[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Instrumentation / AddressSanitizer.cpp
blob62c542a3508b18a2390ad3656585a9a685ff86a0
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
88 using namespace llvm;
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96 std::numeric_limits<uint64_t>::max();
97 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
98 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
99 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
100 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
101 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
102 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
103 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
104 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
105 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
106 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
107 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
108 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
109 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
110 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
111 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
112 static const uint64_t kEmscriptenShadowOffset = 0;
114 static const uint64_t kMyriadShadowScale = 5;
115 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
116 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
117 static const uint64_t kMyriadTagShift = 29;
118 static const uint64_t kMyriadDDRTag = 4;
119 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
121 // The shadow memory space is dynamically allocated.
122 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
124 static const size_t kMinStackMallocSize = 1 << 6; // 64B
125 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
126 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
127 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
129 static const char *const kAsanModuleCtorName = "asan.module_ctor";
130 static const char *const kAsanModuleDtorName = "asan.module_dtor";
131 static const uint64_t kAsanCtorAndDtorPriority = 1;
132 // On Emscripten, the system needs more than one priorities for constructors.
133 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
134 static const char *const kAsanReportErrorTemplate = "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName =
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName =
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName =
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName =
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName =
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
148 static const char *const kAsanInitName = "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix =
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
157 static const char *const kAsanGenPrefix = "___asan_gen_";
158 static const char *const kODRGenPrefix = "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix = "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName =
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName =
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName =
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn =
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress =
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
183 static const unsigned kAllocaRzSize = 32;
185 // Command-line flags.
187 static cl::opt<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden, cl::init(false));
191 static cl::opt<bool> ClRecover(
192 "asan-recover",
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden, cl::init(false));
196 // This flag may need to be replaced with -f[no-]asan-reads.
197 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
198 cl::desc("instrument read instructions"),
199 cl::Hidden, cl::init(true));
201 static cl::opt<bool> ClInstrumentWrites(
202 "asan-instrument-writes", cl::desc("instrument write instructions"),
203 cl::Hidden, cl::init(true));
205 static cl::opt<bool> ClInstrumentAtomics(
206 "asan-instrument-atomics",
207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
208 cl::init(true));
210 static cl::opt<bool> ClAlwaysSlowPath(
211 "asan-always-slow-path",
212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
213 cl::init(false));
215 static cl::opt<bool> ClForceDynamicShadow(
216 "asan-force-dynamic-shadow",
217 cl::desc("Load shadow address into a local variable for each function"),
218 cl::Hidden, cl::init(false));
220 static cl::opt<bool>
221 ClWithIfunc("asan-with-ifunc",
222 cl::desc("Access dynamic shadow through an ifunc global on "
223 "platforms that support this"),
224 cl::Hidden, cl::init(true));
226 static cl::opt<bool> ClWithIfuncSuppressRemat(
227 "asan-with-ifunc-suppress-remat",
228 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
229 "it through inline asm in prologue."),
230 cl::Hidden, cl::init(true));
232 // This flag limits the number of instructions to be instrumented
233 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
235 // set it to 10000.
236 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
237 "asan-max-ins-per-bb", cl::init(10000),
238 cl::desc("maximal number of instructions to instrument in any given BB"),
239 cl::Hidden);
241 // This flag may need to be replaced with -f[no]asan-stack.
242 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
243 cl::Hidden, cl::init(true));
244 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
245 "asan-max-inline-poisoning-size",
246 cl::desc(
247 "Inline shadow poisoning for blocks up to the given size in bytes."),
248 cl::Hidden, cl::init(64));
250 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
251 cl::desc("Check stack-use-after-return"),
252 cl::Hidden, cl::init(true));
254 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
255 cl::desc("Create redzones for byval "
256 "arguments (extra copy "
257 "required)"), cl::Hidden,
258 cl::init(true));
260 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
261 cl::desc("Check stack-use-after-scope"),
262 cl::Hidden, cl::init(false));
264 // This flag may need to be replaced with -f[no]asan-globals.
265 static cl::opt<bool> ClGlobals("asan-globals",
266 cl::desc("Handle global objects"), cl::Hidden,
267 cl::init(true));
269 static cl::opt<bool> ClInitializers("asan-initialization-order",
270 cl::desc("Handle C++ initializer order"),
271 cl::Hidden, cl::init(true));
273 static cl::opt<bool> ClInvalidPointerPairs(
274 "asan-detect-invalid-pointer-pair",
275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
276 cl::init(false));
278 static cl::opt<bool> ClInvalidPointerCmp(
279 "asan-detect-invalid-pointer-cmp",
280 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
281 cl::init(false));
283 static cl::opt<bool> ClInvalidPointerSub(
284 "asan-detect-invalid-pointer-sub",
285 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
286 cl::init(false));
288 static cl::opt<unsigned> ClRealignStack(
289 "asan-realign-stack",
290 cl::desc("Realign stack to the value of this flag (power of two)"),
291 cl::Hidden, cl::init(32));
293 static cl::opt<int> ClInstrumentationWithCallsThreshold(
294 "asan-instrumentation-with-call-threshold",
295 cl::desc(
296 "If the function being instrumented contains more than "
297 "this number of memory accesses, use callbacks instead of "
298 "inline checks (-1 means never use callbacks)."),
299 cl::Hidden, cl::init(7000));
301 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
302 "asan-memory-access-callback-prefix",
303 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
304 cl::init("__asan_"));
306 static cl::opt<bool>
307 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
308 cl::desc("instrument dynamic allocas"),
309 cl::Hidden, cl::init(true));
311 static cl::opt<bool> ClSkipPromotableAllocas(
312 "asan-skip-promotable-allocas",
313 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
314 cl::init(true));
316 // These flags allow to change the shadow mapping.
317 // The shadow mapping looks like
318 // Shadow = (Mem >> scale) + offset
320 static cl::opt<int> ClMappingScale("asan-mapping-scale",
321 cl::desc("scale of asan shadow mapping"),
322 cl::Hidden, cl::init(0));
324 static cl::opt<uint64_t>
325 ClMappingOffset("asan-mapping-offset",
326 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
327 cl::Hidden, cl::init(0));
329 // Optimization flags. Not user visible, used mostly for testing
330 // and benchmarking the tool.
332 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
333 cl::Hidden, cl::init(true));
335 static cl::opt<bool> ClOptSameTemp(
336 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
337 cl::Hidden, cl::init(true));
339 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
340 cl::desc("Don't instrument scalar globals"),
341 cl::Hidden, cl::init(true));
343 static cl::opt<bool> ClOptStack(
344 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
345 cl::Hidden, cl::init(false));
347 static cl::opt<bool> ClDynamicAllocaStack(
348 "asan-stack-dynamic-alloca",
349 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
350 cl::init(true));
352 static cl::opt<uint32_t> ClForceExperiment(
353 "asan-force-experiment",
354 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
355 cl::init(0));
357 static cl::opt<bool>
358 ClUsePrivateAlias("asan-use-private-alias",
359 cl::desc("Use private aliases for global variables"),
360 cl::Hidden, cl::init(false));
362 static cl::opt<bool>
363 ClUseOdrIndicator("asan-use-odr-indicator",
364 cl::desc("Use odr indicators to improve ODR reporting"),
365 cl::Hidden, cl::init(false));
367 static cl::opt<bool>
368 ClUseGlobalsGC("asan-globals-live-support",
369 cl::desc("Use linker features to support dead "
370 "code stripping of globals"),
371 cl::Hidden, cl::init(true));
373 // This is on by default even though there is a bug in gold:
374 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
375 static cl::opt<bool>
376 ClWithComdat("asan-with-comdat",
377 cl::desc("Place ASan constructors in comdat sections"),
378 cl::Hidden, cl::init(true));
380 // Debug flags.
382 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
383 cl::init(0));
385 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
386 cl::Hidden, cl::init(0));
388 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
389 cl::desc("Debug func"));
391 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
392 cl::Hidden, cl::init(-1));
394 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
395 cl::Hidden, cl::init(-1));
397 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
398 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
399 STATISTIC(NumOptimizedAccessesToGlobalVar,
400 "Number of optimized accesses to global vars");
401 STATISTIC(NumOptimizedAccessesToStackVar,
402 "Number of optimized accesses to stack vars");
404 namespace {
406 /// This struct defines the shadow mapping using the rule:
407 /// shadow = (mem >> Scale) ADD-or-OR Offset.
408 /// If InGlobal is true, then
409 /// extern char __asan_shadow[];
410 /// shadow = (mem >> Scale) + &__asan_shadow
411 struct ShadowMapping {
412 int Scale;
413 uint64_t Offset;
414 bool OrShadowOffset;
415 bool InGlobal;
418 } // end anonymous namespace
420 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
421 bool IsKasan) {
422 bool IsAndroid = TargetTriple.isAndroid();
423 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
424 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
425 bool IsNetBSD = TargetTriple.isOSNetBSD();
426 bool IsPS4CPU = TargetTriple.isPS4CPU();
427 bool IsLinux = TargetTriple.isOSLinux();
428 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
429 TargetTriple.getArch() == Triple::ppc64le;
430 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
431 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
432 bool IsMIPS32 = TargetTriple.isMIPS32();
433 bool IsMIPS64 = TargetTriple.isMIPS64();
434 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
435 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
436 bool IsWindows = TargetTriple.isOSWindows();
437 bool IsFuchsia = TargetTriple.isOSFuchsia();
438 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
439 bool IsEmscripten = TargetTriple.isOSEmscripten();
441 ShadowMapping Mapping;
443 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
444 if (ClMappingScale.getNumOccurrences() > 0) {
445 Mapping.Scale = ClMappingScale;
448 if (LongSize == 32) {
449 if (IsAndroid)
450 Mapping.Offset = kDynamicShadowSentinel;
451 else if (IsMIPS32)
452 Mapping.Offset = kMIPS32_ShadowOffset32;
453 else if (IsFreeBSD)
454 Mapping.Offset = kFreeBSD_ShadowOffset32;
455 else if (IsNetBSD)
456 Mapping.Offset = kNetBSD_ShadowOffset32;
457 else if (IsIOS)
458 Mapping.Offset = kDynamicShadowSentinel;
459 else if (IsWindows)
460 Mapping.Offset = kWindowsShadowOffset32;
461 else if (IsEmscripten)
462 Mapping.Offset = kEmscriptenShadowOffset;
463 else if (IsMyriad) {
464 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
465 (kMyriadMemorySize32 >> Mapping.Scale));
466 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
468 else
469 Mapping.Offset = kDefaultShadowOffset32;
470 } else { // LongSize == 64
471 // Fuchsia is always PIE, which means that the beginning of the address
472 // space is always available.
473 if (IsFuchsia)
474 Mapping.Offset = 0;
475 else if (IsPPC64)
476 Mapping.Offset = kPPC64_ShadowOffset64;
477 else if (IsSystemZ)
478 Mapping.Offset = kSystemZ_ShadowOffset64;
479 else if (IsFreeBSD && !IsMIPS64)
480 Mapping.Offset = kFreeBSD_ShadowOffset64;
481 else if (IsNetBSD) {
482 if (IsKasan)
483 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
484 else
485 Mapping.Offset = kNetBSD_ShadowOffset64;
486 } else if (IsPS4CPU)
487 Mapping.Offset = kPS4CPU_ShadowOffset64;
488 else if (IsLinux && IsX86_64) {
489 if (IsKasan)
490 Mapping.Offset = kLinuxKasan_ShadowOffset64;
491 else
492 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
493 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
494 } else if (IsWindows && IsX86_64) {
495 Mapping.Offset = kWindowsShadowOffset64;
496 } else if (IsMIPS64)
497 Mapping.Offset = kMIPS64_ShadowOffset64;
498 else if (IsIOS)
499 Mapping.Offset = kDynamicShadowSentinel;
500 else if (IsAArch64)
501 Mapping.Offset = kAArch64_ShadowOffset64;
502 else
503 Mapping.Offset = kDefaultShadowOffset64;
506 if (ClForceDynamicShadow) {
507 Mapping.Offset = kDynamicShadowSentinel;
510 if (ClMappingOffset.getNumOccurrences() > 0) {
511 Mapping.Offset = ClMappingOffset;
514 // OR-ing shadow offset if more efficient (at least on x86) if the offset
515 // is a power of two, but on ppc64 we have to use add since the shadow
516 // offset is not necessary 1/8-th of the address space. On SystemZ,
517 // we could OR the constant in a single instruction, but it's more
518 // efficient to load it once and use indexed addressing.
