1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0. When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ScalarEvolutionExpander.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/UnrollLoop.h"
44 #define DEBUG_TYPE "loop-unroll"
46 STATISTIC(NumRuntimeUnrolled
,
47 "Number of loops unrolled with run-time trip counts");
48 static cl::opt
<bool> UnrollRuntimeMultiExit(
49 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden
,
50 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
51 "epilog is generated"));
53 /// Connect the unrolling prolog code to the original loop.
54 /// The unrolling prolog code contains code to execute the
55 /// 'extra' iterations if the run-time trip count modulo the
56 /// unroll count is non-zero.
58 /// This function performs the following:
59 /// - Create PHI nodes at prolog end block to combine values
60 /// that exit the prolog code and jump around the prolog.
61 /// - Add a PHI operand to a PHI node at the loop exit block
62 /// for values that exit the prolog and go around the loop.
63 /// - Branch around the original loop if the trip count is less
64 /// than the unroll factor.
66 static void ConnectProlog(Loop
*L
, Value
*BECount
, unsigned Count
,
67 BasicBlock
*PrologExit
,
68 BasicBlock
*OriginalLoopLatchExit
,
69 BasicBlock
*PreHeader
, BasicBlock
*NewPreHeader
,
70 ValueToValueMapTy
&VMap
, DominatorTree
*DT
,
71 LoopInfo
*LI
, bool PreserveLCSSA
) {
72 // Loop structure should be the following:
83 BasicBlock
*Latch
= L
->getLoopLatch();
84 assert(Latch
&& "Loop must have a latch");
85 BasicBlock
*PrologLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
87 // Create a PHI node for each outgoing value from the original loop
88 // (which means it is an outgoing value from the prolog code too).
89 // The new PHI node is inserted in the prolog end basic block.
90 // The new PHI node value is added as an operand of a PHI node in either
91 // the loop header or the loop exit block.
92 for (BasicBlock
*Succ
: successors(Latch
)) {
93 for (PHINode
&PN
: Succ
->phis()) {
94 // Add a new PHI node to the prolog end block and add the
95 // appropriate incoming values.
96 // TODO: This code assumes that the PrologExit (or the LatchExit block for
97 // prolog loop) contains only one predecessor from the loop, i.e. the
98 // PrologLatch. When supporting multiple-exiting block loops, we can have
99 // two or more blocks that have the LatchExit as the target in the
101 PHINode
*NewPN
= PHINode::Create(PN
.getType(), 2, PN
.getName() + ".unr",
102 PrologExit
->getFirstNonPHI());
103 // Adding a value to the new PHI node from the original loop preheader.
104 // This is the value that skips all the prolog code.
105 if (L
->contains(&PN
)) {
106 // Succ is loop header.
107 NewPN
->addIncoming(PN
.getIncomingValueForBlock(NewPreHeader
),
110 // Succ is LatchExit.
111 NewPN
->addIncoming(UndefValue::get(PN
.getType()), PreHeader
);
114 Value
*V
= PN
.getIncomingValueForBlock(Latch
);
115 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
116 if (L
->contains(I
)) {
120 // Adding a value to the new PHI node from the last prolog block
122 NewPN
->addIncoming(V
, PrologLatch
);
124 // Update the existing PHI node operand with the value from the
125 // new PHI node. How this is done depends on if the existing
126 // PHI node is in the original loop block, or the exit block.
127 if (L
->contains(&PN
))
128 PN
.setIncomingValueForBlock(NewPreHeader
, NewPN
);
130 PN
.addIncoming(NewPN
, PrologExit
);
134 // Make sure that created prolog loop is in simplified form
135 SmallVector
<BasicBlock
*, 4> PrologExitPreds
;
136 Loop
*PrologLoop
= LI
->getLoopFor(PrologLatch
);
138 for (BasicBlock
*PredBB
: predecessors(PrologExit
))
139 if (PrologLoop
->contains(PredBB
))
140 PrologExitPreds
.push_back(PredBB
);
142 SplitBlockPredecessors(PrologExit
, PrologExitPreds
, ".unr-lcssa", DT
, LI
,
143 nullptr, PreserveLCSSA
);
146 // Create a branch around the original loop, which is taken if there are no
147 // iterations remaining to be executed after running the prologue.
148 Instruction
*InsertPt
= PrologExit
->getTerminator();
149 IRBuilder
<> B(InsertPt
);
151 assert(Count
!= 0 && "nonsensical Count!");
153 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
154 // This means %xtraiter is (BECount + 1) and all of the iterations of this
155 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
156 // then (BECount + 1) cannot unsigned-overflow.
