*MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex
,
315 unsigned &LoadIndex
) {
316 assert(LoadIndex
< getNumLoads() &&
317 "getCompareLoadPairs() called with no remaining loads");
318 std::vector
<Value
*> XorList
, OrList
;
319 Value
*Diff
= nullptr;
321 const unsigned NumLoads
=
322 std::min(getNumLoads() - LoadIndex
, NumLoadsPerBlockForZeroCmp
);
324 // For a single-block expansion, start inserting before the memcmp call.
325 if (LoadCmpBlocks
.empty())
326 Builder
.SetInsertPoint(CI
);
328 Builder
.SetInsertPoint(LoadCmpBlocks
[BlockIndex
]);
330 Value
*Cmp
= nullptr;
331 // If we have multiple loads per block, we need to generate a composite
332 // comparison using xor+or. The type for the combinations is the largest load
334 IntegerType
*const MaxLoadType
=
335 NumLoads
== 1 ? nullptr
336 : IntegerType::get(CI
->getContext(), MaxLoadSize
* 8);
337 for (unsigned i
= 0; i
< NumLoads
; ++i
, ++LoadIndex
) {
338 const LoadEntry
&CurLoadEntry
= LoadSequence
[LoadIndex
];
340 IntegerType
*LoadSizeType
=
341 IntegerType::get(CI
->getContext(), CurLoadEntry
.LoadSize
* 8);
343 Value
*Source1
= getPtrToElementAtOffset(CI
->getArgOperand(0), LoadSizeType
,
344 CurLoadEntry
.Offset
);
345 Value
*Source2
= getPtrToElementAtOffset(CI
->getArgOperand(1), LoadSizeType
,
346 CurLoadEntry
.Offset
);
348 // Get a constant or load a value for each source address.
349 Value
*LoadSrc1
= nullptr;
350 if (auto *Source1C
= dyn_cast
<Constant
>(Source1
))
351 LoadSrc1
= ConstantFoldLoadFromConstPtr(Source1C
, LoadSizeType
, DL
);
353 LoadSrc1
= Builder
.CreateLoad(LoadSizeType
, Source1
);
355 Value
*LoadSrc2
= nullptr;
356 if (auto *Source2C
= dyn_cast
<Constant
>(Source2
))
357 LoadSrc2
= ConstantFoldLoadFromConstPtr(Source2C
, LoadSizeType
, DL
);
359 LoadSrc2
= Builder
.CreateLoad(LoadSizeType
, Source2
);
362 if (LoadSizeType
!= MaxLoadType
) {
363 LoadSrc1
= Builder
.CreateZExt(LoadSrc1
, MaxLoadType
);
364 LoadSrc2
= Builder
.CreateZExt(LoadSrc2
, MaxLoadType
);
366 // If we have multiple loads per block, we need to generate a composite
367 // comparison using xor+or.
368 Diff
= Builder
.CreateXor(LoadSrc1
, LoadSrc2
);
369 Diff
= Builder
.CreateZExt(Diff
, MaxLoadType
);
370 XorList
.push_back(Diff
);
372 // If there's only one load per block, we just compare the loaded values.
373 Cmp
= Builder
.CreateICmpNE(LoadSrc1
, LoadSrc2
);
377 auto pairWiseOr
= [&](std::vector
<Value
*> &InList
) -> std::vector
<Value
*> {
378 std::vector
<Value
*> OutList
;
379 for (unsigned i
= 0; i
< InList
.size() - 1; i
= i
+ 2) {
380 Value
*Or
= Builder
.CreateOr(InList
[i
], InList
[i
+ 1]);
381 OutList
.push_back(Or
);
383 if (InList
.size() % 2 != 0)
384 OutList
.push_back(InList
.back());
389 // Pairwise OR the XOR results.
390 OrList
= pairWiseOr(XorList
);
392 // Pairwise OR the OR results until one result left.