519 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
520 !(Mapping.Offset & (Mapping.Offset - 1)) &&
521 Mapping.Offset != kDynamicShadowSentinel;
522 bool IsAndroidWithIfuncSupport =
523 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
524 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
526 return Mapping;
529 static size_t RedzoneSizeForScale(int MappingScale) {
530 // Redzone used for stack and globals is at least 32 bytes.
531 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
532 return std::max(32U, 1U << MappingScale);
535 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
536 if (TargetTriple.isOSEmscripten()) {
537 return kAsanEmscriptenCtorAndDtorPriority;
538 } else {
539 return kAsanCtorAndDtorPriority;
543 namespace {
545 /// Module analysis for getting various metadata about the module.
546 class ASanGlobalsMetadataWrapperPass : public ModulePass {
547 public:
548 static char ID;
550 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
551 initializeASanGlobalsMetadataWrapperPassPass(
552 *PassRegistry::getPassRegistry());
555 bool runOnModule(Module &M) override {
556 GlobalsMD = GlobalsMetadata(M);
557 return false;
560 StringRef getPassName() const override {
561 return "ASanGlobalsMetadataWrapperPass";
564 void getAnalysisUsage(AnalysisUsage &AU) const override {
565 AU.setPreservesAll();
568 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
570 private:
571 GlobalsMetadata GlobalsMD;
574 char ASanGlobalsMetadataWrapperPass::ID = 0;
576 /// AddressSanitizer: instrument the code in module to find memory bugs.
577 struct AddressSanitizer {
578 AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
579 bool CompileKernel = false, bool Recover = false,
580 bool UseAfterScope = false)
581 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) {
582 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
583 this->CompileKernel =
584 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
586 C = &(M.getContext());
587 LongSize = M.getDataLayout().getPointerSizeInBits();
588 IntptrTy = Type::getIntNTy(*C, LongSize);
589 TargetTriple = Triple(M.getTargetTriple());
591 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
594 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
595 uint64_t ArraySize = 1;
596 if (AI.isArrayAllocation()) {
597 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
598 assert(CI && "non-constant array size");
599 ArraySize = CI->getZExtValue();
601 Type *Ty = AI.getAllocatedType();
602 uint64_t SizeInBytes =
603 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
604 return SizeInBytes * ArraySize;
607 /// Check if we want (and can) handle this alloca.
608 bool isInterestingAlloca(const AllocaInst &AI);
610 /// If it is an interesting memory access, return the PointerOperand
611 /// and set IsWrite/Alignment. Otherwise return nullptr.
612 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
613 /// masked load/store.
614 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
615 uint64_t *TypeSize, unsigned *Alignment,
616 Value **MaybeMask = nullptr);
618 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
619 bool UseCalls, const DataLayout &DL);
620 void instrumentPointerComparisonOrSubtraction(Instruction *I);
621 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
622 Value *Addr, uint32_t TypeSize, bool IsWrite,
623 Value *SizeArgument, bool UseCalls, uint32_t Exp);
624 void instrumentUnusualSizeOrAlignment(Instruction *I,
625 Instruction *InsertBefore, Value *Addr,
626 uint32_t TypeSize, bool IsWrite,
627 Value *SizeArgument, bool UseCalls,
628 uint32_t Exp);
629 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
630 Value *ShadowValue, uint32_t TypeSize);
631 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
632 bool IsWrite, size_t AccessSizeIndex,
633 Value *SizeArgument, uint32_t Exp);
634 void instrumentMemIntrinsic(MemIntrinsic *MI);
635 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
636 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
637 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
638 void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
639 void markEscapedLocalAllocas(Function &F);
641 private:
642 friend struct FunctionStackPoisoner;
644 void initializeCallbacks(Module &M);
646 bool LooksLikeCodeInBug11395(Instruction *I);
647 bool GlobalIsLinkerInitialized(GlobalVariable *G);
648 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
649 uint64_t TypeSize) const;
651 /// Helper to cleanup per-function state.
652 struct FunctionStateRAII {
653 AddressSanitizer *Pass;
655 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
656 assert(Pass->ProcessedAllocas.empty() &&
657 "last pass forgot to clear cache");
658 assert(!Pass->LocalDynamicShadow);
661 ~FunctionStateRAII() {
662 Pass->LocalDynamicShadow = nullptr;
663 Pass->ProcessedAllocas.clear();
667 LLVMContext *C;
668 Triple TargetTriple;
669 int LongSize;
670 bool CompileKernel;
671 bool Recover;
672 bool UseAfterScope;
673 Type *IntptrTy;
674 ShadowMapping Mapping;
675 FunctionCallee AsanHandleNoReturnFunc;
676 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
677 Constant *AsanShadowGlobal;
679 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
680 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
681 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
683 // These arrays is indexed by AccessIsWrite and Experiment.
684 FunctionCallee AsanErrorCallbackSized[2][2];
685 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
687 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
688 InlineAsm *EmptyAsm;
689 Value *LocalDynamicShadow = nullptr;
690 GlobalsMetadata GlobalsMD;
691 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
694 class AddressSanitizerLegacyPass : public FunctionPass {
695 public:
696 static char ID;
698 explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
699 bool Recover = false,
700 bool UseAfterScope = false)
701 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
702 UseAfterScope(UseAfterScope) {
703 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
706 StringRef getPassName() const override {
707 return "AddressSanitizerFunctionPass";
710 void getAnalysisUsage(AnalysisUsage &AU) const override {
711 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
712 AU.addRequired<TargetLibraryInfoWrapperPass>();
715 bool runOnFunction(Function &F) override {
716 GlobalsMetadata &GlobalsMD =
717 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
718 const TargetLibraryInfo *TLI =
719 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
720 AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover,
721 UseAfterScope);
722 return ASan.instrumentFunction(F, TLI);
725 private:
726 bool CompileKernel;
727 bool Recover;
728 bool UseAfterScope;
731 class ModuleAddressSanitizer {
732 public:
733 ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
734 bool CompileKernel = false, bool Recover = false,
735 bool UseGlobalsGC = true, bool UseOdrIndicator = false)
736 : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
737 // Enable aliases as they should have no downside with ODR indicators.
738 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
739 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
740 // Not a typo: ClWithComdat is almost completely pointless without
741 // ClUseGlobalsGC (because then it only works on modules without
742 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
743 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
744 // argument is designed as workaround. Therefore, disable both
745 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
746 // do globals-gc.
747 UseCtorComdat(UseGlobalsGC && ClWithComdat) {
748 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
749 this->CompileKernel =
750 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
752 C = &(M.getContext());
753 int LongSize = M.getDataLayout().getPointerSizeInBits();
754 IntptrTy = Type::getIntNTy(*C, LongSize);
755 TargetTriple = Triple(M.getTargetTriple());
756 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
759 bool instrumentModule(Module &);
761 private:
762 void initializeCallbacks(Module &M);
764 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
765 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
766 ArrayRef<GlobalVariable *> ExtendedGlobals,
767 ArrayRef<Constant *> MetadataInitializers);
768 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
769 ArrayRef<GlobalVariable *> ExtendedGlobals,
770 ArrayRef<Constant *> MetadataInitializers,
771 const std::string &UniqueModuleId);
772 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
773 ArrayRef<GlobalVariable *> ExtendedGlobals,
774 ArrayRef<Constant *> MetadataInitializers);
775 void
776 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
777 ArrayRef<GlobalVariable *> ExtendedGlobals,
778 ArrayRef<Constant *> MetadataInitializers);
780 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
781 StringRef OriginalName);
782 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
783 StringRef InternalSuffix);
784 IRBuilder<> CreateAsanModuleDtor(Module &M);
786 bool ShouldInstrumentGlobal(GlobalVariable *G);
787 bool ShouldUseMachOGlobalsSection() const;
788 StringRef getGlobalMetadataSection() const;
789 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
790 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
791 size_t MinRedzoneSizeForGlobal() const {
792 return RedzoneSizeForScale(Mapping.Scale);
794 int GetAsanVersion(const Module &M) const;
796 GlobalsMetadata GlobalsMD;
797 bool CompileKernel;
798 bool Recover;
799 bool UseGlobalsGC;
800 bool UsePrivateAlias;
801 bool UseOdrIndicator;
802 bool UseCtorComdat;
803 Type *IntptrTy;
804 LLVMContext *C;
805 Triple TargetTriple;
806 ShadowMapping Mapping;
807 FunctionCallee AsanPoisonGlobals;
808 FunctionCallee AsanUnpoisonGlobals;
809 FunctionCallee AsanRegisterGlobals;
810 FunctionCallee AsanUnregisterGlobals;
811 FunctionCallee AsanRegisterImageGlobals;
812 FunctionCallee AsanUnregisterImageGlobals;
813 FunctionCallee AsanRegisterElfGlobals;
814 FunctionCallee AsanUnregisterElfGlobals;
816 Function *AsanCtorFunction = nullptr;
817 Function *AsanDtorFunction = nullptr;
820 class ModuleAddressSanitizerLegacyPass : public ModulePass {
821 public:
822 static char ID;
824 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
825 bool Recover = false,
826 bool UseGlobalGC = true,
827 bool UseOdrIndicator = false)
828 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
829 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
830 initializeModuleAddressSanitizerLegacyPassPass(
831 *PassRegistry::getPassRegistry());
834 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
836 void getAnalysisUsage(AnalysisUsage &AU) const override {
837 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
840 bool runOnModule(Module &M) override {
841 GlobalsMetadata &GlobalsMD =
842 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
843 ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover,
844 UseGlobalGC, UseOdrIndicator);
845 return ASanModule.instrumentModule(M);
848 private:
849 bool CompileKernel;
850 bool Recover;
851 bool UseGlobalGC;
852 bool UseOdrIndicator;
855 // Stack poisoning does not play well with exception handling.
856 // When an exception is thrown, we essentially bypass the code
857 // that unpoisones the stack. This is why the run-time library has
858 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
859 // stack in the interceptor. This however does not work inside the
860 // actual function which catches the exception. Most likely because the
861 // compiler hoists the load of the shadow value somewhere too high.
862 // This causes asan to report a non-existing bug on 453.povray.
863 // It sounds like an LLVM bug.
864 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
865 Function &F;
866 AddressSanitizer &ASan;
867 DIBuilder DIB;
868 LLVMContext *C;
869 Type *IntptrTy;
870 Type *IntptrPtrTy;
871 ShadowMapping Mapping;
873 SmallVector<AllocaInst *, 16> AllocaVec;
874 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
875 SmallVector<Instruction *, 8> RetVec;
876 unsigned StackAlignment;
878 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
879 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
880 FunctionCallee AsanSetShadowFunc[0x100] = {};
881 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
882 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
884 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
885 struct AllocaPoisonCall {
886 IntrinsicInst *InsBefore;
887 AllocaInst *AI;
888 uint64_t Size;
889 bool DoPoison;
891 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
892 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
893 bool HasUntracedLifetimeIntrinsic = false;
895 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
896 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
897 AllocaInst *DynamicAllocaLayout = nullptr;
898 IntrinsicInst *LocalEscapeCall = nullptr;
900 // Maps Value to an AllocaInst from which the Value is originated.
