[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
blob5fa371377c85a1689b965a7dcce3e4b7b3913f7a
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "basicblock-utils"
54 void llvm::DetatchDeadBlocks(
55 ArrayRef<BasicBlock *> BBs,
56 SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57 bool KeepOneInputPHIs) {
58 for (auto *BB : BBs) {
59 // Loop through all of our successors and make sure they know that one
60 // of their predecessors is going away.
61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62 for (BasicBlock *Succ : successors(BB)) {
63 Succ->removePredecessor(BB, KeepOneInputPHIs);
64 if (Updates && UniqueSuccessors.insert(Succ).second)
65 Updates->push_back({DominatorTree::Delete, BB, Succ});
68 // Zap all the instructions in the block.
69 while (!BB->empty()) {
70 Instruction &I = BB->back();
71 // If this instruction is used, replace uses with an arbitrary value.
72 // Because control flow can't get here, we don't care what we replace the
73 // value with. Note that since this block is unreachable, and all values
74 // contained within it must dominate their uses, that all uses will
75 // eventually be removed (they are themselves dead).
76 if (!I.use_empty())
77 I.replaceAllUsesWith(UndefValue::get(I.getType()));
78 BB->getInstList().pop_back();
80 new UnreachableInst(BB->getContext(), BB);
81 assert(BB->getInstList().size() == 1 &&
82 isa<UnreachableInst>(BB->getTerminator()) &&
83 "The successor list of BB isn't empty before "
84 "applying corresponding DTU updates.");
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89 bool KeepOneInputPHIs) {
90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94 bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96 // Make sure that all predecessors of each dead block is also dead.
97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99 for (auto *BB : Dead)
100 for (BasicBlock *Pred : predecessors(BB))
101 assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
104 SmallVector<DominatorTree::UpdateType, 4> Updates;
105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
107 if (DTU)
108 DTU->applyUpdatesPermissive(Updates);
110 for (BasicBlock *BB : BBs)
111 if (DTU)
112 DTU->deleteBB(BB);
113 else
114 BB->eraseFromParent();
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118 bool KeepOneInputPHIs) {
119 df_iterator_default_set<BasicBlock*> Reachable;
121 // Mark all reachable blocks.
122 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123 (void)BB/* Mark all reachable blocks */;
125 // Collect all dead blocks.
126 std::vector<BasicBlock*> DeadBlocks;
127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128 if (!Reachable.count(&*I)) {
129 BasicBlock *BB = &*I;
130 DeadBlocks.push_back(BB);
133 // Delete the dead blocks.
134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
136 return !DeadBlocks.empty();
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140 MemoryDependenceResults *MemDep) {
141 if (!isa<PHINode>(BB->begin())) return;
143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144 if (PN->getIncomingValue(0) != PN)
145 PN->replaceAllUsesWith(PN->getIncomingValue(0));
146 else
147 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
149 if (MemDep)
150 MemDep->removeInstruction(PN); // Memdep updates AA itself.
152 PN->eraseFromParent();
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157 // Recursively deleting a PHI may cause multiple PHIs to be deleted
158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159 SmallVector<WeakTrackingVH, 8> PHIs;
160 for (PHINode &PN : BB->phis())
161 PHIs.push_back(&PN);
163 bool Changed = false;
164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
168 return Changed;
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172 LoopInfo *LI, MemorySSAUpdater *MSSAU,
173 MemoryDependenceResults *MemDep) {
174 if (BB->hasAddressTaken())
175 return false;
177 // Can't merge if there are multiple predecessors, or no predecessors.
178 BasicBlock *PredBB = BB->getUniquePredecessor();
179 if (!PredBB) return false;
181 // Don't break self-loops.
182 if (PredBB == BB) return false;
183 // Don't break unwinding instructions.
184 if (PredBB->getTerminator()->isExceptionalTerminator())
185 return false;
187 // Can't merge if there are multiple distinct successors.
