1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy
= DenseMap
<BasicBlock
*, Value
*>;
42 static AvailableValsTy
&getAvailableVals(void *AV
) {
43 return *static_cast<AvailableValsTy
*>(AV
);
46 SSAUpdater::SSAUpdater(SmallVectorImpl
<PHINode
*> *NewPHI
)
47 : InsertedPHIs(NewPHI
) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy
*>(AV
);
53 void SSAUpdater::Initialize(Type
*Ty
, StringRef Name
) {
55 AV
= new AvailableValsTy();
57 getAvailableVals(AV
).clear();
62 bool SSAUpdater::HasValueForBlock(BasicBlock
*BB
) const {
63 return getAvailableVals(AV
).count(BB
);
66 Value
*SSAUpdater::FindValueForBlock(BasicBlock
*BB
) const {
67 AvailableValsTy::iterator AVI
= getAvailableVals(AV
).find(BB
);
68 return (AVI
!= getAvailableVals(AV
).end()) ? AVI
->second
: nullptr;
71 void SSAUpdater::AddAvailableValue(BasicBlock
*BB
, Value
*V
) {
72 assert(ProtoType
&& "Need to initialize SSAUpdater");
73 assert(ProtoType
== V
->getType() &&
74 "All rewritten values must have the same type");
75 getAvailableVals(AV
)[BB
] = V
;
78 static bool IsEquivalentPHI(PHINode
*PHI
,
79 SmallDenseMap
<BasicBlock
*, Value
*, 8> &ValueMapping
) {
80 unsigned PHINumValues
= PHI
->getNumIncomingValues();
81 if (PHINumValues
!= ValueMapping
.size())
84 // Scan the phi to see if it matches.
85 for (unsigned i
= 0, e
= PHINumValues
; i
!= e
; ++i
)
86 if (ValueMapping
[PHI
->getIncomingBlock(i
)] !=
87 PHI
->getIncomingValue(i
)) {
94 Value
*SSAUpdater::GetValueAtEndOfBlock(BasicBlock
*BB
) {
95 Value
*Res
= GetValueAtEndOfBlockInternal(BB
);
99 Value
*SSAUpdater::GetValueInMiddleOfBlock(BasicBlock
*BB
) {
100 // If there is no definition of the renamed variable in this block, just use
101 // GetValueAtEndOfBlock to do our work.
102 if (!HasValueForBlock(BB
))
103 return GetValueAtEndOfBlock(BB
);
105 // Otherwise, we have the hard case. Get the live-in values for each
107 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> PredValues
;
108 Value
*SingularValue
= nullptr;
110 // We can get our predecessor info by walking the pred_iterator list, but it
111 // is relatively slow. If we already have PHI nodes in this block, walk one
112 // of them to get the predecessor list instead.
113 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
114 for (unsigned i
= 0, e
= SomePhi
->getNumIncomingValues(); i
!= e
; ++i
) {
115 BasicBlock
*PredBB
= SomePhi
->getIncomingBlock(i
);
116 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
117 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
119 // Compute SingularValue.
121 SingularValue
= PredVal
;
122 else if (PredVal
!= SingularValue
)
123 SingularValue
= nullptr;
126 bool isFirstPred
= true;
127 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
128 BasicBlock
*PredBB
= *PI
;
129 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
130 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
132 // Compute SingularValue.
134 SingularValue
= PredVal
;
136 } else if (PredVal
!= SingularValue
)
137 SingularValue
= nullptr;
141 // If there are no predecessors, just return undef.
142 if (PredValues
.empty())
143 return UndefValue::get(ProtoType
);
145 // Otherwise, if all the merged values are the same, just use it.
147 return SingularValue
;
149 // Otherwise, we do need a PHI: check to see if we already have one available
150 // in this block that produces the right value.
151 if (isa
<PHINode
>(BB
->begin())) {
152 SmallDenseMap
<BasicBlock
*, Value
*, 8> ValueMapping(PredValues
.begin(),
154 for (PHINode
&SomePHI
: BB
->phis()) {
155 if (IsEquivalentPHI(&SomePHI
, ValueMapping
))
160 // Ok, we have no way out, insert a new one now.
