[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / CodeGen / ShadowStackGCLowering.cpp
blob17a4d76c4c8026681f2a1903f5b4b98710c7192d
1 //===- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the custom lowering code required by the shadow-stack GC
10 // strategy.
12 // This pass implements the code transformation described in this paper:
13 // "Accurate Garbage Collection in an Uncooperative Environment"
14 // Fergus Henderson, ISMM, 2002
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
38 #include <cassert>
39 #include <cstddef>
40 #include <string>
41 #include <utility>
42 #include <vector>
44 using namespace llvm;
46 #define DEBUG_TYPE "shadow-stack-gc-lowering"
48 namespace {
50 class ShadowStackGCLowering : public FunctionPass {
51 /// RootChain - This is the global linked-list that contains the chain of GC
52 /// roots.
53 GlobalVariable *Head = nullptr;
55 /// StackEntryTy - Abstract type of a link in the shadow stack.
56 StructType *StackEntryTy = nullptr;
57 StructType *FrameMapTy = nullptr;
59 /// Roots - GC roots in the current function. Each is a pair of the
60 /// intrinsic call and its corresponding alloca.
61 std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
63 public:
64 static char ID;
66 ShadowStackGCLowering();
68 bool doInitialization(Module &M) override;
69 bool runOnFunction(Function &F) override;
71 private:
72 bool IsNullValue(Value *V);
73 Constant *GetFrameMap(Function &F);
74 Type *GetConcreteStackEntryType(Function &F);
75 void CollectRoots(Function &F);
77 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
78 Type *Ty, Value *BasePtr, int Idx1,
79 const char *Name);
80 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
81 Type *Ty, Value *BasePtr, int Idx1, int Idx2,
82 const char *Name);
85 } // end anonymous namespace
87 char ShadowStackGCLowering::ID = 0;
89 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, DEBUG_TYPE,
90 "Shadow Stack GC Lowering", false, false)
91 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
92 INITIALIZE_PASS_END(ShadowStackGCLowering, DEBUG_TYPE,
93 "Shadow Stack GC Lowering", false, false)
95 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
97 ShadowStackGCLowering::ShadowStackGCLowering() : FunctionPass(ID) {
98 initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
101 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
102 // doInitialization creates the abstract type of this value.
103 Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
105 // Truncate the ShadowStackDescriptor if some metadata is null.
106 unsigned NumMeta = 0;
107 SmallVector<Constant *, 16> Metadata;
108 for (unsigned I = 0; I != Roots.size(); ++I) {
109 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
110 if (!C->isNullValue())
111 NumMeta = I + 1;
112 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
114 Metadata.resize(NumMeta);
116 Type *Int32Ty = Type::getInt32Ty(F.getContext());
118 Constant *BaseElts[] = {
119 ConstantInt::get(Int32Ty, Roots.size(), false),
120 ConstantInt::get(Int32Ty, NumMeta, false),
123 Constant *DescriptorElts[] = {
124 ConstantStruct::get(FrameMapTy, BaseElts),
125 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
127 Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
128 StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
130 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
132 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
133 // that, short of multithreaded LLVM, it should be safe; all that is
134 // necessary is that a simple Module::iterator loop not be invalidated.
135 // Appending to the GlobalVariable list is safe in that sense.
137 // All of the output passes emit globals last. The ExecutionEngine
138 // explicitly supports adding globals to the module after
139 // initialization.
141 // Still, if it isn't deemed acceptable, then this transformation needs
142 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
143 // (which uses a FunctionPassManager (which segfaults (not asserts) if
144 // provided a ModulePass))).
145 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
146 GlobalVariable::InternalLinkage, FrameMap,
147 "__gc_" + F.getName());
149 Constant *GEPIndices[2] = {
150 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
151 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
152 return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
155 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
156 // doInitialization creates the generic version of this type.
157 std::vector<Type *> EltTys;
158 EltTys.push_back(StackEntryTy);
159 for (size_t I = 0; I != Roots.size(); I++)
160 EltTys.push_back(Roots[I].second->getAllocatedType());
162 return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
165 /// doInitialization - If this module uses the GC intrinsics, find them now. If
166 /// not, exit fast.
167 bool ShadowStackGCLowering::doInitialization(Module &M) {
168 bool Active = false;
169 for (Function &F : M) {
170 if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
171 Active = true;
172 break;
175 if (!Active)
176 return false;
178 // struct FrameMap {
179 // int32_t NumRoots; // Number of roots in stack frame.
180 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
181 // void *Meta[]; // May be absent for roots without metadata.
182 // };
183 std::vector<Type *> EltTys;
184 // 32 bits is ok up to a 32GB stack frame. :)
185 EltTys.push_back(Type::getInt32Ty(M.getContext()));
186 // Specifies length of variable length array.
187 EltTys.push_back(Type::getInt32Ty(M.getContext()));
188 FrameMapTy = StructType::create(EltTys, "gc_map");
189 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
191 // struct StackEntry {
192 // ShadowStackEntry *Next; // Caller's stack entry.
193 // FrameMap *Map; // Pointer to constant FrameMap.
194 // void *Roots[]; // Stack roots (in-place array, so we pretend).
