[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Utils / SimplifyLibCalls.cpp
blob2d218d6e28d4b26c3426f995842321e868d09269
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
41 using namespace llvm;
42 using namespace PatternMatch;
44 static cl::opt<bool>
45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46 cl::init(false),
47 cl::desc("Enable unsafe double to float "
48 "shrinking for math lib calls"));
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
55 static bool ignoreCallingConv(LibFunc Func) {
56 return Func == LibFunc_abs || Func == LibFunc_labs ||
57 Func == LibFunc_llabs || Func == LibFunc_strlen;
60 static bool isCallingConvCCompatible(CallInst *CI) {
61 switch(CI->getCallingConv()) {
62 default:
63 return false;
64 case llvm::CallingConv::C:
65 return true;
66 case llvm::CallingConv::ARM_APCS:
67 case llvm::CallingConv::ARM_AAPCS:
68 case llvm::CallingConv::ARM_AAPCS_VFP: {
70 // The iOS ABI diverges from the standard in some cases, so for now don't
71 // try to simplify those calls.
72 if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73 return false;
75 auto *FuncTy = CI->getFunctionType();
77 if (!FuncTy->getReturnType()->isPointerTy() &&
78 !FuncTy->getReturnType()->isIntegerTy() &&
79 !FuncTy->getReturnType()->isVoidTy())
80 return false;
82 for (auto Param : FuncTy->params()) {
83 if (!Param->isPointerTy() && !Param->isIntegerTy())
84 return false;
86 return true;
89 return false;
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94 for (User *U : V->users()) {
95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96 if (IC->isEquality() && IC->getOperand(1) == With)
97 continue;
98 // Unknown instruction.
99 return false;
101 return true;
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105 return any_of(CI->operands(), [](const Use &OI) {
106 return OI->getType()->isFloatingPointTy();
110 static bool callHasFP128Argument(const CallInst *CI) {
111 return any_of(CI->operands(), [](const Use &OI) {
112 return OI->getType()->isFP128Ty();
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117 if (Base < 2 || Base > 36)
118 // handle special zero base
119 if (Base != 0)
120 return nullptr;
122 char *End;
123 std::string nptr = Str.str();
124 errno = 0;
125 long long int Result = strtoll(nptr.c_str(), &End, Base);
126 if (errno)
127 return nullptr;
129 // if we assume all possible target locales are ASCII supersets,
130 // then if strtoll successfully parses a number on the host,
131 // it will also successfully parse the same way on the target
132 if (*End != '\0')
133 return nullptr;
135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136 return nullptr;
138 return ConstantInt::get(CI->getType(), Result);
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142 const TargetLibraryInfo *TLI) {
143 CallInst *FOpen = dyn_cast<CallInst>(File);
144 if (!FOpen)
145 return false;
147 Function *InnerCallee = FOpen->getCalledFunction();
148 if (!InnerCallee)
149 return false;
151 LibFunc Func;
152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153 Func != LibFunc_fopen)
154 return false;
156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157 if (PointerMayBeCaptured(File, true, true))
158 return false;
160 return true;
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164 for (User *U : V->users()) {
165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167 if (C->isNullValue())
168 continue;
169 // Unknown instruction.
170 return false;
172 return true;
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176 const DataLayout &DL) {
177 if (!isOnlyUsedInComparisonWithZero(CI))
178 return false;
180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
181 return false;
183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
184 return false;
186 return true;
189 //===----------------------------------------------------------------------===//
190 // String and Memory Library Call Optimizations
191 //===----------------------------------------------------------------------===//
193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
194 // Extract some information from the instruction
195 Value *Dst = CI->getArgOperand(0);
196 Value *Src = CI->getArgOperand(1);
198 // See if we can get the length of the input string.
199 uint64_t Len = GetStringLength(Src);
200 if (Len == 0)
201 return nullptr;
202 --Len; // Unbias length.
204 // Handle the simple, do-nothing case: strcat(x, "") -> x
205 if (Len == 0)
206 return Dst;
208 return emitStrLenMemCpy(Src, Dst, Len, B);
211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
212 IRBuilder<> &B) {
213 // We need to find the end of the destination string. That's where the
214 // memory is to be moved to. We just generate a call to strlen.