188 if (PredBB->getUniqueSuccessor() != BB)
189 return false;
191 // Can't merge if there is PHI loop.
192 for (PHINode &PN : BB->phis())
193 for (Value *IncValue : PN.incoming_values())
194 if (IncValue == &PN)
195 return false;
197 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
198 << PredBB->getName() << "\n");
200 // Begin by getting rid of unneeded PHIs.
201 SmallVector<AssertingVH<Value>, 4> IncomingValues;
202 if (isa<PHINode>(BB->front())) {
203 for (PHINode &PN : BB->phis())
204 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
205 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
206 IncomingValues.push_back(PN.getIncomingValue(0));
207 FoldSingleEntryPHINodes(BB, MemDep);
210 // DTU update: Collect all the edges that exit BB.
211 // These dominator edges will be redirected from Pred.
212 std::vector<DominatorTree::UpdateType> Updates;
213 if (DTU) {
214 Updates.reserve(1 + (2 * succ_size(BB)));
215 // Add insert edges first. Experimentally, for the particular case of two
216 // blocks that can be merged, with a single successor and single predecessor
217 // respectively, it is beneficial to have all insert updates first. Deleting
218 // edges first may lead to unreachable blocks, followed by inserting edges
219 // making the blocks reachable again. Such DT updates lead to high compile
220 // times. We add inserts before deletes here to reduce compile time.
221 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
222 // This successor of BB may already have PredBB as a predecessor.
223 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
224 Updates.push_back({DominatorTree::Insert, PredBB, *I});
225 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
226 Updates.push_back({DominatorTree::Delete, BB, *I});
227 Updates.push_back({DominatorTree::Delete, PredBB, BB});
230 if (MSSAU)
231 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
233 // Delete the unconditional branch from the predecessor...
234 PredBB->getInstList().pop_back();
236 // Make all PHI nodes that referred to BB now refer to Pred as their
237 // source...
238 BB->replaceAllUsesWith(PredBB);
240 // Move all definitions in the successor to the predecessor...
241 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
242 new UnreachableInst(BB->getContext(), BB);
244 // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
245 for (auto Incoming : IncomingValues) {
246 if (isa<Instruction>(*Incoming)) {
247 SmallVector<DbgValueInst *, 2> DbgValues;
248 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
249 DbgValueSet;
250 llvm::findDbgValues(DbgValues, Incoming);
251 for (auto &DVI : DbgValues) {
252 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
253 if (!R.second)
254 DVI->eraseFromParent();
259 // Inherit predecessors name if it exists.
260 if (!PredBB->hasName())
261 PredBB->takeName(BB);
263 if (LI)
264 LI->removeBlock(BB);
266 if (MemDep)
267 MemDep->invalidateCachedPredecessors();
269 // Finally, erase the old block and update dominator info.
270 if (DTU) {
271 assert(BB->getInstList().size() == 1 &&
272 isa<UnreachableInst>(BB->getTerminator()) &&
273 "The successor list of BB isn't empty before "
274 "applying corresponding DTU updates.");
275 DTU->applyUpdatesPermissive(Updates);
276 DTU->deleteBB(BB);
279 else {
280 BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
282 return true;
285 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
286 BasicBlock::iterator &BI, Value *V) {
287 Instruction &I = *BI;
288 // Replaces all of the uses of the instruction with uses of the value
289 I.replaceAllUsesWith(V);
291 // Make sure to propagate a name if there is one already.
292 if (I.hasName() && !V->hasName())
293 V->takeName(&I);
295 // Delete the unnecessary instruction now...
296 BI = BIL.erase(BI);
299 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
300 BasicBlock::iterator &BI, Instruction *I) {
301 assert(I->getParent() == nullptr &&
302 "ReplaceInstWithInst: Instruction already inserted into basic block!");
304 // Copy debug location to newly added instruction, if it wasn't already set
305 // by the caller.