158 B
.CreateICmpULT(BECount
, ConstantInt::get(BECount
->getType(), Count
- 1));
159 // Split the exit to maintain loop canonicalization guarantees
160 SmallVector
<BasicBlock
*, 4> Preds(predecessors(OriginalLoopLatchExit
));
161 SplitBlockPredecessors(OriginalLoopLatchExit
, Preds
, ".unr-lcssa", DT
, LI
,
162 nullptr, PreserveLCSSA
);
163 // Add the branch to the exit block (around the unrolled loop)
164 B
.CreateCondBr(BrLoopExit
, OriginalLoopLatchExit
, NewPreHeader
);
165 InsertPt
->eraseFromParent();
167 DT
->changeImmediateDominator(OriginalLoopLatchExit
, PrologExit
);
170 /// Connect the unrolling epilog code to the original loop.
171 /// The unrolling epilog code contains code to execute the
172 /// 'extra' iterations if the run-time trip count modulo the
173 /// unroll count is non-zero.
175 /// This function performs the following:
176 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
177 /// - Create PHI nodes at the unrolling loop exit to combine
178 /// values that exit the unrolling loop code and jump around it.
179 /// - Update PHI operands in the epilog loop by the new PHI nodes
180 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
182 static void ConnectEpilog(Loop
*L
, Value
*ModVal
, BasicBlock
*NewExit
,
183 BasicBlock
*Exit
, BasicBlock
*PreHeader
,
184 BasicBlock
*EpilogPreHeader
, BasicBlock
*NewPreHeader
,
185 ValueToValueMapTy
&VMap
, DominatorTree
*DT
,
186 LoopInfo
*LI
, bool PreserveLCSSA
) {
187 BasicBlock
*Latch
= L
->getLoopLatch();
188 assert(Latch
&& "Loop must have a latch");
189 BasicBlock
*EpilogLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
191 // Loop structure should be the following:
205 // Update PHI nodes at NewExit and Exit.
206 for (PHINode
&PN
: NewExit
->phis()) {
207 // PN should be used in another PHI located in Exit block as
208 // Exit was split by SplitBlockPredecessors into Exit and NewExit
209 // Basicaly it should look like:
211 // PN = PHI [I, Latch]
214 // EpilogPN = PHI [PN, EpilogPreHeader]
216 // There is EpilogPreHeader incoming block instead of NewExit as
217 // NewExit was spilt 1 more time to get EpilogPreHeader.
218 assert(PN
.hasOneUse() && "The phi should have 1 use");
219 PHINode
*EpilogPN
= cast
<PHINode
>(PN
.use_begin()->getUser());
220 assert(EpilogPN
->getParent() == Exit
&& "EpilogPN should be in Exit block");
222 // Add incoming PreHeader from branch around the Loop
223 PN
.addIncoming(UndefValue::get(PN
.getType()), PreHeader
);
225 Value
*V
= PN
.getIncomingValueForBlock(Latch
);
226 Instruction
*I
= dyn_cast
<Instruction
>(V
);
227 if (I
&& L
->contains(I
))
228 // If value comes from an instruction in the loop add VMap value.
230 // For the instruction out of the loop, constant or undefined value
231 // insert value itself.
232 EpilogPN
->addIncoming(V
, EpilogLatch
);
234 assert(EpilogPN
->getBasicBlockIndex(EpilogPreHeader
) >= 0 &&
235 "EpilogPN should have EpilogPreHeader incoming block");
236 // Change EpilogPreHeader incoming block to NewExit.
237 EpilogPN
->setIncomingBlock(EpilogPN
->getBasicBlockIndex(EpilogPreHeader
),
239 // Now PHIs should look like:
241 // PN = PHI [I, Latch], [undef, PreHeader]
244 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
247 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
248 // Update corresponding PHI nodes in epilog loop.
249 for (BasicBlock
*Succ
: successors(Latch
)) {
250 // Skip this as we already updated phis in exit blocks.
251 if (!L
->contains(Succ
))
253 for (PHINode
&PN
: Succ
->phis()) {
254 // Add new PHI nodes to the loop exit block and update epilog
255 // PHIs with the new PHI values.
256 PHINode
*NewPN
= PHINode::Create(PN
.getType(), 2, PN
.getName() + ".unr",
257 NewExit
->getFirstNonPHI());
258 // Adding a value to the new PHI node from the unrolling loop preheader.
259 NewPN
->addIncoming(PN
.getIncomingValueForBlock(NewPreHeader
), PreHeader
);
260 // Adding a value to the new PHI node from the unrolling loop latch.
261 NewPN
->addIncoming(PN
.getIncomingValueForBlock(Latch
), Latch
);
263 // Update the existing PHI node operand with the value from the new PHI
264 // node. Corresponding instruction in epilog loop should be PHI.