215 Value *DstLen = emitStrLen(Dst, B, DL, TLI);
216 if (!DstLen)
217 return nullptr;
219 // Now that we have the destination's length, we must index into the
220 // destination's pointer to get the actual memcpy destination (end of
221 // the string .. we're concatenating).
222 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
224 // We have enough information to now generate the memcpy call to do the
225 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
226 B.CreateMemCpy(CpyDst, 1, Src, 1,
227 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
228 return Dst;
231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
232 // Extract some information from the instruction.
233 Value *Dst = CI->getArgOperand(0);
234 Value *Src = CI->getArgOperand(1);
235 uint64_t Len;
237 // We don't do anything if length is not constant.
238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
239 Len = LengthArg->getZExtValue();
240 else
241 return nullptr;
243 // See if we can get the length of the input string.
244 uint64_t SrcLen = GetStringLength(Src);
245 if (SrcLen == 0)
246 return nullptr;
247 --SrcLen; // Unbias length.
249 // Handle the simple, do-nothing cases:
250 // strncat(x, "", c) -> x
251 // strncat(x, c, 0) -> x
252 if (SrcLen == 0 || Len == 0)
253 return Dst;
255 // We don't optimize this case.
256 if (Len < SrcLen)
257 return nullptr;
259 // strncat(x, s, c) -> strcat(x, s)
260 // s is constant so the strcat can be optimized further.
261 return emitStrLenMemCpy(Src, Dst, SrcLen, B);
264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
265 Function *Callee = CI->getCalledFunction();
266 FunctionType *FT = Callee->getFunctionType();
267 Value *SrcStr = CI->getArgOperand(0);
269 // If the second operand is non-constant, see if we can compute the length
270 // of the input string and turn this into memchr.
271 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
272 if (!CharC) {
273 uint64_t Len = GetStringLength(SrcStr);
274 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
275 return nullptr;
277 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
278 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
279 B, DL, TLI);
282 // Otherwise, the character is a constant, see if the first argument is
283 // a string literal. If so, we can constant fold.
284 StringRef Str;
285 if (!getConstantStringInfo(SrcStr, Str)) {
286 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
287 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
288 "strchr");
289 return nullptr;
292 // Compute the offset, make sure to handle the case when we're searching for
293 // zero (a weird way to spell strlen).
294 size_t I = (0xFF & CharC->getSExtValue()) == 0
295 ? Str.size()
296 : Str.find(CharC->getSExtValue());
297 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
298 return Constant::getNullValue(CI->getType());
300 // strchr(s+n,c) -> gep(s+n+i,c)
301 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
305 Value *SrcStr = CI->getArgOperand(0);
306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
308 // Cannot fold anything if we're not looking for a constant.
309 if (!CharC)
310 return nullptr;
312 StringRef Str;
313 if (!getConstantStringInfo(SrcStr, Str)) {
314 // strrchr(s, 0) -> strchr(s, 0)
315 if (CharC->isZero())
316 return emitStrChr(SrcStr, '\0', B, TLI);
317 return nullptr;
320 // Compute the offset.
321 size_t I = (0xFF & CharC->getSExtValue()) == 0
322 ? Str.size()
323 : Str.rfind(CharC->getSExtValue());
324 if (I == StringRef::npos) // Didn't find the char. Return null.
325 return Constant::getNullValue(CI->getType());
327 // strrchr(s+n,c) -> gep(s+n+i,c)
328 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
332 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
333 if (Str1P == Str2P) // strcmp(x,x) -> 0
334 return ConstantInt::get(CI->getType(), 0);
336 StringRef Str1, Str2;
337 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
338 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
340 // strcmp(x, y) -> cnst (if both x and y are constant strings)
341 if (HasStr1 && HasStr2)
342 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
344 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
345 return B.CreateNeg(B.CreateZExt(
346 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
348 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
349 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
350 CI->getType());
352 // strcmp(P, "x") -> memcmp(P, "x", 2)
353 uint64_t Len1 = GetStringLength(Str1P);
354 uint64_t Len2 = GetStringLength(Str2P);
355 if (Len1 && Len2) {
356 return emitMemCmp(Str1P, Str2P,
357 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
358 std::min(Len1, Len2)),
359 B, DL, TLI);
362 // strcmp to memcmp
363 if (!HasStr1 && HasStr2) {
364 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
365 return emitMemCmp(
366 Str1P, Str2P,
367 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
368 TLI);
369 } else if (HasStr1 && !HasStr2) {
370 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
371 return emitMemCmp(
372 Str1P, Str2P,
373 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
374 TLI);
377 return nullptr;
380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
381 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
382 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
383 return ConstantInt::get(CI->getType(), 0);
385 // Get the length argument if it is constant.