393 while (OrList
.size() != 1) {
394 OrList
= pairWiseOr(OrList
);
397 assert(Diff
&& "Failed to find comparison diff");
398 Cmp
= Builder
.CreateICmpNE(OrList
[0], ConstantInt::get(Diff
->getType(), 0));
404 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex
,
405 unsigned &LoadIndex
) {
406 Value
*Cmp
= getCompareLoadPairs(BlockIndex
, LoadIndex
);
408 BasicBlock
*NextBB
= (BlockIndex
== (LoadCmpBlocks
.size() - 1))
410 : LoadCmpBlocks
[BlockIndex
+ 1];
411 // Early exit branch if difference found to ResultBlock. Otherwise,
412 // continue to next LoadCmpBlock or EndBlock.
413 BranchInst
*CmpBr
= BranchInst::Create(ResBlock
.BB
, NextBB
, Cmp
);
414 Builder
.Insert(CmpBr
);
416 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
417 // since early exit to ResultBlock was not taken (no difference was found in
418 // any of the bytes).
419 if (BlockIndex
== LoadCmpBlocks
.size() - 1) {
420 Value
*Zero
= ConstantInt::get(Type::getInt32Ty(CI
->getContext()), 0);
421 PhiRes
->addIncoming(Zero
, LoadCmpBlocks
[BlockIndex
]);
425 // This function creates the IR intructions for loading and comparing using the
426 // given LoadSize. It loads the number of bytes specified by LoadSize from each
427 // source of the memcmp parameters. It then does a subtract to see if there was
428 // a difference in the loaded values. If a difference is found, it branches
429 // with an early exit to the ResultBlock for calculating which source was
430 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
431 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
432 // a special case through emitLoadCompareByteBlock. The special handling can
433 // simply subtract the loaded values and add it to the result phi node.
434 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex
) {
435 // There is one load per block in this case, BlockIndex == LoadIndex.
436 const LoadEntry
&CurLoadEntry
= LoadSequence
[BlockIndex
];
438 if (CurLoadEntry
.LoadSize
== 1) {
439 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex
, CurLoadEntry
.Offset
);
444 IntegerType::get(CI
->getContext(), CurLoadEntry
.LoadSize
* 8);
445 Type
*MaxLoadType
= IntegerType::get(CI
->getContext(), MaxLoadSize
* 8);
446 assert(CurLoadEntry
.LoadSize
<= MaxLoadSize
&& "Unexpected load type");
448 Builder
.SetInsertPoint(LoadCmpBlocks
[BlockIndex
]);
450 Value
*Source1
= getPtrToElementAtOffset(CI
->getArgOperand(0), LoadSizeType
,
451 CurLoadEntry
.Offset
);
452 Value
*Source2
= getPtrToElementAtOffset(CI
->getArgOperand(1), LoadSizeType
,
453 CurLoadEntry
.Offset
);
455 // Load LoadSizeType from the base address.
456 Value
*LoadSrc1
= Builder
.CreateLoad(LoadSizeType
, Source1
);
457 Value
*LoadSrc2
= Builder
.CreateLoad(LoadSizeType
, Source2
);
459 if (DL
.isLittleEndian()) {
460 Function
*Bswap
= Intrinsic::getDeclaration(CI
->getModule(),
461 Intrinsic::bswap
, LoadSizeType
);
462 LoadSrc1
= Builder
.CreateCall(Bswap
, LoadSrc1
);
463 LoadSrc2
= Builder
.CreateCall(Bswap
, LoadSrc2
);
466 if (LoadSizeType
!= MaxLoadType
) {
467 LoadSrc1
= Builder
.CreateZExt(LoadSrc1
, MaxLoadType
);
468 LoadSrc2
= Builder
.CreateZExt(LoadSrc2
, MaxLoadType
);
471 // Add the loaded values to the phi nodes for calculating memcmp result only
472 // if result is not used in a zero equality.
473 if (!IsUsedForZeroCmp
) {
474 ResBlock
.PhiSrc1
->addIncoming(LoadSrc1
, LoadCmpBlocks
[BlockIndex
]);
475 ResBlock
.PhiSrc2
->addIncoming(LoadSrc2
, LoadCmpBlocks
[BlockIndex
]);
478 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::ICMP_EQ
, LoadSrc1
, LoadSrc2
);
479 BasicBlock
*NextBB
= (BlockIndex
== (LoadCmpBlocks
.size() - 1))
481 : LoadCmpBlocks
[BlockIndex
+ 1];
482 // Early exit branch if difference found to ResultBlock. Otherwise, continue
483 // to next LoadCmpBlock or EndBlock.
