1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/IPO.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #define DEBUG_TYPE "deadargelim"
55 STATISTIC(NumArgumentsEliminated
, "Number of unread args removed");
56 STATISTIC(NumRetValsEliminated
, "Number of unused return values removed");
57 STATISTIC(NumArgumentsReplacedWithUndef
,
58 "Number of unread args replaced with undef");
62 /// DAE - The dead argument elimination pass.
63 class DAE
: public ModulePass
{
65 // DAH uses this to specify a different ID.
66 explicit DAE(char &ID
) : ModulePass(ID
) {}
69 static char ID
; // Pass identification, replacement for typeid
71 DAE() : ModulePass(ID
) {
72 initializeDAEPass(*PassRegistry::getPassRegistry());
75 bool runOnModule(Module
&M
) override
{
78 DeadArgumentEliminationPass
DAEP(ShouldHackArguments());
79 ModuleAnalysisManager DummyMAM
;
80 PreservedAnalyses PA
= DAEP
.run(M
, DummyMAM
);
81 return !PA
.areAllPreserved();
84 virtual bool ShouldHackArguments() const { return false; }
87 } // end anonymous namespace
91 INITIALIZE_PASS(DAE
, "deadargelim", "Dead Argument Elimination", false, false)
95 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
96 /// deletes arguments to functions which are external. This is only for use
98 struct DAH
: public DAE
{
103 bool ShouldHackArguments() const override
{ return true; }
106 } // end anonymous namespace
110 INITIALIZE_PASS(DAH
, "deadarghaX0r",
111 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
114 /// createDeadArgEliminationPass - This pass removes arguments from functions
115 /// which are not used by the body of the function.
116 ModulePass
*llvm::createDeadArgEliminationPass() { return new DAE(); }
118 ModulePass
*llvm::createDeadArgHackingPass() { return new DAH(); }
120 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121 /// llvm.vastart is never called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function
&Fn
) {
123 assert(Fn
.getFunctionType()->isVarArg() && "Function isn't varargs!");
124 if (Fn
.isDeclaration() || !Fn
.hasLocalLinkage()) return false;
126 // Ensure that the function is only directly called.
127 if (Fn
.hasAddressTaken())
130 // Don't touch naked functions. The assembly might be using an argument, or
131 // otherwise rely on the frame layout in a way that this analysis will not
133 if (Fn
.hasFnAttribute(Attribute::Naked
)) {
137 // Okay, we know we can transform this function if safe. Scan its body
138 // looking for calls marked musttail or calls to llvm.vastart.
139 for (BasicBlock
&BB
: Fn
) {
140 for (Instruction
&I
: BB
) {
141 CallInst
*CI
= dyn_cast
<CallInst
>(&I
);
144 if (CI
->isMustTailCall())
146 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
)) {
147 if (II
->getIntrinsicID() == Intrinsic::vastart
)
153 // If we get here, there are no calls to llvm.vastart in the function body,
154 // remove the "..." and adjust all the calls.
156 // Start by computing a new prototype for the function, which is the same as
157 // the old function, but doesn't have isVarArg set.
158 FunctionType
*FTy
= Fn
.getFunctionType();
160 std::vector
<Type
*> Params(FTy
->param_begin(), FTy
->param_end());
161 FunctionType
*NFTy
= FunctionType::get(FTy
->getReturnType(),
163 unsigned NumArgs
= Params
.size();
165 // Create the new function body and insert it into the module...
166 Function
*NF
= Function::Create(NFTy
, Fn
.getLinkage(), Fn
.getAddressSpace());
167 NF
->copyAttributesFrom(&Fn
);
168 NF
->setComdat(Fn
.getComdat());
169 Fn
.getParent()->getFunctionList().insert(Fn
.getIterator(), NF
);
172 // Loop over all of the callers of the function, transforming the call sites
173 // to pass in a smaller number of arguments into the new function.
175 std::vector
<Value
*> Args
;
176 for (Value::user_iterator I
= Fn
.user_begin(), E
= Fn
.user_end(); I
!= E
; ) {
180 Instruction
*Call
= CS
.getInstruction();
182 // Pass all the same arguments.
183 Args
.assign(CS
.arg_begin(), CS
.arg_begin() + NumArgs
);
185 // Drop any attributes that were on the vararg arguments.