386 uint64_t Length;
387 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
388 Length = LengthArg->getZExtValue();
389 else
390 return nullptr;
392 if (Length == 0) // strncmp(x,y,0) -> 0
393 return ConstantInt::get(CI->getType(), 0);
395 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
396 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
398 StringRef Str1, Str2;
399 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
400 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
402 // strncmp(x, y) -> cnst (if both x and y are constant strings)
403 if (HasStr1 && HasStr2) {
404 StringRef SubStr1 = Str1.substr(0, Length);
405 StringRef SubStr2 = Str2.substr(0, Length);
406 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
409 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
410 return B.CreateNeg(B.CreateZExt(
411 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
413 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
414 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
415 CI->getType());
417 uint64_t Len1 = GetStringLength(Str1P);
418 uint64_t Len2 = GetStringLength(Str2P);
420 // strncmp to memcmp
421 if (!HasStr1 && HasStr2) {
422 Len2 = std::min(Len2, Length);
423 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
424 return emitMemCmp(
425 Str1P, Str2P,
426 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
427 TLI);
428 } else if (HasStr1 && !HasStr2) {
429 Len1 = std::min(Len1, Length);
430 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
431 return emitMemCmp(
432 Str1P, Str2P,
433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
434 TLI);
437 return nullptr;
440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
442 if (Dst == Src) // strcpy(x,x) -> x
443 return Src;
445 // See if we can get the length of the input string.
446 uint64_t Len = GetStringLength(Src);
447 if (Len == 0)
448 return nullptr;
450 // We have enough information to now generate the memcpy call to do the
451 // copy for us. Make a memcpy to copy the nul byte with align = 1.
452 B.CreateMemCpy(Dst, 1, Src, 1,
453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
454 return Dst;
457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
458 Function *Callee = CI->getCalledFunction();
459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
460 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
461 Value *StrLen = emitStrLen(Src, B, DL, TLI);
462 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
465 // See if we can get the length of the input string.
466 uint64_t Len = GetStringLength(Src);
467 if (Len == 0)
468 return nullptr;
470 Type *PT = Callee->getFunctionType()->getParamType(0);
471 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
472 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
473 ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
475 // We have enough information to now generate the memcpy call to do the
476 // copy for us. Make a memcpy to copy the nul byte with align = 1.
477 B.CreateMemCpy(Dst, 1, Src, 1, LenV);
478 return DstEnd;
481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
482 Function *Callee = CI->getCalledFunction();
483 Value *Dst = CI->getArgOperand(0);
484 Value *Src = CI->getArgOperand(1);
485 Value *LenOp = CI->getArgOperand(2);
487 // See if we can get the length of the input string.
488 uint64_t SrcLen = GetStringLength(Src);
489 if (SrcLen == 0)
490 return nullptr;
491 --SrcLen;
493 if (SrcLen == 0) {
494 // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
495 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
496 return Dst;
499 uint64_t Len;
500 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
501 Len = LengthArg->getZExtValue();
502 else
503 return nullptr;
505 if (Len == 0)
506 return Dst; // strncpy(x, y, 0) -> x
508 // Let strncpy handle the zero padding
509 if (Len > SrcLen + 1)
510 return nullptr;
512 Type *PT = Callee->getFunctionType()->getParamType(0);
513 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
514 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
516 return Dst;
519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
520 unsigned CharSize) {
521 Value *Src = CI->getArgOperand(0);
523 // Constant folding: strlen("xyz") -> 3
524 if (uint64_t Len = GetStringLength(Src, CharSize))
525 return ConstantInt::get(CI->getType(), Len - 1);
527 // If s is a constant pointer pointing to a string literal, we can fold
528 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
529 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
530 // We only try to simplify strlen when the pointer s points to an array
531 // of i8. Otherwise, we would need to scale the offset x before doing the
532 // subtraction. This will make the optimization more complex, and it's not
533 // very useful because calling strlen for a pointer of other types is
534 // very uncommon.