901 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
902 AllocaForValueMapTy AllocaForValue;
904 bool HasNonEmptyInlineAsm = false;
905 bool HasReturnsTwiceCall = false;
906 std::unique_ptr<CallInst> EmptyInlineAsm;
908 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
909 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
910 C(ASan.C), IntptrTy(ASan.IntptrTy),
911 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
912 StackAlignment(1 << Mapping.Scale),
913 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
915 bool runOnFunction() {
916 if (!ClStack) return false;
918 if (ClRedzoneByvalArgs)
919 copyArgsPassedByValToAllocas();
921 // Collect alloca, ret, lifetime instructions etc.
922 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
924 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
926 initializeCallbacks(*F.getParent());
928 if (HasUntracedLifetimeIntrinsic) {
929 // If there are lifetime intrinsics which couldn't be traced back to an
930 // alloca, we may not know exactly when a variable enters scope, and
931 // therefore should "fail safe" by not poisoning them.
932 StaticAllocaPoisonCallVec.clear();
933 DynamicAllocaPoisonCallVec.clear();
936 processDynamicAllocas();
937 processStaticAllocas();
939 if (ClDebugStack) {
940 LLVM_DEBUG(dbgs() << F);
942 return true;
945 // Arguments marked with the "byval" attribute are implicitly copied without
946 // using an alloca instruction. To produce redzones for those arguments, we
947 // copy them a second time into memory allocated with an alloca instruction.
948 void copyArgsPassedByValToAllocas();
950 // Finds all Alloca instructions and puts
951 // poisoned red zones around all of them.
952 // Then unpoison everything back before the function returns.
953 void processStaticAllocas();
954 void processDynamicAllocas();
956 void createDynamicAllocasInitStorage();
958 // ----------------------- Visitors.
959 /// Collect all Ret instructions.
960 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
962 /// Collect all Resume instructions.
963 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
965 /// Collect all CatchReturnInst instructions.
966 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
968 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
969 Value *SavedStack) {
970 IRBuilder<> IRB(InstBefore);
971 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
972 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
973 // need to adjust extracted SP to compute the address of the most recent
974 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
975 // this purpose.
976 if (!isa<ReturnInst>(InstBefore)) {
977 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
978 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
979 {IntptrTy});
981 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
983 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
984 DynamicAreaOffset);
987 IRB.CreateCall(
988 AsanAllocasUnpoisonFunc,
989 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
992 // Unpoison dynamic allocas redzones.
993 void unpoisonDynamicAllocas() {
994 for (auto &Ret : RetVec)
995 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
997 for (auto &StackRestoreInst : StackRestoreVec)
998 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
999 StackRestoreInst->getOperand(0));
1002 // Deploy and poison redzones around dynamic alloca call. To do this, we
1003 // should replace this call with another one with changed parameters and
1004 // replace all its uses with new address, so
1005 // addr = alloca type, old_size, align
1006 // is replaced by
1007 // new_size = (old_size + additional_size) * sizeof(type)
1008 // tmp = alloca i8, new_size, max(align, 32)
1009 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1010 // Additional_size is added to make new memory allocation contain not only
1011 // requested memory, but also left, partial and right redzones.
1012 void handleDynamicAllocaCall(AllocaInst *AI);
1014 /// Collect Alloca instructions we want (and can) handle.
1015 void visitAllocaInst(AllocaInst &AI) {
1016 if (!ASan.isInterestingAlloca(AI)) {
1017 if (AI.isStaticAlloca()) {
1018 // Skip over allocas that are present *before* the first instrumented
1019 // alloca, we don't want to move those around.
1020 if (AllocaVec.empty())
1021 return;
1023 StaticAllocasToMoveUp.push_back(&AI);
1025 return;
1028 StackAlignment = std::max(StackAlignment, AI.getAlignment());
1029 if (!AI.isStaticAlloca())
1030 DynamicAllocaVec.push_back(&AI);
1031 else
1032 AllocaVec.push_back(&AI);
1035 /// Collect lifetime intrinsic calls to check for use-after-scope
1036 /// errors.
1037 void visitIntrinsicInst(IntrinsicInst &II) {
1038 Intrinsic::ID ID = II.getIntrinsicID();
1039 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1040 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1041 if (!ASan.UseAfterScope)
1042 return;
1043 if (!II.isLifetimeStartOrEnd())
1044 return;
1045 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1046 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
1047 // If size argument is undefined, don't do anything.
1048 if (Size->isMinusOne()) return;
1049 // Check that size doesn't saturate uint64_t and can
1050 // be stored in IntptrTy.
1051 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1052 if (SizeValue == ~0ULL ||
1053 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1054 return;
1055 // Find alloca instruction that corresponds to llvm.lifetime argument.
1056 AllocaInst *AI =
1057 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1058 if (!AI) {
1059 HasUntracedLifetimeIntrinsic = true;
1060 return;
1062 // We're interested only in allocas we can handle.
1063 if (!ASan.isInterestingAlloca(*AI))
1064 return;
1065 bool DoPoison = (ID == Intrinsic::lifetime_end);
1066 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1067 if (AI->isStaticAlloca())
1068 StaticAllocaPoisonCallVec.push_back(APC);
1069 else if (ClInstrumentDynamicAllocas)
1070 DynamicAllocaPoisonCallVec.push_back(APC);
1073 void visitCallSite(CallSite CS) {
1074 Instruction *I = CS.getInstruction();
1075 if (CallInst *CI = dyn_cast<CallInst>(I)) {
1076 HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1077 !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1078 I != ASan.LocalDynamicShadow;
1079 HasReturnsTwiceCall |= CI->canReturnTwice();
1083 // ---------------------- Helpers.
1084 void initializeCallbacks(Module &M);
1086 // Copies bytes from ShadowBytes into shadow memory for indexes where
1087 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1088 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1089 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1090 IRBuilder<> &IRB, Value *ShadowBase);
1091 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1092 size_t Begin, size_t End, IRBuilder<> &IRB,
1093 Value *ShadowBase);
1094 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1095 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1096 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1098 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1100 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1101 bool Dynamic);
1102 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1103 Instruction *ThenTerm, Value *ValueIfFalse);
1106 } // end anonymous namespace
1108 void LocationMetadata::parse(MDNode *MDN) {
1109 assert(MDN->getNumOperands() == 3);
1110 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1111 Filename = DIFilename->getString();
1112 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1113 ColumnNo =
1114 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1117 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1118 // we want to sanitize instead and reading this metadata on each pass over a
1119 // function instead of reading module level metadata at first.
1120 GlobalsMetadata::GlobalsMetadata(Module &M) {
1121 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1122 if (!Globals)
1123 return;
1124 for (auto MDN : Globals->operands()) {
1125 // Metadata node contains the global and the fields of "Entry".
1126 assert(MDN->getNumOperands() == 5);
1127 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1128 // The optimizer may optimize away a global entirely.
1129 if (!V)
1130 continue;
1131 auto *StrippedV = V->stripPointerCasts();
1132 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1133 if (!GV)
1134 continue;
1135 // We can already have an entry for GV if it was merged with another
1136 // global.
1137 Entry &E = Entries[GV];
1138 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1139 E.SourceLoc.parse(Loc);
1140 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1141 E.Name = Name->getString();
1142 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1143 E.IsDynInit |= IsDynInit->isOne();
1144 ConstantInt *IsBlacklisted =
1145 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1146 E.IsBlacklisted |= IsBlacklisted->isOne();
1150 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1152 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1153 ModuleAnalysisManager &AM) {
1154 return GlobalsMetadata(M);
1157 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1158 bool UseAfterScope)
1159 : CompileKernel(CompileKernel), Recover(Recover),
1160 UseAfterScope(UseAfterScope) {}
1162 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1163 AnalysisManager<Function> &AM) {
1164 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1165 auto &MAM = MAMProxy.getManager();
1166 Module &M = *F.getParent();
1167 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1168 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1169 AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope);
1170 if (Sanitizer.instrumentFunction(F, TLI))
1171 return PreservedAnalyses::none();
1172 return PreservedAnalyses::all();
1175 report_fatal_error(
1176 "The ASanGlobalsMetadataAnalysis is required to run before "
1177 "AddressSanitizer can run");
1178 return PreservedAnalyses::all();
1181 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1182 bool Recover,
1183 bool UseGlobalGC,
1184 bool UseOdrIndicator)
1185 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1186 UseOdrIndicator(UseOdrIndicator) {}
1188 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1189 AnalysisManager<Module> &AM) {
1190 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1191 ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover,
1192 UseGlobalGC, UseOdrIndicator);
1193 if (Sanitizer.instrumentModule(M))
1194 return PreservedAnalyses::none();
1195 return PreservedAnalyses::all();
1198 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1199 "Read metadata to mark which globals should be instrumented "
1200 "when running ASan.",
1201 false, true)
1203 char AddressSanitizerLegacyPass::ID = 0;
1205 INITIALIZE_PASS_BEGIN(
1206 AddressSanitizerLegacyPass, "asan",
1207 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1208 false)
1209 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1210 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1211 INITIALIZE_PASS_END(
1212 AddressSanitizerLegacyPass, "asan",
1213 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1214 false)
1216 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1217 bool Recover,
1218 bool UseAfterScope) {
1219 assert(!CompileKernel || Recover);
1220 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1223 char ModuleAddressSanitizerLegacyPass::ID = 0;
1225 INITIALIZE_PASS(
1226 ModuleAddressSanitizerLegacyPass, "asan-module",
1227 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1228 "ModulePass",
1229 false, false)
1231 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1232 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1233 assert(!CompileKernel || Recover);
1234 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1235 UseGlobalsGC, UseOdrIndicator);
1238 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1239 size_t Res = countTrailingZeros(TypeSize / 8);
1240 assert(Res < kNumberOfAccessSizes);
1241 return Res;
1244 /// Create a global describing a source location.
1245 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1246 LocationMetadata MD) {
1247 Constant *LocData[] = {
1248 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1249 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1250 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1252 auto LocStruct = ConstantStruct::getAnon(LocData);
1253 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1254 GlobalValue::PrivateLinkage, LocStruct,
1255 kAsanGenPrefix);
1256 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1257 return GV;
1260 /// Check if \p G has been created by a trusted compiler pass.
1261 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1262 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1263 if (G->getName().startswith("llvm."))
1264 return true;
1266 // Do not instrument asan globals.
1267 if (G->getName().startswith(kAsanGenPrefix) ||
1268 G->getName().startswith(kSanCovGenPrefix) ||
1269 G->getName().startswith(kODRGenPrefix))
1270 return true;
1272 // Do not instrument gcov counter arrays.
1273 if (G->getName() == "__llvm_gcov_ctr")
1274 return true;
1276 return false;
1279 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1280 // Shadow >> scale
1281 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1282 if (Mapping.Offset == 0) return Shadow;
1283 // (Shadow >> scale) | offset
1284 Value *ShadowBase;
1285 if (LocalDynamicShadow)
1286 ShadowBase = LocalDynamicShadow;
1287 else
1288 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1289 if (Mapping.OrShadowOffset)
1290 return IRB.CreateOr(Shadow, ShadowBase);
1291 else
1292 return IRB.CreateAdd(Shadow, ShadowBase);
1295 // Instrument memset/memmove/memcpy
1296 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1297 IRBuilder<> IRB(MI);
1298 if (isa<MemTransferInst>(MI)) {
1299 IRB.CreateCall(
1300 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1301 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1302 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1303 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1304 } else if (isa<MemSetInst>(MI)) {
1305 IRB.CreateCall(
1306 AsanMemset,
1307 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1308 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1309 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1311 MI->eraseFromParent();
1314 /// Check if we want (and can) handle this alloca.
1315 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1316 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1318 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1319 return PreviouslySeenAllocaInfo->getSecond();
1321 bool IsInteresting =
1322 (AI.getAllocatedType()->isSized() &&
1323 // alloca() may be called with 0 size, ignore it.
