1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements an _extremely_ simple interprocedural constant
10 // propagation pass. It could certainly be improved in many different ways,
11 // like using a worklist. This pass makes arguments dead, but does not remove
12 // them. The existing dead argument elimination pass should be run after this
13 // to clean up the mess.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Transforms/IPO.h"
28 #define DEBUG_TYPE "ipconstprop"
30 STATISTIC(NumArgumentsProped
, "Number of args turned into constants");
31 STATISTIC(NumReturnValProped
, "Number of return values turned into constants");
34 /// IPCP - The interprocedural constant propagation pass
36 struct IPCP
: public ModulePass
{
37 static char ID
; // Pass identification, replacement for typeid
38 IPCP() : ModulePass(ID
) {
39 initializeIPCPPass(*PassRegistry::getPassRegistry());
42 bool runOnModule(Module
&M
) override
;
46 /// PropagateConstantsIntoArguments - Look at all uses of the specified
47 /// function. If all uses are direct call sites, and all pass a particular
48 /// constant in for an argument, propagate that constant in as the argument.
50 static bool PropagateConstantsIntoArguments(Function
&F
) {
51 if (F
.arg_empty() || F
.use_empty()) return false; // No arguments? Early exit.
53 // For each argument, keep track of its constant value and whether it is a
54 // constant or not. The bool is driven to true when found to be non-constant.
55 SmallVector
<std::pair
<Constant
*, bool>, 16> ArgumentConstants
;
56 ArgumentConstants
.resize(F
.arg_size());
58 unsigned NumNonconstant
= 0;
59 for (Use
&U
: F
.uses()) {
60 User
*UR
= U
.getUser();
61 // Ignore blockaddress uses.
62 if (isa
<BlockAddress
>(UR
)) continue;
64 // If no abstract call site was created we did not understand the use, bail.
65 AbstractCallSite
ACS(&U
);
69 // Mismatched argument count is undefined behavior. Simply bail out to avoid
70 // handling of such situations below (avoiding asserts/crashes).
71 unsigned NumActualArgs
= ACS
.getNumArgOperands();
72 if (F
.isVarArg() ? ArgumentConstants
.size() > NumActualArgs
73 : ArgumentConstants
.size() != NumActualArgs
)
76 // Check out all of the potentially constant arguments. Note that we don't
77 // inspect varargs here.
78 Function::arg_iterator Arg
= F
.arg_begin();
79 for (unsigned i
= 0, e
= ArgumentConstants
.size(); i
!= e
; ++i
, ++Arg
) {
81 // If this argument is known non-constant, ignore it.
82 if (ArgumentConstants
[i
].second
)
85 Value
*V
= ACS
.getCallArgOperand(i
);
86 Constant
*C
= dyn_cast_or_null
<Constant
>(V
);
88 // Mismatched argument type is undefined behavior. Simply bail out to avoid
89 // handling of such situations below (avoiding asserts/crashes).
90 if (C
&& Arg
->getType() != C
->getType())
93 // We can only propagate thread independent values through callbacks.
94 // This is different to direct/indirect call sites because for them we
95 // know the thread executing the caller and callee is the same. For
96 // callbacks this is not guaranteed, thus a thread dependent value could
97 // be different for the caller and callee, making it invalid to propagate.
98 if (C
&& ACS
.isCallbackCall() && C
->isThreadDependent()) {
99 // Argument became non-constant. If all arguments are non-constant now,
100 // give up on this function.
101 if (++NumNonconstant
== ArgumentConstants
.size())
104 ArgumentConstants
[i
].second
= true;
108 if (C
&& ArgumentConstants
[i
].first
== nullptr) {
109 ArgumentConstants
[i
].first
= C
; // First constant seen.
110 } else if (C
&& ArgumentConstants
[i
].first
== C
) {
111 // Still the constant value we think it is.
112 } else if (V
== &*Arg
) {
113 // Ignore recursive calls passing argument down.
115 // Argument became non-constant. If all arguments are non-constant now,
116 // give up on this function.
117 if (++NumNonconstant
== ArgumentConstants
.size())
119 ArgumentConstants
[i
].second
= true;
124 // If we got to this point, there is a constant argument!
125 assert(NumNonconstant
!= ArgumentConstants
.size());
126 bool MadeChange
= false;
127 Function::arg_iterator AI
= F
.arg_begin();
128 for (unsigned i
= 0, e
= ArgumentConstants
.size(); i
!= e
; ++i
, ++AI
) {
129 // Do we have a constant argument?
130 if (ArgumentConstants
[i
].second
|| AI
->use_empty() ||
131 AI
->hasInAllocaAttr() || (AI
->hasByValAttr() && !F
.onlyReadsMemory()))
134 Value
*V
= ArgumentConstants
[i
].first
;
135 if (!V
) V
= UndefValue::get(AI
->getType());
136 AI
->replaceAllUsesWith(V
);
137 ++NumArgumentsProped
;
144 // Check to see if this function returns one or more constants. If so, replace
145 // all callers that use those return values with the constant value. This will
146 // leave in the actual return values and instructions, but deadargelim will
149 // Additionally if a function always returns one of its arguments directly,
150 // callers will be updated to use the value they pass in directly instead of
151 // using the return value.