535 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
536 if (!isGEPBasedOnPointerToString(GEP, CharSize))
537 return nullptr;
539 ConstantDataArraySlice Slice;
540 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
541 uint64_t NullTermIdx;
542 if (Slice.Array == nullptr) {
543 NullTermIdx = 0;
544 } else {
545 NullTermIdx = ~((uint64_t)0);
546 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
547 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
548 NullTermIdx = I;
549 break;
552 // If the string does not have '\0', leave it to strlen to compute
553 // its length.
554 if (NullTermIdx == ~((uint64_t)0))
555 return nullptr;
558 Value *Offset = GEP->getOperand(2);
559 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
560 Known.Zero.flipAllBits();
561 uint64_t ArrSize =
562 cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
564 // KnownZero's bits are flipped, so zeros in KnownZero now represent
565 // bits known to be zeros in Offset, and ones in KnowZero represent
566 // bits unknown in Offset. Therefore, Offset is known to be in range
567 // [0, NullTermIdx] when the flipped KnownZero is non-negative and
568 // unsigned-less-than NullTermIdx.
570 // If Offset is not provably in the range [0, NullTermIdx], we can still
571 // optimize if we can prove that the program has undefined behavior when
572 // Offset is outside that range. That is the case when GEP->getOperand(0)
573 // is a pointer to an object whose memory extent is NullTermIdx+1.
574 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
575 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
576 NullTermIdx == ArrSize - 1)) {
577 Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
578 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
579 Offset);
583 return nullptr;
586 // strlen(x?"foo":"bars") --> x ? 3 : 4
587 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
588 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
589 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
590 if (LenTrue && LenFalse) {
591 ORE.emit([&]() {
592 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
593 << "folded strlen(select) to select of constants";
595 return B.CreateSelect(SI->getCondition(),
596 ConstantInt::get(CI->getType(), LenTrue - 1),
597 ConstantInt::get(CI->getType(), LenFalse - 1));
601 // strlen(x) != 0 --> *x != 0
602 // strlen(x) == 0 --> *x == 0
603 if (isOnlyUsedInZeroEqualityComparison(CI))
604 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
605 CI->getType());
607 return nullptr;
610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
611 return optimizeStringLength(CI, B, 8);
614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
615 Module &M = *CI->getModule();
616 unsigned WCharSize = TLI->getWCharSize(M) * 8;
617 // We cannot perform this optimization without wchar_size metadata.
618 if (WCharSize == 0)
619 return nullptr;
621 return optimizeStringLength(CI, B, WCharSize);
624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
625 StringRef S1, S2;
626 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
627 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
629 // strpbrk(s, "") -> nullptr
630 // strpbrk("", s) -> nullptr
631 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
632 return Constant::getNullValue(CI->getType());
634 // Constant folding.
635 if (HasS1 && HasS2) {
636 size_t I = S1.find_first_of(S2);
637 if (I == StringRef::npos) // No match.
638 return Constant::getNullValue(CI->getType());
640 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
641 "strpbrk");
644 // strpbrk(s, "a") -> strchr(s, 'a')
645 if (HasS2 && S2.size() == 1)
646 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
648 return nullptr;
651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
652 Value *EndPtr = CI->getArgOperand(1);
653 if (isa<ConstantPointerNull>(EndPtr)) {
654 // With a null EndPtr, this function won't capture the main argument.
655 // It would be readonly too, except that it still may write to errno.
656 CI->addParamAttr(0, Attribute::NoCapture);
659 return nullptr;
662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
663 StringRef S1, S2;
664 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
665 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
667 // strspn(s, "") -> 0
668 // strspn("", s) -> 0
669 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
670 return Constant::getNullValue(CI->getType());
672 // Constant folding.
673 if (HasS1 && HasS2) {
674 size_t Pos = S1.find_first_not_of(S2);
675 if (Pos == StringRef::npos)
676 Pos = S1.size();
677 return ConstantInt::get(CI->getType(), Pos);
680 return nullptr;
683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
684 StringRef S1, S2;
685 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
686 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
688 // strcspn("", s) -> 0
689 if (HasS1 && S1.empty())
690 return Constant::getNullValue(CI->getType());
692 // Constant folding.