1324 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1325 // We are only interested in allocas not promotable to registers.
1326 // Promotable allocas are common under -O0.
1327 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1328 // inalloca allocas are not treated as static, and we don't want
1329 // dynamic alloca instrumentation for them as well.
1330 !AI.isUsedWithInAlloca() &&
1331 // swifterror allocas are register promoted by ISel
1332 !AI.isSwiftError());
1334 ProcessedAllocas[&AI] = IsInteresting;
1335 return IsInteresting;
1338 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1339 bool *IsWrite,
1340 uint64_t *TypeSize,
1341 unsigned *Alignment,
1342 Value **MaybeMask) {
1343 // Skip memory accesses inserted by another instrumentation.
1344 if (I->getMetadata("nosanitize")) return nullptr;
1346 // Do not instrument the load fetching the dynamic shadow address.
1347 if (LocalDynamicShadow == I)
1348 return nullptr;
1350 Value *PtrOperand = nullptr;
1351 const DataLayout &DL = I->getModule()->getDataLayout();
1352 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1353 if (!ClInstrumentReads) return nullptr;
1354 *IsWrite = false;
1355 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1356 *Alignment = LI->getAlignment();
1357 PtrOperand = LI->getPointerOperand();
1358 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1359 if (!ClInstrumentWrites) return nullptr;
1360 *IsWrite = true;
1361 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1362 *Alignment = SI->getAlignment();
1363 PtrOperand = SI->getPointerOperand();
1364 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1365 if (!ClInstrumentAtomics) return nullptr;
1366 *IsWrite = true;
1367 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1368 *Alignment = 0;
1369 PtrOperand = RMW->getPointerOperand();
1370 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1371 if (!ClInstrumentAtomics) return nullptr;
1372 *IsWrite = true;
1373 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1374 *Alignment = 0;
1375 PtrOperand = XCHG->getPointerOperand();
1376 } else if (auto CI = dyn_cast<CallInst>(I)) {
1377 auto *F = dyn_cast<Function>(CI->getCalledValue());
1378 if (F && (F->getName().startswith("llvm.masked.load.") ||
1379 F->getName().startswith("llvm.masked.store."))) {
1380 unsigned OpOffset = 0;
1381 if (F->getName().startswith("llvm.masked.store.")) {
1382 if (!ClInstrumentWrites)
1383 return nullptr;
1384 // Masked store has an initial operand for the value.
1385 OpOffset = 1;
1386 *IsWrite = true;
1387 } else {
1388 if (!ClInstrumentReads)
1389 return nullptr;
1390 *IsWrite = false;
1393 auto BasePtr = CI->getOperand(0 + OpOffset);
1394 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1395 *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1396 if (auto AlignmentConstant =
1397 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1398 *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1399 else
1400 *Alignment = 1; // No alignment guarantees. We probably got Undef
1401 if (MaybeMask)
1402 *MaybeMask = CI->getOperand(2 + OpOffset);
1403 PtrOperand = BasePtr;
1407 if (PtrOperand) {
1408 // Do not instrument acesses from different address spaces; we cannot deal
1409 // with them.
1410 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1411 if (PtrTy->getPointerAddressSpace() != 0)
1412 return nullptr;
1414 // Ignore swifterror addresses.
1415 // swifterror memory addresses are mem2reg promoted by instruction
1416 // selection. As such they cannot have regular uses like an instrumentation
1417 // function and it makes no sense to track them as memory.
1418 if (PtrOperand->isSwiftError())
1419 return nullptr;
1422 // Treat memory accesses to promotable allocas as non-interesting since they
1423 // will not cause memory violations. This greatly speeds up the instrumented
1424 // executable at -O0.
1425 if (ClSkipPromotableAllocas)
1426 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1427 return isInterestingAlloca(*AI) ? AI : nullptr;
1429 return PtrOperand;
1432 static bool isPointerOperand(Value *V) {
1433 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1436 // This is a rough heuristic; it may cause both false positives and
1437 // false negatives. The proper implementation requires cooperation with
1438 // the frontend.
1439 static bool isInterestingPointerComparison(Instruction *I) {
1440 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1441 if (!Cmp->isRelational())
1442 return false;
1443 } else {
1444 return false;
1446 return isPointerOperand(I->getOperand(0)) &&
1447 isPointerOperand(I->getOperand(1));
1450 // This is a rough heuristic; it may cause both false positives and
1451 // false negatives. The proper implementation requires cooperation with
1452 // the frontend.
1453 static bool isInterestingPointerSubtraction(Instruction *I) {
1454 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1455 if (BO->getOpcode() != Instruction::Sub)
1456 return false;
1457 } else {
1458 return false;
1460 return isPointerOperand(I->getOperand(0)) &&
1461 isPointerOperand(I->getOperand(1));
1464 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1465 // If a global variable does not have dynamic initialization we don't
1466 // have to instrument it. However, if a global does not have initializer
1467 // at all, we assume it has dynamic initializer (in other TU).
1469 // FIXME: Metadata should be attched directly to the global directly instead
1470 // of being added to llvm.asan.globals.
1471 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1474 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1475 Instruction *I) {
1476 IRBuilder<> IRB(I);
1477 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1478 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1479 for (Value *&i : Param) {
1480 if (i->getType()->isPointerTy())
1481 i = IRB.CreatePointerCast(i, IntptrTy);
1483 IRB.CreateCall(F, Param);
1486 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1487 Instruction *InsertBefore, Value *Addr,
1488 unsigned Alignment, unsigned Granularity,
1489 uint32_t TypeSize, bool IsWrite,
1490 Value *SizeArgument, bool UseCalls,
1491 uint32_t Exp) {
1492 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1493 // if the data is properly aligned.
1494 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1495 TypeSize == 128) &&
1496 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1497 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1498 nullptr, UseCalls, Exp);
1499 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1500 IsWrite, nullptr, UseCalls, Exp);
1503 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1504 const DataLayout &DL, Type *IntptrTy,
1505 Value *Mask, Instruction *I,
1506 Value *Addr, unsigned Alignment,
1507 unsigned Granularity, uint32_t TypeSize,
1508 bool IsWrite, Value *SizeArgument,
1509 bool UseCalls, uint32_t Exp) {
1510 auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1511 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1512 unsigned Num = VTy->getVectorNumElements();
1513 auto Zero = ConstantInt::get(IntptrTy, 0);
1514 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1515 Value *InstrumentedAddress = nullptr;
1516 Instruction *InsertBefore = I;
1517 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1518 // dyn_cast as we might get UndefValue
1519 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1520 if (Masked->isZero())
1521 // Mask is constant false, so no instrumentation needed.
1522 continue;
1523 // If we have a true or undef value, fall through to doInstrumentAddress
1524 // with InsertBefore == I
1526 } else {
1527 IRBuilder<> IRB(I);
1528 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1529 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1530 InsertBefore = ThenTerm;
1533 IRBuilder<> IRB(InsertBefore);
1534 InstrumentedAddress =
1535 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1536 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1537 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1538 UseCalls, Exp);
1542 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1543 Instruction *I, bool UseCalls,
1544 const DataLayout &DL) {
1545 bool IsWrite = false;
1546 unsigned Alignment = 0;
1547 uint64_t TypeSize = 0;
1548 Value *MaybeMask = nullptr;
1549 Value *Addr =
1550 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1551 assert(Addr);
1553 // Optimization experiments.
1554 // The experiments can be used to evaluate potential optimizations that remove
1555 // instrumentation (assess false negatives). Instead of completely removing
1556 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1557 // experiments that want to remove instrumentation of this instruction).
1558 // If Exp is non-zero, this pass will emit special calls into runtime
1559 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1560 // make runtime terminate the program in a special way (with a different
1561 // exit status). Then you run the new compiler on a buggy corpus, collect
1562 // the special terminations (ideally, you don't see them at all -- no false
1563 // negatives) and make the decision on the optimization.
1564 uint32_t Exp = ClForceExperiment;
1566 if (ClOpt && ClOptGlobals) {
1567 // If initialization order checking is disabled, a simple access to a
1568 // dynamically initialized global is always valid.
1569 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1570 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1571 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1572 NumOptimizedAccessesToGlobalVar++;
1573 return;
1577 if (ClOpt && ClOptStack) {
1578 // A direct inbounds access to a stack variable is always valid.
1579 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1580 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1581 NumOptimizedAccessesToStackVar++;
1582 return;
1586 if (IsWrite)
1587 NumInstrumentedWrites++;
1588 else
1589 NumInstrumentedReads++;
1591 unsigned Granularity = 1 << Mapping.Scale;
1592 if (MaybeMask) {
1593 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1594 Alignment, Granularity, TypeSize, IsWrite,
1595 nullptr, UseCalls, Exp);
1596 } else {
1597 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1598 IsWrite, nullptr, UseCalls, Exp);
1602 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1603 Value *Addr, bool IsWrite,
1604 size_t AccessSizeIndex,
1605 Value *SizeArgument,
1606 uint32_t Exp) {
1607 IRBuilder<> IRB(InsertBefore);
1608 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1609 CallInst *Call = nullptr;
1610 if (SizeArgument) {
1611 if (Exp == 0)
1612 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1613 {Addr, SizeArgument});
1614 else
1615 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1616 {Addr, SizeArgument, ExpVal});
1617 } else {
1618 if (Exp == 0)
1619 Call =
1620 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1621 else
1622 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1623 {Addr, ExpVal});
1626 // We don't do Call->setDoesNotReturn() because the BB already has
1627 // UnreachableInst at the end.
1628 // This EmptyAsm is required to avoid callback merge.
1629 IRB.CreateCall(EmptyAsm, {});
1630 return Call;
1633 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1634 Value *ShadowValue,
1635 uint32_t TypeSize) {
1636 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1637 // Addr & (Granularity - 1)
1638 Value *LastAccessedByte =
1639 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1640 // (Addr & (Granularity - 1)) + size - 1
1641 if (TypeSize / 8 > 1)
1642 LastAccessedByte = IRB.CreateAdd(
1643 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1644 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1645 LastAccessedByte =
1646 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1647 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1648 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1651 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1652 Instruction *InsertBefore, Value *Addr,
1653 uint32_t TypeSize, bool IsWrite,
1654 Value *SizeArgument, bool UseCalls,
1655 uint32_t Exp) {
1656 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1658 IRBuilder<> IRB(InsertBefore);
1659 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1660 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1662 if (UseCalls) {
1663 if (Exp == 0)
1664 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1665 AddrLong);
1666 else
1667 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1668 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1669 return;
1672 if (IsMyriad) {
1673 // Strip the cache bit and do range check.
1674 // AddrLong &= ~kMyriadCacheBitMask32
1675 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1676 // Tag = AddrLong >> kMyriadTagShift
1677 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1678 // Tag == kMyriadDDRTag
1679 Value *TagCheck =
1680 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1682 Instruction *TagCheckTerm =
1683 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1684 MDBuilder(*C).createBranchWeights(1, 100000));
1685 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1686 IRB.SetInsertPoint(TagCheckTerm);
1687 InsertBefore = TagCheckTerm;
1690 Type *ShadowTy =
1691 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1692 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1693 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1694 Value *CmpVal = Constant::getNullValue(ShadowTy);
1695 Value *ShadowValue =
1696 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1698 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1699 size_t Granularity = 1ULL << Mapping.Scale;
1700 Instruction *CrashTerm = nullptr;
1702 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1703 // We use branch weights for the slow path check, to indicate that the slow
1704 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1705 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1706 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1707 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1708 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1709 IRB.SetInsertPoint(CheckTerm);
1710 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1711 if (Recover) {
1712 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1713 } else {
1714 BasicBlock *CrashBlock =
1715 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1716 CrashTerm = new UnreachableInst(*C, CrashBlock);
1717 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1718 ReplaceInstWithInst(CheckTerm, NewTerm);
1720 } else {
1721 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1724 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1725 AccessSizeIndex, SizeArgument, Exp);
1726 Crash->setDebugLoc(OrigIns->getDebugLoc());
1729 // Instrument unusual size or unusual alignment.