306 if (!I->getDebugLoc())
307 I->setDebugLoc(BI->getDebugLoc());
309 // Insert the new instruction into the basic block...
310 BasicBlock::iterator New = BIL.insert(BI, I);
312 // Replace all uses of the old instruction, and delete it.
313 ReplaceInstWithValue(BIL, BI, I);
315 // Move BI back to point to the newly inserted instruction
316 BI = New;
319 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
320 BasicBlock::iterator BI(From);
321 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
324 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
325 LoopInfo *LI, MemorySSAUpdater *MSSAU) {
326 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
328 // If this is a critical edge, let SplitCriticalEdge do it.
329 Instruction *LatchTerm = BB->getTerminator();
330 if (SplitCriticalEdge(
331 LatchTerm, SuccNum,
332 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
333 return LatchTerm->getSuccessor(SuccNum);
335 // If the edge isn't critical, then BB has a single successor or Succ has a
336 // single pred. Split the block.
337 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
338 // If the successor only has a single pred, split the top of the successor
339 // block.
340 assert(SP == BB && "CFG broken");
341 SP = nullptr;
342 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
345 // Otherwise, if BB has a single successor, split it at the bottom of the
346 // block.
347 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
348 "Should have a single succ!");
349 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
352 unsigned
353 llvm::SplitAllCriticalEdges(Function &F,
354 const CriticalEdgeSplittingOptions &Options) {
355 unsigned NumBroken = 0;
356 for (BasicBlock &BB : F) {
357 Instruction *TI = BB.getTerminator();
358 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
359 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
360 if (SplitCriticalEdge(TI, i, Options))
361 ++NumBroken;
363 return NumBroken;
366 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
367 DominatorTree *DT, LoopInfo *LI,
368 MemorySSAUpdater *MSSAU) {
369 BasicBlock::iterator SplitIt = SplitPt->getIterator();
370 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
371 ++SplitIt;
372 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
374 // The new block lives in whichever loop the old one did. This preserves
375 // LCSSA as well, because we force the split point to be after any PHI nodes.
376 if (LI)
377 if (Loop *L = LI->getLoopFor(Old))
378 L->addBasicBlockToLoop(New, *LI);
380 if (DT)
381 // Old dominates New. New node dominates all other nodes dominated by Old.
382 if (DomTreeNode *OldNode = DT->getNode(Old)) {
383 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
385 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
386 for (DomTreeNode *I : Children)
387 DT->changeImmediateDominator(I, NewNode);
390 // Move MemoryAccesses still tracked in Old, but part of New now.
391 // Update accesses in successor blocks accordingly.
392 if (MSSAU)
393 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
395 return New;
398 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
399 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
400 ArrayRef<BasicBlock *> Preds,
401 DominatorTree *DT, LoopInfo *LI,
402 MemorySSAUpdater *MSSAU,
403 bool PreserveLCSSA, bool &HasLoopExit) {
404 // Update dominator tree if available.
405 if (DT) {
406 if (OldBB == DT->getRootNode()->getBlock()) {
407 assert(NewBB == &NewBB->getParent()->getEntryBlock());
408 DT->setNewRoot(NewBB);
409 } else {
410 // Split block expects NewBB to have a non-empty set of predecessors.
411 DT->splitBlock(NewBB);
415 // Update MemoryPhis after split if MemorySSA is available
416 if (MSSAU)
417 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
419 // The rest of the logic is only relevant for updating the loop structures.
420 if (!LI)
421 return;
423 assert(DT && "DT should be available to update LoopInfo!");
424 Loop *L = LI->getLoopFor(OldBB);
426 // If we need to preserve loop analyses, collect some information about how
427 // this split will affect loops.
428 bool IsLoopEntry = !!L;
429 bool SplitMakesNewLoopHeader = false;
430 for (BasicBlock *Pred : Preds) {
431 // Preds that are not reachable from entry should not be used to identify if
432 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
433 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
434 // as true and make the NewBB the header of some loop. This breaks LI.