265 PHINode
*VPN
= cast
<PHINode
>(VMap
[&PN
]);
266 VPN
->setIncomingValueForBlock(EpilogPreHeader
, NewPN
);
270 Instruction
*InsertPt
= NewExit
->getTerminator();
271 IRBuilder
<> B(InsertPt
);
272 Value
*BrLoopExit
= B
.CreateIsNotNull(ModVal
, "lcmp.mod");
273 assert(Exit
&& "Loop must have a single exit block only");
274 // Split the epilogue exit to maintain loop canonicalization guarantees
275 SmallVector
<BasicBlock
*, 4> Preds(predecessors(Exit
));
276 SplitBlockPredecessors(Exit
, Preds
, ".epilog-lcssa", DT
, LI
, nullptr,
278 // Add the branch to the exit block (around the unrolling loop)
279 B
.CreateCondBr(BrLoopExit
, EpilogPreHeader
, Exit
);
280 InsertPt
->eraseFromParent();
282 DT
->changeImmediateDominator(Exit
, NewExit
);
284 // Split the main loop exit to maintain canonicalization guarantees.
285 SmallVector
<BasicBlock
*, 4> NewExitPreds
{Latch
};
286 SplitBlockPredecessors(NewExit
, NewExitPreds
, ".loopexit", DT
, LI
, nullptr,
290 /// Create a clone of the blocks in a loop and connect them together.
291 /// If CreateRemainderLoop is false, loop structure will not be cloned,
292 /// otherwise a new loop will be created including all cloned blocks, and the
293 /// iterator of it switches to count NewIter down to 0.
294 /// The cloned blocks should be inserted between InsertTop and InsertBot.
295 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
297 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
299 CloneLoopBlocks(Loop
*L
, Value
*NewIter
, const bool CreateRemainderLoop
,
300 const bool UseEpilogRemainder
, const bool UnrollRemainder
,
301 BasicBlock
*InsertTop
,
302 BasicBlock
*InsertBot
, BasicBlock
*Preheader
,
303 std::vector
<BasicBlock
*> &NewBlocks
, LoopBlocksDFS
&LoopBlocks
,
304 ValueToValueMapTy
&VMap
, DominatorTree
*DT
, LoopInfo
*LI
) {
305 StringRef suffix
= UseEpilogRemainder
? "epil" : "prol";
306 BasicBlock
*Header
= L
->getHeader();
307 BasicBlock
*Latch
= L
->getLoopLatch();
308 Function
*F
= Header
->getParent();
309 LoopBlocksDFS::RPOIterator BlockBegin
= LoopBlocks
.beginRPO();
310 LoopBlocksDFS::RPOIterator BlockEnd
= LoopBlocks
.endRPO();
311 Loop
*ParentLoop
= L
->getParentLoop();
312 NewLoopsMap NewLoops
;
313 NewLoops
[ParentLoop
] = ParentLoop
;
314 if (!CreateRemainderLoop
)
315 NewLoops
[L
] = ParentLoop
;
317 // For each block in the original loop, create a new copy,
318 // and update the value map with the newly created values.
319 for (LoopBlocksDFS::RPOIterator BB
= BlockBegin
; BB
!= BlockEnd
; ++BB
) {
320 BasicBlock
*NewBB
= CloneBasicBlock(*BB
, VMap
, "." + suffix
, F
);
321 NewBlocks
.push_back(NewBB
);
323 // If we're unrolling the outermost loop, there's no remainder loop,
324 // and this block isn't in a nested loop, then the new block is not
325 // in any loop. Otherwise, add it to loopinfo.
326 if (CreateRemainderLoop
|| LI
->getLoopFor(*BB
) != L
|| ParentLoop
)
327 addClonedBlockToLoopInfo(*BB
, NewBB
, LI
, NewLoops
);
331 // For the first block, add a CFG connection to this newly
333 InsertTop
->getTerminator()->setSuccessor(0, NewBB
);
338 // The header is dominated by the preheader.
339 DT
->addNewBlock(NewBB
, InsertTop
);
341 // Copy information from original loop to unrolled loop.
342 BasicBlock
*IDomBB
= DT
->getNode(*BB
)->getIDom()->getBlock();
343 DT
->addNewBlock(NewBB
, cast
<BasicBlock
>(VMap
[IDomBB
]));
348 // For the last block, if CreateRemainderLoop is false, create a direct
349 // jump to InsertBot. If not, create a loop back to cloned head.