161 PHINode
*InsertedPHI
= PHINode::Create(ProtoType
, PredValues
.size(),
162 ProtoName
, &BB
->front());
164 // Fill in all the predecessors of the PHI.
165 for (const auto &PredValue
: PredValues
)
166 InsertedPHI
->addIncoming(PredValue
.second
, PredValue
.first
);
168 // See if the PHI node can be merged to a single value. This can happen in
169 // loop cases when we get a PHI of itself and one other value.
171 SimplifyInstruction(InsertedPHI
, BB
->getModule()->getDataLayout())) {
172 InsertedPHI
->eraseFromParent();
176 // Set the DebugLoc of the inserted PHI, if available.
178 if (const Instruction
*I
= BB
->getFirstNonPHI())
179 DL
= I
->getDebugLoc();
180 InsertedPHI
->setDebugLoc(DL
);
182 // If the client wants to know about all new instructions, tell it.
183 if (InsertedPHIs
) InsertedPHIs
->push_back(InsertedPHI
);
185 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI
<< "\n");
189 void SSAUpdater::RewriteUse(Use
&U
) {
190 Instruction
*User
= cast
<Instruction
>(U
.getUser());
193 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
194 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
196 V
= GetValueInMiddleOfBlock(User
->getParent());
198 // Notify that users of the existing value that it is being replaced.
199 Value
*OldVal
= U
.get();
200 if (OldVal
!= V
&& OldVal
->hasValueHandle())
201 ValueHandleBase::ValueIsRAUWd(OldVal
, V
);
206 void SSAUpdater::RewriteUseAfterInsertions(Use
&U
) {
207 Instruction
*User
= cast
<Instruction
>(U
.getUser());
210 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
211 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
213 V
= GetValueAtEndOfBlock(User
->getParent());
221 class SSAUpdaterTraits
<SSAUpdater
> {
223 using BlkT
= BasicBlock
;
224 using ValT
= Value
*;
225 using PhiT
= PHINode
;
226 using BlkSucc_iterator
= succ_iterator
;
228 static BlkSucc_iterator
BlkSucc_begin(BlkT
*BB
) { return succ_begin(BB
); }
229 static BlkSucc_iterator
BlkSucc_end(BlkT
*BB
) { return succ_end(BB
); }
237 explicit PHI_iterator(PHINode
*P
) // begin iterator
239 PHI_iterator(PHINode
*P
, bool) // end iterator
240 : PHI(P
), idx(PHI
->getNumIncomingValues()) {}
242 PHI_iterator
&operator++() { ++idx
; return *this; }
243 bool operator==(const PHI_iterator
& x
) const { return idx
== x
.idx
; }
244 bool operator!=(const PHI_iterator
& x
) const { return !operator==(x
); }
246 Value
*getIncomingValue() { return PHI
->getIncomingValue(idx
); }
247 BasicBlock
*getIncomingBlock() { return PHI
->getIncomingBlock(idx
); }
250 static PHI_iterator
PHI_begin(PhiT
*PHI
) { return PHI_iterator(PHI
); }
251 static PHI_iterator
PHI_end(PhiT
*PHI
) {
252 return PHI_iterator(PHI
, true);
255 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
256 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
257 static void FindPredecessorBlocks(BasicBlock
*BB
,
258 SmallVectorImpl
<BasicBlock
*> *Preds
) {
259 // We can get our predecessor info by walking the pred_iterator list,
260 // but it is relatively slow. If we already have PHI nodes in this
261 // block, walk one of them to get the predecessor list instead.
262 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
263 Preds
->append(SomePhi
->block_begin(), SomePhi
->block_end());
265 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
266 Preds
->push_back(*PI
);
270 /// GetUndefVal - Get an undefined value of the same type as the value
272 static Value
*GetUndefVal(BasicBlock
*BB
, SSAUpdater
*Updater
) {
273 return UndefValue::get(Updater
->ProtoType
);
276 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
277 /// Reserve space for the operands but do not fill them in yet.