435 if (!DT->isReachableFromEntry(Pred))
436 continue;
437 // If we need to preserve LCSSA, determine if any of the preds is a loop
438 // exit.
439 if (PreserveLCSSA)
440 if (Loop *PL = LI->getLoopFor(Pred))
441 if (!PL->contains(OldBB))
442 HasLoopExit = true;
444 // If we need to preserve LoopInfo, note whether any of the preds crosses
445 // an interesting loop boundary.
446 if (!L)
447 continue;
448 if (L->contains(Pred))
449 IsLoopEntry = false;
450 else
451 SplitMakesNewLoopHeader = true;
454 // Unless we have a loop for OldBB, nothing else to do here.
455 if (!L)
456 return;
458 if (IsLoopEntry) {
459 // Add the new block to the nearest enclosing loop (and not an adjacent
460 // loop). To find this, examine each of the predecessors and determine which
461 // loops enclose them, and select the most-nested loop which contains the
462 // loop containing the block being split.
463 Loop *InnermostPredLoop = nullptr;
464 for (BasicBlock *Pred : Preds) {
465 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
466 // Seek a loop which actually contains the block being split (to avoid
467 // adjacent loops).
468 while (PredLoop && !PredLoop->contains(OldBB))
469 PredLoop = PredLoop->getParentLoop();
471 // Select the most-nested of these loops which contains the block.
472 if (PredLoop && PredLoop->contains(OldBB) &&
473 (!InnermostPredLoop ||
474 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
475 InnermostPredLoop = PredLoop;
479 if (InnermostPredLoop)
480 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
481 } else {
482 L->addBasicBlockToLoop(NewBB, *LI);
483 if (SplitMakesNewLoopHeader)
484 L->moveToHeader(NewBB);
488 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
489 /// This also updates AliasAnalysis, if available.
490 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
491 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
492 bool HasLoopExit) {
493 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
494 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
495 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
496 PHINode *PN = cast<PHINode>(I++);
498 // Check to see if all of the values coming in are the same. If so, we
499 // don't need to create a new PHI node, unless it's needed for LCSSA.
500 Value *InVal = nullptr;
501 if (!HasLoopExit) {
502 InVal = PN->getIncomingValueForBlock(Preds[0]);
503 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
504 if (!PredSet.count(PN->getIncomingBlock(i)))
505 continue;
506 if (!InVal)
507 InVal = PN->getIncomingValue(i);
508 else if (InVal != PN->getIncomingValue(i)) {
509 InVal = nullptr;
510 break;
515 if (InVal) {
516 // If all incoming values for the new PHI would be the same, just don't
517 // make a new PHI. Instead, just remove the incoming values from the old
518 // PHI.
520 // NOTE! This loop walks backwards for a reason! First off, this minimizes
521 // the cost of removal if we end up removing a large number of values, and
522 // second off, this ensures that the indices for the incoming values
523 // aren't invalidated when we remove one.
524 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
525 if (PredSet.count(PN->getIncomingBlock(i)))
526 PN->removeIncomingValue(i, false);
528 // Add an incoming value to the PHI node in the loop for the preheader
529 // edge.
530 PN->addIncoming(InVal, NewBB);
531 continue;
534 // If the values coming into the block are not the same, we need a new
535 // PHI.
536 // Create the new PHI node, insert it into NewBB at the end of the block
537 PHINode *NewPHI =
538 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
540 // NOTE! This loop walks backwards for a reason! First off, this minimizes
541 // the cost of removal if we end up removing a large number of values, and
542 // second off, this ensures that the indices for the incoming values aren't
543 // invalidated when we remove one.