350 VMap
.erase((*BB
)->getTerminator());
351 BasicBlock
*FirstLoopBB
= cast
<BasicBlock
>(VMap
[Header
]);
352 BranchInst
*LatchBR
= cast
<BranchInst
>(NewBB
->getTerminator());
353 IRBuilder
<> Builder(LatchBR
);
354 if (!CreateRemainderLoop
) {
355 Builder
.CreateBr(InsertBot
);
357 PHINode
*NewIdx
= PHINode::Create(NewIter
->getType(), 2,
359 FirstLoopBB
->getFirstNonPHI());
361 Builder
.CreateSub(NewIdx
, ConstantInt::get(NewIdx
->getType(), 1),
362 NewIdx
->getName() + ".sub");
364 Builder
.CreateIsNotNull(IdxSub
, NewIdx
->getName() + ".cmp");
365 Builder
.CreateCondBr(IdxCmp
, FirstLoopBB
, InsertBot
);
366 NewIdx
->addIncoming(NewIter
, InsertTop
);
367 NewIdx
->addIncoming(IdxSub
, NewBB
);
369 LatchBR
->eraseFromParent();
373 // Change the incoming values to the ones defined in the preheader or
375 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
376 PHINode
*NewPHI
= cast
<PHINode
>(VMap
[&*I
]);
377 if (!CreateRemainderLoop
) {
378 if (UseEpilogRemainder
) {
379 unsigned idx
= NewPHI
->getBasicBlockIndex(Preheader
);
380 NewPHI
->setIncomingBlock(idx
, InsertTop
);
381 NewPHI
->removeIncomingValue(Latch
, false);
383 VMap
[&*I
] = NewPHI
->getIncomingValueForBlock(Preheader
);
384 cast
<BasicBlock
>(VMap
[Header
])->getInstList().erase(NewPHI
);
387 unsigned idx
= NewPHI
->getBasicBlockIndex(Preheader
);
388 NewPHI
->setIncomingBlock(idx
, InsertTop
);
389 BasicBlock
*NewLatch
= cast
<BasicBlock
>(VMap
[Latch
]);
390 idx
= NewPHI
->getBasicBlockIndex(Latch
);
391 Value
*InVal
= NewPHI
->getIncomingValue(idx
);
392 NewPHI
->setIncomingBlock(idx
, NewLatch
);
393 if (Value
*V
= VMap
.lookup(InVal
))
394 NewPHI
->setIncomingValue(idx
, V
);
397 if (CreateRemainderLoop
) {
398 Loop
*NewLoop
= NewLoops
[L
];
399 MDNode
*LoopID
= NewLoop
->getLoopID();
400 assert(NewLoop
&& "L should have been cloned");
402 // Only add loop metadata if the loop is not going to be completely
407 Optional
<MDNode
*> NewLoopID
= makeFollowupLoopID(
408 LoopID
, {LLVMLoopUnrollFollowupAll
, LLVMLoopUnrollFollowupRemainder
});
409 if (NewLoopID
.hasValue()) {
410 NewLoop
->setLoopID(NewLoopID
.getValue());
412 // Do not setLoopAlreadyUnrolled if loop attributes have been defined
417 // Add unroll disable metadata to disable future unrolling for this loop.
418 NewLoop
->setLoopAlreadyUnrolled();
425 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
426 /// is populated with all the loop exit blocks other than the LatchExit block.
427 static bool canSafelyUnrollMultiExitLoop(Loop
*L
, BasicBlock
*LatchExit
,
429 bool UseEpilogRemainder
) {
431 // We currently have some correctness constrains in unrolling a multi-exit
432 // loop. Check for these below.
434 // We rely on LCSSA form being preserved when the exit blocks are transformed.
438 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
439 // UnrollRuntimeMultiExit is true. This will need updating the logic in
440 // connectEpilog/connectProlog.
441 if (!LatchExit
->getSinglePredecessor()) {
443 dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
447 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
448 // and L is an inner loop. This is because in presence of multiple exits, the
449 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
450 // outer loop. This is automatically handled in the prolog case, so we do not
451 // have that bug in prolog generation.
452 if (UseEpilogRemainder
&& L
->getParentLoop())
455 // All constraints have been satisfied.
459 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
460 /// we return true only if UnrollRuntimeMultiExit is set to true.
461 static bool canProfitablyUnrollMultiExitLoop(
462 Loop
*L
, SmallVectorImpl
<BasicBlock
*> &OtherExits
, BasicBlock
*LatchExit
,
463 bool PreserveLCSSA
, bool UseEpilogRemainder
) {
466 assert(canSafelyUnrollMultiExitLoop(L
, LatchExit
, PreserveLCSSA
,
467 UseEpilogRemainder
) &&
468 "Should be safe to unroll before checking profitability!");
471 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
472 if (UnrollRuntimeMultiExit
.getNumOccurrences())
473 return UnrollRuntimeMultiExit
;
475 // The main pain point with multi-exit loop unrolling is that once unrolled,
476 // we will not be able to merge all blocks into a straight line code.
477 // There are branches within the unrolled loop that go to the OtherExits.
478 // The second point is the increase in code size, but this is true
479 // irrespective of multiple exits.
481 // Note: Both the heuristics below are coarse grained. We are essentially
482 // enabling unrolling of loops that have a single side exit other than the
483 // normal LatchExit (i.e. exiting into a deoptimize block).
484 // The heuristics considered are:
485 // 1. low number of branches in the unrolled version.
486 // 2. high predictability of these extra branches.
487 // We avoid unrolling loops that have more than two exiting blocks. This
488 // limits the total number of branches in the unrolled loop to be atmost
489 // the unroll factor (since one of the exiting blocks is the latch block).
490 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
491 L
->getExitingBlocks(ExitingBlocks
);
492 if (ExitingBlocks
.size() > 2)
495 // The second heuristic is that L has one exit other than the latchexit and
496 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
497 // taken, which also implies the branch leading to the deoptimize block is
498 // highly predictable.