484 BranchInst
*CmpBr
= BranchInst::Create(NextBB
, ResBlock
.BB
, Cmp
);
485 Builder
.Insert(CmpBr
);
487 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
488 // since early exit to ResultBlock was not taken (no difference was found in
489 // any of the bytes).
490 if (BlockIndex
== LoadCmpBlocks
.size() - 1) {
491 Value
*Zero
= ConstantInt::get(Type::getInt32Ty(CI
->getContext()), 0);
492 PhiRes
->addIncoming(Zero
, LoadCmpBlocks
[BlockIndex
]);
496 // This function populates the ResultBlock with a sequence to calculate the
497 // memcmp result. It compares the two loaded source values and returns -1 if
498 // src1 < src2 and 1 if src1 > src2.
499 void MemCmpExpansion::emitMemCmpResultBlock() {
500 // Special case: if memcmp result is used in a zero equality, result does not
501 // need to be calculated and can simply return 1.
502 if (IsUsedForZeroCmp
) {
503 BasicBlock::iterator InsertPt
= ResBlock
.BB
->getFirstInsertionPt();
504 Builder
.SetInsertPoint(ResBlock
.BB
, InsertPt
);
505 Value
*Res
= ConstantInt::get(Type::getInt32Ty(CI
->getContext()), 1);
506 PhiRes
->addIncoming(Res
, ResBlock
.BB
);
507 BranchInst
*NewBr
= BranchInst::Create(EndBlock
);
508 Builder
.Insert(NewBr
);
511 BasicBlock::iterator InsertPt
= ResBlock
.BB
->getFirstInsertionPt();
512 Builder
.SetInsertPoint(ResBlock
.BB
, InsertPt
);
514 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::ICMP_ULT
, ResBlock
.PhiSrc1
,
518 Builder
.CreateSelect(Cmp
, ConstantInt::get(Builder
.getInt32Ty(), -1),
519 ConstantInt::get(Builder
.getInt32Ty(), 1));
521 BranchInst
*NewBr
= BranchInst::Create(EndBlock
);
522 Builder
.Insert(NewBr
);
523 PhiRes
->addIncoming(Res
, ResBlock
.BB
);
526 void MemCmpExpansion::setupResultBlockPHINodes() {
527 Type
*MaxLoadType
= IntegerType::get(CI
->getContext(), MaxLoadSize
* 8);
528 Builder
.SetInsertPoint(ResBlock
.BB
);
529 // Note: this assumes one load per block.
531 Builder
.CreatePHI(MaxLoadType
, NumLoadsNonOneByte
, "phi.src1");
533 Builder
.CreatePHI(MaxLoadType
, NumLoadsNonOneByte
, "phi.src2");
536 void MemCmpExpansion::setupEndBlockPHINodes() {
537 Builder
.SetInsertPoint(&EndBlock
->front());
538 PhiRes
= Builder
.CreatePHI(Type::getInt32Ty(CI
->getContext()), 2, "phi.res");
541 Value
*MemCmpExpansion::getMemCmpExpansionZeroCase() {
542 unsigned LoadIndex
= 0;
543 // This loop populates each of the LoadCmpBlocks with the IR sequence to
544 // handle multiple loads per block.
545 for (unsigned I
= 0; I
< getNumBlocks(); ++I
) {
546 emitLoadCompareBlockMultipleLoads(I
, LoadIndex
);
549 emitMemCmpResultBlock();
553 /// A memcmp expansion that compares equality with 0 and only has one block of
554 /// load and compare can bypass the compare, branch, and phi IR that is required
555 /// in the general case.
556 Value
*MemCmpExpansion::getMemCmpEqZeroOneBlock() {
557 unsigned LoadIndex
= 0;
558 Value
*Cmp
= getCompareLoadPairs(0, LoadIndex
);
559 assert(LoadIndex
== getNumLoads() && "some entries were not consumed");
560 return Builder
.CreateZExt(Cmp
, Type::getInt32Ty(CI
->getContext()));
563 /// A memcmp expansion that only has one block of load and compare can bypass
564 /// the compare, branch, and phi IR that is required in the general case.
