[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / CodeGen / LiveDebugValues.cpp
blob02a6e37b47734d8f227f469d1ca01c5d9ebb628c
1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE instructions into the machine
11 /// instruction stream. The pass internally builds debug location liveness
12 /// ranges to determine the points where additional DBG_VALUEs need to be
13 /// inserted.
14 ///
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
17 ///
18 //===----------------------------------------------------------------------===//
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseBitVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/UniqueVector.h"
28 #include "llvm/CodeGen/LexicalScopes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/CodeGen/RegisterScavenging.h"
39 #include "llvm/CodeGen/TargetFrameLowering.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <functional>
61 #include <queue>
62 #include <tuple>
63 #include <utility>
64 #include <vector>
66 using namespace llvm;
68 #define DEBUG_TYPE "livedebugvalues"
70 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
72 // If @MI is a DBG_VALUE with debug value described by a defined
73 // register, returns the number of this register. In the other case, returns 0.
74 static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
75 assert(MI.isDebugValue() && "expected a DBG_VALUE");
76 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
77 // If location of variable is described using a register (directly
78 // or indirectly), this register is always a first operand.
79 return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
82 namespace {
84 class LiveDebugValues : public MachineFunctionPass {
85 private:
86 const TargetRegisterInfo *TRI;
87 const TargetInstrInfo *TII;
88 const TargetFrameLowering *TFI;
89 BitVector CalleeSavedRegs;
90 LexicalScopes LS;
92 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
94 /// Keeps track of lexical scopes associated with a user value's source
95 /// location.
96 class UserValueScopes {
97 DebugLoc DL;
98 LexicalScopes &LS;
99 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
101 public:
102 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
104 /// Return true if current scope dominates at least one machine
105 /// instruction in a given machine basic block.
106 bool dominates(MachineBasicBlock *MBB) {
107 if (LBlocks.empty())
108 LS.getMachineBasicBlocks(DL, LBlocks);
109 return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
113 using FragmentInfo = DIExpression::FragmentInfo;
114 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
116 /// Storage for identifying a potentially inlined instance of a variable,
117 /// or a fragment thereof.
118 class DebugVariable {
119 const DILocalVariable *Variable;
120 OptFragmentInfo Fragment;
121 const DILocation *InlinedAt;
123 /// Fragment that will overlap all other fragments. Used as default when
124 /// caller demands a fragment.
125 static const FragmentInfo DefaultFragment;
127 public:
128 DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo,
129 const DILocation *InlinedAt)
130 : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
132 DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo,
133 const DILocation *InlinedAt)
134 : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
136 DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr,
137 const DILocation *InlinedAt)
138 : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {}
140 DebugVariable(const MachineInstr &MI)
141 : DebugVariable(MI.getDebugVariable(),
142 MI.getDebugExpression()->getFragmentInfo(),
143 MI.getDebugLoc()->getInlinedAt()) {}
145 const DILocalVariable *getVar() const { return Variable; }
146 const OptFragmentInfo &getFragment() const { return Fragment; }
147 const DILocation *getInlinedAt() const { return InlinedAt; }
149 const FragmentInfo getFragmentDefault() const {
150 return Fragment.getValueOr(DefaultFragment);
153 static bool isFragmentDefault(FragmentInfo &F) {
154 return F == DefaultFragment;
157 bool operator==(const DebugVariable &Other) const {
158 return std::tie(Variable, Fragment, InlinedAt) ==
159 std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
162 bool operator<(const DebugVariable &Other) const {
163 return std::tie(Variable, Fragment, InlinedAt) <
164 std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
168 friend struct llvm::DenseMapInfo<DebugVariable>;
170 /// A pair of debug variable and value location.
171 struct VarLoc {
172 // The location at which a spilled variable resides. It consists of a
173 // register and an offset.
174 struct SpillLoc {
175 unsigned SpillBase;
176 int SpillOffset;
177 bool operator==(const SpillLoc &Other) const {
178 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
182 const DebugVariable Var;
183 const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
184 mutable UserValueScopes UVS;
185 enum VarLocKind {
186 InvalidKind = 0,
187 RegisterKind,
188 SpillLocKind,
189 ImmediateKind,
190 EntryValueKind
191 } Kind = InvalidKind;
193 /// The value location. Stored separately to avoid repeatedly
194 /// extracting it from MI.
195 union {
196 uint64_t RegNo;
197 SpillLoc SpillLocation;
198 uint64_t Hash;
199 int64_t Immediate;
200 const ConstantFP *FPImm;
201 const ConstantInt *CImm;
202 } Loc;
204 VarLoc(const MachineInstr &MI, LexicalScopes &LS,
205 VarLocKind K = InvalidKind)
206 : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS){
207 static_assert((sizeof(Loc) == sizeof(uint64_t)),
208 "hash does not cover all members of Loc");
209 assert(MI.isDebugValue() && "not a DBG_VALUE");
210 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
211 if (int RegNo = isDbgValueDescribedByReg(MI)) {
212 Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind;
213 Loc.RegNo = RegNo;
214 } else if (MI.getOperand(0).isImm()) {
215 Kind = ImmediateKind;
216 Loc.Immediate = MI.getOperand(0).getImm();
217 } else if (MI.getOperand(0).isFPImm()) {
218 Kind = ImmediateKind;
219 Loc.FPImm = MI.getOperand(0).getFPImm();
220 } else if (MI.getOperand(0).isCImm()) {
221 Kind = ImmediateKind;
222 Loc.CImm = MI.getOperand(0).getCImm();
224 assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) &&
225 "entry values must be register locations");
228 /// The constructor for spill locations.
