[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Utils / SimplifyIndVar.cpp
blobcbb114f9a47aabba188ba9051d2ce0b9d74e3d63
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ScalarEvolutionExpander.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
33 #define DEBUG_TYPE "indvars"
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
39 STATISTIC(
40 NumSimplifiedSDiv,
41 "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43 NumSimplifiedSRem,
44 "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
47 namespace {
48 /// This is a utility for simplifying induction variables
49 /// based on ScalarEvolution. It is the primary instrument of the
50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51 /// other loop passes that preserve SCEV.
52 class SimplifyIndvar {
53 Loop *L;
54 LoopInfo *LI;
55 ScalarEvolution *SE;
56 DominatorTree *DT;
57 SCEVExpander &Rewriter;
58 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60 bool Changed;
62 public:
63 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
64 LoopInfo *LI, SCEVExpander &Rewriter,
65 SmallVectorImpl<WeakTrackingVH> &Dead)
66 : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
67 Changed(false) {
68 assert(LI && "IV simplification requires LoopInfo");
71 bool hasChanged() const { return Changed; }
73 /// Iteratively perform simplification on a worklist of users of the
74 /// specified induction variable. This is the top-level driver that applies
75 /// all simplifications to users of an IV.
76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
83 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
84 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
85 bool eliminateTrunc(TruncInst *TI);
86 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
87 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
88 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
89 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
90 bool IsSigned);
91 void replaceRemWithNumerator(BinaryOperator *Rem);
92 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
93 void replaceSRemWithURem(BinaryOperator *Rem);
94 bool eliminateSDiv(BinaryOperator *SDiv);
95 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
96 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
100 /// Fold an IV operand into its use. This removes increments of an
101 /// aligned IV when used by a instruction that ignores the low bits.
103 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
105 /// Return the operand of IVOperand for this induction variable if IVOperand can
106 /// be folded (in case more folding opportunities have been exposed).
107 /// Otherwise return null.
108 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
109 Value *IVSrc = nullptr;
110 const unsigned OperIdx = 0;
111 const SCEV *FoldedExpr = nullptr;
112 bool MustDropExactFlag = false;
113 switch (UseInst->getOpcode()) {
114 default:
115 return nullptr;
116 case Instruction::UDiv:
117 case Instruction::LShr:
118 // We're only interested in the case where we know something about
119 // the numerator and have a constant denominator.
120 if (IVOperand != UseInst->getOperand(OperIdx) ||
121 !isa<ConstantInt>(UseInst->getOperand(1)))
122 return nullptr;
124 // Attempt to fold a binary operator with constant operand.
125 // e.g. ((I + 1) >> 2) => I >> 2
126 if (!isa<BinaryOperator>(IVOperand)
127 || !isa<ConstantInt>(IVOperand->getOperand(1)))
128 return nullptr;
130 IVSrc = IVOperand->getOperand(0);
131 // IVSrc must be the (SCEVable) IV, since the other operand is const.
132 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
134 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
135 if (UseInst->getOpcode() == Instruction::LShr) {
136 // Get a constant for the divisor. See createSCEV.
137 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
138 if (D->getValue().uge(BitWidth))
139 return nullptr;
141 D = ConstantInt::get(UseInst->getContext(),
142 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
144 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
145 // We might have 'exact' flag set at this point which will no longer be
146 // correct after we make the replacement.
147 if (UseInst->isExact() &&
148 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
149 MustDropExactFlag = true;
151 // We have something that might fold it's operand. Compare SCEVs.
152 if (!SE->isSCEVable(UseInst->getType()))
153 return nullptr;
155 // Bypass the operand if SCEV can prove it has no effect.
156 if (SE->getSCEV(UseInst) != FoldedExpr)
157 return nullptr;
159 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
160 << " -> " << *UseInst << '\n');
162 UseInst->setOperand(OperIdx, IVSrc);
163 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
165 if (MustDropExactFlag)
166 UseInst->dropPoisonGeneratingFlags();
168 ++NumElimOperand;
169 Changed = true;
170 if (IVOperand->use_empty())
171 DeadInsts.emplace_back(IVOperand);
172 return IVSrc;
175 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
176 Value *IVOperand) {
177 unsigned IVOperIdx = 0;
178 ICmpInst::Predicate Pred = ICmp->getPredicate();
179 if (IVOperand != ICmp->getOperand(0)) {
180 // Swapped
181 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
182 IVOperIdx = 1;
183 Pred = ICmpInst::getSwappedPredicate(Pred);
186 // Get the SCEVs for the ICmp operands (in the specific context of the
187 // current loop)
188 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
189 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
190 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
192 ICmpInst::Predicate InvariantPredicate;
193 const SCEV *InvariantLHS, *InvariantRHS;
195 auto *PN = dyn_cast<PHINode>(IVOperand);
196 if (!PN)
197 return false;
198 if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
199 InvariantLHS, InvariantRHS))
200 return false;
202 // Rewrite the comparison to a loop invariant comparison if it can be done
203 // cheaply, where cheaply means "we don't need to emit any new
204 // instructions".