186 AttributeList PAL
= CS
.getAttributes();
187 if (!PAL
.isEmpty()) {
188 SmallVector
<AttributeSet
, 8> ArgAttrs
;
189 for (unsigned ArgNo
= 0; ArgNo
< NumArgs
; ++ArgNo
)
190 ArgAttrs
.push_back(PAL
.getParamAttributes(ArgNo
));
191 PAL
= AttributeList::get(Fn
.getContext(), PAL
.getFnAttributes(),
192 PAL
.getRetAttributes(), ArgAttrs
);
195 SmallVector
<OperandBundleDef
, 1> OpBundles
;
196 CS
.getOperandBundlesAsDefs(OpBundles
);
199 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
200 NewCS
= InvokeInst::Create(NF
, II
->getNormalDest(), II
->getUnwindDest(),
201 Args
, OpBundles
, "", Call
);
203 NewCS
= CallInst::Create(NF
, Args
, OpBundles
, "", Call
);
204 cast
<CallInst
>(NewCS
.getInstruction())
205 ->setTailCallKind(cast
<CallInst
>(Call
)->getTailCallKind());
207 NewCS
.setCallingConv(CS
.getCallingConv());
208 NewCS
.setAttributes(PAL
);
209 NewCS
->setDebugLoc(Call
->getDebugLoc());
211 if (Call
->extractProfTotalWeight(W
))
212 NewCS
->setProfWeight(W
);
216 if (!Call
->use_empty())
217 Call
->replaceAllUsesWith(NewCS
.getInstruction());
219 NewCS
->takeName(Call
);
221 // Finally, remove the old call from the program, reducing the use-count of
223 Call
->eraseFromParent();
226 // Since we have now created the new function, splice the body of the old
227 // function right into the new function, leaving the old rotting hulk of the
229 NF
->getBasicBlockList().splice(NF
->begin(), Fn
.getBasicBlockList());
231 // Loop over the argument list, transferring uses of the old arguments over to
232 // the new arguments, also transferring over the names as well. While we're at
233 // it, remove the dead arguments from the DeadArguments list.
234 for (Function::arg_iterator I
= Fn
.arg_begin(), E
= Fn
.arg_end(),
235 I2
= NF
->arg_begin(); I
!= E
; ++I
, ++I2
) {
236 // Move the name and users over to the new version.
237 I
->replaceAllUsesWith(&*I2
);
241 // Clone metadatas from the old function, including debug info descriptor.
242 SmallVector
<std::pair
<unsigned, MDNode
*>, 1> MDs
;
243 Fn
.getAllMetadata(MDs
);
245 NF
->addMetadata(MD
.first
, *MD
.second
);
247 // Fix up any BlockAddresses that refer to the function.
248 Fn
.replaceAllUsesWith(ConstantExpr::getBitCast(NF
, Fn
.getType()));
249 // Delete the bitcast that we just created, so that NF does not
250 // appear to be address-taken.
251 NF
->removeDeadConstantUsers();
252 // Finally, nuke the old function.
253 Fn
.eraseFromParent();
257 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
258 /// arguments that are unused, and changes the caller parameters to be undefined
260 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function
&Fn
) {
261 // We cannot change the arguments if this TU does not define the function or
262 // if the linker may choose a function body from another TU, even if the
263 // nominal linkage indicates that other copies of the function have the same
264 // semantics. In the below example, the dead load from %p may not have been
265 // eliminated from the linker-chosen copy of f, so replacing %p with undef
266 // in callers may introduce undefined behavior.
268 // define linkonce_odr void @f(i32* %p) {
272 if (!Fn
.hasExactDefinition())
275 // Functions with local linkage should already have been handled, except the
276 // fragile (variadic) ones which we can improve here.
277 if (Fn
.hasLocalLinkage() && !Fn
.getFunctionType()->isVarArg())
280 // Don't touch naked functions. The assembly might be using an argument, or
281 // otherwise rely on the frame layout in a way that this analysis will not
283 if (Fn
.hasFnAttribute(Attribute::Naked
))
289 SmallVector
<unsigned, 8> UnusedArgs
;
290 bool Changed
= false;
292 for (Argument
&Arg
: Fn
.args()) {
293 if (!Arg
.hasSwiftErrorAttr() && Arg
.use_empty() && !Arg
.hasByValOrInAllocaAttr()) {
294 if (Arg
.isUsedByMetadata()) {
295 Arg
.replaceAllUsesWith(UndefValue::get(Arg
.getType()));
298 UnusedArgs
.push_back(Arg
.getArgNo());
302 if (UnusedArgs
.empty())
305 for (Use
&U
: Fn
.uses()) {
306 CallSite
CS(U
.getUser());
307 if (!CS
|| !CS
.isCallee(&U
))
310 // Now go through all unused args and replace them with "undef".
311 for (unsigned I
= 0, E
= UnusedArgs
.size(); I
!= E
; ++I
) {
312 unsigned ArgNo
= UnusedArgs
[I
];
314 Value
*Arg
= CS
.getArgument(ArgNo
);
315 CS
.setArgument(ArgNo
, UndefValue::get(Arg
->getType()));
316 ++NumArgumentsReplacedWithUndef
;
324 /// Convenience function that returns the number of return values. It returns 0
325 /// for void functions and 1 for functions not returning a struct. It returns
326 /// the number of struct elements for functions returning a struct.