229 VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset,
230 LexicalScopes &LS)
231 : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) {
232 assert(MI.isDebugValue() && "not a DBG_VALUE");
233 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
234 Kind = SpillLocKind;
235 Loc.SpillLocation = {SpillBase, SpillOffset};
238 // Is the Loc field a constant or constant object?
239 bool isConstant() const { return Kind == ImmediateKind; }
241 /// If this variable is described by a register, return it,
242 /// otherwise return 0.
243 unsigned isDescribedByReg() const {
244 if (Kind == RegisterKind)
245 return Loc.RegNo;
246 return 0;
249 /// Determine whether the lexical scope of this value's debug location
250 /// dominates MBB.
251 bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
254 LLVM_DUMP_METHOD void dump() const { MI.dump(); }
255 #endif
257 bool operator==(const VarLoc &Other) const {
258 return Kind == Other.Kind && Var == Other.Var &&
259 Loc.Hash == Other.Loc.Hash;
262 /// This operator guarantees that VarLocs are sorted by Variable first.
263 bool operator<(const VarLoc &Other) const {
264 return std::tie(Var, Kind, Loc.Hash) <
265 std::tie(Other.Var, Other.Kind, Other.Loc.Hash);
269 using DebugParamMap = SmallDenseMap<const DILocalVariable *, MachineInstr *>;
270 using VarLocMap = UniqueVector<VarLoc>;
271 using VarLocSet = SparseBitVector<>;
272 using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
273 struct TransferDebugPair {
274 MachineInstr *TransferInst;
275 MachineInstr *DebugInst;
277 using TransferMap = SmallVector<TransferDebugPair, 4>;
279 // Types for recording sets of variable fragments that overlap. For a given
280 // local variable, we record all other fragments of that variable that could
281 // overlap it, to reduce search time.
282 using FragmentOfVar =
283 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
284 using OverlapMap =
285 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
287 // Helper while building OverlapMap, a map of all fragments seen for a given
288 // DILocalVariable.
289 using VarToFragments =
290 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
292 /// This holds the working set of currently open ranges. For fast
293 /// access, this is done both as a set of VarLocIDs, and a map of
294 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
295 /// previous open ranges for the same variable.
296 class OpenRangesSet {
297 VarLocSet VarLocs;
298 SmallDenseMap<DebugVariable, unsigned, 8> Vars;
299 OverlapMap &OverlappingFragments;
301 public:
302 OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}
304 const VarLocSet &getVarLocs() const { return VarLocs; }
306 /// Terminate all open ranges for Var by removing it from the set.
307 void erase(DebugVariable Var);
309 /// Terminate all open ranges listed in \c KillSet by removing
310 /// them from the set.
311 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
312 VarLocs.intersectWithComplement(KillSet);
313 for (unsigned ID : KillSet)
314 Vars.erase(VarLocIDs[ID].Var);
317 /// Insert a new range into the set.
318 void insert(unsigned VarLocID, DebugVariable Var) {
319 VarLocs.set(VarLocID);
320 Vars.insert({Var, VarLocID});
323 /// Empty the set.
324 void clear() {
325 VarLocs.clear();
326 Vars.clear();
329 /// Return whether the set is empty or not.
330 bool empty() const {
331 assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
332 return VarLocs.empty();
336 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
337 unsigned &Reg);
338 /// If a given instruction is identified as a spill, return the spill location
339 /// and set \p Reg to the spilled register.
340 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
341 MachineFunction *MF,
342 unsigned &Reg);
343 /// Given a spill instruction, extract the register and offset used to
344 /// address the spill location in a target independent way.
345 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
346 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
347 TransferMap &Transfers, VarLocMap &VarLocIDs,
348 unsigned OldVarID, TransferKind Kind,
349 unsigned NewReg = 0);
351 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
352 VarLocMap &VarLocIDs);
353 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
354 VarLocMap &VarLocIDs, TransferMap &Transfers);
355 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
356 VarLocMap &VarLocIDs, TransferMap &Transfers,
357 DebugParamMap &DebugEntryVals,
358 SparseBitVector<> &KillSet);
359 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
360 VarLocMap &VarLocIDs, TransferMap &Transfers);
361 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
362 VarLocMap &VarLocIDs, TransferMap &Transfers,
363 DebugParamMap &DebugEntryVals);
364 bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
365 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
367 bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
368 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
369 TransferMap &Transfers, DebugParamMap &DebugEntryVals,
370 bool transferChanges, OverlapMap &OverlapFragments,
371 VarToFragments &SeenFragments);
373 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
374 OverlapMap &OLapMap);
376 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
377 const VarLocMap &VarLocIDs,
378 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
379 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
381 bool ExtendRanges(MachineFunction &MF);
383 public:
384 static char ID;
386 /// Default construct and initialize the pass.