1730 // We can not do it with a single check, so we do 1-byte check for the first
1731 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1732 // to report the actual access size.
1733 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1734 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1735 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1736 IRBuilder<> IRB(InsertBefore);
1737 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1738 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1739 if (UseCalls) {
1740 if (Exp == 0)
1741 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1742 {AddrLong, Size});
1743 else
1744 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1745 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1746 } else {
1747 Value *LastByte = IRB.CreateIntToPtr(
1748 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1749 Addr->getType());
1750 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1751 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1755 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1756 GlobalValue *ModuleName) {
1757 // Set up the arguments to our poison/unpoison functions.
1758 IRBuilder<> IRB(&GlobalInit.front(),
1759 GlobalInit.front().getFirstInsertionPt());
1761 // Add a call to poison all external globals before the given function starts.
1762 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1763 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1765 // Add calls to unpoison all globals before each return instruction.
1766 for (auto &BB : GlobalInit.getBasicBlockList())
1767 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1768 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1771 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1772 Module &M, GlobalValue *ModuleName) {
1773 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1774 if (!GV)
1775 return;
1777 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1778 if (!CA)
1779 return;
1781 for (Use &OP : CA->operands()) {
1782 if (isa<ConstantAggregateZero>(OP)) continue;
1783 ConstantStruct *CS = cast<ConstantStruct>(OP);
1785 // Must have a function or null ptr.
1786 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1787 if (F->getName() == kAsanModuleCtorName) continue;
1788 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1789 // Don't instrument CTORs that will run before asan.module_ctor.
1790 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1791 continue;
1792 poisonOneInitializer(*F, ModuleName);
1797 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1798 Type *Ty = G->getValueType();
1799 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1801 // FIXME: Metadata should be attched directly to the global directly instead
1802 // of being added to llvm.asan.globals.
1803 if (GlobalsMD.get(G).IsBlacklisted) return false;
1804 if (!Ty->isSized()) return false;
1805 if (!G->hasInitializer()) return false;
1806 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1807 // Two problems with thread-locals:
1808 // - The address of the main thread's copy can't be computed at link-time.
1809 // - Need to poison all copies, not just the main thread's one.
1810 if (G->isThreadLocal()) return false;
1811 // For now, just ignore this Global if the alignment is large.
1812 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1814 // For non-COFF targets, only instrument globals known to be defined by this
1815 // TU.
1816 // FIXME: We can instrument comdat globals on ELF if we are using the
1817 // GC-friendly metadata scheme.
1818 if (!TargetTriple.isOSBinFormatCOFF()) {
1819 if (!G->hasExactDefinition() || G->hasComdat())
1820 return false;
1821 } else {
1822 // On COFF, don't instrument non-ODR linkages.
1823 if (G->isInterposable())
1824 return false;
1827 // If a comdat is present, it must have a selection kind that implies ODR
1828 // semantics: no duplicates, any, or exact match.
1829 if (Comdat *C = G->getComdat()) {
1830 switch (C->getSelectionKind()) {
1831 case Comdat::Any:
1832 case Comdat::ExactMatch:
1833 case Comdat::NoDuplicates:
1834 break;
1835 case Comdat::Largest:
1836 case Comdat::SameSize:
1837 return false;
1841 if (G->hasSection()) {
1842 StringRef Section = G->getSection();
1844 // Globals from llvm.metadata aren't emitted, do not instrument them.
1845 if (Section == "llvm.metadata") return false;
1846 // Do not instrument globals from special LLVM sections.
1847 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1849 // Do not instrument function pointers to initialization and termination
1850 // routines: dynamic linker will not properly handle redzones.
1851 if (Section.startswith(".preinit_array") ||
1852 Section.startswith(".init_array") ||
1853 Section.startswith(".fini_array")) {
1854 return false;
1857 // On COFF, if the section name contains '$', it is highly likely that the
1858 // user is using section sorting to create an array of globals similar to
1859 // the way initialization callbacks are registered in .init_array and
1860 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1861 // to such globals is counterproductive, because the intent is that they
1862 // will form an array, and out-of-bounds accesses are expected.
1863 // See https://github.com/google/sanitizers/issues/305
1864 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1865 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1866 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1867 << *G << "\n");
1868 return false;
1871 if (TargetTriple.isOSBinFormatMachO()) {
1872 StringRef ParsedSegment, ParsedSection;
1873 unsigned TAA = 0, StubSize = 0;
1874 bool TAAParsed;
1875 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1876 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1877 assert(ErrorCode.empty() && "Invalid section specifier.");
1879 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1880 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1881 // them.
1882 if (ParsedSegment == "__OBJC" ||
1883 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1884 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1885 return false;
1887 // See https://github.com/google/sanitizers/issues/32
1888 // Constant CFString instances are compiled in the following way:
1889 // -- the string buffer is emitted into
1890 // __TEXT,__cstring,cstring_literals
1891 // -- the constant NSConstantString structure referencing that buffer
1892 // is placed into __DATA,__cfstring
1893 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1894 // Moreover, it causes the linker to crash on OS X 10.7
1895 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1896 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1897 return false;
1899 // The linker merges the contents of cstring_literals and removes the
1900 // trailing zeroes.
1901 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1902 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1903 return false;
1908 return true;
1911 // On Mach-O platforms, we emit global metadata in a separate section of the
1912 // binary in order to allow the linker to properly dead strip. This is only
1913 // supported on recent versions of ld64.
1914 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1915 if (!TargetTriple.isOSBinFormatMachO())
1916 return false;
1918 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1919 return true;
1920 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1921 return true;
1922 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1923 return true;
1925 return false;
1928 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1929 switch (TargetTriple.getObjectFormat()) {
1930 case Triple::COFF: return ".ASAN$GL";
1931 case Triple::ELF: return "asan_globals";
1932 case Triple::MachO: return "__DATA,__asan_globals,regular";
1933 case Triple::Wasm:
1934 case Triple::XCOFF:
1935 report_fatal_error(
1936 "ModuleAddressSanitizer not implemented for object file format.");
1937 case Triple::UnknownObjectFormat:
1938 break;
1940 llvm_unreachable("unsupported object format");
1943 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1944 IRBuilder<> IRB(*C);
1946 // Declare our poisoning and unpoisoning functions.
1947 AsanPoisonGlobals =
1948 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1949 AsanUnpoisonGlobals =
1950 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1952 // Declare functions that register/unregister globals.
1953 AsanRegisterGlobals = M.getOrInsertFunction(
1954 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1955 AsanUnregisterGlobals = M.getOrInsertFunction(
1956 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1958 // Declare the functions that find globals in a shared object and then invoke
1959 // the (un)register function on them.
1960 AsanRegisterImageGlobals = M.getOrInsertFunction(
1961 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1962 AsanUnregisterImageGlobals = M.getOrInsertFunction(
1963 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1965 AsanRegisterElfGlobals =
1966 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1967 IntptrTy, IntptrTy, IntptrTy);
1968 AsanUnregisterElfGlobals =
1969 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1970 IntptrTy, IntptrTy, IntptrTy);
1973 // Put the metadata and the instrumented global in the same group. This ensures
1974 // that the metadata is discarded if the instrumented global is discarded.
1975 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1976 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1977 Module &M = *G->getParent();
1978 Comdat *C = G->getComdat();
1979 if (!C) {
1980 if (!G->hasName()) {
1981 // If G is unnamed, it must be internal. Give it an artificial name
1982 // so we can put it in a comdat.
1983 assert(G->hasLocalLinkage());
1984 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1987 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1988 std::string Name = G->getName();
1989 Name += InternalSuffix;
1990 C = M.getOrInsertComdat(Name);
1991 } else {
1992 C = M.getOrInsertComdat(G->getName());
1995 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1996 // linkage to internal linkage so that a symbol table entry is emitted. This
1997 // is necessary in order to create the comdat group.
1998 if (TargetTriple.isOSBinFormatCOFF()) {
1999 C->setSelectionKind(Comdat::NoDuplicates);
2000 if (G->hasPrivateLinkage())
2001 G->setLinkage(GlobalValue::InternalLinkage);
2003 G->setComdat(C);
2006 assert(G->hasComdat());
2007 Metadata->setComdat(G->getComdat());
2010 // Create a separate metadata global and put it in the appropriate ASan
2011 // global registration section.
2012 GlobalVariable *
2013 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2014 StringRef OriginalName) {
2015 auto Linkage = TargetTriple.isOSBinFormatMachO()
2016 ? GlobalVariable::InternalLinkage
2017 : GlobalVariable::PrivateLinkage;
2018 GlobalVariable *Metadata = new GlobalVariable(
2019 M, Initializer->getType(), false, Linkage, Initializer,
2020 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2021 Metadata->setSection(getGlobalMetadataSection());
2022 return Metadata;
2025 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2026 AsanDtorFunction =
2027 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2028 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2029 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2031 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
2034 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2035 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2036 ArrayRef<Constant *> MetadataInitializers) {
2037 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2038 auto &DL = M.getDataLayout();
2040 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2041 Constant *Initializer = MetadataInitializers[i];
2042 GlobalVariable *G = ExtendedGlobals[i];
2043 GlobalVariable *Metadata =
2044 CreateMetadataGlobal(M, Initializer, G->getName());
2046 // The MSVC linker always inserts padding when linking incrementally. We
2047 // cope with that by aligning each struct to its size, which must be a power
2048 // of two.
2049 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2050 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2051 "global metadata will not be padded appropriately");
2052 Metadata->setAlignment(SizeOfGlobalStruct);
2054 SetComdatForGlobalMetadata(G, Metadata, "");
2058 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2059 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2060 ArrayRef<Constant *> MetadataInitializers,
2061 const std::string &UniqueModuleId) {
2062 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2064 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2065 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2066 GlobalVariable *G = ExtendedGlobals[i];
2067 GlobalVariable *Metadata =
2068 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2069 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2070 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2071 MetadataGlobals[i] = Metadata;
2073 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2076 // Update llvm.compiler.used, adding the new metadata globals. This is
2077 // needed so that during LTO these variables stay alive.
2078 if (!MetadataGlobals.empty())
2079 appendToCompilerUsed(M, MetadataGlobals);
2081 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2082 // to look up the loaded image that contains it. Second, we can store in it
2083 // whether registration has already occurred, to prevent duplicate
2084 // registration.
2086 // Common linkage ensures that there is only one global per shared library.
2087 GlobalVariable *RegisteredFlag = new GlobalVariable(
2088 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2089 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2090 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2092 // Create start and stop symbols.
2093 GlobalVariable *StartELFMetadata = new GlobalVariable(
2094 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2095 "__start_" + getGlobalMetadataSection());
2096 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2097 GlobalVariable *StopELFMetadata = new GlobalVariable(
2098 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2099 "__stop_" + getGlobalMetadataSection());
2100 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2102 // Create a call to register the globals with the runtime.
2103 IRB.CreateCall(AsanRegisterElfGlobals,
2104 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2105 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2106 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2108 // We also need to unregister globals at the end, e.g., when a shared library
2109 // gets closed.
2110 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2111 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2112 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2113 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2114 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2117 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2118 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2119 ArrayRef<Constant *> MetadataInitializers) {
2120 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2122 // On recent Mach-O platforms, use a structure which binds the liveness of
2123 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2124 // created to be added to llvm.compiler.used
2125 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2126 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2128 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2129 Constant *Initializer = MetadataInitializers[i];
2130 GlobalVariable *G = ExtendedGlobals[i];
2131 GlobalVariable *Metadata =
2132 CreateMetadataGlobal(M, Initializer, G->getName());
2134 // On recent Mach-O platforms, we emit the global metadata in a way that
2135 // allows the linker to properly strip dead globals.