544 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
545 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
546 if (PredSet.count(IncomingBB)) {
547 Value *V = PN->removeIncomingValue(i, false);
548 NewPHI->addIncoming(V, IncomingBB);
552 PN->addIncoming(NewPHI, NewBB);
556 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
557 ArrayRef<BasicBlock *> Preds,
558 const char *Suffix, DominatorTree *DT,
559 LoopInfo *LI, MemorySSAUpdater *MSSAU,
560 bool PreserveLCSSA) {
561 // Do not attempt to split that which cannot be split.
562 if (!BB->canSplitPredecessors())
563 return nullptr;
565 // For the landingpads we need to act a bit differently.
566 // Delegate this work to the SplitLandingPadPredecessors.
567 if (BB->isLandingPad()) {
568 SmallVector<BasicBlock*, 2> NewBBs;
569 std::string NewName = std::string(Suffix) + ".split-lp";
571 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
572 LI, MSSAU, PreserveLCSSA);
573 return NewBBs[0];
576 // Create new basic block, insert right before the original block.
577 BasicBlock *NewBB = BasicBlock::Create(
578 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
580 // The new block unconditionally branches to the old block.
581 BranchInst *BI = BranchInst::Create(BB, NewBB);
582 // Splitting the predecessors of a loop header creates a preheader block.
583 if (LI && LI->isLoopHeader(BB))
584 // Using the loop start line number prevents debuggers stepping into the
585 // loop body for this instruction.
586 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
587 else
588 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
590 // Move the edges from Preds to point to NewBB instead of BB.
591 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
592 // This is slightly more strict than necessary; the minimum requirement
593 // is that there be no more than one indirectbr branching to BB. And
594 // all BlockAddress uses would need to be updated.
595 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
596 "Cannot split an edge from an IndirectBrInst");
597 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
598 "Cannot split an edge from a CallBrInst");
599 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
602 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
603 // node becomes an incoming value for BB's phi node. However, if the Preds
604 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
605 // account for the newly created predecessor.
606 if (Preds.empty()) {
607 // Insert dummy values as the incoming value.
608 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
609 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
612 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
613 bool HasLoopExit = false;
614 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
615 HasLoopExit);
617 if (!Preds.empty()) {
618 // Update the PHI nodes in BB with the values coming from NewBB.
619 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
622 return NewBB;
625 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
626 ArrayRef<BasicBlock *> Preds,
627 const char *Suffix1, const char *Suffix2,
628 SmallVectorImpl<BasicBlock *> &NewBBs,
629 DominatorTree *DT, LoopInfo *LI,
630 MemorySSAUpdater *MSSAU,
631 bool PreserveLCSSA) {
632 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
634 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
635 // it right before the original block.
636 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
637 OrigBB->getName() + Suffix1,
638 OrigBB->getParent(), OrigBB);
639 NewBBs.push_back(NewBB1);
641 // The new block unconditionally branches to the old block.
642 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
643 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
645 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
646 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
647 // This is slightly more strict than necessary; the minimum requirement
648 // is that there be no more than one indirectbr branching to BB. And
649 // all BlockAddress uses would need to be updated.
650 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
651 "Cannot split an edge from an IndirectBrInst");
652 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
655 bool HasLoopExit = false;
656 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
657 HasLoopExit);
659 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
660 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
662 // Move the remaining edges from OrigBB to point to NewBB2.
663 SmallVector<BasicBlock*, 8> NewBB2Preds;
664 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
665 i != e; ) {
666 BasicBlock *Pred = *i++;
667 if (Pred == NewBB1) continue;
668 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
669 "Cannot split an edge from an IndirectBrInst");
670 NewBB2Preds.push_back(Pred);
671 e = pred_end(OrigBB);
674 BasicBlock *NewBB2 = nullptr;
675 if (!NewBB2Preds.empty()) {
676 // Create another basic block for the rest of OrigBB's predecessors.
677 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
678 OrigBB->getName() + Suffix2,
679 OrigBB->getParent(), OrigBB);
680 NewBBs.push_back(NewBB2);
682 // The new block unconditionally branches to the old block.