387 LiveDebugValues();
389 /// Tell the pass manager which passes we depend on and what
390 /// information we preserve.
391 void getAnalysisUsage(AnalysisUsage &AU) const override;
393 MachineFunctionProperties getRequiredProperties() const override {
394 return MachineFunctionProperties().set(
395 MachineFunctionProperties::Property::NoVRegs);
398 /// Print to ostream with a message.
399 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
400 const VarLocMap &VarLocIDs, const char *msg,
401 raw_ostream &Out) const;
403 /// Calculate the liveness information for the given machine function.
404 bool runOnMachineFunction(MachineFunction &MF) override;
407 } // end anonymous namespace
409 namespace llvm {
411 template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> {
412 using DV = LiveDebugValues::DebugVariable;
413 using OptFragmentInfo = LiveDebugValues::OptFragmentInfo;
414 using FragmentInfo = LiveDebugValues::FragmentInfo;
416 // Empty key: no key should be generated that has no DILocalVariable.
417 static inline DV getEmptyKey() {
418 return DV(nullptr, OptFragmentInfo(), nullptr);
421 // Difference in tombstone is that the Optional is meaningful
422 static inline DV getTombstoneKey() {
423 return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
426 static unsigned getHashValue(const DV &D) {
427 unsigned HV = 0;
428 const OptFragmentInfo &Fragment = D.getFragment();
429 if (Fragment)
430 HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment);
432 return hash_combine(D.getVar(), HV, D.getInlinedAt());
435 static bool isEqual(const DV &A, const DV &B) { return A == B; }
438 } // namespace llvm
440 //===----------------------------------------------------------------------===//
441 // Implementation
442 //===----------------------------------------------------------------------===//
444 const DIExpression::FragmentInfo
445 LiveDebugValues::DebugVariable::DefaultFragment = {
446 std::numeric_limits<uint64_t>::max(),
447 std::numeric_limits<uint64_t>::min()};
449 char LiveDebugValues::ID = 0;
451 char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
453 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
454 false, false)
456 /// Default construct and initialize the pass.
457 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
458 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
461 /// Tell the pass manager which passes we depend on and what information we
462 /// preserve.
463 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
464 AU.setPreservesCFG();
465 MachineFunctionPass::getAnalysisUsage(AU);
468 /// Erase a variable from the set of open ranges, and additionally erase any
469 /// fragments that may overlap it.
470 void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) {
471 // Erasure helper.
472 auto DoErase = [this](DebugVariable VarToErase) {
473 auto It = Vars.find(VarToErase);
474 if (It != Vars.end()) {
475 unsigned ID = It->second;
476 VarLocs.reset(ID);
477 Vars.erase(It);
481 // Erase the variable/fragment that ends here.
482 DoErase(Var);
484 // Extract the fragment. Interpret an empty fragment as one that covers all
485 // possible bits.
486 FragmentInfo ThisFragment = Var.getFragmentDefault();
488 // There may be fragments that overlap the designated fragment. Look them up
489 // in the pre-computed overlap map, and erase them too.
490 auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment});
491 if (MapIt != OverlappingFragments.end()) {
492 for (auto Fragment : MapIt->second) {
493 LiveDebugValues::OptFragmentInfo FragmentHolder;
494 if (!DebugVariable::isFragmentDefault(Fragment))
495 FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
496 DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()});
501 //===----------------------------------------------------------------------===//
502 // Debug Range Extension Implementation
503 //===----------------------------------------------------------------------===//
505 #ifndef NDEBUG
506 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
507 const VarLocInMBB &V,
508 const VarLocMap &VarLocIDs,
509 const char *msg,
510 raw_ostream &Out) const {
511 Out << '\n' << msg << '\n';
512 for (const MachineBasicBlock &BB : MF) {
513 const VarLocSet &L = V.lookup(&BB);
514 if (L.empty())
515 continue;
516 Out << "MBB: " << BB.getNumber() << ":\n";
517 for (unsigned VLL : L) {
518 const VarLoc &VL = VarLocIDs[VLL];
519 Out << " Var: " << VL.Var.getVar()->getName();
520 Out << " MI: ";
521 VL.dump();
524 Out << "\n";
526 #endif
528 LiveDebugValues::VarLoc::SpillLoc
529 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
530 assert(MI.hasOneMemOperand() &&
531 "Spill instruction does not have exactly one memory operand?");
532 auto MMOI = MI.memoperands_begin();
533 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
534 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
535 "Inconsistent memory operand in spill instruction");
536 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
537 const MachineBasicBlock *MBB = MI.getParent();
538 unsigned Reg;
539 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
540 return {Reg, Offset};
543 /// End all previous ranges related to @MI and start a new range from @MI
544 /// if it is a DBG_VALUE instr.
545 void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
546 OpenRangesSet &OpenRanges,
547 VarLocMap &VarLocIDs) {
548 if (!MI.isDebugValue())
549 return;
550 const DILocalVariable *Var = MI.getDebugVariable();
551 const DIExpression *Expr = MI.getDebugExpression();
552 const DILocation *DebugLoc = MI.getDebugLoc();
553 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
554 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
555 "Expected inlined-at fields to agree");
557 // End all previous ranges of Var.