195 // };
197 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
199 EltTys.clear();
200 EltTys.push_back(PointerType::getUnqual(StackEntryTy));
201 EltTys.push_back(FrameMapPtrTy);
202 StackEntryTy->setBody(EltTys);
203 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
205 // Get the root chain if it already exists.
206 Head = M.getGlobalVariable("llvm_gc_root_chain");
207 if (!Head) {
208 // If the root chain does not exist, insert a new one with linkonce
209 // linkage!
210 Head = new GlobalVariable(
211 M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
212 Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
213 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
214 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
215 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
218 return true;
221 bool ShadowStackGCLowering::IsNullValue(Value *V) {
222 if (Constant *C = dyn_cast<Constant>(V))
223 return C->isNullValue();
224 return false;
227 void ShadowStackGCLowering::CollectRoots(Function &F) {
228 // FIXME: Account for original alignment. Could fragment the root array.
229 // Approach 1: Null initialize empty slots at runtime. Yuck.
230 // Approach 2: Emit a map of the array instead of just a count.
232 assert(Roots.empty() && "Not cleaned up?");
234 SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
236 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
237 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
238 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
239 if (Function *F = CI->getCalledFunction())
240 if (F->getIntrinsicID() == Intrinsic::gcroot) {
241 std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
243 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
244 if (IsNullValue(CI->getArgOperand(1)))
245 Roots.push_back(Pair);
246 else
247 MetaRoots.push_back(Pair);
250 // Number roots with metadata (usually empty) at the beginning, so that the
251 // FrameMap::Meta array can be elided.
252 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
255 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
256 IRBuilder<> &B, Type *Ty,
257 Value *BasePtr, int Idx,
258 int Idx2,
259 const char *Name) {
260 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
261 ConstantInt::get(Type::getInt32Ty(Context), Idx),
262 ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
263 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
265 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
267 return dyn_cast<GetElementPtrInst>(Val);
270 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
271 IRBuilder<> &B, Type *Ty, Value *BasePtr,
272 int Idx, const char *Name) {
273 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
274 ConstantInt::get(Type::getInt32Ty(Context), Idx)};
275 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
277 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
279 return dyn_cast<GetElementPtrInst>(Val);
282 /// runOnFunction - Insert code to maintain the shadow stack.
283 bool ShadowStackGCLowering::runOnFunction(Function &F) {
284 // Quick exit for functions that do not use the shadow stack GC.
285 if (!F.hasGC() ||
286 F.getGC() != std::string("shadow-stack"))
287 return false;
289 LLVMContext &Context = F.getContext();
291 // Find calls to llvm.gcroot.
292 CollectRoots(F);
294 // If there are no roots in this function, then there is no need to add a
295 // stack map entry for it.
296 if (Roots.empty())
297 return false;
299 // Build the constant map and figure the type of the shadow stack entry.
300 Value *FrameMap = GetFrameMap(F);
301 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
303 // Build the shadow stack entry at the very start of the function.
304 BasicBlock::iterator IP = F.getEntryBlock().begin();
305 IRBuilder<> AtEntry(IP->getParent(), IP);
307 Instruction *StackEntry =
308 AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
310 while (isa<AllocaInst>(IP))
311 ++IP;
312 AtEntry.SetInsertPoint(IP->getParent(), IP);
314 // Initialize the map pointer and load the current head of the shadow stack.
315 Instruction *CurrentHead =
316 AtEntry.CreateLoad(StackEntryTy->getPointerTo(), Head, "gc_currhead");
317 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
318 StackEntry, 0, 1, "gc_frame.map");
319 AtEntry.CreateStore(FrameMap, EntryMapPtr);
321 // After all the allocas...
322 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
323 // For each root, find the corresponding slot in the aggregate...
324 Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
325 StackEntry, 1 + I, "gc_root");
327 // And use it in lieu of the alloca.
328 AllocaInst *OriginalAlloca = Roots[I].second;
329 SlotPtr->takeName(OriginalAlloca);
330 OriginalAlloca->replaceAllUsesWith(SlotPtr);
333 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
334 // really necessary (the collector would never see the intermediate state at
335 // runtime), but it's nicer not to push the half-initialized entry onto the
336 // shadow stack.
337 while (isa<StoreInst>(IP))
338 ++IP;
339 AtEntry.SetInsertPoint(IP->getParent(), IP);
341 // Push the entry onto the shadow stack.
342 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
343 StackEntry, 0, 0, "gc_frame.next");
344 Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
345 StackEntry, 0, "gc_newhead");
346 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
347 AtEntry.CreateStore(NewHeadVal, Head);
349 // For each instruction that escapes...
350 EscapeEnumerator EE(F, "gc_cleanup");
351 while (IRBuilder<> *AtExit = EE.Next()) {
352 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
353 // AtEntry, since that would make the value live for the entire function.
354 Instruction *EntryNextPtr2 =
355 CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
356 "gc_frame.next");
357 Value *SavedHead = AtExit->CreateLoad(StackEntryTy->getPointerTo(),
358 EntryNextPtr2, "gc_savedhead");
359 AtExit->CreateStore(SavedHead, Head);
362 // Delete the original allocas (which are no longer used) and the intrinsic
363 // calls (which are no longer valid). Doing this last avoids invalidating
364 // iterators.
365 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
366 Roots[I].first->eraseFromParent();
367 Roots[I].second->eraseFromParent();
370 Roots.clear();
371 return true;