693 if (HasS1 && HasS2) {
694 size_t Pos = S1.find_first_of(S2);
695 if (Pos == StringRef::npos)
696 Pos = S1.size();
697 return ConstantInt::get(CI->getType(), Pos);
700 // strcspn(s, "") -> strlen(s)
701 if (HasS2 && S2.empty())
702 return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
704 return nullptr;
707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
708 // fold strstr(x, x) -> x.
709 if (CI->getArgOperand(0) == CI->getArgOperand(1))
710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
714 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
715 if (!StrLen)
716 return nullptr;
717 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
718 StrLen, B, DL, TLI);
719 if (!StrNCmp)
720 return nullptr;
721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
722 ICmpInst *Old = cast<ICmpInst>(*UI++);
723 Value *Cmp =
724 B.CreateICmp(Old->getPredicate(), StrNCmp,
725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
726 replaceAllUsesWith(Old, Cmp);
728 return CI;
731 // See if either input string is a constant string.
732 StringRef SearchStr, ToFindStr;
733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
736 // fold strstr(x, "") -> x.
737 if (HasStr2 && ToFindStr.empty())
738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
740 // If both strings are known, constant fold it.
741 if (HasStr1 && HasStr2) {
742 size_t Offset = SearchStr.find(ToFindStr);
744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
745 return Constant::getNullValue(CI->getType());
747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
748 Value *Result = castToCStr(CI->getArgOperand(0), B);
749 Result =
750 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
751 return B.CreateBitCast(Result, CI->getType());
754 // fold strstr(x, "y") -> strchr(x, 'y').
755 if (HasStr2 && ToFindStr.size() == 1) {
756 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
757 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
759 return nullptr;
762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
763 Value *SrcStr = CI->getArgOperand(0);
764 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
765 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
767 // memchr(x, y, 0) -> null
768 if (LenC && LenC->isZero())
769 return Constant::getNullValue(CI->getType());
771 // From now on we need at least constant length and string.
772 StringRef Str;
773 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
774 return nullptr;
776 // Truncate the string to LenC. If Str is smaller than LenC we will still only
777 // scan the string, as reading past the end of it is undefined and we can just
778 // return null if we don't find the char.
779 Str = Str.substr(0, LenC->getZExtValue());
781 // If the char is variable but the input str and length are not we can turn
782 // this memchr call into a simple bit field test. Of course this only works
783 // when the return value is only checked against null.
785 // It would be really nice to reuse switch lowering here but we can't change
786 // the CFG at this point.
788 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
789 // != 0
790 // after bounds check.
791 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
792 unsigned char Max =
793 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
794 reinterpret_cast<const unsigned char *>(Str.end()));
796 // Make sure the bit field we're about to create fits in a register on the
797 // target.
798 // FIXME: On a 64 bit architecture this prevents us from using the
799 // interesting range of alpha ascii chars. We could do better by emitting
800 // two bitfields or shifting the range by 64 if no lower chars are used.
801 if (!DL.fitsInLegalInteger(Max + 1))
802 return nullptr;
804 // For the bit field use a power-of-2 type with at least 8 bits to avoid
805 // creating unnecessary illegal types.
806 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
808 // Now build the bit field.
809 APInt Bitfield(Width, 0);
810 for (char C : Str)
811 Bitfield.setBit((unsigned char)C);
812 Value *BitfieldC = B.getInt(Bitfield);
814 // Adjust width of "C" to the bitfield width, then mask off the high bits.
815 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
816 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
818 // First check that the bit field access is within bounds.
819 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
820 "memchr.bounds");
822 // Create code that checks if the given bit is set in the field.
823 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
824 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
826 // Finally merge both checks and cast to pointer type. The inttoptr
827 // implicitly zexts the i1 to intptr type.
828 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
831 // Check if all arguments are constants. If so, we can constant fold.
832 if (!CharC)
833 return nullptr;
835 // Compute the offset.
836 size_t I = Str.find(CharC->getSExtValue() & 0xFF);
837 if (I == StringRef::npos) // Didn't find the char. memchr returns null.