206 SmallDenseMap<const SCEV*, Value*> CheapExpansions;
207 CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
208 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
210 // TODO: Support multiple entry loops? (We currently bail out of these in
211 // the IndVarSimplify pass)
212 if (auto *BB = L->getLoopPredecessor()) {
213 const int Idx = PN->getBasicBlockIndex(BB);
214 if (Idx >= 0) {
215 Value *Incoming = PN->getIncomingValue(Idx);
216 const SCEV *IncomingS = SE->getSCEV(Incoming);
217 CheapExpansions[IncomingS] = Incoming;
220 Value *NewLHS = CheapExpansions[InvariantLHS];
221 Value *NewRHS = CheapExpansions[InvariantRHS];
223 if (!NewLHS)
224 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
225 NewLHS = ConstLHS->getValue();
226 if (!NewRHS)
227 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
228 NewRHS = ConstRHS->getValue();
230 if (!NewLHS || !NewRHS)
231 // We could not find an existing value to replace either LHS or RHS.
232 // Generating new instructions has subtler tradeoffs, so avoid doing that
233 // for now.
234 return false;
236 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
237 ICmp->setPredicate(InvariantPredicate);
238 ICmp->setOperand(0, NewLHS);
239 ICmp->setOperand(1, NewRHS);
240 return true;
243 /// SimplifyIVUsers helper for eliminating useless
244 /// comparisons against an induction variable.
245 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
246 unsigned IVOperIdx = 0;
247 ICmpInst::Predicate Pred = ICmp->getPredicate();
248 ICmpInst::Predicate OriginalPred = Pred;
249 if (IVOperand != ICmp->getOperand(0)) {
250 // Swapped
251 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
252 IVOperIdx = 1;
253 Pred = ICmpInst::getSwappedPredicate(Pred);
256 // Get the SCEVs for the ICmp operands (in the specific context of the
257 // current loop)
258 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
259 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
260 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
262 // If the condition is always true or always false, replace it with
263 // a constant value.
264 if (SE->isKnownPredicate(Pred, S, X)) {
265 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
266 DeadInsts.emplace_back(ICmp);
267 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
268 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
269 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
270 DeadInsts.emplace_back(ICmp);
271 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
272 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
273 // fallthrough to end of function
274 } else if (ICmpInst::isSigned(OriginalPred) &&
275 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
276 // If we were unable to make anything above, all we can is to canonicalize
277 // the comparison hoping that it will open the doors for other
278 // optimizations. If we find out that we compare two non-negative values,
279 // we turn the instruction's predicate to its unsigned version. Note that
280 // we cannot rely on Pred here unless we check if we have swapped it.
281 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
282 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
283 << '\n');
284 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
285 } else
286 return;
288 ++NumElimCmp;
289 Changed = true;
292 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
293 // Get the SCEVs for the ICmp operands.
294 auto *N = SE->getSCEV(SDiv->getOperand(0));
295 auto *D = SE->getSCEV(SDiv->getOperand(1));
297 // Simplify unnecessary loops away.
298 const Loop *L = LI->getLoopFor(SDiv->getParent());
299 N = SE->getSCEVAtScope(N, L);
300 D = SE->getSCEVAtScope(D, L);
302 // Replace sdiv by udiv if both of the operands are non-negative
303 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
304 auto *UDiv = BinaryOperator::Create(
305 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
306 SDiv->getName() + ".udiv", SDiv);
307 UDiv->setIsExact(SDiv->isExact());
308 SDiv->replaceAllUsesWith(UDiv);
309 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
310 ++NumSimplifiedSDiv;
311 Changed = true;
312 DeadInsts.push_back(SDiv);
313 return true;
316 return false;
319 // i %s n -> i %u n if i >= 0 and n >= 0
320 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
321 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
322 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
323 Rem->getName() + ".urem", Rem);
324 Rem->replaceAllUsesWith(URem);
325 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
326 ++NumSimplifiedSRem;
327 Changed = true;
328 DeadInsts.emplace_back(Rem);
331 // i % n --> i if i is in [0,n).