499 return (OtherExits
.size() == 1 &&
500 OtherExits
[0]->getTerminatingDeoptimizeCall());
501 // TODO: These can be fine-tuned further to consider code size or deopt states
502 // that are captured by the deoptimize exit block.
503 // Also, we can extend this to support more cases, if we actually
504 // know of kinds of multiexit loops that would benefit from unrolling.
507 /// Insert code in the prolog/epilog code when unrolling a loop with a
508 /// run-time trip-count.
510 /// This method assumes that the loop unroll factor is total number
511 /// of loop bodies in the loop after unrolling. (Some folks refer
512 /// to the unroll factor as the number of *extra* copies added).
513 /// We assume also that the loop unroll factor is a power-of-two. So, after
514 /// unrolling the loop, the number of loop bodies executed is 2,
515 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
516 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
517 /// the switch instruction is generated.
519 /// ***Prolog case***
520 /// extraiters = tripcount % loopfactor
521 /// if (extraiters == 0) jump Loop:
524 /// extraiters -= 1 // Omitted if unroll factor is 2.
525 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
526 /// if (tripcount < loopfactor) jump End:
531 /// ***Epilog case***
532 /// extraiters = tripcount % loopfactor
533 /// if (tripcount < loopfactor) jump LoopExit:
534 /// unroll_iters = tripcount - extraiters
535 /// Loop: LoopBody; (executes unroll_iter times);
537 /// if (unroll_iter != 0) jump Loop:
539 /// if (extraiters == 0) jump EpilExit:
540 /// Epil: LoopBody; (executes extraiters times)
541 /// extraiters -= 1 // Omitted if unroll factor is 2.
542 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
545 bool llvm::UnrollRuntimeLoopRemainder(Loop
*L
, unsigned Count
,
546 bool AllowExpensiveTripCount
,
547 bool UseEpilogRemainder
,
548 bool UnrollRemainder
, bool ForgetAllSCEV
,
549 LoopInfo
*LI
, ScalarEvolution
*SE
,
550 DominatorTree
*DT
, AssumptionCache
*AC
,
551 bool PreserveLCSSA
, Loop
**ResultLoop
) {
552 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
553 LLVM_DEBUG(L
->dump());
554 LLVM_DEBUG(UseEpilogRemainder
? dbgs() << "Using epilog remainder.\n"
555 : dbgs() << "Using prolog remainder.\n");
557 // Make sure the loop is in canonical form.
558 if (!L
->isLoopSimplifyForm()) {
559 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
563 // Guaranteed by LoopSimplifyForm.
564 BasicBlock
*Latch
= L
->getLoopLatch();
565 BasicBlock
*Header
= L
->getHeader();
567 BranchInst
*LatchBR
= cast
<BranchInst
>(Latch
->getTerminator());
569 if (!LatchBR
|| LatchBR
->isUnconditional()) {
570 // The loop-rotate pass can be helpful to avoid this in many cases.
573 << "Loop latch not terminated by a conditional branch.\n");
577 unsigned ExitIndex
= LatchBR
->getSuccessor(0) == Header
? 1 : 0;
578 BasicBlock
*LatchExit
= LatchBR
->getSuccessor(ExitIndex
);
580 if (L
->contains(LatchExit
)) {
581 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
582 // targets of the Latch be an exit block out of the loop.
585 << "One of the loop latch successors must be the exit block.\n");
589 // These are exit blocks other than the target of the latch exiting block.
590 SmallVector
<BasicBlock
*, 4> OtherExits
;
591 L
->getUniqueNonLatchExitBlocks(OtherExits
);
592 bool isMultiExitUnrollingEnabled
=
593 canSafelyUnrollMultiExitLoop(L
, LatchExit
, PreserveLCSSA
,
594 UseEpilogRemainder
) &&
595 canProfitablyUnrollMultiExitLoop(L
, OtherExits
, LatchExit
, PreserveLCSSA
,
597 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
598 if (!isMultiExitUnrollingEnabled
&&
599 (!L
->getExitingBlock() || OtherExits
.size())) {
602 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
606 // Use Scalar Evolution to compute the trip count. This allows more loops to
607 // be unrolled than relying on induction var simplification.
611 // Only unroll loops with a computable trip count, and the trip count needs
612 // to be an int value (allowing a pointer type is a TODO item).
613 // We calculate the backedge count by using getExitCount on the Latch block,
614 // which is proven to be the only exiting block in this loop. This is same as
615 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
617 const SCEV
*BECountSC
= SE
->getExitCount(L
, Latch
);
618 if (isa
<SCEVCouldNotCompute
>(BECountSC
) ||
619 !BECountSC
->getType()->isIntegerTy()) {
620 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
624 unsigned BEWidth
= cast
<IntegerType
>(BECountSC
->getType())->getBitWidth();
626 // Add 1 since the backedge count doesn't include the first loop iteration.