558 DebugVariable V(Var, Expr, InlinedAt);
559 OpenRanges.erase(V);
561 // Add the VarLoc to OpenRanges from this DBG_VALUE.
562 unsigned ID;
563 if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
564 MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
565 // Use normal VarLoc constructor for registers and immediates.
566 VarLoc VL(MI, LS);
567 ID = VarLocIDs.insert(VL);
568 OpenRanges.insert(ID, VL.Var);
569 } else if (MI.hasOneMemOperand()) {
570 // It's a stack spill -- fetch spill base and offset.
571 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
572 VarLoc VL(MI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS);
573 ID = VarLocIDs.insert(VL);
574 OpenRanges.insert(ID, VL.Var);
575 } else {
576 // This must be an undefined location. We should leave OpenRanges closed.
577 assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
578 "Unexpected non-undef DBG_VALUE encountered");
582 void LiveDebugValues::emitEntryValues(MachineInstr &MI,
583 OpenRangesSet &OpenRanges,
584 VarLocMap &VarLocIDs,
585 TransferMap &Transfers,
586 DebugParamMap &DebugEntryVals,
587 SparseBitVector<> &KillSet) {
588 MachineFunction *MF = MI.getParent()->getParent();
589 for (unsigned ID : KillSet) {
590 if (!VarLocIDs[ID].Var.getVar()->isParameter())
591 continue;
593 const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI;
595 // If parameter's DBG_VALUE is not in the map that means we can't
596 // generate parameter's entry value.
597 if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable()))
598 continue;
600 auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()];
601 DIExpression *NewExpr = DIExpression::prepend(
602 ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue);
603 MachineInstr *EntryValDbgMI =
604 BuildMI(*MF, ParamDebugInstr->getDebugLoc(), ParamDebugInstr->getDesc(),
605 ParamDebugInstr->isIndirectDebugValue(),
606 ParamDebugInstr->getOperand(0).getReg(),
607 ParamDebugInstr->getDebugVariable(), NewExpr);
609 if (ParamDebugInstr->isIndirectDebugValue())
610 EntryValDbgMI->getOperand(1).setImm(
611 ParamDebugInstr->getOperand(1).getImm());
613 Transfers.push_back({&MI, EntryValDbgMI});
614 VarLoc VL(*EntryValDbgMI, LS);
615 unsigned EntryValLocID = VarLocIDs.insert(VL);
616 OpenRanges.insert(EntryValLocID, VL.Var);
620 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
621 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
622 /// new VarLoc. If \p NewReg is different than default zero value then the
623 /// new location will be register location created by the copy like instruction,
624 /// otherwise it is variable's location on the stack.
625 void LiveDebugValues::insertTransferDebugPair(
626 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
627 VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
628 unsigned NewReg) {
629 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
630 MachineFunction *MF = MI.getParent()->getParent();
631 MachineInstr *NewDebugInstr;
633 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr,
634 &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) {
635 unsigned LocId = VarLocIDs.insert(VL);
637 // Close this variable's previous location range.
638 DebugVariable V(*DebugInstr);
639 OpenRanges.erase(V);
641 OpenRanges.insert(LocId, VL.Var);
642 // The newly created DBG_VALUE instruction NewDebugInstr must be inserted
643 // after MI. Keep track of the pairing.
644 TransferDebugPair MIP = {&MI, NewDebugInstr};
645 Transfers.push_back(MIP);
648 // End all previous ranges of Var.
649 OpenRanges.erase(VarLocIDs[OldVarID].Var);
650 switch (Kind) {
651 case TransferKind::TransferCopy: {
652 assert(NewReg &&
653 "No register supplied when handling a copy of a debug value");
654 // Create a DBG_VALUE instruction to describe the Var in its new
655 // register location.
656 NewDebugInstr = BuildMI(
657 *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(),
658 DebugInstr->isIndirectDebugValue(), NewReg,
659 DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression());
660 if (DebugInstr->isIndirectDebugValue())
661 NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
662 VarLoc VL(*NewDebugInstr, LS);
663 ProcessVarLoc(VL, NewDebugInstr);
664 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
665 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
666 /*SkipOpers*/false, /*SkipDebugLoc*/false,
667 /*AddNewLine*/true, TII));
668 return;
670 case TransferKind::TransferSpill: {
671 // Create a DBG_VALUE instruction to describe the Var in its spilled
672 // location.
673 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
674 auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(),
675 DIExpression::ApplyOffset,
676 SpillLocation.SpillOffset);
677 NewDebugInstr = BuildMI(
678 *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true,
679 SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr);
680 VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase,
681 SpillLocation.SpillOffset, LS);
682 ProcessVarLoc(VL, NewDebugInstr);
683 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
684 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
685 /*SkipOpers*/false, /*SkipDebugLoc*/false,
686 /*AddNewLine*/true, TII));
687 return;
689 case TransferKind::TransferRestore: {
690 assert(NewReg &&
691 "No register supplied when handling a restore of a debug value");
692 MachineFunction *MF = MI.getMF();
693 DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
694 NewDebugInstr =
695 BuildMI(*MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false,
696 NewReg, DebugInstr->getDebugVariable(), DIB.createExpression());
697 VarLoc VL(*NewDebugInstr, LS);
698 ProcessVarLoc(VL, NewDebugInstr);
699 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
700 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
701 /*SkipOpers*/false, /*SkipDebugLoc*/false,
702 /*AddNewLine*/true, TII));
703 return;
706 llvm_unreachable("Invalid transfer kind");
709 /// A definition of a register may mark the end of a range.