683 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
684 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
686 // Move the remaining edges from OrigBB to point to NewBB2.
687 for (BasicBlock *NewBB2Pred : NewBB2Preds)
688 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
690 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
691 HasLoopExit = false;
692 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
693 PreserveLCSSA, HasLoopExit);
695 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
696 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
699 LandingPadInst *LPad = OrigBB->getLandingPadInst();
700 Instruction *Clone1 = LPad->clone();
701 Clone1->setName(Twine("lpad") + Suffix1);
702 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
704 if (NewBB2) {
705 Instruction *Clone2 = LPad->clone();
706 Clone2->setName(Twine("lpad") + Suffix2);
707 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
709 // Create a PHI node for the two cloned landingpad instructions only
710 // if the original landingpad instruction has some uses.
711 if (!LPad->use_empty()) {
712 assert(!LPad->getType()->isTokenTy() &&
713 "Split cannot be applied if LPad is token type. Otherwise an "
714 "invalid PHINode of token type would be created.");
715 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
716 PN->addIncoming(Clone1, NewBB1);
717 PN->addIncoming(Clone2, NewBB2);
718 LPad->replaceAllUsesWith(PN);
720 LPad->eraseFromParent();
721 } else {
722 // There is no second clone. Just replace the landing pad with the first
723 // clone.
724 LPad->replaceAllUsesWith(Clone1);
725 LPad->eraseFromParent();
729 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
730 BasicBlock *Pred,
731 DomTreeUpdater *DTU) {
732 Instruction *UncondBranch = Pred->getTerminator();
733 // Clone the return and add it to the end of the predecessor.
734 Instruction *NewRet = RI->clone();
735 Pred->getInstList().push_back(NewRet);
737 // If the return instruction returns a value, and if the value was a
738 // PHI node in "BB", propagate the right value into the return.
739 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
740 i != e; ++i) {
741 Value *V = *i;
742 Instruction *NewBC = nullptr;
743 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
744 // Return value might be bitcasted. Clone and insert it before the
745 // return instruction.
746 V = BCI->getOperand(0);
747 NewBC = BCI->clone();
748 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
749 *i = NewBC;
751 if (PHINode *PN = dyn_cast<PHINode>(V)) {
752 if (PN->getParent() == BB) {
753 if (NewBC)
754 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
755 else
756 *i = PN->getIncomingValueForBlock(Pred);
761 // Update any PHI nodes in the returning block to realize that we no
762 // longer branch to them.
763 BB->removePredecessor(Pred);
764 UncondBranch->eraseFromParent();
766 if (DTU)
767 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
769 return cast<ReturnInst>(NewRet);
772 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
773 Instruction *SplitBefore,
774 bool Unreachable,
775 MDNode *BranchWeights,
776 DominatorTree *DT, LoopInfo *LI,
777 BasicBlock *ThenBlock) {
778 BasicBlock *Head = SplitBefore->getParent();
779 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
780 Instruction *HeadOldTerm = Head->getTerminator();
781 LLVMContext &C = Head->getContext();
782 Instruction *CheckTerm;
783 bool CreateThenBlock = (ThenBlock == nullptr);
784 if (CreateThenBlock) {
785 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
786 if (Unreachable)
787 CheckTerm = new UnreachableInst(C, ThenBlock);
788 else
789 CheckTerm = BranchInst::Create(Tail, ThenBlock);
790 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
791 } else
792 CheckTerm = ThenBlock->getTerminator();
793 BranchInst *HeadNewTerm =
794 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
795 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
796 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
798 if (DT) {
799 if (DomTreeNode *OldNode = DT->getNode(Head)) {
800 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
802 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
803 for (DomTreeNode *Child : Children)
804 DT->changeImmediateDominator(Child, NewNode);
806 // Head dominates ThenBlock.