627 const SCEV
*TripCountSC
=
628 SE
->getAddExpr(BECountSC
, SE
->getConstant(BECountSC
->getType(), 1));
629 if (isa
<SCEVCouldNotCompute
>(TripCountSC
)) {
630 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
634 BasicBlock
*PreHeader
= L
->getLoopPreheader();
635 BranchInst
*PreHeaderBR
= cast
<BranchInst
>(PreHeader
->getTerminator());
636 const DataLayout
&DL
= Header
->getModule()->getDataLayout();
637 SCEVExpander
Expander(*SE
, DL
, "loop-unroll");
638 if (!AllowExpensiveTripCount
&&
639 Expander
.isHighCostExpansion(TripCountSC
, L
, PreHeaderBR
)) {
640 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
644 // This constraint lets us deal with an overflowing trip count easily; see the
645 // comment on ModVal below.
646 if (Log2_32(Count
) > BEWidth
) {
649 << "Count failed constraint on overflow trip count calculation.\n");
653 // Loop structure is the following:
661 BasicBlock
*NewPreHeader
;
662 BasicBlock
*NewExit
= nullptr;
663 BasicBlock
*PrologExit
= nullptr;
664 BasicBlock
*EpilogPreHeader
= nullptr;
665 BasicBlock
*PrologPreHeader
= nullptr;
667 if (UseEpilogRemainder
) {
668 // If epilog remainder
669 // Split PreHeader to insert a branch around loop for unrolling.
670 NewPreHeader
= SplitBlock(PreHeader
, PreHeader
->getTerminator(), DT
, LI
);
671 NewPreHeader
->setName(PreHeader
->getName() + ".new");
672 // Split LatchExit to create phi nodes from branch above.
673 SmallVector
<BasicBlock
*, 4> Preds(predecessors(LatchExit
));
674 NewExit
= SplitBlockPredecessors(LatchExit
, Preds
, ".unr-lcssa", DT
, LI
,
675 nullptr, PreserveLCSSA
);
676 // NewExit gets its DebugLoc from LatchExit, which is not part of the
678 // Fix this by setting Loop's DebugLoc to NewExit.
679 auto *NewExitTerminator
= NewExit
->getTerminator();
680 NewExitTerminator
->setDebugLoc(Header
->getTerminator()->getDebugLoc());
681 // Split NewExit to insert epilog remainder loop.
682 EpilogPreHeader
= SplitBlock(NewExit
, NewExitTerminator
, DT
, LI
);
683 EpilogPreHeader
->setName(Header
->getName() + ".epil.preheader");
685 // If prolog remainder
686 // Split the original preheader twice to insert prolog remainder loop
687 PrologPreHeader
= SplitEdge(PreHeader
, Header
, DT
, LI
);
688 PrologPreHeader
->setName(Header
->getName() + ".prol.preheader");
689 PrologExit
= SplitBlock(PrologPreHeader
, PrologPreHeader
->getTerminator(),
691 PrologExit
->setName(Header
->getName() + ".prol.loopexit");
692 // Split PrologExit to get NewPreHeader.
693 NewPreHeader
= SplitBlock(PrologExit
, PrologExit
->getTerminator(), DT
, LI
);
694 NewPreHeader
->setName(PreHeader
->getName() + ".new");
696 // Loop structure should be the following:
699 // PreHeader PreHeader
700 // *NewPreHeader *PrologPreHeader
701 // Header *PrologExit
705 // *EpilogPreHeader Latch
706 // LatchExit LatchExit
708 // Calculate conditions for branch around loop for unrolling
709 // in epilog case and around prolog remainder loop in prolog case.
710 // Compute the number of extra iterations required, which is:
711 // extra iterations = run-time trip count % loop unroll factor
712 PreHeaderBR
= cast
<BranchInst
>(PreHeader
->getTerminator());
713 Value
*TripCount
= Expander
.expandCodeFor(TripCountSC
, TripCountSC
->getType(),
715 Value
*BECount
= Expander
.expandCodeFor(BECountSC
, BECountSC
->getType(),
717 IRBuilder
<> B(PreHeaderBR
);
719 // Calculate ModVal = (BECount + 1) % Count.
720 // Note that TripCount is BECount + 1.
721 if (isPowerOf2_32(Count
)) {
722 // When Count is power of 2 we don't BECount for epilog case, however we'll
723 // need it for a branch around unrolling loop for prolog case.
724 ModVal
= B
.CreateAnd(TripCount
, Count
- 1, "xtraiter");
725 // 1. There are no iterations to be run in the prolog/epilog loop.
727 // 2. The addition computing TripCount overflowed.
729 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
730 // the number of iterations that remain to be run in the original loop is a
731 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
732 // explicitly check this above).
734 // As (BECount + 1) can potentially unsigned overflow we count
735 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
736 Value
*ModValTmp
= B
.CreateURem(BECount
,
737 ConstantInt::get(BECount
->getType(),
739 Value
*ModValAdd
= B
.CreateAdd(ModValTmp
,
740 ConstantInt::get(ModValTmp
->getType(), 1));
741 // At that point (BECount % Count) + 1 could be equal to Count.