838 return Constant::getNullValue(CI->getType());
840 // memchr(s+n,c,l) -> gep(s+n+i,c)
841 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
845 uint64_t Len, IRBuilder<> &B,
846 const DataLayout &DL) {
847 if (Len == 0) // memcmp(s1,s2,0) -> 0
848 return Constant::getNullValue(CI->getType());
850 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
851 if (Len == 1) {
852 Value *LHSV =
853 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
854 CI->getType(), "lhsv");
855 Value *RHSV =
856 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
857 CI->getType(), "rhsv");
858 return B.CreateSub(LHSV, RHSV, "chardiff");
861 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
862 // TODO: The case where both inputs are constants does not need to be limited
863 // to legal integers or equality comparison. See block below this.
864 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
865 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
866 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
868 // First, see if we can fold either argument to a constant.
869 Value *LHSV = nullptr;
870 if (auto *LHSC = dyn_cast<Constant>(LHS)) {
871 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
872 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
874 Value *RHSV = nullptr;
875 if (auto *RHSC = dyn_cast<Constant>(RHS)) {
876 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
877 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
880 // Don't generate unaligned loads. If either source is constant data,
881 // alignment doesn't matter for that source because there is no load.
882 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
883 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
884 if (!LHSV) {
885 Type *LHSPtrTy =
886 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
887 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
889 if (!RHSV) {
890 Type *RHSPtrTy =
891 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
892 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
894 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
898 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
899 // TODO: This is limited to i8 arrays.
900 StringRef LHSStr, RHSStr;
901 if (getConstantStringInfo(LHS, LHSStr) &&
902 getConstantStringInfo(RHS, RHSStr)) {
903 // Make sure we're not reading out-of-bounds memory.
904 if (Len > LHSStr.size() || Len > RHSStr.size())
905 return nullptr;
906 // Fold the memcmp and normalize the result. This way we get consistent
907 // results across multiple platforms.
908 uint64_t Ret = 0;
909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
910 if (Cmp < 0)
911 Ret = -1;
912 else if (Cmp > 0)
913 Ret = 1;
914 return ConstantInt::get(CI->getType(), Ret);
916 return nullptr;
919 // Most simplifications for memcmp also apply to bcmp.
920 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
921 IRBuilder<> &B) {
922 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
923 Value *Size = CI->getArgOperand(2);
925 if (LHS == RHS) // memcmp(s,s,x) -> 0
926 return Constant::getNullValue(CI->getType());
928 // Handle constant lengths.
929 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size))
930 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS,
931 LenC->getZExtValue(), B, DL))
932 return Res;
934 return nullptr;
937 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
938 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
939 return V;
941 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
942 // bcmp can be more efficient than memcmp because it only has to know that
943 // there is a difference, not how different one is to the other.
944 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
945 Value *LHS = CI->getArgOperand(0);
946 Value *RHS = CI->getArgOperand(1);
947 Value *Size = CI->getArgOperand(2);
948 return emitBCmp(LHS, RHS, Size, B, DL, TLI);
951 return nullptr;
954 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
955 return optimizeMemCmpBCmpCommon(CI, B);
958 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
959 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
960 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
961 CI->getArgOperand(2));
962 return CI->getArgOperand(0);
965 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
966 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
967 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
968 CI->getArgOperand(2));
969 return CI->getArgOperand(0);
972 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
973 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
974 // This has to be a memset of zeros (bzero).
975 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
976 if (!FillValue || FillValue->getZExtValue() != 0)
977 return nullptr;
979 // TODO: We should handle the case where the malloc has more than one use.
980 // This is necessary to optimize common patterns such as when the result of
981 // the malloc is checked against null or when a memset intrinsic is used in
982 // place of a memset library call.
983 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
984 if (!Malloc || !Malloc->hasOneUse())
985 return nullptr;
987 // Is the inner call really malloc()?
988 Function *InnerCallee = Malloc->getCalledFunction();
989 if (!InnerCallee)
990 return nullptr;
992 LibFunc Func;
993 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
994 Func != LibFunc_malloc)
995 return nullptr;
997 // The memset must cover the same number of bytes that are malloc'd.
998 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
999 return nullptr;
1001 // Replace the malloc with a calloc. We need the data layout to know what the
1002 // actual size of a 'size_t' parameter is.
