1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale
= 3;
93 static const uint64_t kDefaultShadowOffset32
= 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64
= 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel
=
96 std::numeric_limits
<uint64_t>::max();
97 static const uint64_t kSmallX86_64ShadowOffsetBase
= 0x7FFFFFFF; // < 2G.
98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask
= ~0xFFFULL
;
99 static const uint64_t kLinuxKasan_ShadowOffset64
= 0xdffffc0000000000;
100 static const uint64_t kPPC64_ShadowOffset64
= 1ULL << 44;
101 static const uint64_t kSystemZ_ShadowOffset64
= 1ULL << 52;
102 static const uint64_t kMIPS32_ShadowOffset32
= 0x0aaa0000;
103 static const uint64_t kMIPS64_ShadowOffset64
= 1ULL << 37;
104 static const uint64_t kAArch64_ShadowOffset64
= 1ULL << 36;
105 static const uint64_t kFreeBSD_ShadowOffset32
= 1ULL << 30;
106 static const uint64_t kFreeBSD_ShadowOffset64
= 1ULL << 46;
107 static const uint64_t kNetBSD_ShadowOffset32
= 1ULL << 30;
108 static const uint64_t kNetBSD_ShadowOffset64
= 1ULL << 46;
109 static const uint64_t kNetBSDKasan_ShadowOffset64
= 0xdfff900000000000;
110 static const uint64_t kPS4CPU_ShadowOffset64
= 1ULL << 40;
111 static const uint64_t kWindowsShadowOffset32
= 3ULL << 28;
112 static const uint64_t kEmscriptenShadowOffset
= 0;
114 static const uint64_t kMyriadShadowScale
= 5;
115 static const uint64_t kMyriadMemoryOffset32
= 0x80000000ULL
;
116 static const uint64_t kMyriadMemorySize32
= 0x20000000ULL
;
117 static const uint64_t kMyriadTagShift
= 29;
118 static const uint64_t kMyriadDDRTag
= 4;
119 static const uint64_t kMyriadCacheBitMask32
= 0x40000000ULL
;
121 // The shadow memory space is dynamically allocated.
122 static const uint64_t kWindowsShadowOffset64
= kDynamicShadowSentinel
;
124 static const size_t kMinStackMallocSize
= 1 << 6; // 64B
125 static const size_t kMaxStackMallocSize
= 1 << 16; // 64K
126 static const uintptr_t kCurrentStackFrameMagic
= 0x41B58AB3;
127 static const uintptr_t kRetiredStackFrameMagic
= 0x45E0360E;
129 static const char *const kAsanModuleCtorName
= "asan.module_ctor";
130 static const char *const kAsanModuleDtorName
= "asan.module_dtor";
131 static const uint64_t kAsanCtorAndDtorPriority
= 1;
132 // On Emscripten, the system needs more than one priorities for constructors.
133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority
= 50;
134 static const char *const kAsanReportErrorTemplate
= "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName
= "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName
=
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName
=
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName
=
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName
=
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName
=
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName
= "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName
= "__asan_after_dynamic_init";
148 static const char *const kAsanInitName
= "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix
=
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp
= "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub
= "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName
= "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass
= 10;
155 static const char *const kAsanStackMallocNameTemplate
= "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate
= "__asan_stack_free_";
157 static const char *const kAsanGenPrefix
= "___asan_gen_";
158 static const char *const kODRGenPrefix
= "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix
= "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix
= "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName
=
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName
=
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName
=
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn
=
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress
=
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison
= "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison
= "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes
= 5;
183 static const unsigned kAllocaRzSize
= 32;
185 // Command-line flags.
187 static cl::opt
<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden
, cl::init(false));
191 static cl::opt
<bool> ClRecover(
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden
, cl::init(false));
196 // This flag may need to be replaced with -f[no-]asan-reads.
197 static cl::opt
<bool> ClInstrumentReads("asan-instrument-reads",
198 cl::desc("instrument read instructions"),
199 cl::Hidden
, cl::init(true));
201 static cl::opt
<bool> ClInstrumentWrites(
202 "asan-instrument-writes", cl::desc("instrument write instructions"),
203 cl::Hidden
, cl::init(true));
205 static cl::opt
<bool> ClInstrumentAtomics(
206 "asan-instrument-atomics",
207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden
,
210 static cl::opt
<bool> ClAlwaysSlowPath(
211 "asan-always-slow-path",
212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden
,
215 static cl::opt
<bool> ClForceDynamicShadow(
216 "asan-force-dynamic-shadow",
217 cl::desc("Load shadow address into a local variable for each function"),
218 cl::Hidden
, cl::init(false));
221 ClWithIfunc("asan-with-ifunc",
222 cl::desc("Access dynamic shadow through an ifunc global on "
223 "platforms that support this"),
224 cl::Hidden
, cl::init(true));
226 static cl::opt
<bool> ClWithIfuncSuppressRemat(
227 "asan-with-ifunc-suppress-remat",
228 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
229 "it through inline asm in prologue."),
230 cl::Hidden
, cl::init(true));
232 // This flag limits the number of instructions to be instrumented
233 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
236 static cl::opt
<int> ClMaxInsnsToInstrumentPerBB(
237 "asan-max-ins-per-bb", cl::init(10000),
238 cl::desc("maximal number of instructions to instrument in any given BB"),
241 // This flag may need to be replaced with -f[no]asan-stack.
242 static cl::opt
<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
243 cl::Hidden
, cl::init(true));
244 static cl::opt
<uint32_t> ClMaxInlinePoisoningSize(
245 "asan-max-inline-poisoning-size",
247 "Inline shadow poisoning for blocks up to the given size in bytes."),
248 cl::Hidden
, cl::init(64));
250 static cl::opt
<bool> ClUseAfterReturn("asan-use-after-return",
251 cl::desc("Check stack-use-after-return"),
252 cl::Hidden
, cl::init(true));
254 static cl::opt
<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
255 cl::desc("Create redzones for byval "
256 "arguments (extra copy "
257 "required)"), cl::Hidden
,
260 static cl::opt
<bool> ClUseAfterScope("asan-use-after-scope",
261 cl::desc("Check stack-use-after-scope"),
262 cl::Hidden
, cl::init(false));
264 // This flag may need to be replaced with -f[no]asan-globals.
265 static cl::opt
<bool> ClGlobals("asan-globals",
266 cl::desc("Handle global objects"), cl::Hidden
,
269 static cl::opt
<bool> ClInitializers("asan-initialization-order",
270 cl::desc("Handle C++ initializer order"),
271 cl::Hidden
, cl::init(true));
273 static cl::opt
<bool> ClInvalidPointerPairs(
274 "asan-detect-invalid-pointer-pair",
275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden
,
278 static cl::opt
<bool> ClInvalidPointerCmp(
279 "asan-detect-invalid-pointer-cmp",
280 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden
,
283 static cl::opt
<bool> ClInvalidPointerSub(
284 "asan-detect-invalid-pointer-sub",
285 cl::desc("Instrument - operations with pointer operands"), cl::Hidden
,
288 static cl::opt
<unsigned> ClRealignStack(
289 "asan-realign-stack",
290 cl::desc("Realign stack to the value of this flag (power of two)"),
291 cl::Hidden
, cl::init(32));
293 static cl::opt
<int> ClInstrumentationWithCallsThreshold(
294 "asan-instrumentation-with-call-threshold",
296 "If the function being instrumented contains more than "
297 "this number of memory accesses, use callbacks instead of "
298 "inline checks (-1 means never use callbacks)."),
299 cl::Hidden
, cl::init(7000));
301 static cl::opt
<std::string
> ClMemoryAccessCallbackPrefix(
302 "asan-memory-access-callback-prefix",
303 cl::desc("Prefix for memory access callbacks"), cl::Hidden
,
304 cl::init("__asan_"));
307 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
308 cl::desc("instrument dynamic allocas"),
309 cl::Hidden
, cl::init(true));
311 static cl::opt
<bool> ClSkipPromotableAllocas(
312 "asan-skip-promotable-allocas",
313 cl::desc("Do not instrument promotable allocas"), cl::Hidden
,
316 // These flags allow to change the shadow mapping.
317 // The shadow mapping looks like
318 // Shadow = (Mem >> scale) + offset
320 static cl::opt
<int> ClMappingScale("asan-mapping-scale",
321 cl::desc("scale of asan shadow mapping"),
322 cl::Hidden
, cl::init(0));
324 static cl::opt
<uint64_t>
325 ClMappingOffset("asan-mapping-offset",
326 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
327 cl::Hidden
, cl::init(0));
329 // Optimization flags. Not user visible, used mostly for testing
330 // and benchmarking the tool.
332 static cl::opt
<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
333 cl::Hidden
, cl::init(true));
335 static cl::opt
<bool> ClOptSameTemp(
336 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
337 cl::Hidden
, cl::init(true));
339 static cl::opt
<bool> ClOptGlobals("asan-opt-globals",
340 cl::desc("Don't instrument scalar globals"),
341 cl::Hidden
, cl::init(true));
343 static cl::opt
<bool> ClOptStack(
344 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
345 cl::Hidden
, cl::init(false));
347 static cl::opt
<bool> ClDynamicAllocaStack(
348 "asan-stack-dynamic-alloca",
349 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden
,
352 static cl::opt
<uint32_t> ClForceExperiment(
353 "asan-force-experiment",
354 cl::desc("Force optimization experiment (for testing)"), cl::Hidden
,
358 ClUsePrivateAlias("asan-use-private-alias",
359 cl::desc("Use private aliases for global variables"),
360 cl::Hidden
, cl::init(false));
363 ClUseOdrIndicator("asan-use-odr-indicator",
364 cl::desc("Use odr indicators to improve ODR reporting"),
365 cl::Hidden
, cl::init(false));
368 ClUseGlobalsGC("asan-globals-live-support",
369 cl::desc("Use linker features to support dead "
370 "code stripping of globals"),
371 cl::Hidden
, cl::init(true));
373 // This is on by default even though there is a bug in gold:
374 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
376 ClWithComdat("asan-with-comdat",
377 cl::desc("Place ASan constructors in comdat sections"),
378 cl::Hidden
, cl::init(true));
382 static cl::opt
<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden
,
385 static cl::opt
<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
386 cl::Hidden
, cl::init(0));
388 static cl::opt
<std::string
> ClDebugFunc("asan-debug-func", cl::Hidden
,
389 cl::desc("Debug func"));
391 static cl::opt
<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
392 cl::Hidden
, cl::init(-1));
394 static cl::opt
<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
395 cl::Hidden
, cl::init(-1));
397 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
398 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
399 STATISTIC(NumOptimizedAccessesToGlobalVar
,
400 "Number of optimized accesses to global vars");
401 STATISTIC(NumOptimizedAccessesToStackVar
,
402 "Number of optimized accesses to stack vars");
406 /// This struct defines the shadow mapping using the rule:
407 /// shadow = (mem >> Scale) ADD-or-OR Offset.
408 /// If InGlobal is true, then
409 /// extern char __asan_shadow[];
410 /// shadow = (mem >> Scale) + &__asan_shadow
411 struct ShadowMapping
{
418 } // end anonymous namespace
420 static ShadowMapping
getShadowMapping(Triple
&TargetTriple
, int LongSize
,
422 bool IsAndroid
= TargetTriple
.isAndroid();
423 bool IsIOS
= TargetTriple
.isiOS() || TargetTriple
.isWatchOS();
424 bool IsFreeBSD
= TargetTriple
.isOSFreeBSD();
425 bool IsNetBSD
= TargetTriple
.isOSNetBSD();
426 bool IsPS4CPU
= TargetTriple
.isPS4CPU();
427 bool IsLinux
= TargetTriple
.isOSLinux();
428 bool IsPPC64
= TargetTriple
.getArch() == Triple::ppc64
||
429 TargetTriple
.getArch() == Triple::ppc64le
;
430 bool IsSystemZ
= TargetTriple
.getArch() == Triple::systemz
;
431 bool IsX86_64
= TargetTriple
.getArch() == Triple::x86_64
;
432 bool IsMIPS32
= TargetTriple
.isMIPS32();
433 bool IsMIPS64
= TargetTriple
.isMIPS64();
434 bool IsArmOrThumb
= TargetTriple
.isARM() || TargetTriple
.isThumb();
435 bool IsAArch64
= TargetTriple
.getArch() == Triple::aarch64
;
436 bool IsWindows
= TargetTriple
.isOSWindows();
437 bool IsFuchsia
= TargetTriple
.isOSFuchsia();
438 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
439 bool IsEmscripten
= TargetTriple
.isOSEmscripten();
441 ShadowMapping Mapping
;
443 Mapping
.Scale
= IsMyriad
? kMyriadShadowScale
: kDefaultShadowScale
;
444 if (ClMappingScale
.getNumOccurrences() > 0) {
445 Mapping
.Scale
= ClMappingScale
;
448 if (LongSize
== 32) {
450 Mapping
.Offset
= kDynamicShadowSentinel
;
452 Mapping
.Offset
= kMIPS32_ShadowOffset32
;
454 Mapping
.Offset
= kFreeBSD_ShadowOffset32
;
456 Mapping
.Offset
= kNetBSD_ShadowOffset32
;
458 Mapping
.Offset
= kDynamicShadowSentinel
;
460 Mapping
.Offset
= kWindowsShadowOffset32
;
461 else if (IsEmscripten
)
462 Mapping
.Offset
= kEmscriptenShadowOffset
;
464 uint64_t ShadowOffset
= (kMyriadMemoryOffset32
+ kMyriadMemorySize32
-
465 (kMyriadMemorySize32
>> Mapping
.Scale
));
466 Mapping
.Offset
= ShadowOffset
- (kMyriadMemoryOffset32
>> Mapping
.Scale
);
469 Mapping
.Offset
= kDefaultShadowOffset32
;
470 } else { // LongSize == 64
471 // Fuchsia is always PIE, which means that the beginning of the address
472 // space is always available.
476 Mapping
.Offset
= kPPC64_ShadowOffset64
;
478 Mapping
.Offset
= kSystemZ_ShadowOffset64
;
479 else if (IsFreeBSD
&& !IsMIPS64
)
480 Mapping
.Offset
= kFreeBSD_ShadowOffset64
;
483 Mapping
.Offset
= kNetBSDKasan_ShadowOffset64
;
485 Mapping
.Offset
= kNetBSD_ShadowOffset64
;
487 Mapping
.Offset
= kPS4CPU_ShadowOffset64
;
488 else if (IsLinux
&& IsX86_64
) {
490 Mapping
.Offset
= kLinuxKasan_ShadowOffset64
;
492 Mapping
.Offset
= (kSmallX86_64ShadowOffsetBase
&
493 (kSmallX86_64ShadowOffsetAlignMask
<< Mapping
.Scale
));
494 } else if (IsWindows
&& IsX86_64
) {
495 Mapping
.Offset
= kWindowsShadowOffset64
;
497 Mapping
.Offset
= kMIPS64_ShadowOffset64
;
499 Mapping
.Offset
= kDynamicShadowSentinel
;
501 Mapping
.Offset
= kAArch64_ShadowOffset64
;
503 Mapping
.Offset
= kDefaultShadowOffset64
;
506 if (ClForceDynamicShadow
) {
507 Mapping
.Offset
= kDynamicShadowSentinel
;
510 if (ClMappingOffset
.getNumOccurrences() > 0) {
511 Mapping
.Offset
= ClMappingOffset
;
514 // OR-ing shadow offset if more efficient (at least on x86) if the offset
515 // is a power of two, but on ppc64 we have to use add since the shadow
516 // offset is not necessary 1/8-th of the address space. On SystemZ,
517 // we could OR the constant in a single instruction, but it's more
518 // efficient to load it once and use indexed addressing.
519 Mapping
.OrShadowOffset
= !IsAArch64
&& !IsPPC64
&& !IsSystemZ
&& !IsPS4CPU
&&
520 !(Mapping
.Offset
& (Mapping
.Offset
- 1)) &&
521 Mapping
.Offset
!= kDynamicShadowSentinel
;
522 bool IsAndroidWithIfuncSupport
=
523 IsAndroid
&& !TargetTriple
.isAndroidVersionLT(21);
524 Mapping
.InGlobal
= ClWithIfunc
&& IsAndroidWithIfuncSupport
&& IsArmOrThumb
;
529 static size_t RedzoneSizeForScale(int MappingScale
) {
530 // Redzone used for stack and globals is at least 32 bytes.
531 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
532 return std::max(32U, 1U << MappingScale
);
535 static uint64_t GetCtorAndDtorPriority(Triple
&TargetTriple
) {
536 if (TargetTriple
.isOSEmscripten()) {
537 return kAsanEmscriptenCtorAndDtorPriority
;
539 return kAsanCtorAndDtorPriority
;
545 /// Module analysis for getting various metadata about the module.