152 static bool PropagateConstantReturn(Function
&F
) {
153 if (F
.getReturnType()->isVoidTy())
154 return false; // No return value.
156 // We can infer and propagate the return value only when we know that the
157 // definition we'll get at link time is *exactly* the definition we see now.
158 // For more details, see GlobalValue::mayBeDerefined.
159 if (!F
.isDefinitionExact())
162 // Don't touch naked functions. The may contain asm returning
163 // value we don't see, so we may end up interprocedurally propagating
164 // the return value incorrectly.
165 if (F
.hasFnAttribute(Attribute::Naked
))
168 // Check to see if this function returns a constant.
169 SmallVector
<Value
*,4> RetVals
;
170 StructType
*STy
= dyn_cast
<StructType
>(F
.getReturnType());
172 for (unsigned i
= 0, e
= STy
->getNumElements(); i
< e
; ++i
)
173 RetVals
.push_back(UndefValue::get(STy
->getElementType(i
)));
175 RetVals
.push_back(UndefValue::get(F
.getReturnType()));
177 unsigned NumNonConstant
= 0;
178 for (BasicBlock
&BB
: F
)
179 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
180 for (unsigned i
= 0, e
= RetVals
.size(); i
!= e
; ++i
) {
181 // Already found conflicting return values?
182 Value
*RV
= RetVals
[i
];
186 // Find the returned value
189 V
= RI
->getOperand(0);
191 V
= FindInsertedValue(RI
->getOperand(0), i
);
194 // Ignore undefs, we can change them into anything
195 if (isa
<UndefValue
>(V
))
198 // Try to see if all the rets return the same constant or argument.
199 if (isa
<Constant
>(V
) || isa
<Argument
>(V
)) {
200 if (isa
<UndefValue
>(RV
)) {
201 // No value found yet? Try the current one.
205 // Returning the same value? Good.
210 // Different or no known return value? Don't propagate this return
212 RetVals
[i
] = nullptr;
213 // All values non-constant? Stop looking.
214 if (++NumNonConstant
== RetVals
.size())
219 // If we got here, the function returns at least one constant value. Loop
220 // over all users, replacing any uses of the return value with the returned
222 bool MadeChange
= false;
223 for (Use
&U
: F
.uses()) {
224 CallSite
CS(U
.getUser());
225 Instruction
* Call
= CS
.getInstruction();
227 // Not a call instruction or a call instruction that's not calling F
229 if (!Call
|| !CS
.isCallee(&U
))
232 // Call result not used?
233 if (Call
->use_empty())
239 Value
* New
= RetVals
[0];
240 if (Argument
*A
= dyn_cast
<Argument
>(New
))
241 // Was an argument returned? Then find the corresponding argument in
242 // the call instruction and use that.
243 New
= CS
.getArgument(A
->getArgNo());
244 Call
->replaceAllUsesWith(New
);
248 for (auto I
= Call
->user_begin(), E
= Call
->user_end(); I
!= E
;) {
249 Instruction
*Ins
= cast
<Instruction
>(*I
);
251 // Increment now, so we can remove the use
254 // Find the index of the retval to replace with
256 if (ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(Ins
))
257 if (EV
->hasIndices())
258 index
= *EV
->idx_begin();
260 // If this use uses a specific return value, and we have a replacement,
263 Value
*New
= RetVals
[index
];
265 if (Argument
*A
= dyn_cast
<Argument
>(New
))
266 // Was an argument returned? Then find the corresponding argument in
267 // the call instruction and use that.
268 New
= CS
.getArgument(A
->getArgNo());
269 Ins
->replaceAllUsesWith(New
);
270 Ins
->eraseFromParent();
276 if (MadeChange
) ++NumReturnValProped
;
281 INITIALIZE_PASS(IPCP
, "ipconstprop",
282 "Interprocedural constant propagation", false, false)
284 ModulePass
*llvm::createIPConstantPropagationPass() { return new IPCP(); }
286 bool IPCP::runOnModule(Module
&M
) {
290 bool Changed
= false;
291 bool LocalChange
= true;
293 // FIXME: instead of using smart algorithms, we just iterate until we stop
295 while (LocalChange
) {
297 for (Function
&F
: M
)
298 if (!F
.isDeclaration()) {
299 // Delete any klingons.
300 F
.removeDeadConstantUsers();
301 if (F
.hasLocalLinkage())
302 LocalChange
|= PropagateConstantsIntoArguments(F
);
303 Changed
|= PropagateConstantReturn(F
);
305 Changed
|= LocalChange
;