327 static unsigned NumRetVals(const Function
*F
) {
328 Type
*RetTy
= F
->getReturnType();
329 if (RetTy
->isVoidTy())
331 else if (StructType
*STy
= dyn_cast
<StructType
>(RetTy
))
332 return STy
->getNumElements();
333 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(RetTy
))
334 return ATy
->getNumElements();
339 /// Returns the sub-type a function will return at a given Idx. Should
340 /// correspond to the result type of an ExtractValue instruction executed with
341 /// just that one Idx (i.e. only top-level structure is considered).
342 static Type
*getRetComponentType(const Function
*F
, unsigned Idx
) {
343 Type
*RetTy
= F
->getReturnType();
344 assert(!RetTy
->isVoidTy() && "void type has no subtype");
346 if (StructType
*STy
= dyn_cast
<StructType
>(RetTy
))
347 return STy
->getElementType(Idx
);
348 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(RetTy
))
349 return ATy
->getElementType();
354 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
355 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
357 DeadArgumentEliminationPass::Liveness
358 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use
,
359 UseVector
&MaybeLiveUses
) {
360 // We're live if our use or its Function is already marked as live.
361 if (LiveFunctions
.count(Use
.F
) || LiveValues
.count(Use
))
364 // We're maybe live otherwise, but remember that we must become live if
366 MaybeLiveUses
.push_back(Use
);
370 /// SurveyUse - This looks at a single use of an argument or return value
371 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
372 /// if it causes the used value to become MaybeLive.
374 /// RetValNum is the return value number to use when this use is used in a
375 /// return instruction. This is used in the recursion, you should always leave
377 DeadArgumentEliminationPass::Liveness
378 DeadArgumentEliminationPass::SurveyUse(const Use
*U
, UseVector
&MaybeLiveUses
,
379 unsigned RetValNum
) {
380 const User
*V
= U
->getUser();
381 if (const ReturnInst
*RI
= dyn_cast
<ReturnInst
>(V
)) {
382 // The value is returned from a function. It's only live when the
383 // function's return value is live. We use RetValNum here, for the case
384 // that U is really a use of an insertvalue instruction that uses the
386 const Function
*F
= RI
->getParent()->getParent();
387 if (RetValNum
!= -1U) {
388 RetOrArg Use
= CreateRet(F
, RetValNum
);
389 // We might be live, depending on the liveness of Use.
390 return MarkIfNotLive(Use
, MaybeLiveUses
);
392 DeadArgumentEliminationPass::Liveness Result
= MaybeLive
;
393 for (unsigned i
= 0; i
< NumRetVals(F
); ++i
) {
394 RetOrArg Use
= CreateRet(F
, i
);
395 // We might be live, depending on the liveness of Use. If any
396 // sub-value is live, then the entire value is considered live. This
397 // is a conservative choice, and better tracking is possible.
398 DeadArgumentEliminationPass::Liveness SubResult
=
399 MarkIfNotLive(Use
, MaybeLiveUses
);
406 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(V
)) {
407 if (U
->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
409 // The use we are examining is inserted into an aggregate. Our liveness
410 // depends on all uses of that aggregate, but if it is used as a return
411 // value, only index at which we were inserted counts.
412 RetValNum
= *IV
->idx_begin();
414 // Note that if we are used as the aggregate operand to the insertvalue,
415 // we don't change RetValNum, but do survey all our uses.
417 Liveness Result
= MaybeLive
;
418 for (const Use
&UU
: IV
->uses()) {
419 Result
= SurveyUse(&UU
, MaybeLiveUses
, RetValNum
);
426 if (auto CS
= ImmutableCallSite(V
)) {
427 const Function
*F
= CS
.getCalledFunction();
429 // Used in a direct call.
431 // The function argument is live if it is used as a bundle operand.
432 if (CS
.isBundleOperand(U
))
435 // Find the argument number. We know for sure that this use is an
436 // argument, since if it was the function argument this would be an
437 // indirect call and the we know can't be looking at a value of the
438 // label type (for the invoke instruction).
439 unsigned ArgNo
= CS
.getArgumentNo(U
);
441 if (ArgNo
>= F
->getFunctionType()->getNumParams())
442 // The value is passed in through a vararg! Must be live.
445 assert(CS
.getArgument(ArgNo
)
446 == CS
->getOperand(U
->getOperandNo())
447 && "Argument is not where we expected it");
449 // Value passed to a normal call. It's only live when the corresponding
450 // argument to the called function turns out live.
451 RetOrArg Use
= CreateArg(F
, ArgNo
);
452 return MarkIfNotLive(Use
, MaybeLiveUses
);
455 // Used in any other way? Value must be live.
459 /// SurveyUses - This looks at all the uses of the given value
460 /// Returns the Liveness deduced from the uses of this value.
462 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
463 /// the result is Live, MaybeLiveUses might be modified but its content should
464 /// be ignored (since it might not be complete).
465 DeadArgumentEliminationPass::Liveness
466 DeadArgumentEliminationPass::SurveyUses(const Value
*V
,
467 UseVector
&MaybeLiveUses
) {
468 // Assume it's dead (which will only hold if there are no uses at all..).