742 // To handle this case we need to take mod by Count one more time.
743 ModVal
= B
.CreateURem(ModValAdd
,
744 ConstantInt::get(BECount
->getType(), Count
),
748 UseEpilogRemainder
? B
.CreateICmpULT(BECount
,
749 ConstantInt::get(BECount
->getType(),
751 B
.CreateIsNotNull(ModVal
, "lcmp.mod");
752 BasicBlock
*RemainderLoop
= UseEpilogRemainder
? NewExit
: PrologPreHeader
;
753 BasicBlock
*UnrollingLoop
= UseEpilogRemainder
? NewPreHeader
: PrologExit
;
754 // Branch to either remainder (extra iterations) loop or unrolling loop.
755 B
.CreateCondBr(BranchVal
, RemainderLoop
, UnrollingLoop
);
756 PreHeaderBR
->eraseFromParent();
758 if (UseEpilogRemainder
)
759 DT
->changeImmediateDominator(NewExit
, PreHeader
);
761 DT
->changeImmediateDominator(PrologExit
, PreHeader
);
763 Function
*F
= Header
->getParent();
764 // Get an ordered list of blocks in the loop to help with the ordering of the
765 // cloned blocks in the prolog/epilog code
766 LoopBlocksDFS
LoopBlocks(L
);
767 LoopBlocks
.perform(LI
);
770 // For each extra loop iteration, create a copy of the loop's basic blocks
771 // and generate a condition that branches to the copy depending on the
772 // number of 'left over' iterations.
774 std::vector
<BasicBlock
*> NewBlocks
;
775 ValueToValueMapTy VMap
;
777 // For unroll factor 2 remainder loop will have 1 iterations.
778 // Do not create 1 iteration loop.
779 bool CreateRemainderLoop
= (Count
!= 2);
781 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
782 // the loop, otherwise we create a cloned loop to execute the extra
783 // iterations. This function adds the appropriate CFG connections.
784 BasicBlock
*InsertBot
= UseEpilogRemainder
? LatchExit
: PrologExit
;
785 BasicBlock
*InsertTop
= UseEpilogRemainder
? EpilogPreHeader
: PrologPreHeader
;
786 Loop
*remainderLoop
= CloneLoopBlocks(
787 L
, ModVal
, CreateRemainderLoop
, UseEpilogRemainder
, UnrollRemainder
,
788 InsertTop
, InsertBot
,
789 NewPreHeader
, NewBlocks
, LoopBlocks
, VMap
, DT
, LI
);
791 // Insert the cloned blocks into the function.
792 F
->getBasicBlockList().splice(InsertBot
->getIterator(),
793 F
->getBasicBlockList(),
794 NewBlocks
[0]->getIterator(),
797 // Now the loop blocks are cloned and the other exiting blocks from the
798 // remainder are connected to the original Loop's exit blocks. The remaining
799 // work is to update the phi nodes in the original loop, and take in the
800 // values from the cloned region.
801 for (auto *BB
: OtherExits
) {
802 for (auto &II
: *BB
) {
804 // Given we preserve LCSSA form, we know that the values used outside the
805 // loop will be used through these phi nodes at the exit blocks that are
806 // transformed below.
807 if (!isa
<PHINode
>(II
))
809 PHINode
*Phi
= cast
<PHINode
>(&II
);
810 unsigned oldNumOperands
= Phi
->getNumIncomingValues();
811 // Add the incoming values from the remainder code to the end of the phi
813 for (unsigned i
=0; i
< oldNumOperands
; i
++){
814 Value
*newVal
= VMap
.lookup(Phi
->getIncomingValue(i
));
815 // newVal can be a constant or derived from values outside the loop, and
816 // hence need not have a VMap value. Also, since lookup already generated
817 // a default "null" VMap entry for this value, we need to populate that
818 // VMap entry correctly, with the mapped entry being itself.
820 newVal
= Phi
->getIncomingValue(i
);
821 VMap
[Phi
->getIncomingValue(i
)] = Phi
->getIncomingValue(i
);
823 Phi
->addIncoming(newVal
,
824 cast
<BasicBlock
>(VMap
[Phi
->getIncomingBlock(i
)]));
827 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
828 for (BasicBlock
*SuccBB
: successors(BB
)) {
829 assert(!(any_of(OtherExits
,
830 [SuccBB
](BasicBlock
*EB
) { return EB
== SuccBB
; }) ||
831 SuccBB
== LatchExit
) &&
832 "Breaks the definition of dedicated exits!");
837 // Update the immediate dominator of the exit blocks and blocks that are
838 // reachable from the exit blocks. This is needed because we now have paths
839 // from both the original loop and the remainder code reaching the exit
840 // blocks. While the IDom of these exit blocks were from the original loop,
841 // now the IDom is the preheader (which decides whether the original loop or
842 // remainder code should run).