546 class ASanGlobalsMetadataWrapperPass
: public ModulePass
{
550 ASanGlobalsMetadataWrapperPass() : ModulePass(ID
) {
551 initializeASanGlobalsMetadataWrapperPassPass(
552 *PassRegistry::getPassRegistry());
555 bool runOnModule(Module
&M
) override
{
556 GlobalsMD
= GlobalsMetadata(M
);
560 StringRef
getPassName() const override
{
561 return "ASanGlobalsMetadataWrapperPass";
564 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
565 AU
.setPreservesAll();
568 GlobalsMetadata
&getGlobalsMD() { return GlobalsMD
; }
571 GlobalsMetadata GlobalsMD
;
574 char ASanGlobalsMetadataWrapperPass::ID
= 0;
576 /// AddressSanitizer: instrument the code in module to find memory bugs.
577 struct AddressSanitizer
{
578 AddressSanitizer(Module
&M
, GlobalsMetadata
&GlobalsMD
,
579 bool CompileKernel
= false, bool Recover
= false,
580 bool UseAfterScope
= false)
581 : UseAfterScope(UseAfterScope
|| ClUseAfterScope
), GlobalsMD(GlobalsMD
) {
582 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
583 this->CompileKernel
=
584 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
586 C
= &(M
.getContext());
587 LongSize
= M
.getDataLayout().getPointerSizeInBits();
588 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
589 TargetTriple
= Triple(M
.getTargetTriple());
591 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
594 uint64_t getAllocaSizeInBytes(const AllocaInst
&AI
) const {
595 uint64_t ArraySize
= 1;
596 if (AI
.isArrayAllocation()) {
597 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AI
.getArraySize());
598 assert(CI
&& "non-constant array size");
599 ArraySize
= CI
->getZExtValue();
601 Type
*Ty
= AI
.getAllocatedType();
602 uint64_t SizeInBytes
=
603 AI
.getModule()->getDataLayout().getTypeAllocSize(Ty
);
604 return SizeInBytes
* ArraySize
;
607 /// Check if we want (and can) handle this alloca.
608 bool isInterestingAlloca(const AllocaInst
&AI
);
610 /// If it is an interesting memory access, return the PointerOperand
611 /// and set IsWrite/Alignment. Otherwise return nullptr.
612 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
613 /// masked load/store.
614 Value
*isInterestingMemoryAccess(Instruction
*I
, bool *IsWrite
,
615 uint64_t *TypeSize
, unsigned *Alignment
,
616 Value
**MaybeMask
= nullptr);
618 void instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
, Instruction
*I
,
619 bool UseCalls
, const DataLayout
&DL
);
620 void instrumentPointerComparisonOrSubtraction(Instruction
*I
);
621 void instrumentAddress(Instruction
*OrigIns
, Instruction
*InsertBefore
,
622 Value
*Addr
, uint32_t TypeSize
, bool IsWrite
,
623 Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
);
624 void instrumentUnusualSizeOrAlignment(Instruction
*I
,
625 Instruction
*InsertBefore
, Value
*Addr
,
626 uint32_t TypeSize
, bool IsWrite
,
627 Value
*SizeArgument
, bool UseCalls
,
629 Value
*createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
630 Value
*ShadowValue
, uint32_t TypeSize
);
631 Instruction
*generateCrashCode(Instruction
*InsertBefore
, Value
*Addr
,
632 bool IsWrite
, size_t AccessSizeIndex
,
633 Value
*SizeArgument
, uint32_t Exp
);
634 void instrumentMemIntrinsic(MemIntrinsic
*MI
);
635 Value
*memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
);
636 bool instrumentFunction(Function
&F
, const TargetLibraryInfo
*TLI
);
637 bool maybeInsertAsanInitAtFunctionEntry(Function
&F
);
638 void maybeInsertDynamicShadowAtFunctionEntry(Function
&F
);
639 void markEscapedLocalAllocas(Function
&F
);
642 friend struct FunctionStackPoisoner
;
644 void initializeCallbacks(Module
&M
);
646 bool LooksLikeCodeInBug11395(Instruction
*I
);
647 bool GlobalIsLinkerInitialized(GlobalVariable
*G
);
648 bool isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
, Value
*Addr
,
649 uint64_t TypeSize
) const;
651 /// Helper to cleanup per-function state.
652 struct FunctionStateRAII
{
653 AddressSanitizer
*Pass
;
655 FunctionStateRAII(AddressSanitizer
*Pass
) : Pass(Pass
) {
656 assert(Pass
->ProcessedAllocas
.empty() &&
657 "last pass forgot to clear cache");
658 assert(!Pass
->LocalDynamicShadow
);
661 ~FunctionStateRAII() {
662 Pass
->LocalDynamicShadow
= nullptr;
663 Pass
->ProcessedAllocas
.clear();
674 ShadowMapping Mapping
;
675 FunctionCallee AsanHandleNoReturnFunc
;
676 FunctionCallee AsanPtrCmpFunction
, AsanPtrSubFunction
;
677 Constant
*AsanShadowGlobal
;
679 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
680 FunctionCallee AsanErrorCallback
[2][2][kNumberOfAccessSizes
];
681 FunctionCallee AsanMemoryAccessCallback
[2][2][kNumberOfAccessSizes
];
683 // These arrays is indexed by AccessIsWrite and Experiment.
684 FunctionCallee AsanErrorCallbackSized
[2][2];
685 FunctionCallee AsanMemoryAccessCallbackSized
[2][2];
687 FunctionCallee AsanMemmove
, AsanMemcpy
, AsanMemset
;
689 Value
*LocalDynamicShadow
= nullptr;
690 GlobalsMetadata GlobalsMD
;
691 DenseMap
<const AllocaInst
*, bool> ProcessedAllocas
;
694 class AddressSanitizerLegacyPass
: public FunctionPass
{
698 explicit AddressSanitizerLegacyPass(bool CompileKernel
= false,
699 bool Recover
= false,
700 bool UseAfterScope
= false)
701 : FunctionPass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
702 UseAfterScope(UseAfterScope
) {
703 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
706 StringRef
getPassName() const override
{
707 return "AddressSanitizerFunctionPass";
710 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
711 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
712 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
715 bool runOnFunction(Function
&F
) override
{
716 GlobalsMetadata
&GlobalsMD
=
717 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
718 const TargetLibraryInfo
*TLI
=
719 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
720 AddressSanitizer
ASan(*F
.getParent(), GlobalsMD
, CompileKernel
, Recover
,
722 return ASan
.instrumentFunction(F
, TLI
);
731 class ModuleAddressSanitizer
{
733 ModuleAddressSanitizer(Module
&M
, GlobalsMetadata
&GlobalsMD
,
734 bool CompileKernel
= false, bool Recover
= false,
735 bool UseGlobalsGC
= true, bool UseOdrIndicator
= false)
736 : GlobalsMD(GlobalsMD
), UseGlobalsGC(UseGlobalsGC
&& ClUseGlobalsGC
),
737 // Enable aliases as they should have no downside with ODR indicators.
738 UsePrivateAlias(UseOdrIndicator
|| ClUsePrivateAlias
),
739 UseOdrIndicator(UseOdrIndicator
|| ClUseOdrIndicator
),
740 // Not a typo: ClWithComdat is almost completely pointless without
741 // ClUseGlobalsGC (because then it only works on modules without
742 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
743 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
744 // argument is designed as workaround. Therefore, disable both
745 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
747 UseCtorComdat(UseGlobalsGC
&& ClWithComdat
) {
748 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
749 this->CompileKernel
=
750 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
752 C
= &(M
.getContext());
753 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
754 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
755 TargetTriple
= Triple(M
.getTargetTriple());
756 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
759 bool instrumentModule(Module
&);
762 void initializeCallbacks(Module
&M
);
764 bool InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
, bool *CtorComdat
);
765 void InstrumentGlobalsCOFF(IRBuilder
<> &IRB
, Module
&M
,
766 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
767 ArrayRef
<Constant
*> MetadataInitializers
);
768 void InstrumentGlobalsELF(IRBuilder
<> &IRB
, Module
&M
,
769 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
770 ArrayRef
<Constant
*> MetadataInitializers
,
771 const std::string
&UniqueModuleId
);
772 void InstrumentGlobalsMachO(IRBuilder
<> &IRB
, Module
&M
,
773 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
774 ArrayRef
<Constant
*> MetadataInitializers
);
776 InstrumentGlobalsWithMetadataArray(IRBuilder
<> &IRB
, Module
&M
,
777 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
778 ArrayRef
<Constant
*> MetadataInitializers
);
780 GlobalVariable
*CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
781 StringRef OriginalName
);
782 void SetComdatForGlobalMetadata(GlobalVariable
*G
, GlobalVariable
*Metadata
,
783 StringRef InternalSuffix
);
784 IRBuilder
<> CreateAsanModuleDtor(Module
&M
);
786 bool ShouldInstrumentGlobal(GlobalVariable
*G
);
787 bool ShouldUseMachOGlobalsSection() const;
788 StringRef
getGlobalMetadataSection() const;
789 void poisonOneInitializer(Function
&GlobalInit
, GlobalValue
*ModuleName
);
790 void createInitializerPoisonCalls(Module
&M
, GlobalValue
*ModuleName
);
791 size_t MinRedzoneSizeForGlobal() const {
792 return RedzoneSizeForScale(Mapping
.Scale
);
794 int GetAsanVersion(const Module
&M
) const;
796 GlobalsMetadata GlobalsMD
;
800 bool UsePrivateAlias
;
801 bool UseOdrIndicator
;
806 ShadowMapping Mapping
;
807 FunctionCallee AsanPoisonGlobals
;
808 FunctionCallee AsanUnpoisonGlobals
;
809 FunctionCallee AsanRegisterGlobals
;
810 FunctionCallee AsanUnregisterGlobals
;
811 FunctionCallee AsanRegisterImageGlobals
;
812 FunctionCallee AsanUnregisterImageGlobals
;
813 FunctionCallee AsanRegisterElfGlobals
;
814 FunctionCallee AsanUnregisterElfGlobals
;
816 Function
*AsanCtorFunction
= nullptr;
817 Function
*AsanDtorFunction
= nullptr;
820 class ModuleAddressSanitizerLegacyPass
: public ModulePass
{
824 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel
= false,
825 bool Recover
= false,
826 bool UseGlobalGC
= true,
827 bool UseOdrIndicator
= false)
828 : ModulePass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
829 UseGlobalGC(UseGlobalGC
), UseOdrIndicator(UseOdrIndicator
) {
830 initializeModuleAddressSanitizerLegacyPassPass(
831 *PassRegistry::getPassRegistry());
834 StringRef
getPassName() const override
{ return "ModuleAddressSanitizer"; }
836 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
837 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
840 bool runOnModule(Module
&M
) override
{
841 GlobalsMetadata
&GlobalsMD
=
842 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
843 ModuleAddressSanitizer
ASanModule(M
, GlobalsMD
, CompileKernel
, Recover
,
844 UseGlobalGC
, UseOdrIndicator
);
845 return ASanModule
.instrumentModule(M
);
852 bool UseOdrIndicator
;
855 // Stack poisoning does not play well with exception handling.
856 // When an exception is thrown, we essentially bypass the code
857 // that unpoisones the stack. This is why the run-time library has
858 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
859 // stack in the interceptor. This however does not work inside the
860 // actual function which catches the exception. Most likely because the
861 // compiler hoists the load of the shadow value somewhere too high.
862 // This causes asan to report a non-existing bug on 453.povray.
863 // It sounds like an LLVM bug.
864 struct FunctionStackPoisoner
: public InstVisitor
<FunctionStackPoisoner
> {
866 AddressSanitizer
&ASan
;
871 ShadowMapping Mapping
;
873 SmallVector
<AllocaInst
*, 16> AllocaVec
;
874 SmallVector
<AllocaInst
*, 16> StaticAllocasToMoveUp
;
875 SmallVector
<Instruction
*, 8> RetVec
;
876 unsigned StackAlignment
;
878 FunctionCallee AsanStackMallocFunc
[kMaxAsanStackMallocSizeClass
+ 1],
879 AsanStackFreeFunc
[kMaxAsanStackMallocSizeClass
+ 1];
880 FunctionCallee AsanSetShadowFunc
[0x100] = {};
881 FunctionCallee AsanPoisonStackMemoryFunc
, AsanUnpoisonStackMemoryFunc
;
882 FunctionCallee AsanAllocaPoisonFunc
, AsanAllocasUnpoisonFunc
;
884 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
885 struct AllocaPoisonCall
{
886 IntrinsicInst
*InsBefore
;
891 SmallVector
<AllocaPoisonCall
, 8> DynamicAllocaPoisonCallVec
;
892 SmallVector
<AllocaPoisonCall
, 8> StaticAllocaPoisonCallVec
;
893 bool HasUntracedLifetimeIntrinsic
= false;
895 SmallVector
<AllocaInst
*, 1> DynamicAllocaVec
;
896 SmallVector
<IntrinsicInst
*, 1> StackRestoreVec
;
897 AllocaInst
*DynamicAllocaLayout
= nullptr;
898 IntrinsicInst
*LocalEscapeCall
= nullptr;
900 // Maps Value to an AllocaInst from which the Value is originated.
901 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
902 AllocaForValueMapTy AllocaForValue
;
904 bool HasNonEmptyInlineAsm
= false;
905 bool HasReturnsTwiceCall
= false;
906 std::unique_ptr
<CallInst
> EmptyInlineAsm
;
908 FunctionStackPoisoner(Function
&F
, AddressSanitizer
&ASan
)
909 : F(F
), ASan(ASan
), DIB(*F
.getParent(), /*AllowUnresolved*/ false),
910 C(ASan
.C
), IntptrTy(ASan
.IntptrTy
),
911 IntptrPtrTy(PointerType::get(IntptrTy
, 0)), Mapping(ASan
.Mapping
),
912 StackAlignment(1 << Mapping
.Scale
),
913 EmptyInlineAsm(CallInst::Create(ASan
.EmptyAsm
)) {}
915 bool runOnFunction() {
916 if (!ClStack
) return false;
918 if (ClRedzoneByvalArgs
)
919 copyArgsPassedByValToAllocas();
921 // Collect alloca, ret, lifetime instructions etc.
922 for (BasicBlock
*BB
: depth_first(&F
.getEntryBlock())) visit(*BB
);
924 if (AllocaVec
.empty() && DynamicAllocaVec
.empty()) return false;
926 initializeCallbacks(*F
.getParent());
928 if (HasUntracedLifetimeIntrinsic
) {
929 // If there are lifetime intrinsics which couldn't be traced back to an
930 // alloca, we may not know exactly when a variable enters scope, and
931 // therefore should "fail safe" by not poisoning them.
932 StaticAllocaPoisonCallVec
.clear();
933 DynamicAllocaPoisonCallVec
.clear();
936 processDynamicAllocas();
937 processStaticAllocas();
940 LLVM_DEBUG(dbgs() << F
);
945 // Arguments marked with the "byval" attribute are implicitly copied without
946 // using an alloca instruction. To produce redzones for those arguments, we
947 // copy them a second time into memory allocated with an alloca instruction.
948 void copyArgsPassedByValToAllocas();
950 // Finds all Alloca instructions and puts
951 // poisoned red zones around all of them.
952 // Then unpoison everything back before the function returns.
953 void processStaticAllocas();
954 void processDynamicAllocas();
956 void createDynamicAllocasInitStorage();
958 // ----------------------- Visitors.
959 /// Collect all Ret instructions.
960 void visitReturnInst(ReturnInst
&RI
) { RetVec
.push_back(&RI
); }
962 /// Collect all Resume instructions.
963 void visitResumeInst(ResumeInst
&RI
) { RetVec
.push_back(&RI
); }
965 /// Collect all CatchReturnInst instructions.
966 void visitCleanupReturnInst(CleanupReturnInst
&CRI
) { RetVec
.push_back(&CRI
); }
968 void unpoisonDynamicAllocasBeforeInst(Instruction
*InstBefore
,
970 IRBuilder
<> IRB(InstBefore
);
971 Value
*DynamicAreaPtr
= IRB
.CreatePtrToInt(SavedStack
, IntptrTy
);
972 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
973 // need to adjust extracted SP to compute the address of the most recent
974 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
976 if (!isa
<ReturnInst
>(InstBefore
)) {
977 Function
*DynamicAreaOffsetFunc
= Intrinsic::getDeclaration(
978 InstBefore
->getModule(), Intrinsic::get_dynamic_area_offset
,
981 Value
*DynamicAreaOffset
= IRB
.CreateCall(DynamicAreaOffsetFunc
, {});
983 DynamicAreaPtr
= IRB
.CreateAdd(IRB
.CreatePtrToInt(SavedStack
, IntptrTy
),
988 AsanAllocasUnpoisonFunc
,
989 {IRB
.CreateLoad(IntptrTy
, DynamicAllocaLayout
), DynamicAreaPtr
});
992 // Unpoison dynamic allocas redzones.