469 Liveness Result
= MaybeLive
;
471 for (const Use
&U
: V
->uses()) {
472 Result
= SurveyUse(&U
, MaybeLiveUses
);
479 // SurveyFunction - This performs the initial survey of the specified function,
480 // checking out whether or not it uses any of its incoming arguments or whether
481 // any callers use the return value. This fills in the LiveValues set and Uses
484 // We consider arguments of non-internal functions to be intrinsically alive as
485 // well as arguments to functions which have their "address taken".
486 void DeadArgumentEliminationPass::SurveyFunction(const Function
&F
) {
487 // Functions with inalloca parameters are expecting args in a particular
488 // register and memory layout.
489 if (F
.getAttributes().hasAttrSomewhere(Attribute::InAlloca
)) {
494 // Don't touch naked functions. The assembly might be using an argument, or
495 // otherwise rely on the frame layout in a way that this analysis will not
497 if (F
.hasFnAttribute(Attribute::Naked
)) {
502 unsigned RetCount
= NumRetVals(&F
);
504 // Assume all return values are dead
505 using RetVals
= SmallVector
<Liveness
, 5>;
507 RetVals
RetValLiveness(RetCount
, MaybeLive
);
509 using RetUses
= SmallVector
<UseVector
, 5>;
511 // These vectors map each return value to the uses that make it MaybeLive, so
512 // we can add those to the Uses map if the return value really turns out to be
513 // MaybeLive. Initialized to a list of RetCount empty lists.
514 RetUses
MaybeLiveRetUses(RetCount
);
516 bool HasMustTailCalls
= false;
518 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
519 if (const ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
520 if (RI
->getNumOperands() != 0 && RI
->getOperand(0)->getType()
521 != F
.getFunctionType()->getReturnType()) {
522 // We don't support old style multiple return values.
528 // If we have any returns of `musttail` results - the signature can't
530 if (BB
->getTerminatingMustTailCall() != nullptr)
531 HasMustTailCalls
= true;
534 if (HasMustTailCalls
) {
535 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F
.getName()
536 << " has musttail calls\n");
539 if (!F
.hasLocalLinkage() && (!ShouldHackArguments
|| F
.isIntrinsic())) {
545 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
546 << F
.getName() << "\n");
547 // Keep track of the number of live retvals, so we can skip checks once all
548 // of them turn out to be live.
549 unsigned NumLiveRetVals
= 0;
551 bool HasMustTailCallers
= false;
553 // Loop all uses of the function.
554 for (const Use
&U
: F
.uses()) {
555 // If the function is PASSED IN as an argument, its address has been
557 ImmutableCallSite
CS(U
.getUser());
558 if (!CS
|| !CS
.isCallee(&U
)) {
563 // The number of arguments for `musttail` call must match the number of
564 // arguments of the caller
565 if (CS
.isMustTailCall())
566 HasMustTailCallers
= true;
568 // If this use is anything other than a call site, the function is alive.
569 const Instruction
*TheCall
= CS
.getInstruction();
570 if (!TheCall
) { // Not a direct call site?
575 // If we end up here, we are looking at a direct call to our function.
577 // Now, check how our return value(s) is/are used in this caller. Don't
578 // bother checking return values if all of them are live already.
579 if (NumLiveRetVals
== RetCount
)
582 // Check all uses of the return value.
583 for (const Use
&U
: TheCall
->uses()) {
584 if (ExtractValueInst
*Ext
= dyn_cast
<ExtractValueInst
>(U
.getUser())) {
585 // This use uses a part of our return value, survey the uses of
586 // that part and store the results for this index only.
587 unsigned Idx
= *Ext
->idx_begin();
588 if (RetValLiveness
[Idx
] != Live
) {
589 RetValLiveness
[Idx
] = SurveyUses(Ext
, MaybeLiveRetUses
[Idx
]);
590 if (RetValLiveness
[Idx
] == Live
)
594 // Used by something else than extractvalue. Survey, but assume that the
595 // result applies to all sub-values.
596 UseVector MaybeLiveAggregateUses
;
597 if (SurveyUse(&U
, MaybeLiveAggregateUses
) == Live
) {
598 NumLiveRetVals
= RetCount
;
599 RetValLiveness
.assign(RetCount
, Live
);
602 for (unsigned i
= 0; i
!= RetCount
; ++i
) {
603 if (RetValLiveness
[i
] != Live
)
604 MaybeLiveRetUses
[i
].append(MaybeLiveAggregateUses
.begin(),
605 MaybeLiveAggregateUses
.end());
612 if (HasMustTailCallers
) {
613 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F
.getName()
614 << " has musttail callers\n");
617 // Now we've inspected all callers, record the liveness of our return values.