332 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
333 Rem->replaceAllUsesWith(Rem->getOperand(0));
334 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
335 ++NumElimRem;
336 Changed = true;
337 DeadInsts.emplace_back(Rem);
340 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
341 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
342 auto *T = Rem->getType();
343 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
344 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
345 SelectInst *Sel =
346 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
347 Rem->replaceAllUsesWith(Sel);
348 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
349 ++NumElimRem;
350 Changed = true;
351 DeadInsts.emplace_back(Rem);
354 /// SimplifyIVUsers helper for eliminating useless remainder operations
355 /// operating on an induction variable or replacing srem by urem.
356 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
357 bool IsSigned) {
358 auto *NValue = Rem->getOperand(0);
359 auto *DValue = Rem->getOperand(1);
360 // We're only interested in the case where we know something about
361 // the numerator, unless it is a srem, because we want to replace srem by urem
362 // in general.
363 bool UsedAsNumerator = IVOperand == NValue;
364 if (!UsedAsNumerator && !IsSigned)
365 return;
367 const SCEV *N = SE->getSCEV(NValue);
369 // Simplify unnecessary loops away.
370 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
371 N = SE->getSCEVAtScope(N, ICmpLoop);
373 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
375 // Do not proceed if the Numerator may be negative
376 if (!IsNumeratorNonNegative)
377 return;
379 const SCEV *D = SE->getSCEV(DValue);
380 D = SE->getSCEVAtScope(D, ICmpLoop);
382 if (UsedAsNumerator) {
383 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
384 if (SE->isKnownPredicate(LT, N, D)) {
385 replaceRemWithNumerator(Rem);
386 return;
389 auto *T = Rem->getType();
390 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
391 if (SE->isKnownPredicate(LT, NLessOne, D)) {
392 replaceRemWithNumeratorOrZero(Rem);
393 return;
397 // Try to replace SRem with URem, if both N and D are known non-negative.
398 // Since we had already check N, we only need to check D now
399 if (!IsSigned || !SE->isKnownNonNegative(D))
400 return;
402 replaceSRemWithURem(Rem);
405 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
406 bool Signed, const SCEV *LHS, const SCEV *RHS) {
407 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
408 SCEV::NoWrapFlags, unsigned);
409 switch (BinOp) {
410 default:
411 llvm_unreachable("Unsupported binary op");
412 case Instruction::Add:
413 Operation = &ScalarEvolution::getAddExpr;
414 break;
415 case Instruction::Sub:
416 Operation = &ScalarEvolution::getMinusSCEV;
417 break;
418 case Instruction::Mul:
419 Operation = &ScalarEvolution::getMulExpr;
420 break;
423 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
424 Signed ? &ScalarEvolution::getSignExtendExpr
425 : &ScalarEvolution::getZeroExtendExpr;
427 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
428 auto *NarrowTy = cast<IntegerType>(LHS->getType());
429 auto *WideTy =
430 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
432 const SCEV *A =
433 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
434 WideTy, 0);
435 const SCEV *B =
436 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
437 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
438 return A == B;
441 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
442 const SCEV *LHS = SE->getSCEV(WO->getLHS());
443 const SCEV *RHS = SE->getSCEV(WO->getRHS());
444 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
445 return false;
447 // Proved no overflow, nuke the overflow check and, if possible, the overflow
448 // intrinsic as well.
450 BinaryOperator *NewResult = BinaryOperator::Create(
451 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
453 if (WO->isSigned())
454 NewResult->setHasNoSignedWrap(true);
455 else
456 NewResult->setHasNoUnsignedWrap(true);
458 SmallVector<ExtractValueInst *, 4> ToDelete;
460 for (auto *U : WO->users()) {
461 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
462 if (EVI->getIndices()[0] == 1)
463 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
464 else {
465 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
466 EVI->replaceAllUsesWith(NewResult);
468 ToDelete.push_back(EVI);
472 for (auto *EVI : ToDelete)
473 EVI->eraseFromParent();
475 if (WO->use_empty())
476 WO->eraseFromParent();
478 return true;
481 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
482 const SCEV *LHS = SE->getSCEV(SI->getLHS());
483 const SCEV *RHS = SE->getSCEV(SI->getRHS());
484 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
485 return false;
487 BinaryOperator *BO = BinaryOperator::Create(
488 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
489 if (SI->isSigned())
490 BO->setHasNoSignedWrap();
491 else
492 BO->setHasNoUnsignedWrap();
494 SI->replaceAllUsesWith(BO);
495 DeadInsts.emplace_back(SI);
496 Changed = true;
497 return true;
500 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
501 // It is always legal to replace
502 // icmp <pred> i32 trunc(iv), n
503 // with
504 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
505 // Or with
506 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
507 // Or with either of these if pred is an equality predicate.