993 void unpoisonDynamicAllocas() {
994 for (auto &Ret
: RetVec
)
995 unpoisonDynamicAllocasBeforeInst(Ret
, DynamicAllocaLayout
);
997 for (auto &StackRestoreInst
: StackRestoreVec
)
998 unpoisonDynamicAllocasBeforeInst(StackRestoreInst
,
999 StackRestoreInst
->getOperand(0));
1002 // Deploy and poison redzones around dynamic alloca call. To do this, we
1003 // should replace this call with another one with changed parameters and
1004 // replace all its uses with new address, so
1005 // addr = alloca type, old_size, align
1007 // new_size = (old_size + additional_size) * sizeof(type)
1008 // tmp = alloca i8, new_size, max(align, 32)
1009 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1010 // Additional_size is added to make new memory allocation contain not only
1011 // requested memory, but also left, partial and right redzones.
1012 void handleDynamicAllocaCall(AllocaInst
*AI
);
1014 /// Collect Alloca instructions we want (and can) handle.
1015 void visitAllocaInst(AllocaInst
&AI
) {
1016 if (!ASan
.isInterestingAlloca(AI
)) {
1017 if (AI
.isStaticAlloca()) {
1018 // Skip over allocas that are present *before* the first instrumented
1019 // alloca, we don't want to move those around.
1020 if (AllocaVec
.empty())
1023 StaticAllocasToMoveUp
.push_back(&AI
);
1028 StackAlignment
= std::max(StackAlignment
, AI
.getAlignment());
1029 if (!AI
.isStaticAlloca())
1030 DynamicAllocaVec
.push_back(&AI
);
1032 AllocaVec
.push_back(&AI
);
1035 /// Collect lifetime intrinsic calls to check for use-after-scope
1037 void visitIntrinsicInst(IntrinsicInst
&II
) {
1038 Intrinsic::ID ID
= II
.getIntrinsicID();
1039 if (ID
== Intrinsic::stackrestore
) StackRestoreVec
.push_back(&II
);
1040 if (ID
== Intrinsic::localescape
) LocalEscapeCall
= &II
;
1041 if (!ASan
.UseAfterScope
)
1043 if (!II
.isLifetimeStartOrEnd())
1045 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1046 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(II
.getArgOperand(0));
1047 // If size argument is undefined, don't do anything.
1048 if (Size
->isMinusOne()) return;
1049 // Check that size doesn't saturate uint64_t and can
1050 // be stored in IntptrTy.
1051 const uint64_t SizeValue
= Size
->getValue().getLimitedValue();
1052 if (SizeValue
== ~0ULL ||
1053 !ConstantInt::isValueValidForType(IntptrTy
, SizeValue
))
1055 // Find alloca instruction that corresponds to llvm.lifetime argument.
1057 llvm::findAllocaForValue(II
.getArgOperand(1), AllocaForValue
);
1059 HasUntracedLifetimeIntrinsic
= true;
1062 // We're interested only in allocas we can handle.
1063 if (!ASan
.isInterestingAlloca(*AI
))
1065 bool DoPoison
= (ID
== Intrinsic::lifetime_end
);
1066 AllocaPoisonCall APC
= {&II
, AI
, SizeValue
, DoPoison
};
1067 if (AI
->isStaticAlloca())
1068 StaticAllocaPoisonCallVec
.push_back(APC
);
1069 else if (ClInstrumentDynamicAllocas
)
1070 DynamicAllocaPoisonCallVec
.push_back(APC
);
1073 void visitCallSite(CallSite CS
) {
1074 Instruction
*I
= CS
.getInstruction();
1075 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
1076 HasNonEmptyInlineAsm
|= CI
->isInlineAsm() &&
1077 !CI
->isIdenticalTo(EmptyInlineAsm
.get()) &&
1078 I
!= ASan
.LocalDynamicShadow
;
1079 HasReturnsTwiceCall
|= CI
->canReturnTwice();
1083 // ---------------------- Helpers.
1084 void initializeCallbacks(Module
&M
);
1086 // Copies bytes from ShadowBytes into shadow memory for indexes where
1087 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1088 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1089 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1090 IRBuilder
<> &IRB
, Value
*ShadowBase
);
1091 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1092 size_t Begin
, size_t End
, IRBuilder
<> &IRB
,
1094 void copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
1095 ArrayRef
<uint8_t> ShadowBytes
, size_t Begin
,
1096 size_t End
, IRBuilder
<> &IRB
, Value
*ShadowBase
);
1098 void poisonAlloca(Value
*V
, uint64_t Size
, IRBuilder
<> &IRB
, bool DoPoison
);
1100 Value
*createAllocaForLayout(IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
,
1102 PHINode
*createPHI(IRBuilder
<> &IRB
, Value
*Cond
, Value
*ValueIfTrue
,
1103 Instruction
*ThenTerm
, Value
*ValueIfFalse
);
1106 } // end anonymous namespace
1108 void LocationMetadata::parse(MDNode
*MDN
) {
1109 assert(MDN
->getNumOperands() == 3);
1110 MDString
*DIFilename
= cast
<MDString
>(MDN
->getOperand(0));
1111 Filename
= DIFilename
->getString();
1112 LineNo
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(1))->getLimitedValue();
1114 mdconst::extract
<ConstantInt
>(MDN
->getOperand(2))->getLimitedValue();
1117 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1118 // we want to sanitize instead and reading this metadata on each pass over a
1119 // function instead of reading module level metadata at first.
1120 GlobalsMetadata::GlobalsMetadata(Module
&M
) {
1121 NamedMDNode
*Globals
= M
.getNamedMetadata("llvm.asan.globals");
1124 for (auto MDN
: Globals
->operands()) {
1125 // Metadata node contains the global and the fields of "Entry".
1126 assert(MDN
->getNumOperands() == 5);
1127 auto *V
= mdconst::extract_or_null
<Constant
>(MDN
->getOperand(0));
1128 // The optimizer may optimize away a global entirely.
1131 auto *StrippedV
= V
->stripPointerCasts();
1132 auto *GV
= dyn_cast
<GlobalVariable
>(StrippedV
);
1135 // We can already have an entry for GV if it was merged with another
1137 Entry
&E
= Entries
[GV
];
1138 if (auto *Loc
= cast_or_null
<MDNode
>(MDN
->getOperand(1)))
1139 E
.SourceLoc
.parse(Loc
);
1140 if (auto *Name
= cast_or_null
<MDString
>(MDN
->getOperand(2)))
1141 E
.Name
= Name
->getString();
1142 ConstantInt
*IsDynInit
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(3));
1143 E
.IsDynInit
|= IsDynInit
->isOne();
1144 ConstantInt
*IsBlacklisted
=
1145 mdconst::extract
<ConstantInt
>(MDN
->getOperand(4));
1146 E
.IsBlacklisted
|= IsBlacklisted
->isOne();
1150 AnalysisKey
ASanGlobalsMetadataAnalysis::Key
;
1152 GlobalsMetadata
ASanGlobalsMetadataAnalysis::run(Module
&M
,
1153 ModuleAnalysisManager
&AM
) {
1154 return GlobalsMetadata(M
);
1157 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel
, bool Recover
,
1159 : CompileKernel(CompileKernel
), Recover(Recover
),
1160 UseAfterScope(UseAfterScope
) {}
1162 PreservedAnalyses
AddressSanitizerPass::run(Function
&F
,
1163 AnalysisManager
<Function
> &AM
) {
1164 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1165 auto &MAM
= MAMProxy
.getManager();
1166 Module
&M
= *F
.getParent();
1167 if (auto *R
= MAM
.getCachedResult
<ASanGlobalsMetadataAnalysis
>(M
)) {
1168 const TargetLibraryInfo
*TLI
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
1169 AddressSanitizer
Sanitizer(M
, *R
, CompileKernel
, Recover
, UseAfterScope
);
1170 if (Sanitizer
.instrumentFunction(F
, TLI
))
1171 return PreservedAnalyses::none();
1172 return PreservedAnalyses::all();
1176 "The ASanGlobalsMetadataAnalysis is required to run before "
1177 "AddressSanitizer can run");
1178 return PreservedAnalyses::all();
1181 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel
,
1184 bool UseOdrIndicator
)
1185 : CompileKernel(CompileKernel
), Recover(Recover
), UseGlobalGC(UseGlobalGC
),
1186 UseOdrIndicator(UseOdrIndicator
) {}
1188 PreservedAnalyses
ModuleAddressSanitizerPass::run(Module
&M
,
1189 AnalysisManager
<Module
> &AM
) {
1190 GlobalsMetadata
&GlobalsMD
= AM
.getResult
<ASanGlobalsMetadataAnalysis
>(M
);
1191 ModuleAddressSanitizer
Sanitizer(M
, GlobalsMD
, CompileKernel
, Recover
,
1192 UseGlobalGC
, UseOdrIndicator
);
1193 if (Sanitizer
.instrumentModule(M
))
1194 return PreservedAnalyses::none();
1195 return PreservedAnalyses::all();
1198 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass
, "asan-globals-md",
1199 "Read metadata to mark which globals should be instrumented "
1200 "when running ASan.",
1203 char AddressSanitizerLegacyPass::ID
= 0;
1205 INITIALIZE_PASS_BEGIN(
1206 AddressSanitizerLegacyPass
, "asan",
1207 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1209 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass
)
1210 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1211 INITIALIZE_PASS_END(
1212 AddressSanitizerLegacyPass
, "asan",
1213 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1216 FunctionPass
*llvm::createAddressSanitizerFunctionPass(bool CompileKernel
,
1218 bool UseAfterScope
) {
1219 assert(!CompileKernel
|| Recover
);
1220 return new AddressSanitizerLegacyPass(CompileKernel
, Recover
, UseAfterScope
);
1223 char ModuleAddressSanitizerLegacyPass::ID
= 0;
1226 ModuleAddressSanitizerLegacyPass
, "asan-module",
1227 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1231 ModulePass
*llvm::createModuleAddressSanitizerLegacyPassPass(
1232 bool CompileKernel
, bool Recover
, bool UseGlobalsGC
, bool UseOdrIndicator
) {
1233 assert(!CompileKernel
|| Recover
);
1234 return new ModuleAddressSanitizerLegacyPass(CompileKernel
, Recover
,
1235 UseGlobalsGC
, UseOdrIndicator
);
1238 static size_t TypeSizeToSizeIndex(uint32_t TypeSize
) {
1239 size_t Res
= countTrailingZeros(TypeSize
/ 8);
1240 assert(Res
< kNumberOfAccessSizes
);
1244 /// Create a global describing a source location.
1245 static GlobalVariable
*createPrivateGlobalForSourceLoc(Module
&M
,
1246 LocationMetadata MD
) {
1247 Constant
*LocData
[] = {
1248 createPrivateGlobalForString(M
, MD
.Filename
, true, kAsanGenPrefix
),
1249 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.LineNo
),
1250 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.ColumnNo
),
1252 auto LocStruct
= ConstantStruct::getAnon(LocData
);
1253 auto GV
= new GlobalVariable(M
, LocStruct
->getType(), true,
1254 GlobalValue::PrivateLinkage
, LocStruct
,
1256 GV
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
1260 /// Check if \p G has been created by a trusted compiler pass.
1261 static bool GlobalWasGeneratedByCompiler(GlobalVariable
*G
) {
1262 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1263 if (G
->getName().startswith("llvm."))
1266 // Do not instrument asan globals.
1267 if (G
->getName().startswith(kAsanGenPrefix
) ||
1268 G
->getName().startswith(kSanCovGenPrefix
) ||
1269 G
->getName().startswith(kODRGenPrefix
))
1272 // Do not instrument gcov counter arrays.
1273 if (G
->getName() == "__llvm_gcov_ctr")
1279 Value
*AddressSanitizer::memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
) {
1281 Shadow
= IRB
.CreateLShr(Shadow
, Mapping
.Scale
);
1282 if (Mapping
.Offset
== 0) return Shadow
;
1283 // (Shadow >> scale) | offset
1285 if (LocalDynamicShadow
)
1286 ShadowBase
= LocalDynamicShadow
;
1288 ShadowBase
= ConstantInt::get(IntptrTy
, Mapping
.Offset
);
1289 if (Mapping
.OrShadowOffset
)
1290 return IRB
.CreateOr(Shadow
, ShadowBase
);
1292 return IRB
.CreateAdd(Shadow
, ShadowBase
);
1295 // Instrument memset/memmove/memcpy
1296 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic
*MI
) {
1297 IRBuilder
<> IRB(MI
);
1298 if (isa
<MemTransferInst
>(MI
)) {
1300 isa
<MemMoveInst
>(MI
) ? AsanMemmove
: AsanMemcpy
,
1301 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1302 IRB
.CreatePointerCast(MI
->getOperand(1), IRB
.getInt8PtrTy()),
1303 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1304 } else if (isa
<MemSetInst
>(MI
)) {
1307 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1308 IRB
.CreateIntCast(MI
->getOperand(1), IRB
.getInt32Ty(), false),
1309 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1311 MI
->eraseFromParent();
1314 /// Check if we want (and can) handle this alloca.
1315 bool AddressSanitizer::isInterestingAlloca(const AllocaInst
&AI
) {
1316 auto PreviouslySeenAllocaInfo
= ProcessedAllocas
.find(&AI
);
1318 if (PreviouslySeenAllocaInfo
!= ProcessedAllocas
.end())
1319 return PreviouslySeenAllocaInfo
->getSecond();
1321 bool IsInteresting
=
1322 (AI
.getAllocatedType()->isSized() &&
1323 // alloca() may be called with 0 size, ignore it.
1324 ((!AI
.isStaticAlloca()) || getAllocaSizeInBytes(AI
) > 0) &&
1325 // We are only interested in allocas not promotable to registers.
1326 // Promotable allocas are common under -O0.
1327 (!ClSkipPromotableAllocas
|| !isAllocaPromotable(&AI
)) &&
1328 // inalloca allocas are not treated as static, and we don't want
1329 // dynamic alloca instrumentation for them as well.
1330 !AI
.isUsedWithInAlloca() &&
1331 // swifterror allocas are register promoted by ISel
1332 !AI
.isSwiftError());
1334 ProcessedAllocas
[&AI
] = IsInteresting
;
1335 return IsInteresting
;
1338 Value
*AddressSanitizer::isInterestingMemoryAccess(Instruction
*I
,
1341 unsigned *Alignment
,
1342 Value
**MaybeMask
) {
1343 // Skip memory accesses inserted by another instrumentation.
1344 if (I
->getMetadata("nosanitize")) return nullptr;
1346 // Do not instrument the load fetching the dynamic shadow address.
1347 if (LocalDynamicShadow
== I
)
1350 Value
*PtrOperand
= nullptr;
1351 const DataLayout
&DL
= I
->getModule()->getDataLayout();
1352 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1353 if (!ClInstrumentReads
) return nullptr;
1355 *TypeSize
= DL
.getTypeStoreSizeInBits(LI
->getType());
1356 *Alignment
= LI
->getAlignment();
1357 PtrOperand
= LI
->getPointerOperand();
1358 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1359 if (!ClInstrumentWrites
) return nullptr;
1361 *TypeSize
= DL
.getTypeStoreSizeInBits(SI
->getValueOperand()->getType());
1362 *Alignment
= SI
->getAlignment();
1363 PtrOperand
= SI
->getPointerOperand();
1364 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
1365 if (!ClInstrumentAtomics
) return nullptr;
1367 *TypeSize
= DL
.getTypeStoreSizeInBits(RMW
->getValOperand()->getType());
1369 PtrOperand
= RMW
->getPointerOperand();
1370 } else if (AtomicCmpXchgInst
*XCHG
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
1371 if (!ClInstrumentAtomics
) return nullptr;
1373 *TypeSize
= DL
.getTypeStoreSizeInBits(XCHG
->getCompareOperand()->getType());
1375 PtrOperand
= XCHG
->getPointerOperand();
1376 } else if (auto CI
= dyn_cast
<CallInst
>(I
)) {
1377 auto *F
= dyn_cast
<Function
>(CI
->getCalledValue());
1378 if (F
&& (F
->getName().startswith("llvm.masked.load.") ||
1379 F
->getName().startswith("llvm.masked.store."))) {
1380 unsigned OpOffset
= 0;
1381 if (F
->getName().startswith("llvm.masked.store.")) {
1382 if (!ClInstrumentWrites
)
1384 // Masked store has an initial operand for the value.