618 for (unsigned i
= 0; i
!= RetCount
; ++i
)
619 MarkValue(CreateRet(&F
, i
), RetValLiveness
[i
], MaybeLiveRetUses
[i
]);
621 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
622 << F
.getName() << "\n");
624 // Now, check all of our arguments.
626 UseVector MaybeLiveArgUses
;
627 for (Function::const_arg_iterator AI
= F
.arg_begin(),
628 E
= F
.arg_end(); AI
!= E
; ++AI
, ++i
) {
630 if (F
.getFunctionType()->isVarArg() || HasMustTailCallers
||
632 // Variadic functions will already have a va_arg function expanded inside
633 // them, making them potentially very sensitive to ABI changes resulting
634 // from removing arguments entirely, so don't. For example AArch64 handles
635 // register and stack HFAs very differently, and this is reflected in the
636 // IR which has already been generated.
638 // `musttail` calls to this function restrict argument removal attempts.
639 // The signature of the caller must match the signature of the function.
641 // `musttail` calls in this function prevents us from changing its
645 // See what the effect of this use is (recording any uses that cause
646 // MaybeLive in MaybeLiveArgUses).
647 Result
= SurveyUses(&*AI
, MaybeLiveArgUses
);
651 MarkValue(CreateArg(&F
, i
), Result
, MaybeLiveArgUses
);
652 // Clear the vector again for the next iteration.
653 MaybeLiveArgUses
.clear();
657 /// MarkValue - This function marks the liveness of RA depending on L. If L is
658 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
659 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
661 void DeadArgumentEliminationPass::MarkValue(const RetOrArg
&RA
, Liveness L
,
662 const UseVector
&MaybeLiveUses
) {
668 // Note any uses of this value, so this return value can be
669 // marked live whenever one of the uses becomes live.
670 for (const auto &MaybeLiveUse
: MaybeLiveUses
)
671 Uses
.insert(std::make_pair(MaybeLiveUse
, RA
));
676 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
677 /// changed in any way. Additionally,
678 /// mark any values that are used as this function's parameters or by its return
679 /// values (according to Uses) live as well.
680 void DeadArgumentEliminationPass::MarkLive(const Function
&F
) {
681 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
682 << F
.getName() << "\n");
683 // Mark the function as live.
684 LiveFunctions
.insert(&F
);
685 // Mark all arguments as live.
686 for (unsigned i
= 0, e
= F
.arg_size(); i
!= e
; ++i
)
687 PropagateLiveness(CreateArg(&F
, i
));
688 // Mark all return values as live.
689 for (unsigned i
= 0, e
= NumRetVals(&F
); i
!= e
; ++i
)
690 PropagateLiveness(CreateRet(&F
, i
));
693 /// MarkLive - Mark the given return value or argument as live. Additionally,
694 /// mark any values that are used by this value (according to Uses) live as
696 void DeadArgumentEliminationPass::MarkLive(const RetOrArg
&RA
) {
697 if (LiveFunctions
.count(RA
.F
))
698 return; // Function was already marked Live.
700 if (!LiveValues
.insert(RA
).second
)
701 return; // We were already marked Live.
703 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
704 << RA
.getDescription() << " live\n");
705 PropagateLiveness(RA
);
708 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
709 /// to any other values it uses (according to Uses).
710 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg
&RA
) {
711 // We don't use upper_bound (or equal_range) here, because our recursive call
712 // to ourselves is likely to cause the upper_bound (which is the first value
713 // not belonging to RA) to become erased and the iterator invalidated.
714 UseMap::iterator Begin
= Uses
.lower_bound(RA
);
715 UseMap::iterator E
= Uses
.end();
717 for (I
= Begin
; I
!= E
&& I
->first
== RA
; ++I
)
720 // Erase RA from the Uses map (from the lower bound to wherever we ended up
722 Uses
.erase(Begin
, I
);
725 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
726 // that are not in LiveValues. Transform the function and all of the callees of
727 // the function to not have these arguments and return values.
729 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function
*F
) {
730 // Don't modify fully live functions
731 if (LiveFunctions
.count(F
))
734 // Start by computing a new prototype for the function, which is the same as
735 // the old function, but has fewer arguments and a different return type.
736 FunctionType
*FTy
= F
->getFunctionType();
737 std::vector
<Type
*> Params
;
739 // Keep track of if we have a live 'returned' argument
740 bool HasLiveReturnedArg
= false;
742 // Set up to build a new list of parameter attributes.
743 SmallVector
<AttributeSet
, 8> ArgAttrVec
;
744 const AttributeList
&PAL
= F
->getAttributes();
746 // Remember which arguments are still alive.
747 SmallVector
<bool, 10> ArgAlive(FTy
->getNumParams(), false);
748 // Construct the new parameter list from non-dead arguments. Also construct
749 // a new set of parameter attributes to correspond. Skip the first parameter
750 // attribute, since that belongs to the return value.
