1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 #define DEBUG_TYPE "lcssa"
55 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
57 #ifdef EXPENSIVE_CHECKS
58 static bool VerifyLoopLCSSA
= true;
60 static bool VerifyLoopLCSSA
= false;
62 static cl::opt
<bool, true>
63 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
65 cl::desc("Verify loop lcssa form (time consuming)"));
67 /// Return true if the specified block is in the list.
68 static bool isExitBlock(BasicBlock
*BB
,
69 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
70 return is_contained(ExitBlocks
, BB
);
73 /// For every instruction from the worklist, check to see if it has any uses
74 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
76 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
77 DominatorTree
&DT
, LoopInfo
&LI
) {
78 SmallVector
<Use
*, 16> UsesToRewrite
;
79 SmallSetVector
<PHINode
*, 16> PHIsToRemove
;
80 PredIteratorCache PredCache
;
83 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
84 // instructions within the same loops, computing the exit blocks is
85 // expensive, and we're not mutating the loop structure.
86 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
88 while (!Worklist
.empty()) {
89 UsesToRewrite
.clear();
91 Instruction
*I
= Worklist
.pop_back_val();
92 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
93 BasicBlock
*InstBB
= I
->getParent();
94 Loop
*L
= LI
.getLoopFor(InstBB
);
95 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
96 if (!LoopExitBlocks
.count(L
))
97 L
->getExitBlocks(LoopExitBlocks
[L
]);
98 assert(LoopExitBlocks
.count(L
));
99 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
101 if (ExitBlocks
.empty())
104 for (Use
&U
: I
->uses()) {
105 Instruction
*User
= cast
<Instruction
>(U
.getUser());
106 BasicBlock
*UserBB
= User
->getParent();
107 if (auto *PN
= dyn_cast
<PHINode
>(User
))
108 UserBB
= PN
->getIncomingBlock(U
);
110 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
111 UsesToRewrite
.push_back(&U
);
114 // If there are no uses outside the loop, exit with no change.
115 if (UsesToRewrite
.empty())
118 ++NumLCSSA
; // We are applying the transformation
120 // Invoke instructions are special in that their result value is not
121 // available along their unwind edge. The code below tests to see whether
122 // DomBB dominates the value, so adjust DomBB to the normal destination
123 // block, which is effectively where the value is first usable.
124 BasicBlock
*DomBB
= InstBB
;
125 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
126 DomBB
= Inv
->getNormalDest();
128 DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
130 SmallVector
<PHINode
*, 16> AddedPHIs
;
131 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
133 SmallVector
<PHINode
*, 4> InsertedPHIs
;
134 SSAUpdater
SSAUpdate(&InsertedPHIs
);
135 SSAUpdate
.Initialize(I
->getType(), I
->getName());
137 // Insert the LCSSA phi's into all of the exit blocks dominated by the
138 // value, and add them to the Phi's map.
139 for (BasicBlock
*ExitBB
: ExitBlocks
) {
140 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
143 // If we already inserted something for this BB, don't reprocess it.
144 if (SSAUpdate
.HasValueForBlock(ExitBB
))
147 PHINode
*PN
= PHINode::Create(I
->getType(), PredCache
.size(ExitBB
),
148 I
->getName() + ".lcssa", &ExitBB
->front());
149 // Get the debug location from the original instruction.
150 PN
->setDebugLoc(I
->getDebugLoc());
151 // Add inputs from inside the loop for this PHI.
152 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
153 PN
->addIncoming(I
, Pred
);
155 // If the exit block has a predecessor not within the loop, arrange for
156 // the incoming value use corresponding to that predecessor to be
157 // rewritten in terms of a different LCSSA PHI.
158 if (!L
->contains(Pred
))
159 UsesToRewrite
.push_back(
160 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
161 PN
->getNumIncomingValues() - 1)));
164 AddedPHIs
.push_back(PN
);
166 // Remember that this phi makes the value alive in this block.
167 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
169 // LoopSimplify might fail to simplify some loops (e.g. when indirect
170 // branches are involved). In such situations, it might happen that an
171 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
172 // create PHIs in such an exit block, we are also inserting PHIs into L2's
173 // header. This could break LCSSA form for L2 because these inserted PHIs
174 // can also have uses outside of L2. Remember all PHIs in such situation
175 // as to revisit than later on. FIXME: Remove this if indirectbr support
176 // into LoopSimplify gets improved.
177 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
178 if (!L
->contains(OtherLoop
))
179 PostProcessPHIs
.push_back(PN
);
182 // Rewrite all uses outside the loop in terms of the new PHIs we just
184 for (Use
*UseToRewrite
: UsesToRewrite
) {
185 // If this use is in an exit block, rewrite to use the newly inserted PHI.