807 if (CreateThenBlock)
808 DT->addNewBlock(ThenBlock, Head);
809 else
810 DT->changeImmediateDominator(ThenBlock, Head);
814 if (LI) {
815 if (Loop *L = LI->getLoopFor(Head)) {
816 L->addBasicBlockToLoop(ThenBlock, *LI);
817 L->addBasicBlockToLoop(Tail, *LI);
821 return CheckTerm;
824 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
825 Instruction **ThenTerm,
826 Instruction **ElseTerm,
827 MDNode *BranchWeights) {
828 BasicBlock *Head = SplitBefore->getParent();
829 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
830 Instruction *HeadOldTerm = Head->getTerminator();
831 LLVMContext &C = Head->getContext();
832 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
833 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
834 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
835 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
836 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
837 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
838 BranchInst *HeadNewTerm =
839 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
840 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
841 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
844 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
845 BasicBlock *&IfFalse) {
846 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
847 BasicBlock *Pred1 = nullptr;
848 BasicBlock *Pred2 = nullptr;
850 if (SomePHI) {
851 if (SomePHI->getNumIncomingValues() != 2)
852 return nullptr;
853 Pred1 = SomePHI->getIncomingBlock(0);
854 Pred2 = SomePHI->getIncomingBlock(1);
855 } else {
856 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
857 if (PI == PE) // No predecessor
858 return nullptr;
859 Pred1 = *PI++;
860 if (PI == PE) // Only one predecessor
861 return nullptr;
862 Pred2 = *PI++;
863 if (PI != PE) // More than two predecessors
864 return nullptr;
867 // We can only handle branches. Other control flow will be lowered to
868 // branches if possible anyway.
869 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
870 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
871 if (!Pred1Br || !Pred2Br)
872 return nullptr;
874 // Eliminate code duplication by ensuring that Pred1Br is conditional if
875 // either are.
876 if (Pred2Br->isConditional()) {
877 // If both branches are conditional, we don't have an "if statement". In
878 // reality, we could transform this case, but since the condition will be
879 // required anyway, we stand no chance of eliminating it, so the xform is
880 // probably not profitable.
881 if (Pred1Br->isConditional())
882 return nullptr;
884 std::swap(Pred1, Pred2);
885 std::swap(Pred1Br, Pred2Br);
888 if (Pred1Br->isConditional()) {
889 // The only thing we have to watch out for here is to make sure that Pred2
890 // doesn't have incoming edges from other blocks. If it does, the condition
891 // doesn't dominate BB.
892 if (!Pred2->getSinglePredecessor())
893 return nullptr;
895 // If we found a conditional branch predecessor, make sure that it branches
896 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
897 if (Pred1Br->getSuccessor(0) == BB &&
898 Pred1Br->getSuccessor(1) == Pred2) {
899 IfTrue = Pred1;
900 IfFalse = Pred2;
901 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
902 Pred1Br->getSuccessor(1) == BB) {
903 IfTrue = Pred2;
904 IfFalse = Pred1;
905 } else {
906 // We know that one arm of the conditional goes to BB, so the other must
907 // go somewhere unrelated, and this must not be an "if statement".
908 return nullptr;
911 return Pred1Br->getCondition();
914 // Ok, if we got here, both predecessors end with an unconditional branch to
915 // BB. Don't panic! If both blocks only have a single (identical)
916 // predecessor, and THAT is a conditional branch, then we're all ok!
917 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
918 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
919 return nullptr;
921 // Otherwise, if this is a conditional branch, then we can use it!
922 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
923 if (!BI) return nullptr;
925 assert(BI->isConditional() && "Two successors but not conditional?");
926 if (BI->getSuccessor(0) == Pred1) {
927 IfTrue = Pred1;
928 IfFalse = Pred2;
929 } else {
930 IfTrue = Pred2;
931 IfFalse = Pred1;
933 return BI->getCondition();