710 void LiveDebugValues::transferRegisterDef(
711 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
712 TransferMap &Transfers, DebugParamMap &DebugEntryVals) {
713 MachineFunction *MF = MI.getMF();
714 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
715 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
716 SparseBitVector<> KillSet;
717 for (const MachineOperand &MO : MI.operands()) {
718 // Determine whether the operand is a register def. Assume that call
719 // instructions never clobber SP, because some backends (e.g., AArch64)
720 // never list SP in the regmask.
721 if (MO.isReg() && MO.isDef() && MO.getReg() &&
722 Register::isPhysicalRegister(MO.getReg()) &&
723 !(MI.isCall() && MO.getReg() == SP)) {
724 // Remove ranges of all aliased registers.
725 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
726 for (unsigned ID : OpenRanges.getVarLocs())
727 if (VarLocIDs[ID].isDescribedByReg() == *RAI)
728 KillSet.set(ID);
729 } else if (MO.isRegMask()) {
730 // Remove ranges of all clobbered registers. Register masks don't usually
731 // list SP as preserved. While the debug info may be off for an
732 // instruction or two around callee-cleanup calls, transferring the
733 // DEBUG_VALUE across the call is still a better user experience.
734 for (unsigned ID : OpenRanges.getVarLocs()) {
735 unsigned Reg = VarLocIDs[ID].isDescribedByReg();
736 if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
737 KillSet.set(ID);
741 OpenRanges.erase(KillSet, VarLocIDs);
743 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
744 auto &TM = TPC->getTM<TargetMachine>();
745 if (TM.Options.EnableDebugEntryValues)
746 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals,
747 KillSet);
751 /// Decide if @MI is a spill instruction and return true if it is. We use 2
752 /// criteria to make this decision:
753 /// - Is this instruction a store to a spill slot?
754 /// - Is there a register operand that is both used and killed?
755 /// TODO: Store optimization can fold spills into other stores (including
756 /// other spills). We do not handle this yet (more than one memory operand).
757 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
758 MachineFunction *MF, unsigned &Reg) {
759 SmallVector<const MachineMemOperand*, 1> Accesses;
761 // TODO: Handle multiple stores folded into one.
762 if (!MI.hasOneMemOperand())
763 return false;
765 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
766 return false; // This is not a spill instruction, since no valid size was
767 // returned from either function.
769 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
770 if (!MO.isReg() || !MO.isUse()) {
771 Reg = 0;
772 return false;
774 Reg = MO.getReg();
775 return MO.isKill();
778 for (const MachineOperand &MO : MI.operands()) {
779 // In a spill instruction generated by the InlineSpiller the spilled
780 // register has its kill flag set.
781 if (isKilledReg(MO, Reg))
782 return true;
783 if (Reg != 0) {
784 // Check whether next instruction kills the spilled register.
785 // FIXME: Current solution does not cover search for killed register in
786 // bundles and instructions further down the chain.
787 auto NextI = std::next(MI.getIterator());
788 // Skip next instruction that points to basic block end iterator.
789 if (MI.getParent()->end() == NextI)
790 continue;
791 unsigned RegNext;
792 for (const MachineOperand &MONext : NextI->operands()) {
793 // Return true if we came across the register from the
794 // previous spill instruction that is killed in NextI.
795 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
796 return true;
800 // Return false if we didn't find spilled register.
801 return false;
804 Optional<LiveDebugValues::VarLoc::SpillLoc>
805 LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
806 MachineFunction *MF, unsigned &Reg) {
807 if (!MI.hasOneMemOperand())
808 return None;
810 // FIXME: Handle folded restore instructions with more than one memory
811 // operand.
812 if (MI.getRestoreSize(TII)) {
813 Reg = MI.getOperand(0).getReg();
814 return extractSpillBaseRegAndOffset(MI);
816 return None;
819 /// A spilled register may indicate that we have to end the current range of
820 /// a variable and create a new one for the spill location.
821 /// A restored register may indicate the reverse situation.
822 /// We don't want to insert any instructions in process(), so we just create
823 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
824 /// It will be inserted into the BB when we're done iterating over the
825 /// instructions.
826 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
827 OpenRangesSet &OpenRanges,
828 VarLocMap &VarLocIDs,
829 TransferMap &Transfers) {
830 MachineFunction *MF = MI.getMF();
831 TransferKind TKind;
832 unsigned Reg;
833 Optional<VarLoc::SpillLoc> Loc;
835 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
837 if (isSpillInstruction(MI, MF, Reg)) {
838 TKind = TransferKind::TransferSpill;
839 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
840 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
841 << "\n");
842 } else {
843 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
844 return;
845 TKind = TransferKind::TransferRestore;
846 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
847 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
848 << "\n");
850 // Check if the register or spill location is the location of a debug value.