278 static Value
*CreateEmptyPHI(BasicBlock
*BB
, unsigned NumPreds
,
279 SSAUpdater
*Updater
) {
280 PHINode
*PHI
= PHINode::Create(Updater
->ProtoType
, NumPreds
,
281 Updater
->ProtoName
, &BB
->front());
285 /// AddPHIOperand - Add the specified value as an operand of the PHI for
286 /// the specified predecessor block.
287 static void AddPHIOperand(PHINode
*PHI
, Value
*Val
, BasicBlock
*Pred
) {
288 PHI
->addIncoming(Val
, Pred
);
291 /// InstrIsPHI - Check if an instruction is a PHI.
293 static PHINode
*InstrIsPHI(Instruction
*I
) {
294 return dyn_cast
<PHINode
>(I
);
297 /// ValueIsPHI - Check if a value is a PHI.
298 static PHINode
*ValueIsPHI(Value
*Val
, SSAUpdater
*Updater
) {
299 return dyn_cast
<PHINode
>(Val
);
302 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
303 /// operands, i.e., it was just added.
304 static PHINode
*ValueIsNewPHI(Value
*Val
, SSAUpdater
*Updater
) {
305 PHINode
*PHI
= ValueIsPHI(Val
, Updater
);
306 if (PHI
&& PHI
->getNumIncomingValues() == 0)
311 /// GetPHIValue - For the specified PHI instruction, return the value
313 static Value
*GetPHIValue(PHINode
*PHI
) {
318 } // end namespace llvm
320 /// Check to see if AvailableVals has an entry for the specified BB and if so,
321 /// return it. If not, construct SSA form by first calculating the required
322 /// placement of PHIs and then inserting new PHIs where needed.
323 Value
*SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock
*BB
) {
324 AvailableValsTy
&AvailableVals
= getAvailableVals(AV
);
325 if (Value
*V
= AvailableVals
[BB
])
328 SSAUpdaterImpl
<SSAUpdater
> Impl(this, &AvailableVals
, InsertedPHIs
);
329 return Impl
.GetValue(BB
);
332 //===----------------------------------------------------------------------===//
333 // LoadAndStorePromoter Implementation
334 //===----------------------------------------------------------------------===//
336 LoadAndStorePromoter::
337 LoadAndStorePromoter(ArrayRef
<const Instruction
*> Insts
,
338 SSAUpdater
&S
, StringRef BaseName
) : SSA(S
) {
339 if (Insts
.empty()) return;
341 const Value
*SomeVal
;
342 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Insts
[0]))
345 SomeVal
= cast
<StoreInst
>(Insts
[0])->getOperand(0);
347 if (BaseName
.empty())
348 BaseName
= SomeVal
->getName();
349 SSA
.Initialize(SomeVal
->getType(), BaseName
);
352 void LoadAndStorePromoter::run(const SmallVectorImpl
<Instruction
*> &Insts
) {
353 // First step: bucket up uses of the alloca by the block they occur in.
354 // This is important because we have to handle multiple defs/uses in a block
355 // ourselves: SSAUpdater is purely for cross-block references.
356 DenseMap
<BasicBlock
*, TinyPtrVector
<Instruction
*>> UsesByBlock
;
358 for (Instruction
*User
: Insts
)
359 UsesByBlock
[User
->getParent()].push_back(User
);
361 // Okay, now we can iterate over all the blocks in the function with uses,
362 // processing them. Keep track of which loads are loading a live-in value.
363 // Walk the uses in the use-list order to be determinstic.
364 SmallVector
<LoadInst
*, 32> LiveInLoads
;
365 DenseMap
<Value
*, Value
*> ReplacedLoads
;
367 for (Instruction
*User
: Insts
) {
368 BasicBlock
*BB
= User
->getParent();
369 TinyPtrVector
<Instruction
*> &BlockUses
= UsesByBlock
[BB
];
371 // If this block has already been processed, ignore this repeat use.
372 if (BlockUses
.empty()) continue;
374 // Okay, this is the first use in the block. If this block just has a
375 // single user in it, we can rewrite it trivially.