1388 if (!ClInstrumentReads
)
1393 auto BasePtr
= CI
->getOperand(0 + OpOffset
);
1394 auto Ty
= cast
<PointerType
>(BasePtr
->getType())->getElementType();
1395 *TypeSize
= DL
.getTypeStoreSizeInBits(Ty
);
1396 if (auto AlignmentConstant
=
1397 dyn_cast
<ConstantInt
>(CI
->getOperand(1 + OpOffset
)))
1398 *Alignment
= (unsigned)AlignmentConstant
->getZExtValue();
1400 *Alignment
= 1; // No alignment guarantees. We probably got Undef
1402 *MaybeMask
= CI
->getOperand(2 + OpOffset
);
1403 PtrOperand
= BasePtr
;
1408 // Do not instrument acesses from different address spaces; we cannot deal
1410 Type
*PtrTy
= cast
<PointerType
>(PtrOperand
->getType()->getScalarType());
1411 if (PtrTy
->getPointerAddressSpace() != 0)
1414 // Ignore swifterror addresses.
1415 // swifterror memory addresses are mem2reg promoted by instruction
1416 // selection. As such they cannot have regular uses like an instrumentation
1417 // function and it makes no sense to track them as memory.
1418 if (PtrOperand
->isSwiftError())
1422 // Treat memory accesses to promotable allocas as non-interesting since they
1423 // will not cause memory violations. This greatly speeds up the instrumented
1424 // executable at -O0.
1425 if (ClSkipPromotableAllocas
)
1426 if (auto AI
= dyn_cast_or_null
<AllocaInst
>(PtrOperand
))
1427 return isInterestingAlloca(*AI
) ? AI
: nullptr;
1432 static bool isPointerOperand(Value
*V
) {
1433 return V
->getType()->isPointerTy() || isa
<PtrToIntInst
>(V
);
1436 // This is a rough heuristic; it may cause both false positives and
1437 // false negatives. The proper implementation requires cooperation with
1439 static bool isInterestingPointerComparison(Instruction
*I
) {
1440 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(I
)) {
1441 if (!Cmp
->isRelational())
1446 return isPointerOperand(I
->getOperand(0)) &&
1447 isPointerOperand(I
->getOperand(1));
1450 // This is a rough heuristic; it may cause both false positives and
1451 // false negatives. The proper implementation requires cooperation with
1453 static bool isInterestingPointerSubtraction(Instruction
*I
) {
1454 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1455 if (BO
->getOpcode() != Instruction::Sub
)
1460 return isPointerOperand(I
->getOperand(0)) &&
1461 isPointerOperand(I
->getOperand(1));
1464 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable
*G
) {
1465 // If a global variable does not have dynamic initialization we don't
1466 // have to instrument it. However, if a global does not have initializer
1467 // at all, we assume it has dynamic initializer (in other TU).
1469 // FIXME: Metadata should be attched directly to the global directly instead
1470 // of being added to llvm.asan.globals.
1471 return G
->hasInitializer() && !GlobalsMD
.get(G
).IsDynInit
;
1474 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1477 FunctionCallee F
= isa
<ICmpInst
>(I
) ? AsanPtrCmpFunction
: AsanPtrSubFunction
;
1478 Value
*Param
[2] = {I
->getOperand(0), I
->getOperand(1)};
1479 for (Value
*&i
: Param
) {
1480 if (i
->getType()->isPointerTy())
1481 i
= IRB
.CreatePointerCast(i
, IntptrTy
);
1483 IRB
.CreateCall(F
, Param
);
1486 static void doInstrumentAddress(AddressSanitizer
*Pass
, Instruction
*I
,
1487 Instruction
*InsertBefore
, Value
*Addr
,
1488 unsigned Alignment
, unsigned Granularity
,
1489 uint32_t TypeSize
, bool IsWrite
,
1490 Value
*SizeArgument
, bool UseCalls
,
1492 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1493 // if the data is properly aligned.
1494 if ((TypeSize
== 8 || TypeSize
== 16 || TypeSize
== 32 || TypeSize
== 64 ||
1496 (Alignment
>= Granularity
|| Alignment
== 0 || Alignment
>= TypeSize
/ 8))
1497 return Pass
->instrumentAddress(I
, InsertBefore
, Addr
, TypeSize
, IsWrite
,
1498 nullptr, UseCalls
, Exp
);
1499 Pass
->instrumentUnusualSizeOrAlignment(I
, InsertBefore
, Addr
, TypeSize
,
1500 IsWrite
, nullptr, UseCalls
, Exp
);
1503 static void instrumentMaskedLoadOrStore(AddressSanitizer
*Pass
,
1504 const DataLayout
&DL
, Type
*IntptrTy
,
1505 Value
*Mask
, Instruction
*I
,
1506 Value
*Addr
, unsigned Alignment
,
1507 unsigned Granularity
, uint32_t TypeSize
,
1508 bool IsWrite
, Value
*SizeArgument
,
1509 bool UseCalls
, uint32_t Exp
) {
1510 auto *VTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
1511 uint64_t ElemTypeSize
= DL
.getTypeStoreSizeInBits(VTy
->getScalarType());
1512 unsigned Num
= VTy
->getVectorNumElements();
1513 auto Zero
= ConstantInt::get(IntptrTy
, 0);
1514 for (unsigned Idx
= 0; Idx
< Num
; ++Idx
) {
1515 Value
*InstrumentedAddress
= nullptr;
1516 Instruction
*InsertBefore
= I
;
1517 if (auto *Vector
= dyn_cast
<ConstantVector
>(Mask
)) {
1518 // dyn_cast as we might get UndefValue
1519 if (auto *Masked
= dyn_cast
<ConstantInt
>(Vector
->getOperand(Idx
))) {
1520 if (Masked
->isZero())
1521 // Mask is constant false, so no instrumentation needed.
1523 // If we have a true or undef value, fall through to doInstrumentAddress
1524 // with InsertBefore == I
1528 Value
*MaskElem
= IRB
.CreateExtractElement(Mask
, Idx
);
1529 Instruction
*ThenTerm
= SplitBlockAndInsertIfThen(MaskElem
, I
, false);
1530 InsertBefore
= ThenTerm
;
1533 IRBuilder
<> IRB(InsertBefore
);
1534 InstrumentedAddress
=
1535 IRB
.CreateGEP(VTy
, Addr
, {Zero
, ConstantInt::get(IntptrTy
, Idx
)});
1536 doInstrumentAddress(Pass
, I
, InsertBefore
, InstrumentedAddress
, Alignment
,
1537 Granularity
, ElemTypeSize
, IsWrite
, SizeArgument
,
1542 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
,
1543 Instruction
*I
, bool UseCalls
,
1544 const DataLayout
&DL
) {
1545 bool IsWrite
= false;
1546 unsigned Alignment
= 0;
1547 uint64_t TypeSize
= 0;
1548 Value
*MaybeMask
= nullptr;
1550 isInterestingMemoryAccess(I
, &IsWrite
, &TypeSize
, &Alignment
, &MaybeMask
);
1553 // Optimization experiments.
1554 // The experiments can be used to evaluate potential optimizations that remove
1555 // instrumentation (assess false negatives). Instead of completely removing
1556 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1557 // experiments that want to remove instrumentation of this instruction).
1558 // If Exp is non-zero, this pass will emit special calls into runtime
1559 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1560 // make runtime terminate the program in a special way (with a different
1561 // exit status). Then you run the new compiler on a buggy corpus, collect
1562 // the special terminations (ideally, you don't see them at all -- no false
1563 // negatives) and make the decision on the optimization.
1564 uint32_t Exp
= ClForceExperiment
;
1566 if (ClOpt
&& ClOptGlobals
) {
1567 // If initialization order checking is disabled, a simple access to a
1568 // dynamically initialized global is always valid.
1569 GlobalVariable
*G
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(Addr
, DL
));
1570 if (G
&& (!ClInitializers
|| GlobalIsLinkerInitialized(G
)) &&
1571 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1572 NumOptimizedAccessesToGlobalVar
++;
1577 if (ClOpt
&& ClOptStack
) {
1578 // A direct inbounds access to a stack variable is always valid.
1579 if (isa
<AllocaInst
>(GetUnderlyingObject(Addr
, DL
)) &&
1580 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1581 NumOptimizedAccessesToStackVar
++;
1587 NumInstrumentedWrites
++;
1589 NumInstrumentedReads
++;
1591 unsigned Granularity
= 1 << Mapping
.Scale
;
1593 instrumentMaskedLoadOrStore(this, DL
, IntptrTy
, MaybeMask
, I
, Addr
,
1594 Alignment
, Granularity
, TypeSize
, IsWrite
,
1595 nullptr, UseCalls
, Exp
);
1597 doInstrumentAddress(this, I
, I
, Addr
, Alignment
, Granularity
, TypeSize
,
1598 IsWrite
, nullptr, UseCalls
, Exp
);
1602 Instruction
*AddressSanitizer::generateCrashCode(Instruction
*InsertBefore
,
1603 Value
*Addr
, bool IsWrite
,
1604 size_t AccessSizeIndex
,
1605 Value
*SizeArgument
,
1607 IRBuilder
<> IRB(InsertBefore
);
1608 Value
*ExpVal
= Exp
== 0 ? nullptr : ConstantInt::get(IRB
.getInt32Ty(), Exp
);
1609 CallInst
*Call
= nullptr;
1612 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][0],
1613 {Addr
, SizeArgument
});
1615 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][1],
1616 {Addr
, SizeArgument
, ExpVal
});
1620 IRB
.CreateCall(AsanErrorCallback
[IsWrite
][0][AccessSizeIndex
], Addr
);
1622 Call
= IRB
.CreateCall(AsanErrorCallback
[IsWrite
][1][AccessSizeIndex
],
1626 // We don't do Call->setDoesNotReturn() because the BB already has
1627 // UnreachableInst at the end.
1628 // This EmptyAsm is required to avoid callback merge.
1629 IRB
.CreateCall(EmptyAsm
, {});
1633 Value
*AddressSanitizer::createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
1635 uint32_t TypeSize
) {
1636 size_t Granularity
= static_cast<size_t>(1) << Mapping
.Scale
;
1637 // Addr & (Granularity - 1)
1638 Value
*LastAccessedByte
=
1639 IRB
.CreateAnd(AddrLong
, ConstantInt::get(IntptrTy
, Granularity
- 1));
1640 // (Addr & (Granularity - 1)) + size - 1
1641 if (TypeSize
/ 8 > 1)
1642 LastAccessedByte
= IRB
.CreateAdd(
1643 LastAccessedByte
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1));
1644 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1646 IRB
.CreateIntCast(LastAccessedByte
, ShadowValue
->getType(), false);
1647 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1648 return IRB
.CreateICmpSGE(LastAccessedByte
, ShadowValue
);
1651 void AddressSanitizer::instrumentAddress(Instruction
*OrigIns
,
1652 Instruction
*InsertBefore
, Value
*Addr
,
1653 uint32_t TypeSize
, bool IsWrite
,
1654 Value
*SizeArgument
, bool UseCalls
,
1656 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
1658 IRBuilder
<> IRB(InsertBefore
);
1659 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1660 size_t AccessSizeIndex
= TypeSizeToSizeIndex(TypeSize
);
1664 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][0][AccessSizeIndex
],
1667 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][1][AccessSizeIndex
],
1668 {AddrLong
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1673 // Strip the cache bit and do range check.
1674 // AddrLong &= ~kMyriadCacheBitMask32
1675 AddrLong
= IRB
.CreateAnd(AddrLong
, ~kMyriadCacheBitMask32
);
1676 // Tag = AddrLong >> kMyriadTagShift
1677 Value
*Tag
= IRB
.CreateLShr(AddrLong
, kMyriadTagShift
);
1678 // Tag == kMyriadDDRTag
1680 IRB
.CreateICmpEQ(Tag
, ConstantInt::get(IntptrTy
, kMyriadDDRTag
));
1682 Instruction
*TagCheckTerm
=
1683 SplitBlockAndInsertIfThen(TagCheck
, InsertBefore
, false,
1684 MDBuilder(*C
).createBranchWeights(1, 100000));
1685 assert(cast
<BranchInst
>(TagCheckTerm
)->isUnconditional());
1686 IRB
.SetInsertPoint(TagCheckTerm
);
1687 InsertBefore
= TagCheckTerm
;
1691 IntegerType::get(*C
, std::max(8U, TypeSize
>> Mapping
.Scale
));
1692 Type
*ShadowPtrTy
= PointerType::get(ShadowTy
, 0);
1693 Value
*ShadowPtr
= memToShadow(AddrLong
, IRB
);
1694 Value
*CmpVal
= Constant::getNullValue(ShadowTy
);
1695 Value
*ShadowValue
=
1696 IRB
.CreateLoad(ShadowTy
, IRB
.CreateIntToPtr(ShadowPtr
, ShadowPtrTy
));
1698 Value
*Cmp
= IRB
.CreateICmpNE(ShadowValue
, CmpVal
);
1699 size_t Granularity
= 1ULL << Mapping
.Scale
;
1700 Instruction
*CrashTerm
= nullptr;
1702 if (ClAlwaysSlowPath
|| (TypeSize
< 8 * Granularity
)) {
1703 // We use branch weights for the slow path check, to indicate that the slow
1704 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1705 Instruction
*CheckTerm
= SplitBlockAndInsertIfThen(
1706 Cmp
, InsertBefore
, false, MDBuilder(*C
).createBranchWeights(1, 100000));
1707 assert(cast
<BranchInst
>(CheckTerm
)->isUnconditional());
1708 BasicBlock
*NextBB
= CheckTerm
->getSuccessor(0);
1709 IRB
.SetInsertPoint(CheckTerm
);
1710 Value
*Cmp2
= createSlowPathCmp(IRB
, AddrLong
, ShadowValue
, TypeSize
);
1712 CrashTerm
= SplitBlockAndInsertIfThen(Cmp2
, CheckTerm
, false);
1714 BasicBlock
*CrashBlock
=
1715 BasicBlock::Create(*C
, "", NextBB
->getParent(), NextBB
);
1716 CrashTerm
= new UnreachableInst(*C
, CrashBlock
);
1717 BranchInst
*NewTerm
= BranchInst::Create(CrashBlock
, NextBB
, Cmp2
);
1718 ReplaceInstWithInst(CheckTerm
, NewTerm
);
1721 CrashTerm
= SplitBlockAndInsertIfThen(Cmp
, InsertBefore
, !Recover
);
1724 Instruction
*Crash
= generateCrashCode(CrashTerm
, AddrLong
, IsWrite
,
1725 AccessSizeIndex
, SizeArgument
, Exp
);
1726 Crash
->setDebugLoc(OrigIns
->getDebugLoc());
1729 // Instrument unusual size or unusual alignment.
1730 // We can not do it with a single check, so we do 1-byte check for the first
1731 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1732 // to report the actual access size.
1733 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1734 Instruction
*I
, Instruction
*InsertBefore
, Value
*Addr
, uint32_t TypeSize
,
1735 bool IsWrite
, Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
) {
1736 IRBuilder
<> IRB(InsertBefore
);
1737 Value
*Size
= ConstantInt::get(IntptrTy
, TypeSize
/ 8);
1738 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1741 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][0],
1744 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][1],
1745 {AddrLong
, Size
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1747 Value
*LastByte
= IRB
.CreateIntToPtr(
1748 IRB
.CreateAdd(AddrLong
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1)),
1750 instrumentAddress(I
, InsertBefore
, Addr
, 8, IsWrite
, Size
, false, Exp
);
1751 instrumentAddress(I
, InsertBefore
, LastByte
, 8, IsWrite
, Size
, false, Exp
);
1755 void ModuleAddressSanitizer::poisonOneInitializer(Function
&GlobalInit
,
1756 GlobalValue
*ModuleName
) {
1757 // Set up the arguments to our poison/unpoison functions.
1758 IRBuilder
<> IRB(&GlobalInit
.front(),
1759 GlobalInit
.front().getFirstInsertionPt());
1761 // Add a call to poison all external globals before the given function starts.
1762 Value
*ModuleNameAddr
= ConstantExpr::getPointerCast(ModuleName
, IntptrTy
);
1763 IRB
.CreateCall(AsanPoisonGlobals
, ModuleNameAddr
);
1765 // Add calls to unpoison all globals before each return instruction.
1766 for (auto &BB
: GlobalInit
.getBasicBlockList())
1767 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1768 CallInst::Create(AsanUnpoisonGlobals
, "", RI
);
1771 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1772 Module
&M
, GlobalValue
*ModuleName
) {
1773 GlobalVariable
*GV
= M
.getGlobalVariable("llvm.global_ctors");
1777 ConstantArray
*CA
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1781 for (Use
&OP
: CA
->operands()) {
1782 if (isa
<ConstantAggregateZero
>(OP
)) continue;
1783 ConstantStruct
*CS
= cast
<ConstantStruct
>(OP
);
1785 // Must have a function or null ptr.