2136 auto LivenessBinder =
2137 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2138 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2139 GlobalVariable *Liveness = new GlobalVariable(
2140 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2141 Twine("__asan_binder_") + G->getName());
2142 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2143 LivenessGlobals[i] = Liveness;
2146 // Update llvm.compiler.used, adding the new liveness globals. This is
2147 // needed so that during LTO these variables stay alive. The alternative
2148 // would be to have the linker handling the LTO symbols, but libLTO
2149 // current API does not expose access to the section for each symbol.
2150 if (!LivenessGlobals.empty())
2151 appendToCompilerUsed(M, LivenessGlobals);
2153 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2154 // to look up the loaded image that contains it. Second, we can store in it
2155 // whether registration has already occurred, to prevent duplicate
2156 // registration.
2158 // common linkage ensures that there is only one global per shared library.
2159 GlobalVariable *RegisteredFlag = new GlobalVariable(
2160 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2161 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2162 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2164 IRB.CreateCall(AsanRegisterImageGlobals,
2165 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2167 // We also need to unregister globals at the end, e.g., when a shared library
2168 // gets closed.
2169 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2170 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2171 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2174 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2175 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2176 ArrayRef<Constant *> MetadataInitializers) {
2177 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2178 unsigned N = ExtendedGlobals.size();
2179 assert(N > 0);
2181 // On platforms that don't have a custom metadata section, we emit an array
2182 // of global metadata structures.
2183 ArrayType *ArrayOfGlobalStructTy =
2184 ArrayType::get(MetadataInitializers[0]->getType(), N);
2185 auto AllGlobals = new GlobalVariable(
2186 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2187 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2188 if (Mapping.Scale > 3)
2189 AllGlobals->setAlignment(1ULL << Mapping.Scale);
2191 IRB.CreateCall(AsanRegisterGlobals,
2192 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2193 ConstantInt::get(IntptrTy, N)});
2195 // We also need to unregister globals at the end, e.g., when a shared library
2196 // gets closed.
2197 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2198 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2199 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2200 ConstantInt::get(IntptrTy, N)});
2203 // This function replaces all global variables with new variables that have
2204 // trailing redzones. It also creates a function that poisons
2205 // redzones and inserts this function into llvm.global_ctors.
2206 // Sets *CtorComdat to true if the global registration code emitted into the
2207 // asan constructor is comdat-compatible.
2208 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2209 bool *CtorComdat) {
2210 *CtorComdat = false;
2212 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2214 for (auto &G : M.globals()) {
2215 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2218 size_t n = GlobalsToChange.size();
2219 if (n == 0) {
2220 *CtorComdat = true;
2221 return false;
2224 auto &DL = M.getDataLayout();
2226 // A global is described by a structure
2227 // size_t beg;
2228 // size_t size;
2229 // size_t size_with_redzone;
2230 // const char *name;
2231 // const char *module_name;
2232 // size_t has_dynamic_init;
2233 // void *source_location;
2234 // size_t odr_indicator;
2235 // We initialize an array of such structures and pass it to a run-time call.
2236 StructType *GlobalStructTy =
2237 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2238 IntptrTy, IntptrTy, IntptrTy);
2239 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2240 SmallVector<Constant *, 16> Initializers(n);
2242 bool HasDynamicallyInitializedGlobals = false;
2244 // We shouldn't merge same module names, as this string serves as unique
2245 // module ID in runtime.
2246 GlobalVariable *ModuleName = createPrivateGlobalForString(
2247 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2249 for (size_t i = 0; i < n; i++) {
2250 static const uint64_t kMaxGlobalRedzone = 1 << 18;
2251 GlobalVariable *G = GlobalsToChange[i];
2253 // FIXME: Metadata should be attched directly to the global directly instead
2254 // of being added to llvm.asan.globals.
2255 auto MD = GlobalsMD.get(G);
2256 StringRef NameForGlobal = G->getName();
2257 // Create string holding the global name (use global name from metadata
2258 // if it's available, otherwise just write the name of global variable).
2259 GlobalVariable *Name = createPrivateGlobalForString(
2260 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2261 /*AllowMerging*/ true, kAsanGenPrefix);
2263 Type *Ty = G->getValueType();
2264 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2265 uint64_t MinRZ = MinRedzoneSizeForGlobal();
2266 // MinRZ <= RZ <= kMaxGlobalRedzone
2267 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2268 uint64_t RZ = std::max(
2269 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2270 uint64_t RightRedzoneSize = RZ;
2271 // Round up to MinRZ
2272 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2273 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2274 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2276 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2277 Constant *NewInitializer = ConstantStruct::get(
2278 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2280 // Create a new global variable with enough space for a redzone.
2281 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2282 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2283 Linkage = GlobalValue::InternalLinkage;
2284 GlobalVariable *NewGlobal =
2285 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2286 "", G, G->getThreadLocalMode());
2287 NewGlobal->copyAttributesFrom(G);
2288 NewGlobal->setComdat(G->getComdat());
2289 NewGlobal->setAlignment(MinRZ);
2290 // Don't fold globals with redzones. ODR violation detector and redzone
2291 // poisoning implicitly creates a dependence on the global's address, so it
2292 // is no longer valid for it to be marked unnamed_addr.
2293 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2295 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2296 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2297 G->isConstant()) {
2298 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2299 if (Seq && Seq->isCString())
2300 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2303 // Transfer the debug info. The payload starts at offset zero so we can
2304 // copy the debug info over as is.
2305 SmallVector<DIGlobalVariableExpression *, 1> GVs;
2306 G->getDebugInfo(GVs);
2307 for (auto *GV : GVs)
2308 NewGlobal->addDebugInfo(GV);
2310 Value *Indices2[2];
2311 Indices2[0] = IRB.getInt32(0);
2312 Indices2[1] = IRB.getInt32(0);
2314 G->replaceAllUsesWith(
2315 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2316 NewGlobal->takeName(G);
2317 G->eraseFromParent();
2318 NewGlobals[i] = NewGlobal;
2320 Constant *SourceLoc;
2321 if (!MD.SourceLoc.empty()) {
2322 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2323 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2324 } else {
2325 SourceLoc = ConstantInt::get(IntptrTy, 0);
2328 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2329 GlobalValue *InstrumentedGlobal = NewGlobal;
2331 bool CanUsePrivateAliases =
2332 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2333 TargetTriple.isOSBinFormatWasm();
2334 if (CanUsePrivateAliases && UsePrivateAlias) {
2335 // Create local alias for NewGlobal to avoid crash on ODR between
2336 // instrumented and non-instrumented libraries.
2337 InstrumentedGlobal =
2338 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2341 // ODR should not happen for local linkage.
2342 if (NewGlobal->hasLocalLinkage()) {
2343 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2344 IRB.getInt8PtrTy());
2345 } else if (UseOdrIndicator) {
2346 // With local aliases, we need to provide another externally visible
2347 // symbol __odr_asan_XXX to detect ODR violation.
2348 auto *ODRIndicatorSym =
2349 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2350 Constant::getNullValue(IRB.getInt8Ty()),
2351 kODRGenPrefix + NameForGlobal, nullptr,
2352 NewGlobal->getThreadLocalMode());
2354 // Set meaningful attributes for indicator symbol.
2355 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2356 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2357 ODRIndicatorSym->setAlignment(1);
2358 ODRIndicator = ODRIndicatorSym;
2361 Constant *Initializer = ConstantStruct::get(
2362 GlobalStructTy,
2363 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2364 ConstantInt::get(IntptrTy, SizeInBytes),
2365 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2366 ConstantExpr::getPointerCast(Name, IntptrTy),
2367 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2368 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2369 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2371 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2373 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2375 Initializers[i] = Initializer;
2378 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2379 // ConstantMerge'ing them.
2380 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2381 for (size_t i = 0; i < n; i++) {
2382 GlobalVariable *G = NewGlobals[i];
2383 if (G->getName().empty()) continue;
2384 GlobalsToAddToUsedList.push_back(G);
2386 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2388 std::string ELFUniqueModuleId =
2389 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2390 : "";
2392 if (!ELFUniqueModuleId.empty()) {
2393 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2394 *CtorComdat = true;
2395 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2396 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2397 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2398 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2399 } else {
2400 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2403 // Create calls for poisoning before initializers run and unpoisoning after.
2404 if (HasDynamicallyInitializedGlobals)
2405 createInitializerPoisonCalls(M, ModuleName);
2407 LLVM_DEBUG(dbgs() << M);
2408 return true;
2411 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2412 int LongSize = M.getDataLayout().getPointerSizeInBits();
2413 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2414 int Version = 8;
2415 // 32-bit Android is one version ahead because of the switch to dynamic
2416 // shadow.
2417 Version += (LongSize == 32 && isAndroid);
2418 return Version;
2421 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2422 initializeCallbacks(M);
2424 if (CompileKernel)
2425 return false;
2427 // Create a module constructor. A destructor is created lazily because not all
2428 // platforms, and not all modules need it.
2429 std::string VersionCheckName =
2430 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M));
2431 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2432 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2433 /*InitArgs=*/{}, VersionCheckName);
2435 bool CtorComdat = true;
2436 bool Changed = false;
2437 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2438 if (ClGlobals) {
2439 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2440 Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
2443 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2445 // Put the constructor and destructor in comdat if both
2446 // (1) global instrumentation is not TU-specific
2447 // (2) target is ELF.
2448 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2449 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2450 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2451 if (AsanDtorFunction) {
2452 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2453 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2455 } else {
2456 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2457 if (AsanDtorFunction)
2458 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2461 return Changed;
2464 void AddressSanitizer::initializeCallbacks(Module &M) {
2465 IRBuilder<> IRB(*C);
2466 // Create __asan_report* callbacks.
2467 // IsWrite, TypeSize and Exp are encoded in the function name.
2468 for (int Exp = 0; Exp < 2; Exp++) {
2469 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2470 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2471 const std::string ExpStr = Exp ? "exp_" : "";
2472 const std::string EndingStr = Recover ? "_noabort" : "";
2474 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2475 SmallVector<Type *, 2> Args1{1, IntptrTy};
2476 if (Exp) {
2477 Type *ExpType = Type::getInt32Ty(*C);
2478 Args2.push_back(ExpType);
2479 Args1.push_back(ExpType);
2481 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2482 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2483 FunctionType::get(IRB.getVoidTy(), Args2, false));
2485 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2486 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2487 FunctionType::get(IRB.getVoidTy(), Args2, false));
2489 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2490 AccessSizeIndex++) {
2491 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2492 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2493 M.getOrInsertFunction(
2494 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2495 FunctionType::get(IRB.getVoidTy(), Args1, false));
2497 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2498 M.getOrInsertFunction(
2499 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2500 FunctionType::get(IRB.getVoidTy(), Args1, false));
2505 const std::string MemIntrinCallbackPrefix =
2506 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2507 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2508 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2509 IRB.getInt8PtrTy(), IntptrTy);
2510 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2511 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2512 IRB.getInt8PtrTy(), IntptrTy);
2513 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2514 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2515 IRB.getInt32Ty(), IntptrTy);
2517 AsanHandleNoReturnFunc =
2518 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2520 AsanPtrCmpFunction =
2521 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2522 AsanPtrSubFunction =
2523 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2524 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2525 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2526 StringRef(""), StringRef(""),
2527 /*hasSideEffects=*/true);
2528 if (Mapping.InGlobal)
2529 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2530 ArrayType::get(IRB.getInt8Ty(), 0));
2533 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2534 // For each NSObject descendant having a +load method, this method is invoked
2535 // by the ObjC runtime before any of the static constructors is called.
2536 // Therefore we need to instrument such methods with a call to __asan_init
2537 // at the beginning in order to initialize our runtime before any access to
2538 // the shadow memory.