509 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
510 // every comparison which uses trunc, it means that we can replace each of
511 // them with comparison of iv against sext/zext(n). We no longer need trunc
512 // after that.
514 // TODO: Should we do this if we can widen *some* comparisons, but not all
515 // of them? Sometimes it is enough to enable other optimizations, but the
516 // trunc instruction will stay in the loop.
517 Value *IV = TI->getOperand(0);
518 Type *IVTy = IV->getType();
519 const SCEV *IVSCEV = SE->getSCEV(IV);
520 const SCEV *TISCEV = SE->getSCEV(TI);
522 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
523 // get rid of trunc
524 bool DoesSExtCollapse = false;
525 bool DoesZExtCollapse = false;
526 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
527 DoesSExtCollapse = true;
528 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
529 DoesZExtCollapse = true;
531 // If neither sext nor zext does collapse, it is not profitable to do any
532 // transform. Bail.
533 if (!DoesSExtCollapse && !DoesZExtCollapse)
534 return false;
536 // Collect users of the trunc that look like comparisons against invariants.
537 // Bail if we find something different.
538 SmallVector<ICmpInst *, 4> ICmpUsers;
539 for (auto *U : TI->users()) {
540 // We don't care about users in unreachable blocks.
541 if (isa<Instruction>(U) &&
542 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
543 continue;
544 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
545 if (!ICI) return false;
546 assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
547 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
548 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
549 return false;
550 // If we cannot get rid of trunc, bail.
551 if (ICI->isSigned() && !DoesSExtCollapse)
552 return false;
553 if (ICI->isUnsigned() && !DoesZExtCollapse)
554 return false;
555 // For equality, either signed or unsigned works.
556 ICmpUsers.push_back(ICI);
559 auto CanUseZExt = [&](ICmpInst *ICI) {
560 // Unsigned comparison can be widened as unsigned.
561 if (ICI->isUnsigned())
562 return true;
563 // Is it profitable to do zext?
564 if (!DoesZExtCollapse)
565 return false;
566 // For equality, we can safely zext both parts.
567 if (ICI->isEquality())
568 return true;
569 // Otherwise we can only use zext when comparing two non-negative or two
570 // negative values. But in practice, we will never pass DoesZExtCollapse
571 // check for a negative value, because zext(trunc(x)) is non-negative. So
572 // it only make sense to check for non-negativity here.
573 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
574 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
575 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
577 // Replace all comparisons against trunc with comparisons against IV.
578 for (auto *ICI : ICmpUsers) {
579 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
580 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
581 Instruction *Ext = nullptr;
582 // For signed/unsigned predicate, replace the old comparison with comparison
583 // of immediate IV against sext/zext of the invariant argument. If we can
584 // use either sext or zext (i.e. we are dealing with equality predicate),
585 // then prefer zext as a more canonical form.
586 // TODO: If we see a signed comparison which can be turned into unsigned,
587 // we can do it here for canonicalization purposes.
588 ICmpInst::Predicate Pred = ICI->getPredicate();
589 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
590 if (CanUseZExt(ICI)) {
591 assert(DoesZExtCollapse && "Unprofitable zext?");
592 Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
593 Pred = ICmpInst::getUnsignedPredicate(Pred);
594 } else {
595 assert(DoesSExtCollapse && "Unprofitable sext?");
596 Ext = new SExtInst(Op1, IVTy, "sext", ICI);
597 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
599 bool Changed;
600 L->makeLoopInvariant(Ext, Changed);
601 (void)Changed;
602 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
603 ICI->replaceAllUsesWith(NewICI);
604 DeadInsts.emplace_back(ICI);
607 // Trunc no longer needed.
608 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
609 DeadInsts.emplace_back(TI);
610 return true;
613 /// Eliminate an operation that consumes a simple IV and has no observable
614 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
615 /// but UseInst may not be.