1786 if (Function
*F
= dyn_cast
<Function
>(CS
->getOperand(1))) {
1787 if (F
->getName() == kAsanModuleCtorName
) continue;
1788 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
1789 // Don't instrument CTORs that will run before asan.module_ctor.
1790 if (Priority
->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple
))
1792 poisonOneInitializer(*F
, ModuleName
);
1797 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable
*G
) {
1798 Type
*Ty
= G
->getValueType();
1799 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G
<< "\n");
1801 // FIXME: Metadata should be attched directly to the global directly instead
1802 // of being added to llvm.asan.globals.
1803 if (GlobalsMD
.get(G
).IsBlacklisted
) return false;
1804 if (!Ty
->isSized()) return false;
1805 if (!G
->hasInitializer()) return false;
1806 if (GlobalWasGeneratedByCompiler(G
)) return false; // Our own globals.
1807 // Two problems with thread-locals:
1808 // - The address of the main thread's copy can't be computed at link-time.
1809 // - Need to poison all copies, not just the main thread's one.
1810 if (G
->isThreadLocal()) return false;
1811 // For now, just ignore this Global if the alignment is large.
1812 if (G
->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1814 // For non-COFF targets, only instrument globals known to be defined by this
1816 // FIXME: We can instrument comdat globals on ELF if we are using the
1817 // GC-friendly metadata scheme.
1818 if (!TargetTriple
.isOSBinFormatCOFF()) {
1819 if (!G
->hasExactDefinition() || G
->hasComdat())
1822 // On COFF, don't instrument non-ODR linkages.
1823 if (G
->isInterposable())
1827 // If a comdat is present, it must have a selection kind that implies ODR
1828 // semantics: no duplicates, any, or exact match.
1829 if (Comdat
*C
= G
->getComdat()) {
1830 switch (C
->getSelectionKind()) {
1832 case Comdat::ExactMatch
:
1833 case Comdat::NoDuplicates
:
1835 case Comdat::Largest
:
1836 case Comdat::SameSize
:
1841 if (G
->hasSection()) {
1842 StringRef Section
= G
->getSection();
1844 // Globals from llvm.metadata aren't emitted, do not instrument them.
1845 if (Section
== "llvm.metadata") return false;
1846 // Do not instrument globals from special LLVM sections.
1847 if (Section
.find("__llvm") != StringRef::npos
|| Section
.find("__LLVM") != StringRef::npos
) return false;
1849 // Do not instrument function pointers to initialization and termination
1850 // routines: dynamic linker will not properly handle redzones.
1851 if (Section
.startswith(".preinit_array") ||
1852 Section
.startswith(".init_array") ||
1853 Section
.startswith(".fini_array")) {
1857 // On COFF, if the section name contains '$', it is highly likely that the
1858 // user is using section sorting to create an array of globals similar to
1859 // the way initialization callbacks are registered in .init_array and
1860 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1861 // to such globals is counterproductive, because the intent is that they
1862 // will form an array, and out-of-bounds accesses are expected.
1863 // See https://github.com/google/sanitizers/issues/305
1864 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1865 if (TargetTriple
.isOSBinFormatCOFF() && Section
.contains('$')) {
1866 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1871 if (TargetTriple
.isOSBinFormatMachO()) {
1872 StringRef ParsedSegment
, ParsedSection
;
1873 unsigned TAA
= 0, StubSize
= 0;
1875 std::string ErrorCode
= MCSectionMachO::ParseSectionSpecifier(
1876 Section
, ParsedSegment
, ParsedSection
, TAA
, TAAParsed
, StubSize
);
1877 assert(ErrorCode
.empty() && "Invalid section specifier.");
1879 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1880 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1882 if (ParsedSegment
== "__OBJC" ||
1883 (ParsedSegment
== "__DATA" && ParsedSection
.startswith("__objc_"))) {
1884 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G
<< "\n");
1887 // See https://github.com/google/sanitizers/issues/32
1888 // Constant CFString instances are compiled in the following way:
1889 // -- the string buffer is emitted into
1890 // __TEXT,__cstring,cstring_literals
1891 // -- the constant NSConstantString structure referencing that buffer
1892 // is placed into __DATA,__cfstring
1893 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1894 // Moreover, it causes the linker to crash on OS X 10.7
1895 if (ParsedSegment
== "__DATA" && ParsedSection
== "__cfstring") {
1896 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G
<< "\n");
1899 // The linker merges the contents of cstring_literals and removes the
1901 if (ParsedSegment
== "__TEXT" && (TAA
& MachO::S_CSTRING_LITERALS
)) {
1902 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G
<< "\n");
1911 // On Mach-O platforms, we emit global metadata in a separate section of the
1912 // binary in order to allow the linker to properly dead strip. This is only
1913 // supported on recent versions of ld64.
1914 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1915 if (!TargetTriple
.isOSBinFormatMachO())
1918 if (TargetTriple
.isMacOSX() && !TargetTriple
.isMacOSXVersionLT(10, 11))
1920 if (TargetTriple
.isiOS() /* or tvOS */ && !TargetTriple
.isOSVersionLT(9))
1922 if (TargetTriple
.isWatchOS() && !TargetTriple
.isOSVersionLT(2))
1928 StringRef
ModuleAddressSanitizer::getGlobalMetadataSection() const {
1929 switch (TargetTriple
.getObjectFormat()) {
1930 case Triple::COFF
: return ".ASAN$GL";
1931 case Triple::ELF
: return "asan_globals";
1932 case Triple::MachO
: return "__DATA,__asan_globals,regular";
1936 "ModuleAddressSanitizer not implemented for object file format.");
1937 case Triple::UnknownObjectFormat
:
1940 llvm_unreachable("unsupported object format");
1943 void ModuleAddressSanitizer::initializeCallbacks(Module
&M
) {
1944 IRBuilder
<> IRB(*C
);
1946 // Declare our poisoning and unpoisoning functions.
1948 M
.getOrInsertFunction(kAsanPoisonGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1949 AsanUnpoisonGlobals
=
1950 M
.getOrInsertFunction(kAsanUnpoisonGlobalsName
, IRB
.getVoidTy());
1952 // Declare functions that register/unregister globals.
1953 AsanRegisterGlobals
= M
.getOrInsertFunction(
1954 kAsanRegisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1955 AsanUnregisterGlobals
= M
.getOrInsertFunction(
1956 kAsanUnregisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1958 // Declare the functions that find globals in a shared object and then invoke
1959 // the (un)register function on them.
1960 AsanRegisterImageGlobals
= M
.getOrInsertFunction(
1961 kAsanRegisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1962 AsanUnregisterImageGlobals
= M
.getOrInsertFunction(
1963 kAsanUnregisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1965 AsanRegisterElfGlobals
=
1966 M
.getOrInsertFunction(kAsanRegisterElfGlobalsName
, IRB
.getVoidTy(),
1967 IntptrTy
, IntptrTy
, IntptrTy
);
1968 AsanUnregisterElfGlobals
=
1969 M
.getOrInsertFunction(kAsanUnregisterElfGlobalsName
, IRB
.getVoidTy(),
1970 IntptrTy
, IntptrTy
, IntptrTy
);
1973 // Put the metadata and the instrumented global in the same group. This ensures
1974 // that the metadata is discarded if the instrumented global is discarded.
1975 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1976 GlobalVariable
*G
, GlobalVariable
*Metadata
, StringRef InternalSuffix
) {
1977 Module
&M
= *G
->getParent();
1978 Comdat
*C
= G
->getComdat();
1980 if (!G
->hasName()) {
1981 // If G is unnamed, it must be internal. Give it an artificial name
1982 // so we can put it in a comdat.
1983 assert(G
->hasLocalLinkage());
1984 G
->setName(Twine(kAsanGenPrefix
) + "_anon_global");
1987 if (!InternalSuffix
.empty() && G
->hasLocalLinkage()) {
1988 std::string Name
= G
->getName();
1989 Name
+= InternalSuffix
;
1990 C
= M
.getOrInsertComdat(Name
);
1992 C
= M
.getOrInsertComdat(G
->getName());
1995 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1996 // linkage to internal linkage so that a symbol table entry is emitted. This
1997 // is necessary in order to create the comdat group.
1998 if (TargetTriple
.isOSBinFormatCOFF()) {
1999 C
->setSelectionKind(Comdat::NoDuplicates
);
2000 if (G
->hasPrivateLinkage())
2001 G
->setLinkage(GlobalValue::InternalLinkage
);
2006 assert(G
->hasComdat());
2007 Metadata
->setComdat(G
->getComdat());
2010 // Create a separate metadata global and put it in the appropriate ASan
2011 // global registration section.
2013 ModuleAddressSanitizer::CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
2014 StringRef OriginalName
) {
2015 auto Linkage
= TargetTriple
.isOSBinFormatMachO()
2016 ? GlobalVariable::InternalLinkage
2017 : GlobalVariable::PrivateLinkage
;
2018 GlobalVariable
*Metadata
= new GlobalVariable(
2019 M
, Initializer
->getType(), false, Linkage
, Initializer
,
2020 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName
));
2021 Metadata
->setSection(getGlobalMetadataSection());
2025 IRBuilder
<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module
&M
) {
2027 Function::Create(FunctionType::get(Type::getVoidTy(*C
), false),
2028 GlobalValue::InternalLinkage
, kAsanModuleDtorName
, &M
);
2029 BasicBlock
*AsanDtorBB
= BasicBlock::Create(*C
, "", AsanDtorFunction
);
2031 return IRBuilder
<>(ReturnInst::Create(*C
, AsanDtorBB
));
2034 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2035 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2036 ArrayRef
<Constant
*> MetadataInitializers
) {
2037 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2038 auto &DL
= M
.getDataLayout();
2040 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2041 Constant
*Initializer
= MetadataInitializers
[i
];
2042 GlobalVariable
*G
= ExtendedGlobals
[i
];
2043 GlobalVariable
*Metadata
=
2044 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2046 // The MSVC linker always inserts padding when linking incrementally. We
2047 // cope with that by aligning each struct to its size, which must be a power
2049 unsigned SizeOfGlobalStruct
= DL
.getTypeAllocSize(Initializer
->getType());
2050 assert(isPowerOf2_32(SizeOfGlobalStruct
) &&
2051 "global metadata will not be padded appropriately");
2052 Metadata
->setAlignment(SizeOfGlobalStruct
);
2054 SetComdatForGlobalMetadata(G
, Metadata
, "");
2058 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2059 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2060 ArrayRef
<Constant
*> MetadataInitializers
,
2061 const std::string
&UniqueModuleId
) {
2062 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2064 SmallVector
<GlobalValue
*, 16> MetadataGlobals(ExtendedGlobals
.size());
2065 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2066 GlobalVariable
*G
= ExtendedGlobals
[i
];
2067 GlobalVariable
*Metadata
=
2068 CreateMetadataGlobal(M
, MetadataInitializers
[i
], G
->getName());
2069 MDNode
*MD
= MDNode::get(M
.getContext(), ValueAsMetadata::get(G
));
2070 Metadata
->setMetadata(LLVMContext::MD_associated
, MD
);
2071 MetadataGlobals
[i
] = Metadata
;
2073 SetComdatForGlobalMetadata(G
, Metadata
, UniqueModuleId
);
2076 // Update llvm.compiler.used, adding the new metadata globals. This is
2077 // needed so that during LTO these variables stay alive.
2078 if (!MetadataGlobals
.empty())
2079 appendToCompilerUsed(M
, MetadataGlobals
);
2081 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2082 // to look up the loaded image that contains it. Second, we can store in it
2083 // whether registration has already occurred, to prevent duplicate
2086 // Common linkage ensures that there is only one global per shared library.
2087 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2088 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2089 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2090 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2092 // Create start and stop symbols.
2093 GlobalVariable
*StartELFMetadata
= new GlobalVariable(
2094 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2095 "__start_" + getGlobalMetadataSection());
2096 StartELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2097 GlobalVariable
*StopELFMetadata
= new GlobalVariable(
2098 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2099 "__stop_" + getGlobalMetadataSection());
2100 StopELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2102 // Create a call to register the globals with the runtime.
2103 IRB
.CreateCall(AsanRegisterElfGlobals
,
2104 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2105 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2106 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2108 // We also need to unregister globals at the end, e.g., when a shared library
2110 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2111 IRB_Dtor
.CreateCall(AsanUnregisterElfGlobals
,
2112 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2113 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2114 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2117 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2118 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2119 ArrayRef
<Constant
*> MetadataInitializers
) {
2120 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2122 // On recent Mach-O platforms, use a structure which binds the liveness of
2123 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2124 // created to be added to llvm.compiler.used
2125 StructType
*LivenessTy
= StructType::get(IntptrTy
, IntptrTy
);
2126 SmallVector
<GlobalValue
*, 16> LivenessGlobals(ExtendedGlobals
.size());
2128 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2129 Constant
*Initializer
= MetadataInitializers
[i
];
2130 GlobalVariable
*G
= ExtendedGlobals
[i
];
2131 GlobalVariable
*Metadata
=
2132 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2134 // On recent Mach-O platforms, we emit the global metadata in a way that
2135 // allows the linker to properly strip dead globals.
2136 auto LivenessBinder
=
2137 ConstantStruct::get(LivenessTy
, Initializer
->getAggregateElement(0u),
2138 ConstantExpr::getPointerCast(Metadata
, IntptrTy
));
2139 GlobalVariable
*Liveness
= new GlobalVariable(
2140 M
, LivenessTy
, false, GlobalVariable::InternalLinkage
, LivenessBinder
,
2141 Twine("__asan_binder_") + G
->getName());
2142 Liveness
->setSection("__DATA,__asan_liveness,regular,live_support");
2143 LivenessGlobals
[i
] = Liveness
;
2146 // Update llvm.compiler.used, adding the new liveness globals. This is
2147 // needed so that during LTO these variables stay alive. The alternative
2148 // would be to have the linker handling the LTO symbols, but libLTO
2149 // current API does not expose access to the section for each symbol.
2150 if (!LivenessGlobals
.empty())
2151 appendToCompilerUsed(M
, LivenessGlobals
);
2153 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2154 // to look up the loaded image that contains it. Second, we can store in it
2155 // whether registration has already occurred, to prevent duplicate
2158 // common linkage ensures that there is only one global per shared library.
2159 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2160 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2161 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2162 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2164 IRB
.CreateCall(AsanRegisterImageGlobals
,
2165 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2167 // We also need to unregister globals at the end, e.g., when a shared library
2169 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2170 IRB_Dtor
.CreateCall(AsanUnregisterImageGlobals
,
2171 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2174 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2175 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2176 ArrayRef
<Constant
*> MetadataInitializers
) {
2177 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2178 unsigned N
= ExtendedGlobals
.size();
2181 // On platforms that don't have a custom metadata section, we emit an array
2182 // of global metadata structures.
2183 ArrayType
*ArrayOfGlobalStructTy
=
2184 ArrayType::get(MetadataInitializers
[0]->getType(), N
);
2185 auto AllGlobals
= new GlobalVariable(
2186 M
, ArrayOfGlobalStructTy
, false, GlobalVariable::InternalLinkage
,
2187 ConstantArray::get(ArrayOfGlobalStructTy
, MetadataInitializers
), "");
2188 if (Mapping
.Scale
> 3)
2189 AllGlobals
->setAlignment(1ULL << Mapping
.Scale
);
2191 IRB
.CreateCall(AsanRegisterGlobals
,
2192 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2193 ConstantInt::get(IntptrTy
, N
)});
2195 // We also need to unregister globals at the end, e.g., when a shared library
2197 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2198 IRB_Dtor
.CreateCall(AsanUnregisterGlobals
,
2199 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2200 ConstantInt::get(IntptrTy
, N
)});
2203 // This function replaces all global variables with new variables that have
2204 // trailing redzones. It also creates a function that poisons
2205 // redzones and inserts this function into llvm.global_ctors.
2206 // Sets *CtorComdat to true if the global registration code emitted into the
2207 // asan constructor is comdat-compatible.
2208 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
,
2210 *CtorComdat
= false;
2212 SmallVector
<GlobalVariable
*, 16> GlobalsToChange
;
2214 for (auto &G
: M
.globals()) {
2215 if (ShouldInstrumentGlobal(&G
)) GlobalsToChange
.push_back(&G
);
2218 size_t n
= GlobalsToChange
.size();
2224 auto &DL
= M
.getDataLayout();
2226 // A global is described by a structure
2229 // size_t size_with_redzone;
2230 // const char *name;
2231 // const char *module_name;
2232 // size_t has_dynamic_init;
2233 // void *source_location;
2234 // size_t odr_indicator;
2235 // We initialize an array of such structures and pass it to a run-time call.