2539 // We cannot just ignore these methods, because they may call other
2540 // instrumented functions.
2541 if (F.getName().find(" load]") != std::string::npos) {
2542 FunctionCallee AsanInitFunction =
2543 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2544 IRBuilder<> IRB(&F.front(), F.front().begin());
2545 IRB.CreateCall(AsanInitFunction, {});
2546 return true;
2548 return false;
2551 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2552 // Generate code only when dynamic addressing is needed.
2553 if (Mapping.Offset != kDynamicShadowSentinel)
2554 return;
2556 IRBuilder<> IRB(&F.front().front());
2557 if (Mapping.InGlobal) {
2558 if (ClWithIfuncSuppressRemat) {
2559 // An empty inline asm with input reg == output reg.
2560 // An opaque pointer-to-int cast, basically.
2561 InlineAsm *Asm = InlineAsm::get(
2562 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2563 StringRef(""), StringRef("=r,0"),
2564 /*hasSideEffects=*/false);
2565 LocalDynamicShadow =
2566 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2567 } else {
2568 LocalDynamicShadow =
2569 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2571 } else {
2572 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2573 kAsanShadowMemoryDynamicAddress, IntptrTy);
2574 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2578 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2579 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2580 // to it as uninteresting. This assumes we haven't started processing allocas
2581 // yet. This check is done up front because iterating the use list in
2582 // isInterestingAlloca would be algorithmically slower.
2583 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2585 // Try to get the declaration of llvm.localescape. If it's not in the module,
2586 // we can exit early.
2587 if (!F.getParent()->getFunction("llvm.localescape")) return;
2589 // Look for a call to llvm.localescape call in the entry block. It can't be in
2590 // any other block.
2591 for (Instruction &I : F.getEntryBlock()) {
2592 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2593 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2594 // We found a call. Mark all the allocas passed in as uninteresting.
2595 for (Value *Arg : II->arg_operands()) {
2596 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2597 assert(AI && AI->isStaticAlloca() &&
2598 "non-static alloca arg to localescape");
2599 ProcessedAllocas[AI] = false;
2601 break;
2606 bool AddressSanitizer::instrumentFunction(Function &F,
2607 const TargetLibraryInfo *TLI) {
2608 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2609 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2610 if (F.getName().startswith("__asan_")) return false;
2612 bool FunctionModified = false;
2614 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2615 // This function needs to be called even if the function body is not
2616 // instrumented.
2617 if (maybeInsertAsanInitAtFunctionEntry(F))
2618 FunctionModified = true;
2620 // Leave if the function doesn't need instrumentation.
2621 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2623 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2625 initializeCallbacks(*F.getParent());
2627 FunctionStateRAII CleanupObj(this);
2629 maybeInsertDynamicShadowAtFunctionEntry(F);
2631 // We can't instrument allocas used with llvm.localescape. Only static allocas
2632 // can be passed to that intrinsic.
2633 markEscapedLocalAllocas(F);
2635 // We want to instrument every address only once per basic block (unless there
2636 // are calls between uses).
2637 SmallPtrSet<Value *, 16> TempsToInstrument;
2638 SmallVector<Instruction *, 16> ToInstrument;
2639 SmallVector<Instruction *, 8> NoReturnCalls;
2640 SmallVector<BasicBlock *, 16> AllBlocks;
2641 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2642 int NumAllocas = 0;
2643 bool IsWrite;
2644 unsigned Alignment;
2645 uint64_t TypeSize;
2647 // Fill the set of memory operations to instrument.
2648 for (auto &BB : F) {
2649 AllBlocks.push_back(&BB);
2650 TempsToInstrument.clear();
2651 int NumInsnsPerBB = 0;
2652 for (auto &Inst : BB) {
2653 if (LooksLikeCodeInBug11395(&Inst)) return false;
2654 Value *MaybeMask = nullptr;
2655 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2656 &Alignment, &MaybeMask)) {
2657 if (ClOpt && ClOptSameTemp) {
2658 // If we have a mask, skip instrumentation if we've already
2659 // instrumented the full object. But don't add to TempsToInstrument
2660 // because we might get another load/store with a different mask.
2661 if (MaybeMask) {
2662 if (TempsToInstrument.count(Addr))
2663 continue; // We've seen this (whole) temp in the current BB.
2664 } else {
2665 if (!TempsToInstrument.insert(Addr).second)
2666 continue; // We've seen this temp in the current BB.
2669 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2670 isInterestingPointerComparison(&Inst)) ||
2671 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2672 isInterestingPointerSubtraction(&Inst))) {
2673 PointerComparisonsOrSubtracts.push_back(&Inst);
2674 continue;
2675 } else if (isa<MemIntrinsic>(Inst)) {
2676 // ok, take it.
2677 } else {
2678 if (isa<AllocaInst>(Inst)) NumAllocas++;
2679 CallSite CS(&Inst);
2680 if (CS) {
2681 // A call inside BB.
2682 TempsToInstrument.clear();
2683 if (CS.doesNotReturn() && !CS->getMetadata("nosanitize"))
2684 NoReturnCalls.push_back(CS.getInstruction());
2686 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2687 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2688 continue;
2690 ToInstrument.push_back(&Inst);
2691 NumInsnsPerBB++;
2692 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2696 bool UseCalls =
2697 (ClInstrumentationWithCallsThreshold >= 0 &&
2698 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2699 const DataLayout &DL = F.getParent()->getDataLayout();
2700 ObjectSizeOpts ObjSizeOpts;
2701 ObjSizeOpts.RoundToAlign = true;
2702 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2704 // Instrument.
2705 int NumInstrumented = 0;
2706 for (auto Inst : ToInstrument) {
2707 if (ClDebugMin < 0 || ClDebugMax < 0 ||
2708 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2709 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2710 instrumentMop(ObjSizeVis, Inst, UseCalls,
2711 F.getParent()->getDataLayout());
2712 else
2713 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2715 NumInstrumented++;
2718 FunctionStackPoisoner FSP(F, *this);
2719 bool ChangedStack = FSP.runOnFunction();
2721 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2722 // See e.g. https://github.com/google/sanitizers/issues/37
2723 for (auto CI : NoReturnCalls) {
2724 IRBuilder<> IRB(CI);
2725 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2728 for (auto Inst : PointerComparisonsOrSubtracts) {
2729 instrumentPointerComparisonOrSubtraction(Inst);
2730 NumInstrumented++;
2733 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2734 FunctionModified = true;
2736 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2737 << F << "\n");
2739 return FunctionModified;
2742 // Workaround for bug 11395: we don't want to instrument stack in functions
2743 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2744 // FIXME: remove once the bug 11395 is fixed.
2745 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2746 if (LongSize != 32) return false;
2747 CallInst *CI = dyn_cast<CallInst>(I);
2748 if (!CI || !CI->isInlineAsm()) return false;
2749 if (CI->getNumArgOperands() <= 5) return false;
2750 // We have inline assembly with quite a few arguments.
2751 return true;
2754 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2755 IRBuilder<> IRB(*C);
2756 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2757 std::string Suffix = itostr(i);
2758 AsanStackMallocFunc[i] = M.getOrInsertFunction(
2759 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2760 AsanStackFreeFunc[i] =
2761 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2762 IRB.getVoidTy(), IntptrTy, IntptrTy);
2764 if (ASan.UseAfterScope) {
2765 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2766 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2767 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2768 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2771 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2772 std::ostringstream Name;
2773 Name << kAsanSetShadowPrefix;
2774 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2775 AsanSetShadowFunc[Val] =
2776 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2779 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2780 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2781 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2782 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2785 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2786 ArrayRef<uint8_t> ShadowBytes,
2787 size_t Begin, size_t End,
2788 IRBuilder<> &IRB,
2789 Value *ShadowBase) {
2790 if (Begin >= End)
2791 return;
2793 const size_t LargestStoreSizeInBytes =
2794 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2796 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2798 // Poison given range in shadow using larges store size with out leading and
2799 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2800 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2801 // middle of a store.
2802 for (size_t i = Begin; i < End;) {
2803 if (!ShadowMask[i]) {
2804 assert(!ShadowBytes[i]);
2805 ++i;
2806 continue;
2809 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2810 // Fit store size into the range.
2811 while (StoreSizeInBytes > End - i)
2812 StoreSizeInBytes /= 2;
2814 // Minimize store size by trimming trailing zeros.
2815 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2816 while (j <= StoreSizeInBytes / 2)
2817 StoreSizeInBytes /= 2;
2820 uint64_t Val = 0;
2821 for (size_t j = 0; j < StoreSizeInBytes; j++) {
2822 if (IsLittleEndian)
2823 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2824 else
2825 Val = (Val << 8) | ShadowBytes[i + j];
2828 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2829 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2830 IRB.CreateAlignedStore(
2831 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2833 i += StoreSizeInBytes;
2837 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2838 ArrayRef<uint8_t> ShadowBytes,
2839 IRBuilder<> &IRB, Value *ShadowBase) {
2840 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2843 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2844 ArrayRef<uint8_t> ShadowBytes,
2845 size_t Begin, size_t End,
2846 IRBuilder<> &IRB, Value *ShadowBase) {
2847 assert(ShadowMask.size() == ShadowBytes.size());
2848 size_t Done = Begin;
2849 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2850 if (!ShadowMask[i]) {
2851 assert(!ShadowBytes[i]);
2852 continue;
2854 uint8_t Val = ShadowBytes[i];
2855 if (!AsanSetShadowFunc[Val])
2856 continue;
2858 // Skip same values.
2859 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2862 if (j - i >= ClMaxInlinePoisoningSize) {
2863 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2864 IRB.CreateCall(AsanSetShadowFunc[Val],
2865 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2866 ConstantInt::get(IntptrTy, j - i)});
2867 Done = j;
2871 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2874 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2875 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2876 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2877 assert(LocalStackSize <= kMaxStackMallocSize);
2878 uint64_t MaxSize = kMinStackMallocSize;
2879 for (int i = 0;; i++, MaxSize *= 2)
2880 if (LocalStackSize <= MaxSize) return i;
2881 llvm_unreachable("impossible LocalStackSize");
2884 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2885 Instruction *CopyInsertPoint = &F.front().front();
2886 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2887 // Insert after the dynamic shadow location is determined
2888 CopyInsertPoint = CopyInsertPoint->getNextNode();
2889 assert(CopyInsertPoint);
2891 IRBuilder<> IRB(CopyInsertPoint);
2892 const DataLayout &DL = F.getParent()->getDataLayout();
2893 for (Argument &Arg : F.args()) {
2894 if (Arg.hasByValAttr()) {
2895 Type *Ty = Arg.getType()->getPointerElementType();
2896 unsigned Align = Arg.getParamAlignment();
2897 if (Align == 0) Align = DL.getABITypeAlignment(Ty);
2899 AllocaInst *AI = IRB.CreateAlloca(
2900 Ty, nullptr,
2901 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2902 ".byval");
2903 AI->setAlignment(Align);
2904 Arg.replaceAllUsesWith(AI);
2906 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2907 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize);
2912 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2913 Value *ValueIfTrue,
2914 Instruction *ThenTerm,
2915 Value *ValueIfFalse) {
2916 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2917 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2918 PHI->addIncoming(ValueIfFalse, CondBlock);
2919 BasicBlock *ThenBlock = ThenTerm->getParent();
2920 PHI->addIncoming(ValueIfTrue, ThenBlock);
2921 return PHI;
2924 Value *FunctionStackPoisoner::createAllocaForLayout(
2925 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2926 AllocaInst *Alloca;
2927 if (Dynamic) {
2928 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2929 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2930 "MyAlloca");
2931 } else {
2932 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2933 nullptr, "MyAlloca");
2934 assert(Alloca->isStaticAlloca());
2936 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2937 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2938 Alloca->setAlignment(FrameAlignment);
2939 return IRB.CreatePointerCast(Alloca, IntptrTy);
2942 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2943 BasicBlock &FirstBB = *F.begin();
2944 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2945 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2946 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2947 DynamicAllocaLayout->setAlignment(32);
2950 void FunctionStackPoisoner::processDynamicAllocas() {
2951 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2952 assert(DynamicAllocaPoisonCallVec.empty());
2953 return;
2956 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2957 for (const auto &APC : DynamicAllocaPoisonCallVec) {
2958 assert(APC.InsBefore);
2959 assert(APC.AI);
2960 assert(ASan.isInterestingAlloca(*APC.AI));
2961 assert(!APC.AI->isStaticAlloca());
2963 IRBuilder<> IRB(APC.InsBefore);
2964 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2965 // Dynamic allocas will be unpoisoned unconditionally below in
2966 // unpoisonDynamicAllocas.