752 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
754 RetOrArg Arg
= CreateArg(F
, i
);
755 if (LiveValues
.erase(Arg
)) {
756 Params
.push_back(I
->getType());
758 ArgAttrVec
.push_back(PAL
.getParamAttributes(i
));
759 HasLiveReturnedArg
|= PAL
.hasParamAttribute(i
, Attribute::Returned
);
761 ++NumArgumentsEliminated
;
762 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
763 << i
<< " (" << I
->getName() << ") from "
764 << F
->getName() << "\n");
768 // Find out the new return value.
769 Type
*RetTy
= FTy
->getReturnType();
770 Type
*NRetTy
= nullptr;
771 unsigned RetCount
= NumRetVals(F
);
773 // -1 means unused, other numbers are the new index
774 SmallVector
<int, 5> NewRetIdxs(RetCount
, -1);
775 std::vector
<Type
*> RetTypes
;
777 // If there is a function with a live 'returned' argument but a dead return
778 // value, then there are two possible actions:
779 // 1) Eliminate the return value and take off the 'returned' attribute on the
781 // 2) Retain the 'returned' attribute and treat the return value (but not the
782 // entire function) as live so that it is not eliminated.
784 // It's not clear in the general case which option is more profitable because,
785 // even in the absence of explicit uses of the return value, code generation
786 // is free to use the 'returned' attribute to do things like eliding
787 // save/restores of registers across calls. Whether or not this happens is
788 // target and ABI-specific as well as depending on the amount of register
789 // pressure, so there's no good way for an IR-level pass to figure this out.
791 // Fortunately, the only places where 'returned' is currently generated by
792 // the FE are places where 'returned' is basically free and almost always a
793 // performance win, so the second option can just be used always for now.
795 // This should be revisited if 'returned' is ever applied more liberally.
796 if (RetTy
->isVoidTy() || HasLiveReturnedArg
) {
799 // Look at each of the original return values individually.
800 for (unsigned i
= 0; i
!= RetCount
; ++i
) {
801 RetOrArg Ret
= CreateRet(F
, i
);
802 if (LiveValues
.erase(Ret
)) {
803 RetTypes
.push_back(getRetComponentType(F
, i
));
804 NewRetIdxs
[i
] = RetTypes
.size() - 1;
806 ++NumRetValsEliminated
;
808 dbgs() << "DeadArgumentEliminationPass - Removing return value "
809 << i
<< " from " << F
->getName() << "\n");
812 if (RetTypes
.size() > 1) {
813 // More than one return type? Reduce it down to size.
814 if (StructType
*STy
= dyn_cast
<StructType
>(RetTy
)) {
815 // Make the new struct packed if we used to return a packed struct
817 NRetTy
= StructType::get(STy
->getContext(), RetTypes
, STy
->isPacked());
819 assert(isa
<ArrayType
>(RetTy
) && "unexpected multi-value return");
820 NRetTy
= ArrayType::get(RetTypes
[0], RetTypes
.size());
822 } else if (RetTypes
.size() == 1)
823 // One return type? Just a simple value then, but only if we didn't use to
824 // return a struct with that simple value before.
825 NRetTy
= RetTypes
.front();
826 else if (RetTypes
.empty())
827 // No return types? Make it void, but only if we didn't use to return {}.
828 NRetTy
= Type::getVoidTy(F
->getContext());
831 assert(NRetTy
&& "No new return type found?");
833 // The existing function return attributes.
834 AttrBuilder
RAttrs(PAL
.getRetAttributes());
836 // Remove any incompatible attributes, but only if we removed all return
837 // values. Otherwise, ensure that we don't have any conflicting attributes
838 // here. Currently, this should not be possible, but special handling might be
839 // required when new return value attributes are added.
840 if (NRetTy
->isVoidTy())
841 RAttrs
.remove(AttributeFuncs::typeIncompatible(NRetTy
));
843 assert(!RAttrs
.overlaps(AttributeFuncs::typeIncompatible(NRetTy
)) &&
844 "Return attributes no longer compatible?");
846 AttributeSet RetAttrs
= AttributeSet::get(F
->getContext(), RAttrs
);
848 // Strip allocsize attributes. They might refer to the deleted arguments.
849 AttributeSet FnAttrs
= PAL
.getFnAttributes().removeAttribute(
850 F
->getContext(), Attribute::AllocSize
);
852 // Reconstruct the AttributesList based on the vector we constructed.
853 assert(ArgAttrVec
.size() == Params
.size());
854 AttributeList NewPAL
=
855 AttributeList::get(F
->getContext(), FnAttrs
, RetAttrs
, ArgAttrVec
);
857 // Create the new function type based on the recomputed parameters.
858 FunctionType
*NFTy
= FunctionType::get(NRetTy
, Params
, FTy
->isVarArg());
864 // Create the new function body and insert it into the module...