2236 StructType
*GlobalStructTy
=
2237 StructType::get(IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
,
2238 IntptrTy
, IntptrTy
, IntptrTy
);
2239 SmallVector
<GlobalVariable
*, 16> NewGlobals(n
);
2240 SmallVector
<Constant
*, 16> Initializers(n
);
2242 bool HasDynamicallyInitializedGlobals
= false;
2244 // We shouldn't merge same module names, as this string serves as unique
2245 // module ID in runtime.
2246 GlobalVariable
*ModuleName
= createPrivateGlobalForString(
2247 M
, M
.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix
);
2249 for (size_t i
= 0; i
< n
; i
++) {
2250 static const uint64_t kMaxGlobalRedzone
= 1 << 18;
2251 GlobalVariable
*G
= GlobalsToChange
[i
];
2253 // FIXME: Metadata should be attched directly to the global directly instead
2254 // of being added to llvm.asan.globals.
2255 auto MD
= GlobalsMD
.get(G
);
2256 StringRef NameForGlobal
= G
->getName();
2257 // Create string holding the global name (use global name from metadata
2258 // if it's available, otherwise just write the name of global variable).
2259 GlobalVariable
*Name
= createPrivateGlobalForString(
2260 M
, MD
.Name
.empty() ? NameForGlobal
: MD
.Name
,
2261 /*AllowMerging*/ true, kAsanGenPrefix
);
2263 Type
*Ty
= G
->getValueType();
2264 uint64_t SizeInBytes
= DL
.getTypeAllocSize(Ty
);
2265 uint64_t MinRZ
= MinRedzoneSizeForGlobal();
2266 // MinRZ <= RZ <= kMaxGlobalRedzone
2267 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2268 uint64_t RZ
= std::max(
2269 MinRZ
, std::min(kMaxGlobalRedzone
, (SizeInBytes
/ MinRZ
/ 4) * MinRZ
));
2270 uint64_t RightRedzoneSize
= RZ
;
2271 // Round up to MinRZ
2272 if (SizeInBytes
% MinRZ
) RightRedzoneSize
+= MinRZ
- (SizeInBytes
% MinRZ
);
2273 assert(((RightRedzoneSize
+ SizeInBytes
) % MinRZ
) == 0);
2274 Type
*RightRedZoneTy
= ArrayType::get(IRB
.getInt8Ty(), RightRedzoneSize
);
2276 StructType
*NewTy
= StructType::get(Ty
, RightRedZoneTy
);
2277 Constant
*NewInitializer
= ConstantStruct::get(
2278 NewTy
, G
->getInitializer(), Constant::getNullValue(RightRedZoneTy
));
2280 // Create a new global variable with enough space for a redzone.
2281 GlobalValue::LinkageTypes Linkage
= G
->getLinkage();
2282 if (G
->isConstant() && Linkage
== GlobalValue::PrivateLinkage
)
2283 Linkage
= GlobalValue::InternalLinkage
;
2284 GlobalVariable
*NewGlobal
=
2285 new GlobalVariable(M
, NewTy
, G
->isConstant(), Linkage
, NewInitializer
,
2286 "", G
, G
->getThreadLocalMode());
2287 NewGlobal
->copyAttributesFrom(G
);
2288 NewGlobal
->setComdat(G
->getComdat());
2289 NewGlobal
->setAlignment(MinRZ
);
2290 // Don't fold globals with redzones. ODR violation detector and redzone
2291 // poisoning implicitly creates a dependence on the global's address, so it
2292 // is no longer valid for it to be marked unnamed_addr.
2293 NewGlobal
->setUnnamedAddr(GlobalValue::UnnamedAddr::None
);
2295 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2296 if (TargetTriple
.isOSBinFormatMachO() && !G
->hasSection() &&
2298 auto Seq
= dyn_cast
<ConstantDataSequential
>(G
->getInitializer());
2299 if (Seq
&& Seq
->isCString())
2300 NewGlobal
->setSection("__TEXT,__asan_cstring,regular");
2303 // Transfer the debug info. The payload starts at offset zero so we can
2304 // copy the debug info over as is.
2305 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
2306 G
->getDebugInfo(GVs
);
2307 for (auto *GV
: GVs
)
2308 NewGlobal
->addDebugInfo(GV
);
2311 Indices2
[0] = IRB
.getInt32(0);
2312 Indices2
[1] = IRB
.getInt32(0);
2314 G
->replaceAllUsesWith(
2315 ConstantExpr::getGetElementPtr(NewTy
, NewGlobal
, Indices2
, true));
2316 NewGlobal
->takeName(G
);
2317 G
->eraseFromParent();
2318 NewGlobals
[i
] = NewGlobal
;
2320 Constant
*SourceLoc
;
2321 if (!MD
.SourceLoc
.empty()) {
2322 auto SourceLocGlobal
= createPrivateGlobalForSourceLoc(M
, MD
.SourceLoc
);
2323 SourceLoc
= ConstantExpr::getPointerCast(SourceLocGlobal
, IntptrTy
);
2325 SourceLoc
= ConstantInt::get(IntptrTy
, 0);
2328 Constant
*ODRIndicator
= ConstantExpr::getNullValue(IRB
.getInt8PtrTy());
2329 GlobalValue
*InstrumentedGlobal
= NewGlobal
;
2331 bool CanUsePrivateAliases
=
2332 TargetTriple
.isOSBinFormatELF() || TargetTriple
.isOSBinFormatMachO() ||
2333 TargetTriple
.isOSBinFormatWasm();
2334 if (CanUsePrivateAliases
&& UsePrivateAlias
) {
2335 // Create local alias for NewGlobal to avoid crash on ODR between
2336 // instrumented and non-instrumented libraries.
2337 InstrumentedGlobal
=
2338 GlobalAlias::create(GlobalValue::PrivateLinkage
, "", NewGlobal
);
2341 // ODR should not happen for local linkage.
2342 if (NewGlobal
->hasLocalLinkage()) {
2343 ODRIndicator
= ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy
, -1),
2344 IRB
.getInt8PtrTy());
2345 } else if (UseOdrIndicator
) {
2346 // With local aliases, we need to provide another externally visible
2347 // symbol __odr_asan_XXX to detect ODR violation.
2348 auto *ODRIndicatorSym
=
2349 new GlobalVariable(M
, IRB
.getInt8Ty(), false, Linkage
,
2350 Constant::getNullValue(IRB
.getInt8Ty()),
2351 kODRGenPrefix
+ NameForGlobal
, nullptr,
2352 NewGlobal
->getThreadLocalMode());
2354 // Set meaningful attributes for indicator symbol.
2355 ODRIndicatorSym
->setVisibility(NewGlobal
->getVisibility());
2356 ODRIndicatorSym
->setDLLStorageClass(NewGlobal
->getDLLStorageClass());
2357 ODRIndicatorSym
->setAlignment(1);
2358 ODRIndicator
= ODRIndicatorSym
;
2361 Constant
*Initializer
= ConstantStruct::get(
2363 ConstantExpr::getPointerCast(InstrumentedGlobal
, IntptrTy
),
2364 ConstantInt::get(IntptrTy
, SizeInBytes
),
2365 ConstantInt::get(IntptrTy
, SizeInBytes
+ RightRedzoneSize
),
2366 ConstantExpr::getPointerCast(Name
, IntptrTy
),
2367 ConstantExpr::getPointerCast(ModuleName
, IntptrTy
),
2368 ConstantInt::get(IntptrTy
, MD
.IsDynInit
), SourceLoc
,
2369 ConstantExpr::getPointerCast(ODRIndicator
, IntptrTy
));
2371 if (ClInitializers
&& MD
.IsDynInit
) HasDynamicallyInitializedGlobals
= true;
2373 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal
<< "\n");
2375 Initializers
[i
] = Initializer
;
2378 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2379 // ConstantMerge'ing them.
2380 SmallVector
<GlobalValue
*, 16> GlobalsToAddToUsedList
;
2381 for (size_t i
= 0; i
< n
; i
++) {
2382 GlobalVariable
*G
= NewGlobals
[i
];
2383 if (G
->getName().empty()) continue;
2384 GlobalsToAddToUsedList
.push_back(G
);
2386 appendToCompilerUsed(M
, ArrayRef
<GlobalValue
*>(GlobalsToAddToUsedList
));
2388 std::string ELFUniqueModuleId
=
2389 (UseGlobalsGC
&& TargetTriple
.isOSBinFormatELF()) ? getUniqueModuleId(&M
)
2392 if (!ELFUniqueModuleId
.empty()) {
2393 InstrumentGlobalsELF(IRB
, M
, NewGlobals
, Initializers
, ELFUniqueModuleId
);
2395 } else if (UseGlobalsGC
&& TargetTriple
.isOSBinFormatCOFF()) {
2396 InstrumentGlobalsCOFF(IRB
, M
, NewGlobals
, Initializers
);
2397 } else if (UseGlobalsGC
&& ShouldUseMachOGlobalsSection()) {
2398 InstrumentGlobalsMachO(IRB
, M
, NewGlobals
, Initializers
);
2400 InstrumentGlobalsWithMetadataArray(IRB
, M
, NewGlobals
, Initializers
);
2403 // Create calls for poisoning before initializers run and unpoisoning after.
2404 if (HasDynamicallyInitializedGlobals
)
2405 createInitializerPoisonCalls(M
, ModuleName
);
2407 LLVM_DEBUG(dbgs() << M
);
2411 int ModuleAddressSanitizer::GetAsanVersion(const Module
&M
) const {
2412 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
2413 bool isAndroid
= Triple(M
.getTargetTriple()).isAndroid();
2415 // 32-bit Android is one version ahead because of the switch to dynamic
2417 Version
+= (LongSize
== 32 && isAndroid
);
2421 bool ModuleAddressSanitizer::instrumentModule(Module
&M
) {
2422 initializeCallbacks(M
);
2427 // Create a module constructor. A destructor is created lazily because not all
2428 // platforms, and not all modules need it.
2429 std::string VersionCheckName
=
2430 kAsanVersionCheckNamePrefix
+ std::to_string(GetAsanVersion(M
));
2431 std::tie(AsanCtorFunction
, std::ignore
) = createSanitizerCtorAndInitFunctions(
2432 M
, kAsanModuleCtorName
, kAsanInitName
, /*InitArgTypes=*/{},
2433 /*InitArgs=*/{}, VersionCheckName
);
2435 bool CtorComdat
= true;
2436 bool Changed
= false;
2437 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2439 IRBuilder
<> IRB(AsanCtorFunction
->getEntryBlock().getTerminator());
2440 Changed
|= InstrumentGlobals(IRB
, M
, &CtorComdat
);
2443 const uint64_t Priority
= GetCtorAndDtorPriority(TargetTriple
);
2445 // Put the constructor and destructor in comdat if both
2446 // (1) global instrumentation is not TU-specific
2447 // (2) target is ELF.
2448 if (UseCtorComdat
&& TargetTriple
.isOSBinFormatELF() && CtorComdat
) {
2449 AsanCtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleCtorName
));
2450 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
, AsanCtorFunction
);
2451 if (AsanDtorFunction
) {
2452 AsanDtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleDtorName
));
2453 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
, AsanDtorFunction
);
2456 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
);
2457 if (AsanDtorFunction
)
2458 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
);
2464 void AddressSanitizer::initializeCallbacks(Module
&M
) {
2465 IRBuilder
<> IRB(*C
);
2466 // Create __asan_report* callbacks.
2467 // IsWrite, TypeSize and Exp are encoded in the function name.
2468 for (int Exp
= 0; Exp
< 2; Exp
++) {
2469 for (size_t AccessIsWrite
= 0; AccessIsWrite
<= 1; AccessIsWrite
++) {
2470 const std::string TypeStr
= AccessIsWrite
? "store" : "load";
2471 const std::string ExpStr
= Exp
? "exp_" : "";
2472 const std::string EndingStr
= Recover
? "_noabort" : "";
2474 SmallVector
<Type
*, 3> Args2
= {IntptrTy
, IntptrTy
};
2475 SmallVector
<Type
*, 2> Args1
{1, IntptrTy
};
2477 Type
*ExpType
= Type::getInt32Ty(*C
);
2478 Args2
.push_back(ExpType
);
2479 Args1
.push_back(ExpType
);
2481 AsanErrorCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2482 kAsanReportErrorTemplate
+ ExpStr
+ TypeStr
+ "_n" + EndingStr
,
2483 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2485 AsanMemoryAccessCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2486 ClMemoryAccessCallbackPrefix
+ ExpStr
+ TypeStr
+ "N" + EndingStr
,
2487 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2489 for (size_t AccessSizeIndex
= 0; AccessSizeIndex
< kNumberOfAccessSizes
;
2490 AccessSizeIndex
++) {
2491 const std::string Suffix
= TypeStr
+ itostr(1ULL << AccessSizeIndex
);
2492 AsanErrorCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2493 M
.getOrInsertFunction(
2494 kAsanReportErrorTemplate
+ ExpStr
+ Suffix
+ EndingStr
,
2495 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2497 AsanMemoryAccessCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2498 M
.getOrInsertFunction(
2499 ClMemoryAccessCallbackPrefix
+ ExpStr
+ Suffix
+ EndingStr
,
2500 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2505 const std::string MemIntrinCallbackPrefix
=
2506 CompileKernel
? std::string("") : ClMemoryAccessCallbackPrefix
;
2507 AsanMemmove
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memmove",
2508 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2509 IRB
.getInt8PtrTy(), IntptrTy
);
2510 AsanMemcpy
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memcpy",
2511 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2512 IRB
.getInt8PtrTy(), IntptrTy
);
2513 AsanMemset
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memset",
2514 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2515 IRB
.getInt32Ty(), IntptrTy
);
2517 AsanHandleNoReturnFunc
=
2518 M
.getOrInsertFunction(kAsanHandleNoReturnName
, IRB
.getVoidTy());
2520 AsanPtrCmpFunction
=
2521 M
.getOrInsertFunction(kAsanPtrCmp
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2522 AsanPtrSubFunction
=
2523 M
.getOrInsertFunction(kAsanPtrSub
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2524 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2525 EmptyAsm
= InlineAsm::get(FunctionType::get(IRB
.getVoidTy(), false),
2526 StringRef(""), StringRef(""),
2527 /*hasSideEffects=*/true);
2528 if (Mapping
.InGlobal
)
2529 AsanShadowGlobal
= M
.getOrInsertGlobal("__asan_shadow",
2530 ArrayType::get(IRB
.getInt8Ty(), 0));
2533 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function
&F
) {
2534 // For each NSObject descendant having a +load method, this method is invoked
2535 // by the ObjC runtime before any of the static constructors is called.
2536 // Therefore we need to instrument such methods with a call to __asan_init
2537 // at the beginning in order to initialize our runtime before any access to
2538 // the shadow memory.
2539 // We cannot just ignore these methods, because they may call other
2540 // instrumented functions.
2541 if (F
.getName().find(" load]") != std::string::npos
) {
2542 FunctionCallee AsanInitFunction
=
2543 declareSanitizerInitFunction(*F
.getParent(), kAsanInitName
, {});
2544 IRBuilder
<> IRB(&F
.front(), F
.front().begin());
2545 IRB
.CreateCall(AsanInitFunction
, {});
2551 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function
&F
) {
2552 // Generate code only when dynamic addressing is needed.
2553 if (Mapping
.Offset
!= kDynamicShadowSentinel
)
2556 IRBuilder
<> IRB(&F
.front().front());
2557 if (Mapping
.InGlobal
) {
2558 if (ClWithIfuncSuppressRemat
) {
2559 // An empty inline asm with input reg == output reg.
2560 // An opaque pointer-to-int cast, basically.
2561 InlineAsm
*Asm
= InlineAsm::get(
2562 FunctionType::get(IntptrTy
, {AsanShadowGlobal
->getType()}, false),
2563 StringRef(""), StringRef("=r,0"),
2564 /*hasSideEffects=*/false);
2565 LocalDynamicShadow
=
2566 IRB
.CreateCall(Asm
, {AsanShadowGlobal
}, ".asan.shadow");
2568 LocalDynamicShadow
=
2569 IRB
.CreatePointerCast(AsanShadowGlobal
, IntptrTy
, ".asan.shadow");
2572 Value
*GlobalDynamicAddress
= F
.getParent()->getOrInsertGlobal(
2573 kAsanShadowMemoryDynamicAddress
, IntptrTy
);
2574 LocalDynamicShadow
= IRB
.CreateLoad(IntptrTy
, GlobalDynamicAddress
);
2578 void AddressSanitizer::markEscapedLocalAllocas(Function
&F
) {
2579 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2580 // to it as uninteresting. This assumes we haven't started processing allocas
2581 // yet. This check is done up front because iterating the use list in
2582 // isInterestingAlloca would be algorithmically slower.
2583 assert(ProcessedAllocas
.empty() && "must process localescape before allocas");
2585 // Try to get the declaration of llvm.localescape. If it's not in the module,
2586 // we can exit early.