376 if (BlockUses
.size() == 1) {
377 // If it is a store, it is a trivial def of the value in the block.
378 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
380 SSA
.AddAvailableValue(BB
, SI
->getOperand(0));
382 // Otherwise it is a load, queue it to rewrite as a live-in load.
383 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
388 // Otherwise, check to see if this block is all loads.
389 bool HasStore
= false;
390 for (Instruction
*I
: BlockUses
) {
391 if (isa
<StoreInst
>(I
)) {
397 // If so, we can queue them all as live in loads. We don't have an
398 // efficient way to tell which on is first in the block and don't want to
399 // scan large blocks, so just add all loads as live ins.
401 for (Instruction
*I
: BlockUses
)
402 LiveInLoads
.push_back(cast
<LoadInst
>(I
));
407 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
408 // Since SSAUpdater is purely for cross-block values, we need to determine
409 // the order of these instructions in the block. If the first use in the
410 // block is a load, then it uses the live in value. The last store defines
411 // the live out value. We handle this by doing a linear scan of the block.
412 Value
*StoredValue
= nullptr;
413 for (Instruction
&I
: *BB
) {
414 if (LoadInst
*L
= dyn_cast
<LoadInst
>(&I
)) {
415 // If this is a load from an unrelated pointer, ignore it.
416 if (!isInstInList(L
, Insts
)) continue;
418 // If we haven't seen a store yet, this is a live in use, otherwise
419 // use the stored value.
421 replaceLoadWithValue(L
, StoredValue
);
422 L
->replaceAllUsesWith(StoredValue
);
423 ReplacedLoads
[L
] = StoredValue
;
425 LiveInLoads
.push_back(L
);
430 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
431 // If this is a store to an unrelated pointer, ignore it.
432 if (!isInstInList(SI
, Insts
)) continue;
435 // Remember that this is the active value in the block.
436 StoredValue
= SI
->getOperand(0);
440 // The last stored value that happened is the live-out for the block.
441 assert(StoredValue
&& "Already checked that there is a store in block");
442 SSA
.AddAvailableValue(BB
, StoredValue
);
446 // Okay, now we rewrite all loads that use live-in values in the loop,
447 // inserting PHI nodes as necessary.
448 for (LoadInst
*ALoad
: LiveInLoads
) {
449 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
450 replaceLoadWithValue(ALoad
, NewVal
);
452 // Avoid assertions in unreachable code.
453 if (NewVal
== ALoad
) NewVal
= UndefValue::get(NewVal
->getType());
454 ALoad
->replaceAllUsesWith(NewVal
);
455 ReplacedLoads
[ALoad
] = NewVal
;
458 // Allow the client to do stuff before we start nuking things.
459 doExtraRewritesBeforeFinalDeletion();
461 // Now that everything is rewritten, delete the old instructions from the
462 // function. They should all be dead now.
463 for (Instruction
*User
: Insts
) {
464 // If this is a load that still has uses, then the load must have been added
465 // as a live value in the SSAUpdate data structure for a block (e.g. because
466 // the loaded value was stored later). In this case, we need to recursively
467 // propagate the updates until we get to the real value.
468 if (!User
->use_empty()) {
469 Value
*NewVal
= ReplacedLoads
[User
];
470 assert(NewVal
&& "not a replaced load?");
472 // Propagate down to the ultimate replacee. The intermediately loads
473 // could theoretically already have been deleted, so we don't want to
474 // dereference the Value*'s.
475 DenseMap
<Value
*, Value
*>::iterator RLI
= ReplacedLoads
.find(NewVal
);
476 while (RLI
!= ReplacedLoads
.end()) {
477 NewVal
= RLI
->second
;
478 RLI
= ReplacedLoads
.find(NewVal
);
481 replaceLoadWithValue(cast
<LoadInst
>(User
), NewVal
);
482 User
->replaceAllUsesWith(NewVal
);
485 instructionDeleted(User
);
486 User
->eraseFromParent();
491 LoadAndStorePromoter::isInstInList(Instruction
*I
,
492 const SmallVectorImpl
<Instruction
*> &Insts
)
494 return is_contained(Insts
, I
);