616 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
617 Instruction *IVOperand) {
618 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
619 eliminateIVComparison(ICmp, IVOperand);
620 return true;
622 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
623 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
624 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
625 simplifyIVRemainder(Bin, IVOperand, IsSRem);
626 return true;
629 if (Bin->getOpcode() == Instruction::SDiv)
630 return eliminateSDiv(Bin);
633 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
634 if (eliminateOverflowIntrinsic(WO))
635 return true;
637 if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
638 if (eliminateSaturatingIntrinsic(SI))
639 return true;
641 if (auto *TI = dyn_cast<TruncInst>(UseInst))
642 if (eliminateTrunc(TI))
643 return true;
645 if (eliminateIdentitySCEV(UseInst, IVOperand))
646 return true;
648 return false;
651 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
652 if (auto *BB = L->getLoopPreheader())
653 return BB->getTerminator();
655 return Hint;
658 /// Replace the UseInst with a constant if possible.
659 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
660 if (!SE->isSCEVable(I->getType()))
661 return false;
663 // Get the symbolic expression for this instruction.
664 const SCEV *S = SE->getSCEV(I);
666 if (!SE->isLoopInvariant(S, L))
667 return false;
669 // Do not generate something ridiculous even if S is loop invariant.
670 if (Rewriter.isHighCostExpansion(S, L, I))
671 return false;
673 auto *IP = GetLoopInvariantInsertPosition(L, I);
674 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
676 I->replaceAllUsesWith(Invariant);
677 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
678 << " with loop invariant: " << *S << '\n');
679 ++NumFoldedUser;
680 Changed = true;
681 DeadInsts.emplace_back(I);
682 return true;
685 /// Eliminate any operation that SCEV can prove is an identity function.
686 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
687 Instruction *IVOperand) {
688 if (!SE->isSCEVable(UseInst->getType()) ||
689 (UseInst->getType() != IVOperand->getType()) ||
690 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
691 return false;
693 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
694 // dominator tree, even if X is an operand to Y. For instance, in
696 // %iv = phi i32 {0,+,1}
697 // br %cond, label %left, label %merge
699 // left:
700 // %X = add i32 %iv, 0
701 // br label %merge
703 // merge:
704 // %M = phi (%X, %iv)
706 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
707 // %M.replaceAllUsesWith(%X) would be incorrect.
709 if (isa<PHINode>(UseInst))
710 // If UseInst is not a PHI node then we know that IVOperand dominates
711 // UseInst directly from the legality of SSA.
712 if (!DT || !DT->dominates(IVOperand, UseInst))
713 return false;
715 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
716 return false;
718 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
720 UseInst->replaceAllUsesWith(IVOperand);
721 ++NumElimIdentity;
722 Changed = true;
723 DeadInsts.emplace_back(UseInst);
724 return true;
727 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
728 /// unsigned-overflow. Returns true if anything changed, false otherwise.
729 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
730 Value *IVOperand) {
731 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
732 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
733 return false;
735 if (BO->getOpcode() != Instruction::Add &&
736 BO->getOpcode() != Instruction::Sub &&
737 BO->getOpcode() != Instruction::Mul)
738 return false;
740 const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
741 const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
742 bool Changed = false;
744 if (!BO->hasNoUnsignedWrap() &&
745 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
746 BO->setHasNoUnsignedWrap();
747 SE->forgetValue(BO);
748 Changed = true;
751 if (!BO->hasNoSignedWrap() &&
752 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
753 BO->setHasNoSignedWrap();
754 SE->forgetValue(BO);
755 Changed = true;
758 return Changed;
761 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
762 /// information from the IV's range. Returns true if anything changed, false
763 /// otherwise.
764 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
765 Value *IVOperand) {
766 using namespace llvm::PatternMatch;
768 if (BO->getOpcode() == Instruction::Shl) {
769 bool Changed = false;
770 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
771 for (auto *U : BO->users()) {
772 const APInt *C;
773 if (match(U,
774 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
775 match(U,
776 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
777 BinaryOperator *Shr = cast<BinaryOperator>(U);
778 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
779 Shr->setIsExact(true);
780 Changed = true;
784 return Changed;
787 return false;
790 /// Add all uses of Def to the current IV's worklist.
791 static void pushIVUsers(
792 Instruction *Def, Loop *L,
793 SmallPtrSet<Instruction*,16> &Simplified,
794 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
796 for (User *U : Def->users()) {
797 Instruction *UI = cast<Instruction>(U);
799 // Avoid infinite or exponential worklist processing.