2587 if (!F
.getParent()->getFunction("llvm.localescape")) return;
2589 // Look for a call to llvm.localescape call in the entry block. It can't be in
2591 for (Instruction
&I
: F
.getEntryBlock()) {
2592 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
);
2593 if (II
&& II
->getIntrinsicID() == Intrinsic::localescape
) {
2594 // We found a call. Mark all the allocas passed in as uninteresting.
2595 for (Value
*Arg
: II
->arg_operands()) {
2596 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
2597 assert(AI
&& AI
->isStaticAlloca() &&
2598 "non-static alloca arg to localescape");
2599 ProcessedAllocas
[AI
] = false;
2606 bool AddressSanitizer::instrumentFunction(Function
&F
,
2607 const TargetLibraryInfo
*TLI
) {
2608 if (F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
) return false;
2609 if (!ClDebugFunc
.empty() && ClDebugFunc
== F
.getName()) return false;
2610 if (F
.getName().startswith("__asan_")) return false;
2612 bool FunctionModified
= false;
2614 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2615 // This function needs to be called even if the function body is not
2617 if (maybeInsertAsanInitAtFunctionEntry(F
))
2618 FunctionModified
= true;
2620 // Leave if the function doesn't need instrumentation.
2621 if (!F
.hasFnAttribute(Attribute::SanitizeAddress
)) return FunctionModified
;
2623 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F
<< "\n");
2625 initializeCallbacks(*F
.getParent());
2627 FunctionStateRAII
CleanupObj(this);
2629 maybeInsertDynamicShadowAtFunctionEntry(F
);
2631 // We can't instrument allocas used with llvm.localescape. Only static allocas
2632 // can be passed to that intrinsic.
2633 markEscapedLocalAllocas(F
);
2635 // We want to instrument every address only once per basic block (unless there
2636 // are calls between uses).
2637 SmallPtrSet
<Value
*, 16> TempsToInstrument
;
2638 SmallVector
<Instruction
*, 16> ToInstrument
;
2639 SmallVector
<Instruction
*, 8> NoReturnCalls
;
2640 SmallVector
<BasicBlock
*, 16> AllBlocks
;
2641 SmallVector
<Instruction
*, 16> PointerComparisonsOrSubtracts
;
2647 // Fill the set of memory operations to instrument.
2648 for (auto &BB
: F
) {
2649 AllBlocks
.push_back(&BB
);
2650 TempsToInstrument
.clear();
2651 int NumInsnsPerBB
= 0;
2652 for (auto &Inst
: BB
) {
2653 if (LooksLikeCodeInBug11395(&Inst
)) return false;
2654 Value
*MaybeMask
= nullptr;
2655 if (Value
*Addr
= isInterestingMemoryAccess(&Inst
, &IsWrite
, &TypeSize
,
2656 &Alignment
, &MaybeMask
)) {
2657 if (ClOpt
&& ClOptSameTemp
) {
2658 // If we have a mask, skip instrumentation if we've already
2659 // instrumented the full object. But don't add to TempsToInstrument
2660 // because we might get another load/store with a different mask.
2662 if (TempsToInstrument
.count(Addr
))
2663 continue; // We've seen this (whole) temp in the current BB.
2665 if (!TempsToInstrument
.insert(Addr
).second
)
2666 continue; // We've seen this temp in the current BB.
2669 } else if (((ClInvalidPointerPairs
|| ClInvalidPointerCmp
) &&
2670 isInterestingPointerComparison(&Inst
)) ||
2671 ((ClInvalidPointerPairs
|| ClInvalidPointerSub
) &&
2672 isInterestingPointerSubtraction(&Inst
))) {
2673 PointerComparisonsOrSubtracts
.push_back(&Inst
);
2675 } else if (isa
<MemIntrinsic
>(Inst
)) {
2678 if (isa
<AllocaInst
>(Inst
)) NumAllocas
++;
2681 // A call inside BB.
2682 TempsToInstrument
.clear();
2683 if (CS
.doesNotReturn() && !CS
->getMetadata("nosanitize"))
2684 NoReturnCalls
.push_back(CS
.getInstruction());
2686 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
2687 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, TLI
);
2690 ToInstrument
.push_back(&Inst
);
2692 if (NumInsnsPerBB
>= ClMaxInsnsToInstrumentPerBB
) break;
2697 (ClInstrumentationWithCallsThreshold
>= 0 &&
2698 ToInstrument
.size() > (unsigned)ClInstrumentationWithCallsThreshold
);
2699 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2700 ObjectSizeOpts ObjSizeOpts
;
2701 ObjSizeOpts
.RoundToAlign
= true;
2702 ObjectSizeOffsetVisitor
ObjSizeVis(DL
, TLI
, F
.getContext(), ObjSizeOpts
);
2705 int NumInstrumented
= 0;
2706 for (auto Inst
: ToInstrument
) {
2707 if (ClDebugMin
< 0 || ClDebugMax
< 0 ||
2708 (NumInstrumented
>= ClDebugMin
&& NumInstrumented
<= ClDebugMax
)) {
2709 if (isInterestingMemoryAccess(Inst
, &IsWrite
, &TypeSize
, &Alignment
))
2710 instrumentMop(ObjSizeVis
, Inst
, UseCalls
,
2711 F
.getParent()->getDataLayout());
2713 instrumentMemIntrinsic(cast
<MemIntrinsic
>(Inst
));
2718 FunctionStackPoisoner
FSP(F
, *this);
2719 bool ChangedStack
= FSP
.runOnFunction();
2721 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2722 // See e.g. https://github.com/google/sanitizers/issues/37
2723 for (auto CI
: NoReturnCalls
) {
2724 IRBuilder
<> IRB(CI
);
2725 IRB
.CreateCall(AsanHandleNoReturnFunc
, {});
2728 for (auto Inst
: PointerComparisonsOrSubtracts
) {
2729 instrumentPointerComparisonOrSubtraction(Inst
);
2733 if (NumInstrumented
> 0 || ChangedStack
|| !NoReturnCalls
.empty())
2734 FunctionModified
= true;
2736 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified
<< " "
2739 return FunctionModified
;
2742 // Workaround for bug 11395: we don't want to instrument stack in functions
2743 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2744 // FIXME: remove once the bug 11395 is fixed.
2745 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction
*I
) {
2746 if (LongSize
!= 32) return false;
2747 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2748 if (!CI
|| !CI
->isInlineAsm()) return false;
2749 if (CI
->getNumArgOperands() <= 5) return false;
2750 // We have inline assembly with quite a few arguments.
2754 void FunctionStackPoisoner::initializeCallbacks(Module
&M
) {
2755 IRBuilder
<> IRB(*C
);
2756 for (int i
= 0; i
<= kMaxAsanStackMallocSizeClass
; i
++) {
2757 std::string Suffix
= itostr(i
);
2758 AsanStackMallocFunc
[i
] = M
.getOrInsertFunction(
2759 kAsanStackMallocNameTemplate
+ Suffix
, IntptrTy
, IntptrTy
);
2760 AsanStackFreeFunc
[i
] =
2761 M
.getOrInsertFunction(kAsanStackFreeNameTemplate
+ Suffix
,
2762 IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2764 if (ASan
.UseAfterScope
) {
2765 AsanPoisonStackMemoryFunc
= M
.getOrInsertFunction(
2766 kAsanPoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2767 AsanUnpoisonStackMemoryFunc
= M
.getOrInsertFunction(
2768 kAsanUnpoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2771 for (size_t Val
: {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2772 std::ostringstream Name
;
2773 Name
<< kAsanSetShadowPrefix
;
2774 Name
<< std::setw(2) << std::setfill('0') << std::hex
<< Val
;
2775 AsanSetShadowFunc
[Val
] =
2776 M
.getOrInsertFunction(Name
.str(), IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2779 AsanAllocaPoisonFunc
= M
.getOrInsertFunction(
2780 kAsanAllocaPoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2781 AsanAllocasUnpoisonFunc
= M
.getOrInsertFunction(
2782 kAsanAllocasUnpoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2785 void FunctionStackPoisoner::copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
2786 ArrayRef
<uint8_t> ShadowBytes
,
2787 size_t Begin
, size_t End
,
2789 Value
*ShadowBase
) {
2793 const size_t LargestStoreSizeInBytes
=
2794 std::min
<size_t>(sizeof(uint64_t), ASan
.LongSize
/ 8);
2796 const bool IsLittleEndian
= F
.getParent()->getDataLayout().isLittleEndian();
2798 // Poison given range in shadow using larges store size with out leading and
2799 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2800 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2801 // middle of a store.
2802 for (size_t i
= Begin
; i
< End
;) {
2803 if (!ShadowMask
[i
]) {
2804 assert(!ShadowBytes
[i
]);
2809 size_t StoreSizeInBytes
= LargestStoreSizeInBytes
;
2810 // Fit store size into the range.
2811 while (StoreSizeInBytes
> End
- i
)
2812 StoreSizeInBytes
/= 2;
2814 // Minimize store size by trimming trailing zeros.
2815 for (size_t j
= StoreSizeInBytes
- 1; j
&& !ShadowMask
[i
+ j
]; --j
) {
2816 while (j
<= StoreSizeInBytes
/ 2)
2817 StoreSizeInBytes
/= 2;
2821 for (size_t j
= 0; j
< StoreSizeInBytes
; j
++) {
2823 Val
|= (uint64_t)ShadowBytes
[i
+ j
] << (8 * j
);
2825 Val
= (Val
<< 8) | ShadowBytes
[i
+ j
];
2828 Value
*Ptr
= IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
));
2829 Value
*Poison
= IRB
.getIntN(StoreSizeInBytes
* 8, Val
);
2830 IRB
.CreateAlignedStore(
2831 Poison
, IRB
.CreateIntToPtr(Ptr
, Poison
->getType()->getPointerTo()), 1);
2833 i
+= StoreSizeInBytes
;
2837 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2838 ArrayRef
<uint8_t> ShadowBytes
,
2839 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2840 copyToShadow(ShadowMask
, ShadowBytes
, 0, ShadowMask
.size(), IRB
, ShadowBase
);
2843 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2844 ArrayRef
<uint8_t> ShadowBytes
,
2845 size_t Begin
, size_t End
,
2846 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2847 assert(ShadowMask
.size() == ShadowBytes
.size());
2848 size_t Done
= Begin
;
2849 for (size_t i
= Begin
, j
= Begin
+ 1; i
< End
; i
= j
++) {
2850 if (!ShadowMask
[i
]) {
2851 assert(!ShadowBytes
[i
]);
2854 uint8_t Val
= ShadowBytes
[i
];
2855 if (!AsanSetShadowFunc
[Val
])
2858 // Skip same values.
2859 for (; j
< End
&& ShadowMask
[j
] && Val
== ShadowBytes
[j
]; ++j
) {
2862 if (j
- i
>= ClMaxInlinePoisoningSize
) {
2863 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, i
, IRB
, ShadowBase
);
2864 IRB
.CreateCall(AsanSetShadowFunc
[Val
],
2865 {IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
)),
2866 ConstantInt::get(IntptrTy
, j
- i
)});
2871 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, End
, IRB
, ShadowBase
);
2874 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2875 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2876 static int StackMallocSizeClass(uint64_t LocalStackSize
) {
2877 assert(LocalStackSize
<= kMaxStackMallocSize
);
2878 uint64_t MaxSize
= kMinStackMallocSize
;
2879 for (int i
= 0;; i
++, MaxSize
*= 2)
2880 if (LocalStackSize
<= MaxSize
) return i
;
2881 llvm_unreachable("impossible LocalStackSize");
2884 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2885 Instruction
*CopyInsertPoint
= &F
.front().front();
2886 if (CopyInsertPoint
== ASan
.LocalDynamicShadow
) {
2887 // Insert after the dynamic shadow location is determined
2888 CopyInsertPoint
= CopyInsertPoint
->getNextNode();
2889 assert(CopyInsertPoint
);
2891 IRBuilder
<> IRB(CopyInsertPoint
);
2892 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2893 for (Argument
&Arg
: F
.args()) {
2894 if (Arg
.hasByValAttr()) {
2895 Type
*Ty
= Arg
.getType()->getPointerElementType();
2896 unsigned Align
= Arg
.getParamAlignment();
2897 if (Align
== 0) Align
= DL
.getABITypeAlignment(Ty
);
2899 AllocaInst
*AI
= IRB
.CreateAlloca(
2901 (Arg
.hasName() ? Arg
.getName() : "Arg" + Twine(Arg
.getArgNo())) +
2903 AI
->setAlignment(Align
);
2904 Arg
.replaceAllUsesWith(AI
);
2906 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
);
2907 IRB
.CreateMemCpy(AI
, Align
, &Arg
, Align
, AllocSize
);
2912 PHINode
*FunctionStackPoisoner::createPHI(IRBuilder
<> &IRB
, Value
*Cond
,
2914 Instruction
*ThenTerm
,
2915 Value
*ValueIfFalse
) {
2916 PHINode
*PHI
= IRB
.CreatePHI(IntptrTy
, 2);
2917 BasicBlock
*CondBlock
= cast
<Instruction
>(Cond
)->getParent();
2918 PHI
->addIncoming(ValueIfFalse
, CondBlock
);
2919 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
2920 PHI
->addIncoming(ValueIfTrue
, ThenBlock
);
2924 Value
*FunctionStackPoisoner::createAllocaForLayout(
2925 IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
, bool Dynamic
) {
2928 Alloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(),
2929 ConstantInt::get(IRB
.getInt64Ty(), L
.FrameSize
),
2932 Alloca
= IRB
.CreateAlloca(ArrayType::get(IRB
.getInt8Ty(), L
.FrameSize
),
2933 nullptr, "MyAlloca");
2934 assert(Alloca
->isStaticAlloca());
2936 assert((ClRealignStack
& (ClRealignStack
- 1)) == 0);
2937 size_t FrameAlignment
= std::max(L
.FrameAlignment
, (size_t)ClRealignStack
);
2938 Alloca
->setAlignment(FrameAlignment
);
2939 return IRB
.CreatePointerCast(Alloca
, IntptrTy
);
2942 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2943 BasicBlock
&FirstBB
= *F
.begin();
2944 IRBuilder
<> IRB(dyn_cast
<Instruction
>(FirstBB
.begin()));
2945 DynamicAllocaLayout
= IRB
.CreateAlloca(IntptrTy
, nullptr);
2946 IRB
.CreateStore(Constant::getNullValue(IntptrTy
), DynamicAllocaLayout
);
2947 DynamicAllocaLayout
->setAlignment(32);
2950 void FunctionStackPoisoner::processDynamicAllocas() {
2951 if (!ClInstrumentDynamicAllocas
|| DynamicAllocaVec
.empty()) {
2952 assert(DynamicAllocaPoisonCallVec
.empty());
2956 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2957 for (const auto &APC
: DynamicAllocaPoisonCallVec
) {
2958 assert(APC
.InsBefore
);
2960 assert(ASan
.isInterestingAlloca(*APC
.AI
));
2961 assert(!APC
.AI
->isStaticAlloca());
2963 IRBuilder
<> IRB(APC
.InsBefore
);
2964 poisonAlloca(APC
.AI
, APC
.Size
, IRB
, APC
.DoPoison
);
2965 // Dynamic allocas will be unpoisoned unconditionally below in
2966 // unpoisonDynamicAllocas.
2967 // Flag that we need unpoison static allocas.
2970 // Handle dynamic allocas.
2971 createDynamicAllocasInitStorage();
2972 for (auto &AI
: DynamicAllocaVec
)
2973 handleDynamicAllocaCall(AI
);
2974 unpoisonDynamicAllocas();
2977 void FunctionStackPoisoner::processStaticAllocas() {
2978 if (AllocaVec
.empty()) {
2979 assert(StaticAllocaPoisonCallVec
.empty());
2983 int StackMallocIdx
= -1;
2984 DebugLoc EntryDebugLocation
;
2985 if (auto SP
= F
.getSubprogram())
2986 EntryDebugLocation
= DebugLoc::get(SP
->getScopeLine(), 0, SP
);
2988 Instruction
*InsBefore
= AllocaVec
[0];
2989 IRBuilder
<> IRB(InsBefore
);
2990 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
2992 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2993 // debug info is broken, because only entry-block allocas are treated as
2994 // regular stack slots.
2995 auto InsBeforeB
= InsBefore
->getParent();
2996 assert(InsBeforeB
== &F
.getEntryBlock());
2997 for (auto *AI
: StaticAllocasToMoveUp
)
2998 if (AI
->getParent() == InsBeforeB
)
2999 AI
->moveBefore(InsBefore
);
3001 // If we have a call to llvm.localescape, keep it in the entry block.