565 Value
*MemCmpExpansion::getMemCmpOneBlock() {
566 Type
*LoadSizeType
= IntegerType::get(CI
->getContext(), Size
* 8);
567 Value
*Source1
= CI
->getArgOperand(0);
568 Value
*Source2
= CI
->getArgOperand(1);
570 // Cast source to LoadSizeType*.
571 if (Source1
->getType() != LoadSizeType
)
572 Source1
= Builder
.CreateBitCast(Source1
, LoadSizeType
->getPointerTo());
573 if (Source2
->getType() != LoadSizeType
)
574 Source2
= Builder
.CreateBitCast(Source2
, LoadSizeType
->getPointerTo());
576 // Load LoadSizeType from the base address.
577 Value
*LoadSrc1
= Builder
.CreateLoad(LoadSizeType
, Source1
);
578 Value
*LoadSrc2
= Builder
.CreateLoad(LoadSizeType
, Source2
);
580 if (DL
.isLittleEndian() && Size
!= 1) {
581 Function
*Bswap
= Intrinsic::getDeclaration(CI
->getModule(),
582 Intrinsic::bswap
, LoadSizeType
);
583 LoadSrc1
= Builder
.CreateCall(Bswap
, LoadSrc1
);
584 LoadSrc2
= Builder
.CreateCall(Bswap
, LoadSrc2
);
588 // The i8 and i16 cases don't need compares. We zext the loaded values and
589 // subtract them to get the suitable negative, zero, or positive i32 result.
590 LoadSrc1
= Builder
.CreateZExt(LoadSrc1
, Builder
.getInt32Ty());
591 LoadSrc2
= Builder
.CreateZExt(LoadSrc2
, Builder
.getInt32Ty());
592 return Builder
.CreateSub(LoadSrc1
, LoadSrc2
);
595 // The result of memcmp is negative, zero, or positive, so produce that by
596 // subtracting 2 extended compare bits: sub (ugt, ult).
597 // If a target prefers to use selects to get -1/0/1, they should be able
598 // to transform this later. The inverse transform (going from selects to math)
599 // may not be possible in the DAG because the selects got converted into
600 // branches before we got there.
601 Value
*CmpUGT
= Builder
.CreateICmpUGT(LoadSrc1
, LoadSrc2
);
602 Value
*CmpULT
= Builder
.CreateICmpULT(LoadSrc1
, LoadSrc2
);
603 Value
*ZextUGT
= Builder
.CreateZExt(CmpUGT
, Builder
.getInt32Ty());
604 Value
*ZextULT
= Builder
.CreateZExt(CmpULT
, Builder
.getInt32Ty());
605 return Builder
.CreateSub(ZextUGT
, ZextULT
);
608 // This function expands the memcmp call into an inline expansion and returns
609 // the memcmp result.
610 Value
*MemCmpExpansion::getMemCmpExpansion() {
611 // Create the basic block framework for a multi-block expansion.
612 if (getNumBlocks() != 1) {
613 BasicBlock
*StartBlock
= CI
->getParent();
614 EndBlock
= StartBlock
->splitBasicBlock(CI
, "endblock");
615 setupEndBlockPHINodes();
618 // If return value of memcmp is not used in a zero equality, we need to
619 // calculate which source was larger. The calculation requires the
620 // two loaded source values of each load compare block.
621 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
622 if (!IsUsedForZeroCmp
) setupResultBlockPHINodes();
624 // Create the number of required load compare basic blocks.
625 createLoadCmpBlocks();
627 // Update the terminator added by splitBasicBlock to branch to the first
629 StartBlock
->getTerminator()->setSuccessor(0, LoadCmpBlocks
[0]);
632 Builder
.SetCurrentDebugLocation(CI
->getDebugLoc());
634 if (IsUsedForZeroCmp
)
635 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
636 : getMemCmpExpansionZeroCase();
638 if (getNumBlocks() == 1)
639 return getMemCmpOneBlock();
641 for (unsigned I
= 0; I
< getNumBlocks(); ++I
) {
642 emitLoadCompareBlock(I
);
645 emitMemCmpResultBlock();
649 // This function checks to see if an expansion of memcmp can be generated.