186 // This is required for correctness because SSAUpdate doesn't handle uses
187 // in the same block. It assumes the PHI we inserted is at the end of the
189 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
190 BasicBlock
*UserBB
= User
->getParent();
191 if (auto *PN
= dyn_cast
<PHINode
>(User
))
192 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
194 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
195 // Tell the VHs that the uses changed. This updates SCEV's caches.
196 if (UseToRewrite
->get()->hasValueHandle())
197 ValueHandleBase::ValueIsRAUWd(*UseToRewrite
, &UserBB
->front());
198 UseToRewrite
->set(&UserBB
->front());
202 // If we added a single PHI, it must dominate all uses and we can directly
204 if (AddedPHIs
.size() == 1) {
205 // Tell the VHs that the uses changed. This updates SCEV's caches.
206 // We might call ValueIsRAUWd multiple times for the same value.
207 if (UseToRewrite
->get()->hasValueHandle())
208 ValueHandleBase::ValueIsRAUWd(*UseToRewrite
, AddedPHIs
[0]);
209 UseToRewrite
->set(AddedPHIs
[0]);
213 // Otherwise, do full PHI insertion.
214 SSAUpdate
.RewriteUse(*UseToRewrite
);
217 SmallVector
<DbgValueInst
*, 4> DbgValues
;
218 llvm::findDbgValues(DbgValues
, I
);
220 // Update pre-existing debug value uses that reside outside the loop.
221 auto &Ctx
= I
->getContext();
222 for (auto DVI
: DbgValues
) {
223 BasicBlock
*UserBB
= DVI
->getParent();
224 if (InstBB
== UserBB
|| L
->contains(UserBB
))
226 // We currently only handle debug values residing in blocks that were
227 // traversed while rewriting the uses. If we inserted just a single PHI,
228 // we will handle all relevant debug values.
229 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
230 : SSAUpdate
.FindValueForBlock(UserBB
);
232 DVI
->setOperand(0, MetadataAsValue::get(Ctx
, ValueAsMetadata::get(V
)));
235 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
236 // to post-process them to keep LCSSA form.
237 for (PHINode
*InsertedPN
: InsertedPHIs
) {
238 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
239 if (!L
->contains(OtherLoop
))
240 PostProcessPHIs
.push_back(InsertedPN
);
243 // Post process PHI instructions that were inserted into another disjoint
244 // loop and update their exits properly.
245 for (auto *PostProcessPN
: PostProcessPHIs
)
246 if (!PostProcessPN
->use_empty())
247 Worklist
.push_back(PostProcessPN
);
249 // Keep track of PHI nodes that we want to remove because they did not have
250 // any uses rewritten. If the new PHI is used, store it so that we can
251 // try to propagate dbg.value intrinsics to it.
252 SmallVector
<PHINode
*, 2> NeedDbgValues
;
253 for (PHINode
*PN
: AddedPHIs
)
255 PHIsToRemove
.insert(PN
);
257 NeedDbgValues
.push_back(PN
);
258 insertDebugValuesForPHIs(InstBB
, NeedDbgValues
);
261 // Remove PHI nodes that did not have any uses rewritten. We need to redo the
262 // use_empty() check here, because even if the PHI node wasn't used when added
263 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is
264 // not guaranteed to handle trees/cycles of PHI nodes that only are used by
265 // each other. Such situations has only been noticed when the input IR
266 // contains unreachable code, and leaving some extra redundant PHI nodes in
267 // such situations is considered a minor problem.
268 for (PHINode
*PN
: PHIsToRemove
)
270 PN
->eraseFromParent();
274 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
275 static void computeBlocksDominatingExits(
276 Loop
&L
, DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
277 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
278 SmallVector
<BasicBlock
*, 8> BBWorklist
;
280 // We start from the exit blocks, as every block trivially dominates itself
282 for (BasicBlock
*BB
: ExitBlocks
)
283 BBWorklist
.push_back(BB
);
285 while (!BBWorklist
.empty()) {
286 BasicBlock
*BB
= BBWorklist
.pop_back_val();
288 // Check if this is a loop header. If this is the case, we're done.
289 if (L
.getHeader() == BB
)
292 // Otherwise, add its immediate predecessor in the dominator tree to the
293 // worklist, unless we visited it already.
294 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
296 // Exit blocks can have an immediate dominator not beloinging to the
297 // loop. For an exit block to be immediately dominated by another block
298 // outside the loop, it implies not all paths from that dominator, to the
299 // exit block, go through the loop.
310 // C is the exit block of the loop and it's immediately dominated by A,
311 // which doesn't belong to the loop.
312 if (!L
.contains(IDomBB
))
315 if (BlocksDominatingExits
.insert(IDomBB
))
316 BBWorklist
.push_back(IDomBB
);
320 bool llvm::formLCSSA(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
321 ScalarEvolution
*SE
) {
322 bool Changed
= false;
324 #ifdef EXPENSIVE_CHECKS
325 // Verify all sub-loops are in LCSSA form already.