851 for (unsigned ID : OpenRanges.getVarLocs()) {
852 if (TKind == TransferKind::TransferSpill &&
853 VarLocIDs[ID].isDescribedByReg() == Reg) {
854 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
855 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
856 } else if (TKind == TransferKind::TransferRestore &&
857 VarLocIDs[ID].Loc.SpillLocation == *Loc) {
858 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
859 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
860 } else
861 continue;
862 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
863 Reg);
864 return;
868 /// If \p MI is a register copy instruction, that copies a previously tracked
869 /// value from one register to another register that is callee saved, we
870 /// create new DBG_VALUE instruction described with copy destination register.
871 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
872 OpenRangesSet &OpenRanges,
873 VarLocMap &VarLocIDs,
874 TransferMap &Transfers) {
875 const MachineOperand *SrcRegOp, *DestRegOp;
877 if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
878 !DestRegOp->isDef())
879 return;
881 auto isCalleSavedReg = [&](unsigned Reg) {
882 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
883 if (CalleeSavedRegs.test(*RAI))
884 return true;
885 return false;
888 unsigned SrcReg = SrcRegOp->getReg();
889 unsigned DestReg = DestRegOp->getReg();
891 // We want to recognize instructions where destination register is callee
892 // saved register. If register that could be clobbered by the call is
893 // included, there would be a great chance that it is going to be clobbered
894 // soon. It is more likely that previous register location, which is callee
895 // saved, is going to stay unclobbered longer, even if it is killed.
896 if (!isCalleSavedReg(DestReg))
897 return;
899 for (unsigned ID : OpenRanges.getVarLocs()) {
900 if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
901 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
902 TransferKind::TransferCopy, DestReg);
903 return;
908 /// Terminate all open ranges at the end of the current basic block.
909 bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
910 OpenRangesSet &OpenRanges,
911 VarLocInMBB &OutLocs,
912 const VarLocMap &VarLocIDs) {
913 bool Changed = false;
914 const MachineBasicBlock *CurMBB = MI.getParent();
915 if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
916 return false;
918 if (OpenRanges.empty())
919 return false;
921 LLVM_DEBUG(for (unsigned ID
922 : OpenRanges.getVarLocs()) {
923 // Copy OpenRanges to OutLocs, if not already present.
924 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
925 VarLocIDs[ID].dump();
927 VarLocSet &VLS = OutLocs[CurMBB];
928 Changed = VLS |= OpenRanges.getVarLocs();
929 // New OutLocs set may be different due to spill, restore or register
930 // copy instruction processing.
931 if (Changed)
932 VLS = OpenRanges.getVarLocs();
933 OpenRanges.clear();
934 return Changed;
937 /// Accumulate a mapping between each DILocalVariable fragment and other
938 /// fragments of that DILocalVariable which overlap. This reduces work during
939 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
940 /// known-to-overlap fragments are present".
941 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
942 /// fragment usage.
943 /// \param SeenFragments Map from DILocalVariable to all fragments of that
944 /// Variable which are known to exist.
945 /// \param OverlappingFragments The overlap map being constructed, from one
946 /// Var/Fragment pair to a vector of fragments known to overlap.
947 void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
948 VarToFragments &SeenFragments,
949 OverlapMap &OverlappingFragments) {
950 DebugVariable MIVar(MI);
951 FragmentInfo ThisFragment = MIVar.getFragmentDefault();
953 // If this is the first sighting of this variable, then we are guaranteed
954 // there are currently no overlapping fragments either. Initialize the set
955 // of seen fragments, record no overlaps for the current one, and return.
956 auto SeenIt = SeenFragments.find(MIVar.getVar());
957 if (SeenIt == SeenFragments.end()) {
958 SmallSet<FragmentInfo, 4> OneFragment;
959 OneFragment.insert(ThisFragment);
960 SeenFragments.insert({MIVar.getVar(), OneFragment});
962 OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
963 return;
966 // If this particular Variable/Fragment pair already exists in the overlap
967 // map, it has already been accounted for.
968 auto IsInOLapMap =
969 OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
970 if (!IsInOLapMap.second)
971 return;
973 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
974 auto &AllSeenFragments = SeenIt->second;
976 // Otherwise, examine all other seen fragments for this variable, with "this"
977 // fragment being a previously unseen fragment. Record any pair of
978 // overlapping fragments.
979 for (auto &ASeenFragment : AllSeenFragments) {
980 // Does this previously seen fragment overlap?
981 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
982 // Yes: Mark the current fragment as being overlapped.
983 ThisFragmentsOverlaps.push_back(ASeenFragment);
984 // Mark the previously seen fragment as being overlapped by the current
985 // one.
986 auto ASeenFragmentsOverlaps =
987 OverlappingFragments.find({MIVar.getVar(), ASeenFragment});
988 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
989 "Previously seen var fragment has no vector of overlaps");
990 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
994 AllSeenFragments.insert(ThisFragment);
997 /// This routine creates OpenRanges and OutLocs.
998 bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
999 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
1000 TransferMap &Transfers, DebugParamMap &DebugEntryVals,
1001 bool transferChanges,
1002 OverlapMap &OverlapFragments,
1003 VarToFragments &SeenFragments) {
1004 bool Changed = false;
1005 transferDebugValue(MI, OpenRanges, VarLocIDs);
1006 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers,
1007 DebugEntryVals);
1008 if (transferChanges) {
1009 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1010 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1011 } else {
1012 // Build up a map of overlapping fragments on the first run through.