843 if (DT
&& !L
->getExitingBlock()) {
844 SmallVector
<BasicBlock
*, 16> ChildrenToUpdate
;
845 // NB! We have to examine the dom children of all loop blocks, not just
846 // those which are the IDom of the exit blocks. This is because blocks
847 // reachable from the exit blocks can have their IDom as the nearest common
848 // dominator of the exit blocks.
849 for (auto *BB
: L
->blocks()) {
850 auto *DomNodeBB
= DT
->getNode(BB
);
851 for (auto *DomChild
: DomNodeBB
->getChildren()) {
852 auto *DomChildBB
= DomChild
->getBlock();
853 if (!L
->contains(LI
->getLoopFor(DomChildBB
)))
854 ChildrenToUpdate
.push_back(DomChildBB
);
857 for (auto *BB
: ChildrenToUpdate
)
858 DT
->changeImmediateDominator(BB
, PreHeader
);
861 // Loop structure should be the following:
864 // PreHeader PreHeader
865 // NewPreHeader PrologPreHeader
866 // Header PrologHeader
869 // NewExit PrologExit
870 // EpilogPreHeader NewPreHeader
871 // EpilogHeader Header
874 // LatchExit LatchExit
876 // Rewrite the cloned instruction operands to use the values created when the
878 for (BasicBlock
*BB
: NewBlocks
) {
879 for (Instruction
&I
: *BB
) {
880 RemapInstruction(&I
, VMap
,
881 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
885 if (UseEpilogRemainder
) {
886 // Connect the epilog code to the original loop and update the
888 ConnectEpilog(L
, ModVal
, NewExit
, LatchExit
, PreHeader
,
889 EpilogPreHeader
, NewPreHeader
, VMap
, DT
, LI
,
892 // Update counter in loop for unrolling.
893 // I should be multiply of Count.
894 IRBuilder
<> B2(NewPreHeader
->getTerminator());
895 Value
*TestVal
= B2
.CreateSub(TripCount
, ModVal
, "unroll_iter");
896 BranchInst
*LatchBR
= cast
<BranchInst
>(Latch
->getTerminator());
897 B2
.SetInsertPoint(LatchBR
);
898 PHINode
*NewIdx
= PHINode::Create(TestVal
->getType(), 2, "niter",
899 Header
->getFirstNonPHI());
901 B2
.CreateSub(NewIdx
, ConstantInt::get(NewIdx
->getType(), 1),
902 NewIdx
->getName() + ".nsub");
904 if (LatchBR
->getSuccessor(0) == Header
)
905 IdxCmp
= B2
.CreateIsNotNull(IdxSub
, NewIdx
->getName() + ".ncmp");
907 IdxCmp
= B2
.CreateIsNull(IdxSub
, NewIdx
->getName() + ".ncmp");
908 NewIdx
->addIncoming(TestVal
, NewPreHeader
);
909 NewIdx
->addIncoming(IdxSub
, Latch
);
910 LatchBR
->setCondition(IdxCmp
);
912 // Connect the prolog code to the original loop and update the
914 ConnectProlog(L
, BECount
, Count
, PrologExit
, LatchExit
, PreHeader
,
915 NewPreHeader
, VMap
, DT
, LI
, PreserveLCSSA
);
918 // If this loop is nested, then the loop unroller changes the code in the any
919 // of its parent loops, so the Scalar Evolution pass needs to be run again.
920 SE
->forgetTopmostLoop(L
);
922 // Verify that the Dom Tree is correct.
923 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
925 assert(DT
->verify(DominatorTree::VerificationLevel::Full
));
928 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
929 // cannot rely on the LoopUnrollPass to do this because it only does
930 // canonicalization for parent/subloops and not the sibling loops.
931 if (OtherExits
.size() > 0) {
932 // Generate dedicated exit blocks for the original loop, to preserve
934 formDedicatedExitBlocks(L
, DT
, LI
, nullptr, PreserveLCSSA
);
935 // Generate dedicated exit blocks for the remainder loop if one exists, to
936 // preserve LoopSimplifyForm.
938 formDedicatedExitBlocks(remainderLoop
, DT
, LI
, nullptr, PreserveLCSSA
);
941 auto UnrollResult
= LoopUnrollResult::Unmodified
;
942 if (remainderLoop
&& UnrollRemainder
) {
943 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
945 UnrollLoop(remainderLoop
,
946 {/*Count*/ Count
- 1, /*TripCount*/ Count
- 1,
947 /*Force*/ false, /*AllowRuntime*/ false,
948 /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
949 /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
950 /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV
},
951 LI
, SE
, DT
, AC
, /*ORE*/ nullptr, PreserveLCSSA
);
954 if (ResultLoop
&& UnrollResult
!= LoopUnrollResult::FullyUnrolled
)
955 *ResultLoop
= remainderLoop
;
956 NumRuntimeUnrolled
++;