650 // It checks for constant compare size that is less than the max inline size.
651 // If an expansion cannot occur, returns false to leave as a library call.
652 // Otherwise, the library call is replaced with a new IR instruction sequence.
653 /// We want to transform:
654 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
657 /// %0 = bitcast i32* %buffer2 to i8*
658 /// %1 = bitcast i32* %buffer1 to i8*
659 /// %2 = bitcast i8* %1 to i64*
660 /// %3 = bitcast i8* %0 to i64*
661 /// %4 = load i64, i64* %2
662 /// %5 = load i64, i64* %3
663 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
664 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
665 /// %8 = sub i64 %6, %7
666 /// %9 = icmp ne i64 %8, 0
667 /// br i1 %9, label %res_block, label %loadbb1
668 /// res_block: ; preds = %loadbb2,
669 /// %loadbb1, %loadbb
670 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
671 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
672 /// %10 = icmp ult i64 %phi.src1, %phi.src2
673 /// %11 = select i1 %10, i32 -1, i32 1
674 /// br label %endblock
675 /// loadbb1: ; preds = %loadbb
676 /// %12 = bitcast i32* %buffer2 to i8*
677 /// %13 = bitcast i32* %buffer1 to i8*
678 /// %14 = bitcast i8* %13 to i32*
679 /// %15 = bitcast i8* %12 to i32*
680 /// %16 = getelementptr i32, i32* %14, i32 2
681 /// %17 = getelementptr i32, i32* %15, i32 2
682 /// %18 = load i32, i32* %16
683 /// %19 = load i32, i32* %17
684 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
685 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
686 /// %22 = zext i32 %20 to i64
687 /// %23 = zext i32 %21 to i64
688 /// %24 = sub i64 %22, %23
689 /// %25 = icmp ne i64 %24, 0
690 /// br i1 %25, label %res_block, label %loadbb2
691 /// loadbb2: ; preds = %loadbb1
692 /// %26 = bitcast i32* %buffer2 to i8*
693 /// %27 = bitcast i32* %buffer1 to i8*
694 /// %28 = bitcast i8* %27 to i16*
695 /// %29 = bitcast i8* %26 to i16*
696 /// %30 = getelementptr i16, i16* %28, i16 6
697 /// %31 = getelementptr i16, i16* %29, i16 6
698 /// %32 = load i16, i16* %30
699 /// %33 = load i16, i16* %31
700 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
701 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
702 /// %36 = zext i16 %34 to i64
703 /// %37 = zext i16 %35 to i64
704 /// %38 = sub i64 %36, %37
705 /// %39 = icmp ne i64 %38, 0
706 /// br i1 %39, label %res_block, label %loadbb3
707 /// loadbb3: ; preds = %loadbb2
708 /// %40 = bitcast i32* %buffer2 to i8*
709 /// %41 = bitcast i32* %buffer1 to i8*
710 /// %42 = getelementptr i8, i8* %41, i8 14
711 /// %43 = getelementptr i8, i8* %40, i8 14
712 /// %44 = load i8, i8* %42
713 /// %45 = load i8, i8* %43
714 /// %46 = zext i8 %44 to i32
715 /// %47 = zext i8 %45 to i32
716 /// %48 = sub i32 %46, %47
717 /// br label %endblock
718 /// endblock: ; preds = %res_block,
720 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
722 static bool expandMemCmp(CallInst
*CI
, const TargetTransformInfo
*TTI
,
723 const TargetLowering
*TLI
, const DataLayout
*DL
) {
726 // Early exit from expansion if -Oz.
727 if (CI
->getFunction()->hasMinSize())
730 // Early exit from expansion if size is not a constant.
731 ConstantInt
*SizeCast
= dyn_cast
<ConstantInt
>(CI
->getArgOperand(2));
733 NumMemCmpNotConstant
++;
736 const uint64_t SizeVal
= SizeCast
->getZExtValue();
741 // TTI call to check if target would like to expand memcmp. Also, get the
742 // available load sizes.