2967 // Flag that we need unpoison static allocas.
2970 // Handle dynamic allocas.
2971 createDynamicAllocasInitStorage();
2972 for (auto &AI : DynamicAllocaVec)
2973 handleDynamicAllocaCall(AI);
2974 unpoisonDynamicAllocas();
2977 void FunctionStackPoisoner::processStaticAllocas() {
2978 if (AllocaVec.empty()) {
2979 assert(StaticAllocaPoisonCallVec.empty());
2980 return;
2983 int StackMallocIdx = -1;
2984 DebugLoc EntryDebugLocation;
2985 if (auto SP = F.getSubprogram())
2986 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2988 Instruction *InsBefore = AllocaVec[0];
2989 IRBuilder<> IRB(InsBefore);
2990 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2992 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2993 // debug info is broken, because only entry-block allocas are treated as
2994 // regular stack slots.
2995 auto InsBeforeB = InsBefore->getParent();
2996 assert(InsBeforeB == &F.getEntryBlock());
2997 for (auto *AI : StaticAllocasToMoveUp)
2998 if (AI->getParent() == InsBeforeB)
2999 AI->moveBefore(InsBefore);
3001 // If we have a call to llvm.localescape, keep it in the entry block.
3002 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3004 SmallVector<ASanStackVariableDescription, 16> SVD;
3005 SVD.reserve(AllocaVec.size());
3006 for (AllocaInst *AI : AllocaVec) {
3007 ASanStackVariableDescription D = {AI->getName().data(),
3008 ASan.getAllocaSizeInBytes(*AI),
3010 AI->getAlignment(),
3014 SVD.push_back(D);
3017 // Minimal header size (left redzone) is 4 pointers,
3018 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3019 size_t Granularity = 1ULL << Mapping.Scale;
3020 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3021 const ASanStackFrameLayout &L =
3022 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3024 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3025 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3026 for (auto &Desc : SVD)
3027 AllocaToSVDMap[Desc.AI] = &Desc;
3029 // Update SVD with information from lifetime intrinsics.
3030 for (const auto &APC : StaticAllocaPoisonCallVec) {
3031 assert(APC.InsBefore);
3032 assert(APC.AI);
3033 assert(ASan.isInterestingAlloca(*APC.AI));
3034 assert(APC.AI->isStaticAlloca());
3036 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3037 Desc.LifetimeSize = Desc.Size;
3038 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3039 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3040 if (LifetimeLoc->getFile() == FnLoc->getFile())
3041 if (unsigned Line = LifetimeLoc->getLine())
3042 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3047 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3048 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3049 uint64_t LocalStackSize = L.FrameSize;
3050 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3051 LocalStackSize <= kMaxStackMallocSize;
3052 bool DoDynamicAlloca = ClDynamicAllocaStack;
3053 // Don't do dynamic alloca or stack malloc if:
3054 // 1) There is inline asm: too often it makes assumptions on which registers
3055 // are available.
3056 // 2) There is a returns_twice call (typically setjmp), which is
3057 // optimization-hostile, and doesn't play well with introduced indirect
3058 // register-relative calculation of local variable addresses.
3059 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3060 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3062 Value *StaticAlloca =
3063 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3065 Value *FakeStack;
3066 Value *LocalStackBase;
3067 Value *LocalStackBaseAlloca;
3068 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3070 if (DoStackMalloc) {
3071 LocalStackBaseAlloca =
3072 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3073 // void *FakeStack = __asan_option_detect_stack_use_after_return
3074 // ? __asan_stack_malloc_N(LocalStackSize)
3075 // : nullptr;
3076 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3077 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3078 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3079 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3080 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3081 Constant::getNullValue(IRB.getInt32Ty()));
3082 Instruction *Term =
3083 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3084 IRBuilder<> IRBIf(Term);
3085 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3086 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3087 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3088 Value *FakeStackValue =
3089 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3090 ConstantInt::get(IntptrTy, LocalStackSize));
3091 IRB.SetInsertPoint(InsBefore);
3092 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3093 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3094 ConstantInt::get(IntptrTy, 0));
3096 Value *NoFakeStack =
3097 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3098 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3099 IRBIf.SetInsertPoint(Term);
3100 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3101 Value *AllocaValue =
3102 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3104 IRB.SetInsertPoint(InsBefore);
3105 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3106 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3107 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3108 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3109 DIExprFlags |= DIExpression::DerefBefore;
3110 } else {
3111 // void *FakeStack = nullptr;
3112 // void *LocalStackBase = alloca(LocalStackSize);
3113 FakeStack = ConstantInt::get(IntptrTy, 0);
3114 LocalStackBase =
3115 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3116 LocalStackBaseAlloca = LocalStackBase;
3119 // Replace Alloca instructions with base+offset.
3120 for (const auto &Desc : SVD) {
3121 AllocaInst *AI = Desc.AI;
3122 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags,
3123 Desc.Offset);
3124 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3125 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3126 AI->getType());
3127 AI->replaceAllUsesWith(NewAllocaPtr);
3130 // The left-most redzone has enough space for at least 4 pointers.
3131 // Write the Magic value to redzone[0].
3132 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3133 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3134 BasePlus0);
3135 // Write the frame description constant to redzone[1].
3136 Value *BasePlus1 = IRB.CreateIntToPtr(
3137 IRB.CreateAdd(LocalStackBase,
3138 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3139 IntptrPtrTy);
3140 GlobalVariable *StackDescriptionGlobal =
3141 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3142 /*AllowMerging*/ true, kAsanGenPrefix);
3143 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3144 IRB.CreateStore(Description, BasePlus1);
3145 // Write the PC to redzone[2].
3146 Value *BasePlus2 = IRB.CreateIntToPtr(
3147 IRB.CreateAdd(LocalStackBase,
3148 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3149 IntptrPtrTy);
3150 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3152 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3154 // Poison the stack red zones at the entry.
3155 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3156 // As mask we must use most poisoned case: red zones and after scope.
3157 // As bytes we can use either the same or just red zones only.
3158 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3160 if (!StaticAllocaPoisonCallVec.empty()) {
3161 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3163 // Poison static allocas near lifetime intrinsics.
3164 for (const auto &APC : StaticAllocaPoisonCallVec) {
3165 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3166 assert(Desc.Offset % L.Granularity == 0);
3167 size_t Begin = Desc.Offset / L.Granularity;
3168 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3170 IRBuilder<> IRB(APC.InsBefore);
3171 copyToShadow(ShadowAfterScope,
3172 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3173 IRB, ShadowBase);
3177 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3178 SmallVector<uint8_t, 64> ShadowAfterReturn;
3180 // (Un)poison the stack before all ret instructions.
3181 for (auto Ret : RetVec) {
3182 IRBuilder<> IRBRet(Ret);
3183 // Mark the current frame as retired.
3184 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3185 BasePlus0);
3186 if (DoStackMalloc) {
3187 assert(StackMallocIdx >= 0);
3188 // if FakeStack != 0 // LocalStackBase == FakeStack
3189 // // In use-after-return mode, poison the whole stack frame.
3190 // if StackMallocIdx <= 4
3191 // // For small sizes inline the whole thing:
3192 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3193 // **SavedFlagPtr(FakeStack) = 0
3194 // else
3195 // __asan_stack_free_N(FakeStack, LocalStackSize)
3196 // else
3197 // <This is not a fake stack; unpoison the redzones>
3198 Value *Cmp =
3199 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3200 Instruction *ThenTerm, *ElseTerm;
3201 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3203 IRBuilder<> IRBPoison(ThenTerm);
3204 if (StackMallocIdx <= 4) {
3205 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3206 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3207 kAsanStackUseAfterReturnMagic);
3208 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3209 ShadowBase);
3210 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3211 FakeStack,
3212 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3213 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3214 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3215 IRBPoison.CreateStore(
3216 Constant::getNullValue(IRBPoison.getInt8Ty()),
3217 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3218 } else {
3219 // For larger frames call __asan_stack_free_*.
3220 IRBPoison.CreateCall(
3221 AsanStackFreeFunc[StackMallocIdx],
3222 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3225 IRBuilder<> IRBElse(ElseTerm);
3226 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3227 } else {
3228 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3232 // We are done. Remove the old unused alloca instructions.
3233 for (auto AI : AllocaVec) AI->eraseFromParent();
3236 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3237 IRBuilder<> &IRB, bool DoPoison) {
3238 // For now just insert the call to ASan runtime.
3239 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3240 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3241 IRB.CreateCall(
3242 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3243 {AddrArg, SizeArg});
3246 // Handling llvm.lifetime intrinsics for a given %alloca:
3247 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3248 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3249 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3250 // could be poisoned by previous llvm.lifetime.end instruction, as the
3251 // variable may go in and out of scope several times, e.g. in loops).
3252 // (3) if we poisoned at least one %alloca in a function,
3253 // unpoison the whole stack frame at function exit.
3254 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3255 IRBuilder<> IRB(AI);
3257 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3258 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3260 Value *Zero = Constant::getNullValue(IntptrTy);
3261 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3262 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3264 // Since we need to extend alloca with additional memory to locate
3265 // redzones, and OldSize is number of allocated blocks with
3266 // ElementSize size, get allocated memory size in bytes by
3267 // OldSize * ElementSize.
3268 const unsigned ElementSize =
3269 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3270 Value *OldSize =
3271 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3272 ConstantInt::get(IntptrTy, ElementSize));
3274 // PartialSize = OldSize % 32
3275 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3277 // Misalign = kAllocaRzSize - PartialSize;
3278 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3280 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3281 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3282 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3284 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3285 // Align is added to locate left redzone, PartialPadding for possible
3286 // partial redzone and kAllocaRzSize for right redzone respectively.
3287 Value *AdditionalChunkSize = IRB.CreateAdd(
3288 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3290 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3292 // Insert new alloca with new NewSize and Align params.
3293 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3294 NewAlloca->setAlignment(Align);
3296 // NewAddress = Address + Align
3297 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3298 ConstantInt::get(IntptrTy, Align));
3300 // Insert __asan_alloca_poison call for new created alloca.
3301 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3303 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3304 // for unpoisoning stuff.
3305 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3307 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3309 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3310 AI->replaceAllUsesWith(NewAddressPtr);
3312 // We are done. Erase old alloca from parent.
3313 AI->eraseFromParent();
3316 // isSafeAccess returns true if Addr is always inbounds with respect to its
3317 // base object. For example, it is a field access or an array access with
3318 // constant inbounds index.
3319 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3320 Value *Addr, uint64_t TypeSize) const {
3321 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3322 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3323 uint64_t Size = SizeOffset.first.getZExtValue();
3324 int64_t Offset = SizeOffset.second.getSExtValue();
3325 // Three checks are required to ensure safety:
3326 // . Offset >= 0 (since the offset is given from the base ptr)
3327 // . Size >= Offset (unsigned)
3328 // . Size - Offset >= NeededSize (unsigned)
3329 return Offset >= 0 && Size >= uint64_t(Offset) &&
3330 Size - uint64_t(Offset) >= TypeSize / 8;