865 Function
*NF
= Function::Create(NFTy
, F
->getLinkage(), F
->getAddressSpace());
866 NF
->copyAttributesFrom(F
);
867 NF
->setComdat(F
->getComdat());
868 NF
->setAttributes(NewPAL
);
869 // Insert the new function before the old function, so we won't be processing
871 F
->getParent()->getFunctionList().insert(F
->getIterator(), NF
);
874 // Loop over all of the callers of the function, transforming the call sites
875 // to pass in a smaller number of arguments into the new function.
876 std::vector
<Value
*> Args
;
877 while (!F
->use_empty()) {
878 CallSite
CS(F
->user_back());
879 Instruction
*Call
= CS
.getInstruction();
882 const AttributeList
&CallPAL
= CS
.getAttributes();
884 // Adjust the call return attributes in case the function was changed to
886 AttrBuilder
RAttrs(CallPAL
.getRetAttributes());
887 RAttrs
.remove(AttributeFuncs::typeIncompatible(NRetTy
));
888 AttributeSet RetAttrs
= AttributeSet::get(F
->getContext(), RAttrs
);
890 // Declare these outside of the loops, so we can reuse them for the second
891 // loop, which loops the varargs.
892 CallSite::arg_iterator I
= CS
.arg_begin();
894 // Loop over those operands, corresponding to the normal arguments to the
895 // original function, and add those that are still alive.
896 for (unsigned e
= FTy
->getNumParams(); i
!= e
; ++I
, ++i
)
899 // Get original parameter attributes, but skip return attributes.
900 AttributeSet Attrs
= CallPAL
.getParamAttributes(i
);
901 if (NRetTy
!= RetTy
&& Attrs
.hasAttribute(Attribute::Returned
)) {
902 // If the return type has changed, then get rid of 'returned' on the
903 // call site. The alternative is to make all 'returned' attributes on
904 // call sites keep the return value alive just like 'returned'
905 // attributes on function declaration but it's less clearly a win and
906 // this is not an expected case anyway
907 ArgAttrVec
.push_back(AttributeSet::get(
909 AttrBuilder(Attrs
).removeAttribute(Attribute::Returned
)));
911 // Otherwise, use the original attributes.
912 ArgAttrVec
.push_back(Attrs
);
916 // Push any varargs arguments on the list. Don't forget their attributes.
917 for (CallSite::arg_iterator E
= CS
.arg_end(); I
!= E
; ++I
, ++i
) {
919 ArgAttrVec
.push_back(CallPAL
.getParamAttributes(i
));
922 // Reconstruct the AttributesList based on the vector we constructed.
923 assert(ArgAttrVec
.size() == Args
.size());
925 // Again, be sure to remove any allocsize attributes, since their indices
926 // may now be incorrect.
927 AttributeSet FnAttrs
= CallPAL
.getFnAttributes().removeAttribute(
928 F
->getContext(), Attribute::AllocSize
);
930 AttributeList NewCallPAL
= AttributeList::get(
931 F
->getContext(), FnAttrs
, RetAttrs
, ArgAttrVec
);
933 SmallVector
<OperandBundleDef
, 1> OpBundles
;
934 CS
.getOperandBundlesAsDefs(OpBundles
);
937 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
938 NewCS
= InvokeInst::Create(NF
, II
->getNormalDest(), II
->getUnwindDest(),
939 Args
, OpBundles
, "", Call
->getParent());
941 NewCS
= CallInst::Create(NFTy
, NF
, Args
, OpBundles
, "", Call
);
942 cast
<CallInst
>(NewCS
.getInstruction())
943 ->setTailCallKind(cast
<CallInst
>(Call
)->getTailCallKind());
945 NewCS
.setCallingConv(CS
.getCallingConv());
946 NewCS
.setAttributes(NewCallPAL
);
947 NewCS
->setDebugLoc(Call
->getDebugLoc());
949 if (Call
->extractProfTotalWeight(W
))
950 NewCS
->setProfWeight(W
);
954 Instruction
*New
= NewCS
.getInstruction();
955 if (!Call
->use_empty() || Call
->isUsedByMetadata()) {
956 if (New
->getType() == Call
->getType()) {
957 // Return type not changed? Just replace users then.
958 Call
->replaceAllUsesWith(New
);
960 } else if (New
->getType()->isVoidTy()) {
961 // If the return value is dead, replace any uses of it with undef
962 // (any non-debug value uses will get removed later on).
963 if (!Call
->getType()->isX86_MMXTy())
964 Call
->replaceAllUsesWith(UndefValue::get(Call
->getType()));
966 assert((RetTy
->isStructTy() || RetTy
->isArrayTy()) &&
967 "Return type changed, but not into a void. The old return type"
968 " must have been a struct or an array!");
969 Instruction
*InsertPt
= Call
;
970 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
971 BasicBlock
*NewEdge
= SplitEdge(New
->getParent(), II
->getNormalDest());
972 InsertPt
= &*NewEdge
->getFirstInsertionPt();
975 // We used to return a struct or array. Instead of doing smart stuff
976 // with all the uses, we will just rebuild it using extract/insertvalue
977 // chaining and let instcombine clean that up.