1013 if (MI.isDebugValue())
1014 accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
1016 Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
1017 return Changed;
1020 /// This routine joins the analysis results of all incoming edges in @MBB by
1021 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1022 /// source variable in all the predecessors of @MBB reside in the same location.
1023 bool LiveDebugValues::join(
1024 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1025 const VarLocMap &VarLocIDs,
1026 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1027 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1028 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1029 bool Changed = false;
1031 VarLocSet InLocsT; // Temporary incoming locations.
1033 // For all predecessors of this MBB, find the set of VarLocs that
1034 // can be joined.
1035 int NumVisited = 0;
1036 for (auto p : MBB.predecessors()) {
1037 // Ignore unvisited predecessor blocks. As we are processing
1038 // the blocks in reverse post-order any unvisited block can
1039 // be considered to not remove any incoming values.
1040 if (!Visited.count(p)) {
1041 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
1042 << "\n");
1043 continue;
1045 auto OL = OutLocs.find(p);
1046 // Join is null in case of empty OutLocs from any of the pred.
1047 if (OL == OutLocs.end())
1048 return false;
1050 // Just copy over the Out locs to incoming locs for the first visited
1051 // predecessor, and for all other predecessors join the Out locs.
1052 if (!NumVisited)
1053 InLocsT = OL->second;
1054 else
1055 InLocsT &= OL->second;
1057 LLVM_DEBUG({
1058 if (!InLocsT.empty()) {
1059 for (auto ID : InLocsT)
1060 dbgs() << " gathered candidate incoming var: "
1061 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
1065 NumVisited++;
1068 // Filter out DBG_VALUES that are out of scope.
1069 VarLocSet KillSet;
1070 bool IsArtificial = ArtificialBlocks.count(&MBB);
1071 if (!IsArtificial) {
1072 for (auto ID : InLocsT) {
1073 if (!VarLocIDs[ID].dominates(MBB)) {
1074 KillSet.set(ID);
1075 LLVM_DEBUG({
1076 auto Name = VarLocIDs[ID].Var.getVar()->getName();
1077 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
1082 InLocsT.intersectWithComplement(KillSet);
1084 // As we are processing blocks in reverse post-order we
1085 // should have processed at least one predecessor, unless it
1086 // is the entry block which has no predecessor.
1087 assert((NumVisited || MBB.pred_empty()) &&
1088 "Should have processed at least one predecessor");
1089 if (InLocsT.empty())
1090 return false;
1092 VarLocSet &ILS = InLocs[&MBB];
1094 // Insert DBG_VALUE instructions, if not already inserted.
1095 VarLocSet Diff = InLocsT;
1096 Diff.intersectWithComplement(ILS);
1097 for (auto ID : Diff) {
1098 // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
1099 // new range is started for the var from the mbb's beginning by inserting
1100 // a new DBG_VALUE. process() will end this range however appropriate.
1101 const VarLoc &DiffIt = VarLocIDs[ID];
1102 const MachineInstr *DebugInstr = &DiffIt.MI;
1103 MachineInstr *MI = nullptr;
1104 if (DiffIt.isConstant()) {
1105 MachineOperand MO(DebugInstr->getOperand(0));
1106 MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
1107 DebugInstr->getDesc(), false, MO,
1108 DebugInstr->getDebugVariable(),
1109 DebugInstr->getDebugExpression());
1110 } else {
1111 MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
1112 DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(),
1113 DebugInstr->getOperand(0).getReg(),
1114 DebugInstr->getDebugVariable(),
1115 DebugInstr->getDebugExpression());
1116 if (DebugInstr->isIndirectDebugValue())
1117 MI->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
1119 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1120 ILS.set(ID);
1121 ++NumInserted;
1122 Changed = true;
1124 return Changed;
1127 /// Calculate the liveness information for the given machine function and
1128 /// extend ranges across basic blocks.
1129 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
1130 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1132 bool Changed = false;
1133 bool OLChanged = false;
1134 bool MBBJoined = false;
1136 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
1137 OverlapMap OverlapFragments; // Map of overlapping variable fragments
1138 OpenRangesSet OpenRanges(OverlapFragments);
1139 // Ranges that are open until end of bb.
1140 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
1141 VarLocInMBB InLocs; // Ranges that are incoming after joining.
1142 TransferMap Transfers; // DBG_VALUEs associated with spills.
1144 VarToFragments SeenFragments;
1146 // Blocks which are artificial, i.e. blocks which exclusively contain
1147 // instructions without locations, or with line 0 locations.
1148 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1150 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1151 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1152 std::priority_queue<unsigned int, std::vector<unsigned int>,
1153 std::greater<unsigned int>>
1154 Worklist;
1155 std::priority_queue<unsigned int, std::vector<unsigned int>,
1156 std::greater<unsigned int>>
1157 Pending;
1159 enum : bool { dontTransferChanges = false, transferChanges = true };
1161 // Besides parameter's modification, check whether a DBG_VALUE is inlined
1162 // in order to deduce whether the variable that it tracks comes from
1163 // a different function. If that is the case we can't track its entry value.