800 // Also ensure unique worklist users.
801 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
802 // self edges first.
803 if (UI == Def)
804 continue;
806 // Only change the current Loop, do not change the other parts (e.g. other
807 // Loops).
808 if (!L->contains(UI))
809 continue;
811 // Do not push the same instruction more than once.
812 if (!Simplified.insert(UI).second)
813 continue;
815 SimpleIVUsers.push_back(std::make_pair(UI, Def));
819 /// Return true if this instruction generates a simple SCEV
820 /// expression in terms of that IV.
822 /// This is similar to IVUsers' isInteresting() but processes each instruction
823 /// non-recursively when the operand is already known to be a simpleIVUser.
825 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
826 if (!SE->isSCEVable(I->getType()))
827 return false;
829 // Get the symbolic expression for this instruction.
830 const SCEV *S = SE->getSCEV(I);
832 // Only consider affine recurrences.
833 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
834 if (AR && AR->getLoop() == L)
835 return true;
837 return false;
840 /// Iteratively perform simplification on a worklist of users
841 /// of the specified induction variable. Each successive simplification may push
842 /// more users which may themselves be candidates for simplification.
844 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
845 /// instructions in-place during analysis. Rather than rewriting induction
846 /// variables bottom-up from their users, it transforms a chain of IVUsers
847 /// top-down, updating the IR only when it encounters a clear optimization
848 /// opportunity.
850 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
852 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
853 if (!SE->isSCEVable(CurrIV->getType()))
854 return;
856 // Instructions processed by SimplifyIndvar for CurrIV.
857 SmallPtrSet<Instruction*,16> Simplified;
859 // Use-def pairs if IV users waiting to be processed for CurrIV.
860 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
862 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
863 // called multiple times for the same LoopPhi. This is the proper thing to
864 // do for loop header phis that use each other.
865 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
867 while (!SimpleIVUsers.empty()) {
868 std::pair<Instruction*, Instruction*> UseOper =
869 SimpleIVUsers.pop_back_val();
870 Instruction *UseInst = UseOper.first;
872 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
873 // rather than try to do some complex analysis or transformation (such as
874 // widening) basing on it.
875 // TODO: Propagate TLI and pass it here to handle more cases.
876 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
877 DeadInsts.emplace_back(UseInst);
878 continue;
881 // Bypass back edges to avoid extra work.
882 if (UseInst == CurrIV) continue;
884 // Try to replace UseInst with a loop invariant before any other
885 // simplifications.
886 if (replaceIVUserWithLoopInvariant(UseInst))
887 continue;
889 Instruction *IVOperand = UseOper.second;
890 for (unsigned N = 0; IVOperand; ++N) {
891 assert(N <= Simplified.size() && "runaway iteration");
893 Value *NewOper = foldIVUser(UseInst, IVOperand);
894 if (!NewOper)
895 break; // done folding
896 IVOperand = dyn_cast<Instruction>(NewOper);
898 if (!IVOperand)
899 continue;
901 if (eliminateIVUser(UseInst, IVOperand)) {
902 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
903 continue;
906 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
907 if ((isa<OverflowingBinaryOperator>(BO) &&
908 strengthenOverflowingOperation(BO, IVOperand)) ||
909 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
910 // re-queue uses of the now modified binary operator and fall
911 // through to the checks that remain.
912 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
916 CastInst *Cast = dyn_cast<CastInst>(UseInst);
917 if (V && Cast) {
918 V->visitCast(Cast);
919 continue;
921 if (isSimpleIVUser(UseInst, L, SE)) {
922 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
927 namespace llvm {
929 void IVVisitor::anchor() { }
931 /// Simplify instructions that use this induction variable
932 /// by using ScalarEvolution to analyze the IV's recurrence.
933 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
934 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
935 SCEVExpander &Rewriter, IVVisitor *V) {
936 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
937 Dead);
938 SIV.simplifyUsers(CurrIV, V);
939 return SIV.hasChanged();
942 /// Simplify users of induction variables within this
943 /// loop. This does not actually change or add IVs.
944 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
945 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
946 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
947 #ifndef NDEBUG
948 Rewriter.setDebugType(DEBUG_TYPE);
949 #endif
950 bool Changed = false;
951 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
952 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
954 return Changed;
957 } // namespace llvm