979 // Start out building up our return value from undef
980 Value
*RetVal
= UndefValue::get(RetTy
);
981 for (unsigned i
= 0; i
!= RetCount
; ++i
)
982 if (NewRetIdxs
[i
] != -1) {
984 if (RetTypes
.size() > 1)
985 // We are still returning a struct, so extract the value from our
987 V
= ExtractValueInst::Create(New
, NewRetIdxs
[i
], "newret",
990 // We are now returning a single element, so just insert that
992 // Insert the value at the old position
993 RetVal
= InsertValueInst::Create(RetVal
, V
, i
, "oldret", InsertPt
);
995 // Now, replace all uses of the old call instruction with the return
997 Call
->replaceAllUsesWith(RetVal
);
1002 // Finally, remove the old call from the program, reducing the use-count of
1004 Call
->eraseFromParent();
1007 // Since we have now created the new function, splice the body of the old
1008 // function right into the new function, leaving the old rotting hulk of the
1010 NF
->getBasicBlockList().splice(NF
->begin(), F
->getBasicBlockList());
1012 // Loop over the argument list, transferring uses of the old arguments over to
1013 // the new arguments, also transferring over the names as well.
1015 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(),
1016 I2
= NF
->arg_begin(); I
!= E
; ++I
, ++i
)
1018 // If this is a live argument, move the name and users over to the new
1020 I
->replaceAllUsesWith(&*I2
);
1024 // If this argument is dead, replace any uses of it with undef
1025 // (any non-debug value uses will get removed later on).
1026 if (!I
->getType()->isX86_MMXTy())
1027 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1030 // If we change the return value of the function we must rewrite any return
1031 // instructions. Check this now.
1032 if (F
->getReturnType() != NF
->getReturnType())
1033 for (BasicBlock
&BB
: *NF
)
1034 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
1037 if (NFTy
->getReturnType()->isVoidTy()) {
1040 assert(RetTy
->isStructTy() || RetTy
->isArrayTy());
1041 // The original return value was a struct or array, insert
1042 // extractvalue/insertvalue chains to extract only the values we need
1043 // to return and insert them into our new result.
1044 // This does generate messy code, but we'll let it to instcombine to
1046 Value
*OldRet
= RI
->getOperand(0);
1047 // Start out building up our return value from undef
1048 RetVal
= UndefValue::get(NRetTy
);
1049 for (unsigned i
= 0; i
!= RetCount
; ++i
)
1050 if (NewRetIdxs
[i
] != -1) {
1051 ExtractValueInst
*EV
= ExtractValueInst::Create(OldRet
, i
,
1053 if (RetTypes
.size() > 1) {
1054 // We're still returning a struct, so reinsert the value into
1055 // our new return value at the new index
1057 RetVal
= InsertValueInst::Create(RetVal
, EV
, NewRetIdxs
[i
],
1060 // We are now only returning a simple value, so just return the
1066 // Replace the return instruction with one returning the new return
1067 // value (possibly 0 if we became void).
1068 ReturnInst::Create(F
->getContext(), RetVal
, RI
);
1069 BB
.getInstList().erase(RI
);
1072 // Clone metadatas from the old function, including debug info descriptor.
1073 SmallVector
<std::pair
<unsigned, MDNode
*>, 1> MDs
;
1074 F
->getAllMetadata(MDs
);
1076 NF
->addMetadata(MD
.first
, *MD
.second
);
1078 // Now that the old function is dead, delete it.
1079 F
->eraseFromParent();
1084 PreservedAnalyses
DeadArgumentEliminationPass::run(Module
&M
,
1085 ModuleAnalysisManager
&) {
1086 bool Changed
= false;
1088 // First pass: Do a simple check to see if any functions can have their "..."
1089 // removed. We can do this if they never call va_start. This loop cannot be
1090 // fused with the next loop, because deleting a function invalidates
1091 // information computed while surveying other functions.
1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1093 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ) {
1095 if (F
.getFunctionType()->isVarArg())
1096 Changed
|= DeleteDeadVarargs(F
);
1099 // Second phase:loop through the module, determining which arguments are live.
1100 // We assume all arguments are dead unless proven otherwise (allowing us to
1101 // determine that dead arguments passed into recursive functions are dead).
1103 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1107 // Now, remove all dead arguments and return values from each function in
1109 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ) {
1110 // Increment now, because the function will probably get removed (ie.
1111 // replaced by a new one).
1112 Function
*F
= &*I
++;
1113 Changed
|= RemoveDeadStuffFromFunction(F
);
1116 // Finally, look for any unused parameters in functions with non-local
1117 // linkage and replace the passed in parameters with undef.
1119 Changed
|= RemoveDeadArgumentsFromCallers(F
);
1122 return PreservedAnalyses::all();
1123 return PreservedAnalyses::none();