326 for (Loop
*SubLoop
: L
)
327 assert(SubLoop
->isRecursivelyLCSSAForm(DT
, *LI
) && "Subloop not in LCSSA!");
330 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
331 L
.getExitBlocks(ExitBlocks
);
332 if (ExitBlocks
.empty())
335 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
337 // We want to avoid use-scanning leveraging dominance informations.
338 // If a block doesn't dominate any of the loop exits, the none of the values
339 // defined in the loop can be used outside.
340 // We compute the set of blocks fullfilling the conditions in advance
341 // walking the dominator tree upwards until we hit a loop header.
342 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
344 SmallVector
<Instruction
*, 8> Worklist
;
346 // Look at all the instructions in the loop, checking to see if they have uses
347 // outside the loop. If so, put them into the worklist to rewrite those uses.
348 for (BasicBlock
*BB
: BlocksDominatingExits
) {
349 // Skip blocks that are part of any sub-loops, they must be in LCSSA
351 if (LI
->getLoopFor(BB
) != &L
)
353 for (Instruction
&I
: *BB
) {
354 // Reject two common cases fast: instructions with no uses (like stores)
355 // and instructions with one use that is in the same block as this.
357 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
358 !isa
<PHINode
>(I
.user_back())))
361 // Tokens cannot be used in PHI nodes, so we skip over them.
362 // We can run into tokens which are live out of a loop with catchswitch
363 // instructions in Windows EH if the catchswitch has one catchpad which
364 // is inside the loop and another which is not.
365 if (I
.getType()->isTokenTy())
368 Worklist
.push_back(&I
);
371 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
);
373 // If we modified the code, remove any caches about the loop from SCEV to
374 // avoid dangling entries.
375 // FIXME: This is a big hammer, can we clear the cache more selectively?
379 assert(L
.isLCSSAForm(DT
));
384 /// Process a loop nest depth first.
385 bool llvm::formLCSSARecursively(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
386 ScalarEvolution
*SE
) {
387 bool Changed
= false;
389 // Recurse depth-first through inner loops.
390 for (Loop
*SubLoop
: L
.getSubLoops())
391 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
393 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
397 /// Process all loops in the function, inner-most out.
398 static bool formLCSSAOnAllLoops(LoopInfo
*LI
, DominatorTree
&DT
,
399 ScalarEvolution
*SE
) {
400 bool Changed
= false;
402 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
407 struct LCSSAWrapperPass
: public FunctionPass
{
408 static char ID
; // Pass identification, replacement for typeid
409 LCSSAWrapperPass() : FunctionPass(ID
) {
410 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
413 // Cached analysis information for the current function.
418 bool runOnFunction(Function
&F
) override
;
419 void verifyAnalysis() const override
{
420 // This check is very expensive. On the loop intensive compiles it may cause
421 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
422 // always does limited form of the LCSSA verification. Similar reasoning
423 // was used for the LoopInfo verifier.
424 if (VerifyLoopLCSSA
) {
427 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
429 "LCSSA form is broken!");
433 /// This transformation requires natural loop information & requires that
434 /// loop preheaders be inserted into the CFG. It maintains both of these,
435 /// as well as the CFG. It also requires dominator information.
436 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
437 AU
.setPreservesCFG();
439 AU
.addRequired
<DominatorTreeWrapperPass
>();
440 AU
.addRequired
<LoopInfoWrapperPass
>();
441 AU
.addPreservedID(LoopSimplifyID
);
442 AU
.addPreserved
<AAResultsWrapperPass
>();
443 AU
.addPreserved
<BasicAAWrapperPass
>();
444 AU
.addPreserved
<GlobalsAAWrapperPass
>();
445 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
446 AU
.addPreserved
<SCEVAAWrapperPass
>();
447 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
448 AU
.addPreserved
<MemorySSAWrapperPass
>();
450 // This is needed to perform LCSSA verification inside LPPassManager
451 AU
.addRequired
<LCSSAVerificationPass
>();
452 AU
.addPreserved
<LCSSAVerificationPass
>();
457 char LCSSAWrapperPass::ID
= 0;
458 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
461 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
462 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
463 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
466 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
467 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
469 /// Transform \p F into loop-closed SSA form.
470 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
471 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
472 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
473 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
474 SE
= SEWP
? &SEWP
->getSE() : nullptr;
476 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
479 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
480 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
481 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
482 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
483 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
484 return PreservedAnalyses::all();
486 PreservedAnalyses PA
;
487 PA
.preserveSet
<CFGAnalyses
>();
488 PA
.preserve
<BasicAA
>();
489 PA
.preserve
<GlobalsAA
>();
490 PA
.preserve
<SCEVAA
>();
491 PA
.preserve
<ScalarEvolutionAnalysis
>();
492 // BPI maps terminators to probabilities, since we don't modify the CFG, no
493 // updates are needed to preserve it.
494 PA
.preserve
<BranchProbabilityAnalysis
>();
495 PA
.preserve
<MemorySSAAnalysis
>();