743 const bool IsUsedForZeroCmp
= isOnlyUsedInZeroEqualityComparison(CI
);
744 auto Options
= TTI
->enableMemCmpExpansion(CI
->getFunction()->hasOptSize(),
746 if (!Options
) return false;
748 if (MemCmpEqZeroNumLoadsPerBlock
.getNumOccurrences())
749 Options
.NumLoadsPerBlock
= MemCmpEqZeroNumLoadsPerBlock
;
751 if (CI
->getFunction()->hasOptSize() &&
752 MaxLoadsPerMemcmpOptSize
.getNumOccurrences())
753 Options
.MaxNumLoads
= MaxLoadsPerMemcmpOptSize
;
755 if (!CI
->getFunction()->hasOptSize() && MaxLoadsPerMemcmp
.getNumOccurrences())
756 Options
.MaxNumLoads
= MaxLoadsPerMemcmp
;
758 MemCmpExpansion
Expansion(CI
, SizeVal
, Options
, IsUsedForZeroCmp
, *DL
);
760 // Don't expand if this will require more loads than desired by the target.
761 if (Expansion
.getNumLoads() == 0) {
762 NumMemCmpGreaterThanMax
++;
768 Value
*Res
= Expansion
.getMemCmpExpansion();
770 // Replace call with result of expansion and erase call.
771 CI
->replaceAllUsesWith(Res
);
772 CI
->eraseFromParent();
779 class ExpandMemCmpPass
: public FunctionPass
{
783 ExpandMemCmpPass() : FunctionPass(ID
) {
784 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
787 bool runOnFunction(Function
&F
) override
{
788 if (skipFunction(F
)) return false;
790 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
794 const TargetLowering
* TL
=
795 TPC
->getTM
<TargetMachine
>().getSubtargetImpl(F
)->getTargetLowering();
797 const TargetLibraryInfo
*TLI
=
798 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
799 const TargetTransformInfo
*TTI
=
800 &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
801 auto PA
= runImpl(F
, TLI
, TTI
, TL
);
802 return !PA
.areAllPreserved();
806 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
807 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
808 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
809 FunctionPass::getAnalysisUsage(AU
);
812 PreservedAnalyses
runImpl(Function
&F
, const TargetLibraryInfo
*TLI
,
813 const TargetTransformInfo
*TTI
,
814 const TargetLowering
* TL
);
815 // Returns true if a change was made.
816 bool runOnBlock(BasicBlock
&BB
, const TargetLibraryInfo
*TLI
,
817 const TargetTransformInfo
*TTI
, const TargetLowering
* TL
,
818 const DataLayout
& DL
);
821 bool ExpandMemCmpPass::runOnBlock(
822 BasicBlock
&BB
, const TargetLibraryInfo
*TLI
,
823 const TargetTransformInfo
*TTI
, const TargetLowering
* TL
,
824 const DataLayout
& DL
) {
825 for (Instruction
& I
: BB
) {
826 CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
831 if (TLI
->getLibFunc(ImmutableCallSite(CI
), Func
) &&
832 (Func
== LibFunc_memcmp
|| Func
== LibFunc_bcmp
) &&
833 expandMemCmp(CI
, TTI
, TL
, &DL
)) {
841 PreservedAnalyses
ExpandMemCmpPass::runImpl(
842 Function
&F
, const TargetLibraryInfo
*TLI
, const TargetTransformInfo
*TTI
,
843 const TargetLowering
* TL
) {
844 const DataLayout
& DL
= F
.getParent()->getDataLayout();
845 bool MadeChanges
= false;
846 for (auto BBIt
= F
.begin(); BBIt
!= F
.end();) {
847 if (runOnBlock(*BBIt
, TLI
, TTI
, TL
, DL
)) {
849 // If changes were made, restart the function from the beginning, since
850 // the structure of the function was changed.
856 return MadeChanges
? PreservedAnalyses::none() : PreservedAnalyses::all();
861 char ExpandMemCmpPass::ID
= 0;
862 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass
, "expandmemcmp",
863 "Expand memcmp() to load/stores", false, false)
864 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
865 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
866 INITIALIZE_PASS_END(ExpandMemCmpPass
, "expandmemcmp",
867 "Expand memcmp() to load/stores", false, false)
869 FunctionPass
*llvm::createExpandMemCmpPass() {
870 return new ExpandMemCmpPass();