1164 auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) {
1165 auto *DIVar = MI.getDebugVariable();
1166 return DIVar->isParameter() && DIVar->isNotModified() &&
1167 !MI.getDebugLoc()->getInlinedAt();
1170 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
1171 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
1172 unsigned FP = TRI->getFrameRegister(MF);
1173 auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool {
1174 return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP;
1177 // Working set of currently collected debug variables mapped to DBG_VALUEs
1178 // representing candidates for production of debug entry values.
1179 DebugParamMap DebugEntryVals;
1181 MachineBasicBlock &First_MBB = *(MF.begin());
1182 // Only in the case of entry MBB collect DBG_VALUEs representing
1183 // function parameters in order to generate debug entry values for them.
1184 // Currently, we generate debug entry values only for parameters that are
1185 // unmodified throughout the function and located in a register.
1186 // TODO: Add support for parameters that are described as fragments.
1187 // TODO: Add support for modified arguments that can be expressed
1188 // by using its entry value.
1189 // TODO: Add support for local variables that are expressed in terms of
1190 // parameters entry values.
1191 for (auto &MI : First_MBB)
1192 if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) &&
1193 !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) &&
1194 !DebugEntryVals.count(MI.getDebugVariable()) &&
1195 !MI.getDebugExpression()->isFragment())
1196 DebugEntryVals[MI.getDebugVariable()] = &MI;
1198 // Initialize every mbb with OutLocs.
1199 // We are not looking at any spill instructions during the initial pass
1200 // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
1201 // instructions for spills of registers that are known to be user variables
1202 // within the BB in which the spill occurs.
1203 for (auto &MBB : MF) {
1204 for (auto &MI : MBB) {
1205 process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, DebugEntryVals,
1206 dontTransferChanges, OverlapFragments, SeenFragments);
1208 // Add any entry DBG_VALUE instructions necessitated by parameter
1209 // clobbering.
1210 for (auto &TR : Transfers) {
1211 MBB.insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
1212 TR.DebugInst);
1214 Transfers.clear();
1217 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
1218 if (const DebugLoc &DL = MI.getDebugLoc())
1219 return DL.getLine() != 0;
1220 return false;
1222 for (auto &MBB : MF)
1223 if (none_of(MBB.instrs(), hasNonArtificialLocation))
1224 ArtificialBlocks.insert(&MBB);
1226 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1227 "OutLocs after initialization", dbgs()));
1229 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1230 unsigned int RPONumber = 0;
1231 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
1232 OrderToBB[RPONumber] = *RI;
1233 BBToOrder[*RI] = RPONumber;
1234 Worklist.push(RPONumber);
1235 ++RPONumber;
1237 // This is a standard "union of predecessor outs" dataflow problem.
1238 // To solve it, we perform join() and process() using the two worklist method
1239 // until the ranges converge.
1240 // Ranges have converged when both worklists are empty.
1241 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1242 while (!Worklist.empty() || !Pending.empty()) {
1243 // We track what is on the pending worklist to avoid inserting the same
1244 // thing twice. We could avoid this with a custom priority queue, but this
1245 // is probably not worth it.
1246 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
1247 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1248 while (!Worklist.empty()) {
1249 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1250 Worklist.pop();
1251 MBBJoined =
1252 join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks);
1253 Visited.insert(MBB);
1254 if (MBBJoined) {
1255 MBBJoined = false;
1256 Changed = true;
1257 // Now that we have started to extend ranges across BBs we need to
1258 // examine spill instructions to see whether they spill registers that
1259 // correspond to user variables.
1260 for (auto &MI : *MBB)
1261 OLChanged |=
1262 process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
1263 DebugEntryVals, transferChanges, OverlapFragments,
1264 SeenFragments);
1266 // Add any DBG_VALUE instructions necessitated by spills.
1267 for (auto &TR : Transfers)
1268 MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
1269 TR.DebugInst);
1270 Transfers.clear();
1272 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1273 "OutLocs after propagating", dbgs()));
1274 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
1275 "InLocs after propagating", dbgs()));
1277 if (OLChanged) {
1278 OLChanged = false;
1279 for (auto s : MBB->successors())
1280 if (OnPending.insert(s).second) {
1281 Pending.push(BBToOrder[s]);
1286 Worklist.swap(Pending);
1287 // At this point, pending must be empty, since it was just the empty
1288 // worklist
1289 assert(Pending.empty() && "Pending should be empty");
1292 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
1293 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
1294 return Changed;
1297 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
1298 if (!MF.getFunction().getSubprogram())
1299 // LiveDebugValues will already have removed all DBG_VALUEs.
1300 return false;
1302 // Skip functions from NoDebug compilation units.
1303 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1304 DICompileUnit::NoDebug)
1305 return false;
1307 TRI = MF.getSubtarget().getRegisterInfo();
1308 TII = MF.getSubtarget().getInstrInfo();
1309 TFI = MF.getSubtarget().getFrameLowering();
1310 TFI->determineCalleeSaves(MF, CalleeSavedRegs,
1311 make_unique<RegScavenger>().get());
1312 LS.initialize(MF);
1314 bool Changed = ExtendRanges(MF);
1315 return Changed;