3002 if (LocalEscapeCall
) LocalEscapeCall
->moveBefore(InsBefore
);
3004 SmallVector
<ASanStackVariableDescription
, 16> SVD
;
3005 SVD
.reserve(AllocaVec
.size());
3006 for (AllocaInst
*AI
: AllocaVec
) {
3007 ASanStackVariableDescription D
= {AI
->getName().data(),
3008 ASan
.getAllocaSizeInBytes(*AI
),
3017 // Minimal header size (left redzone) is 4 pointers,
3018 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3019 size_t Granularity
= 1ULL << Mapping
.Scale
;
3020 size_t MinHeaderSize
= std::max((size_t)ASan
.LongSize
/ 2, Granularity
);
3021 const ASanStackFrameLayout
&L
=
3022 ComputeASanStackFrameLayout(SVD
, Granularity
, MinHeaderSize
);
3024 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3025 DenseMap
<const AllocaInst
*, ASanStackVariableDescription
*> AllocaToSVDMap
;
3026 for (auto &Desc
: SVD
)
3027 AllocaToSVDMap
[Desc
.AI
] = &Desc
;
3029 // Update SVD with information from lifetime intrinsics.
3030 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3031 assert(APC
.InsBefore
);
3033 assert(ASan
.isInterestingAlloca(*APC
.AI
));
3034 assert(APC
.AI
->isStaticAlloca());
3036 ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3037 Desc
.LifetimeSize
= Desc
.Size
;
3038 if (const DILocation
*FnLoc
= EntryDebugLocation
.get()) {
3039 if (const DILocation
*LifetimeLoc
= APC
.InsBefore
->getDebugLoc().get()) {
3040 if (LifetimeLoc
->getFile() == FnLoc
->getFile())
3041 if (unsigned Line
= LifetimeLoc
->getLine())
3042 Desc
.Line
= std::min(Desc
.Line
? Desc
.Line
: Line
, Line
);
3047 auto DescriptionString
= ComputeASanStackFrameDescription(SVD
);
3048 LLVM_DEBUG(dbgs() << DescriptionString
<< " --- " << L
.FrameSize
<< "\n");
3049 uint64_t LocalStackSize
= L
.FrameSize
;
3050 bool DoStackMalloc
= ClUseAfterReturn
&& !ASan
.CompileKernel
&&
3051 LocalStackSize
<= kMaxStackMallocSize
;
3052 bool DoDynamicAlloca
= ClDynamicAllocaStack
;
3053 // Don't do dynamic alloca or stack malloc if:
3054 // 1) There is inline asm: too often it makes assumptions on which registers
3056 // 2) There is a returns_twice call (typically setjmp), which is
3057 // optimization-hostile, and doesn't play well with introduced indirect
3058 // register-relative calculation of local variable addresses.
3059 DoDynamicAlloca
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3060 DoStackMalloc
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3062 Value
*StaticAlloca
=
3063 DoDynamicAlloca
? nullptr : createAllocaForLayout(IRB
, L
, false);
3066 Value
*LocalStackBase
;
3067 Value
*LocalStackBaseAlloca
;
3068 uint8_t DIExprFlags
= DIExpression::ApplyOffset
;
3070 if (DoStackMalloc
) {
3071 LocalStackBaseAlloca
=
3072 IRB
.CreateAlloca(IntptrTy
, nullptr, "asan_local_stack_base");
3073 // void *FakeStack = __asan_option_detect_stack_use_after_return
3074 // ? __asan_stack_malloc_N(LocalStackSize)
3076 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3077 Constant
*OptionDetectUseAfterReturn
= F
.getParent()->getOrInsertGlobal(
3078 kAsanOptionDetectUseAfterReturn
, IRB
.getInt32Ty());
3079 Value
*UseAfterReturnIsEnabled
= IRB
.CreateICmpNE(
3080 IRB
.CreateLoad(IRB
.getInt32Ty(), OptionDetectUseAfterReturn
),
3081 Constant::getNullValue(IRB
.getInt32Ty()));
3083 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled
, InsBefore
, false);
3084 IRBuilder
<> IRBIf(Term
);
3085 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3086 StackMallocIdx
= StackMallocSizeClass(LocalStackSize
);
3087 assert(StackMallocIdx
<= kMaxAsanStackMallocSizeClass
);
3088 Value
*FakeStackValue
=
3089 IRBIf
.CreateCall(AsanStackMallocFunc
[StackMallocIdx
],
3090 ConstantInt::get(IntptrTy
, LocalStackSize
));
3091 IRB
.SetInsertPoint(InsBefore
);
3092 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3093 FakeStack
= createPHI(IRB
, UseAfterReturnIsEnabled
, FakeStackValue
, Term
,
3094 ConstantInt::get(IntptrTy
, 0));
3096 Value
*NoFakeStack
=
3097 IRB
.CreateICmpEQ(FakeStack
, Constant::getNullValue(IntptrTy
));
3098 Term
= SplitBlockAndInsertIfThen(NoFakeStack
, InsBefore
, false);
3099 IRBIf
.SetInsertPoint(Term
);
3100 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3101 Value
*AllocaValue
=
3102 DoDynamicAlloca
? createAllocaForLayout(IRBIf
, L
, true) : StaticAlloca
;
3104 IRB
.SetInsertPoint(InsBefore
);
3105 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3106 LocalStackBase
= createPHI(IRB
, NoFakeStack
, AllocaValue
, Term
, FakeStack
);
3107 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3108 IRB
.CreateStore(LocalStackBase
, LocalStackBaseAlloca
);
3109 DIExprFlags
|= DIExpression::DerefBefore
;
3111 // void *FakeStack = nullptr;
3112 // void *LocalStackBase = alloca(LocalStackSize);
3113 FakeStack
= ConstantInt::get(IntptrTy
, 0);
3115 DoDynamicAlloca
? createAllocaForLayout(IRB
, L
, true) : StaticAlloca
;
3116 LocalStackBaseAlloca
= LocalStackBase
;
3119 // Replace Alloca instructions with base+offset.
3120 for (const auto &Desc
: SVD
) {
3121 AllocaInst
*AI
= Desc
.AI
;
3122 replaceDbgDeclareForAlloca(AI
, LocalStackBaseAlloca
, DIB
, DIExprFlags
,
3124 Value
*NewAllocaPtr
= IRB
.CreateIntToPtr(
3125 IRB
.CreateAdd(LocalStackBase
, ConstantInt::get(IntptrTy
, Desc
.Offset
)),
3127 AI
->replaceAllUsesWith(NewAllocaPtr
);
3130 // The left-most redzone has enough space for at least 4 pointers.
3131 // Write the Magic value to redzone[0].
3132 Value
*BasePlus0
= IRB
.CreateIntToPtr(LocalStackBase
, IntptrPtrTy
);
3133 IRB
.CreateStore(ConstantInt::get(IntptrTy
, kCurrentStackFrameMagic
),
3135 // Write the frame description constant to redzone[1].
3136 Value
*BasePlus1
= IRB
.CreateIntToPtr(
3137 IRB
.CreateAdd(LocalStackBase
,
3138 ConstantInt::get(IntptrTy
, ASan
.LongSize
/ 8)),
3140 GlobalVariable
*StackDescriptionGlobal
=
3141 createPrivateGlobalForString(*F
.getParent(), DescriptionString
,
3142 /*AllowMerging*/ true, kAsanGenPrefix
);
3143 Value
*Description
= IRB
.CreatePointerCast(StackDescriptionGlobal
, IntptrTy
);
3144 IRB
.CreateStore(Description
, BasePlus1
);
3145 // Write the PC to redzone[2].
3146 Value
*BasePlus2
= IRB
.CreateIntToPtr(
3147 IRB
.CreateAdd(LocalStackBase
,
3148 ConstantInt::get(IntptrTy
, 2 * ASan
.LongSize
/ 8)),
3150 IRB
.CreateStore(IRB
.CreatePointerCast(&F
, IntptrTy
), BasePlus2
);
3152 const auto &ShadowAfterScope
= GetShadowBytesAfterScope(SVD
, L
);
3154 // Poison the stack red zones at the entry.
3155 Value
*ShadowBase
= ASan
.memToShadow(LocalStackBase
, IRB
);
3156 // As mask we must use most poisoned case: red zones and after scope.
3157 // As bytes we can use either the same or just red zones only.
3158 copyToShadow(ShadowAfterScope
, ShadowAfterScope
, IRB
, ShadowBase
);
3160 if (!StaticAllocaPoisonCallVec
.empty()) {
3161 const auto &ShadowInScope
= GetShadowBytes(SVD
, L
);
3163 // Poison static allocas near lifetime intrinsics.
3164 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3165 const ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3166 assert(Desc
.Offset
% L
.Granularity
== 0);
3167 size_t Begin
= Desc
.Offset
/ L
.Granularity
;
3168 size_t End
= Begin
+ (APC
.Size
+ L
.Granularity
- 1) / L
.Granularity
;
3170 IRBuilder
<> IRB(APC
.InsBefore
);
3171 copyToShadow(ShadowAfterScope
,
3172 APC
.DoPoison
? ShadowAfterScope
: ShadowInScope
, Begin
, End
,
3177 SmallVector
<uint8_t, 64> ShadowClean(ShadowAfterScope
.size(), 0);
3178 SmallVector
<uint8_t, 64> ShadowAfterReturn
;
3180 // (Un)poison the stack before all ret instructions.
3181 for (auto Ret
: RetVec
) {
3182 IRBuilder
<> IRBRet(Ret
);
3183 // Mark the current frame as retired.
3184 IRBRet
.CreateStore(ConstantInt::get(IntptrTy
, kRetiredStackFrameMagic
),
3186 if (DoStackMalloc
) {
3187 assert(StackMallocIdx
>= 0);
3188 // if FakeStack != 0 // LocalStackBase == FakeStack
3189 // // In use-after-return mode, poison the whole stack frame.
3190 // if StackMallocIdx <= 4
3191 // // For small sizes inline the whole thing:
3192 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3193 // **SavedFlagPtr(FakeStack) = 0
3195 // __asan_stack_free_N(FakeStack, LocalStackSize)
3197 // <This is not a fake stack; unpoison the redzones>
3199 IRBRet
.CreateICmpNE(FakeStack
, Constant::getNullValue(IntptrTy
));
3200 Instruction
*ThenTerm
, *ElseTerm
;
3201 SplitBlockAndInsertIfThenElse(Cmp
, Ret
, &ThenTerm
, &ElseTerm
);
3203 IRBuilder
<> IRBPoison(ThenTerm
);
3204 if (StackMallocIdx
<= 4) {
3205 int ClassSize
= kMinStackMallocSize
<< StackMallocIdx
;
3206 ShadowAfterReturn
.resize(ClassSize
/ L
.Granularity
,
3207 kAsanStackUseAfterReturnMagic
);
3208 copyToShadow(ShadowAfterReturn
, ShadowAfterReturn
, IRBPoison
,
3210 Value
*SavedFlagPtrPtr
= IRBPoison
.CreateAdd(
3212 ConstantInt::get(IntptrTy
, ClassSize
- ASan
.LongSize
/ 8));
3213 Value
*SavedFlagPtr
= IRBPoison
.CreateLoad(
3214 IntptrTy
, IRBPoison
.CreateIntToPtr(SavedFlagPtrPtr
, IntptrPtrTy
));
3215 IRBPoison
.CreateStore(
3216 Constant::getNullValue(IRBPoison
.getInt8Ty()),
3217 IRBPoison
.CreateIntToPtr(SavedFlagPtr
, IRBPoison
.getInt8PtrTy()));
3219 // For larger frames call __asan_stack_free_*.
3220 IRBPoison
.CreateCall(
3221 AsanStackFreeFunc
[StackMallocIdx
],
3222 {FakeStack
, ConstantInt::get(IntptrTy
, LocalStackSize
)});
3225 IRBuilder
<> IRBElse(ElseTerm
);
3226 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBElse
, ShadowBase
);
3228 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBRet
, ShadowBase
);
3232 // We are done. Remove the old unused alloca instructions.
3233 for (auto AI
: AllocaVec
) AI
->eraseFromParent();
3236 void FunctionStackPoisoner::poisonAlloca(Value
*V
, uint64_t Size
,
3237 IRBuilder
<> &IRB
, bool DoPoison
) {
3238 // For now just insert the call to ASan runtime.
3239 Value
*AddrArg
= IRB
.CreatePointerCast(V
, IntptrTy
);
3240 Value
*SizeArg
= ConstantInt::get(IntptrTy
, Size
);
3242 DoPoison
? AsanPoisonStackMemoryFunc
: AsanUnpoisonStackMemoryFunc
,
3243 {AddrArg
, SizeArg
});
3246 // Handling llvm.lifetime intrinsics for a given %alloca:
3247 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3248 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3249 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3250 // could be poisoned by previous llvm.lifetime.end instruction, as the
3251 // variable may go in and out of scope several times, e.g. in loops).
3252 // (3) if we poisoned at least one %alloca in a function,
3253 // unpoison the whole stack frame at function exit.
3254 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst
*AI
) {
3255 IRBuilder
<> IRB(AI
);
3257 const unsigned Align
= std::max(kAllocaRzSize
, AI
->getAlignment());
3258 const uint64_t AllocaRedzoneMask
= kAllocaRzSize
- 1;
3260 Value
*Zero
= Constant::getNullValue(IntptrTy
);
3261 Value
*AllocaRzSize
= ConstantInt::get(IntptrTy
, kAllocaRzSize
);
3262 Value
*AllocaRzMask
= ConstantInt::get(IntptrTy
, AllocaRedzoneMask
);
3264 // Since we need to extend alloca with additional memory to locate
3265 // redzones, and OldSize is number of allocated blocks with
3266 // ElementSize size, get allocated memory size in bytes by
3267 // OldSize * ElementSize.
3268 const unsigned ElementSize
=
3269 F
.getParent()->getDataLayout().getTypeAllocSize(AI
->getAllocatedType());
3271 IRB
.CreateMul(IRB
.CreateIntCast(AI
->getArraySize(), IntptrTy
, false),
3272 ConstantInt::get(IntptrTy
, ElementSize
));
3274 // PartialSize = OldSize % 32
3275 Value
*PartialSize
= IRB
.CreateAnd(OldSize
, AllocaRzMask
);
3277 // Misalign = kAllocaRzSize - PartialSize;
3278 Value
*Misalign
= IRB
.CreateSub(AllocaRzSize
, PartialSize
);
3280 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3281 Value
*Cond
= IRB
.CreateICmpNE(Misalign
, AllocaRzSize
);
3282 Value
*PartialPadding
= IRB
.CreateSelect(Cond
, Misalign
, Zero
);
3284 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3285 // Align is added to locate left redzone, PartialPadding for possible
3286 // partial redzone and kAllocaRzSize for right redzone respectively.
3287 Value
*AdditionalChunkSize
= IRB
.CreateAdd(
3288 ConstantInt::get(IntptrTy
, Align
+ kAllocaRzSize
), PartialPadding
);
3290 Value
*NewSize
= IRB
.CreateAdd(OldSize
, AdditionalChunkSize
);
3292 // Insert new alloca with new NewSize and Align params.
3293 AllocaInst
*NewAlloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(), NewSize
);
3294 NewAlloca
->setAlignment(Align
);
3296 // NewAddress = Address + Align
3297 Value
*NewAddress
= IRB
.CreateAdd(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
),
3298 ConstantInt::get(IntptrTy
, Align
));
3300 // Insert __asan_alloca_poison call for new created alloca.
3301 IRB
.CreateCall(AsanAllocaPoisonFunc
, {NewAddress
, OldSize
});
3303 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3304 // for unpoisoning stuff.
3305 IRB
.CreateStore(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
), DynamicAllocaLayout
);
3307 Value
*NewAddressPtr
= IRB
.CreateIntToPtr(NewAddress
, AI
->getType());
3309 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3310 AI
->replaceAllUsesWith(NewAddressPtr
);
3312 // We are done. Erase old alloca from parent.
3313 AI
->eraseFromParent();
3316 // isSafeAccess returns true if Addr is always inbounds with respect to its
3317 // base object. For example, it is a field access or an array access with
3318 // constant inbounds index.
3319 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
,
3320 Value
*Addr
, uint64_t TypeSize
) const {
3321 SizeOffsetType SizeOffset
= ObjSizeVis
.compute(Addr
);
3322 if (!ObjSizeVis
.bothKnown(SizeOffset
)) return false;
3323 uint64_t Size
= SizeOffset
.first
.getZExtValue();
3324 int64_t Offset
= SizeOffset
.second
.getSExtValue();
3325 // Three checks are required to ensure safety:
3326 // . Offset >= 0 (since the offset is given from the base ptr)
3327 // . Size >= Offset (unsigned)
3328 // . Size - Offset >= NeededSize (unsigned)
3329 return Offset
>= 0 && Size
>= uint64_t(Offset
) &&
3330 Size
- uint64_t(Offset
) >= TypeSize
/ 8;