1003 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1004 const DataLayout &DL = Malloc->getModule()->getDataLayout();
1005 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1006 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1007 Malloc->getArgOperand(0), Malloc->getAttributes(),
1008 B, *TLI);
1009 if (!Calloc)
1010 return nullptr;
1012 Malloc->replaceAllUsesWith(Calloc);
1013 eraseFromParent(Malloc);
1015 return Calloc;
1018 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1019 if (auto *Calloc = foldMallocMemset(CI, B))
1020 return Calloc;
1022 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1023 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1024 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
1025 return CI->getArgOperand(0);
1028 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1029 if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1030 return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1032 return nullptr;
1035 //===----------------------------------------------------------------------===//
1036 // Math Library Optimizations
1037 //===----------------------------------------------------------------------===//
1039 // Replace a libcall \p CI with a call to intrinsic \p IID
1040 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1041 // Propagate fast-math flags from the existing call to the new call.
1042 IRBuilder<>::FastMathFlagGuard Guard(B);
1043 B.setFastMathFlags(CI->getFastMathFlags());
1045 Module *M = CI->getModule();
1046 Value *V = CI->getArgOperand(0);
1047 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1048 CallInst *NewCall = B.CreateCall(F, V);
1049 NewCall->takeName(CI);
1050 return NewCall;
1053 /// Return a variant of Val with float type.
1054 /// Currently this works in two cases: If Val is an FPExtension of a float
1055 /// value to something bigger, simply return the operand.
1056 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1057 /// loss of precision do so.
1058 static Value *valueHasFloatPrecision(Value *Val) {
1059 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1060 Value *Op = Cast->getOperand(0);
1061 if (Op->getType()->isFloatTy())
1062 return Op;
1064 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1065 APFloat F = Const->getValueAPF();
1066 bool losesInfo;
1067 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1068 &losesInfo);
1069 if (!losesInfo)
1070 return ConstantFP::get(Const->getContext(), F);
1072 return nullptr;
1075 /// Shrink double -> float functions.
1076 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1077 bool isBinary, bool isPrecise = false) {
1078 Function *CalleeFn = CI->getCalledFunction();
1079 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1080 return nullptr;
1082 // If not all the uses of the function are converted to float, then bail out.
1083 // This matters if the precision of the result is more important than the
1084 // precision of the arguments.
1085 if (isPrecise)
1086 for (User *U : CI->users()) {
1087 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1088 if (!Cast || !Cast->getType()->isFloatTy())
1089 return nullptr;
1092 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1093 Value *V[2];
1094 V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1095 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1096 if (!V[0] || (isBinary && !V[1]))
1097 return nullptr;
1099 StringRef CalleeNm = CalleeFn->getName();
1100 AttributeList CalleeAt = CalleeFn->getAttributes();
1101 bool CalleeIn = CalleeFn->isIntrinsic();
1103 // If call isn't an intrinsic, check that it isn't within a function with the
1104 // same name as the float version of this call, otherwise the result is an
1105 // infinite loop. For example, from MinGW-w64:
1107 // float expf(float val) { return (float) exp((double) val); }
1108 if (!CalleeIn) {
1109 const Function *Fn = CI->getFunction();
1110 StringRef FnName = Fn->getName();
1111 if (FnName.back() == 'f' &&
1112 FnName.size() == (CalleeNm.size() + 1) &&
1113 FnName.startswith(CalleeNm))
1114 return nullptr;
1117 // Propagate the math semantics from the current function to the new function.
1118 IRBuilder<>::FastMathFlagGuard Guard(B);
1119 B.setFastMathFlags(CI->getFastMathFlags());
1121 // g((double) float) -> (double) gf(float)
1122 Value *R;
1123 if (CalleeIn) {
1124 Module *M = CI->getModule();
1125 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1126 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1127 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1129 else
1130 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1131 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1133 return B.CreateFPExt(R, B.getDoubleTy());
1136 /// Shrink double -> float for unary functions.
1137 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1138 bool isPrecise = false) {
1139 return optimizeDoubleFP(CI, B, false, isPrecise);
1142 /// Shrink double -> float for binary functions.
1143 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1144 bool isPrecise = false) {
1145 return optimizeDoubleFP(CI, B, true, isPrecise);
1148 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1149 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1150 if (!CI->isFast())
1151 return nullptr;
1153 // Propagate fast-math flags from the existing call to new instructions.
1154 IRBuilder<>::FastMathFlagGuard Guard(B);
1155 B.setFastMathFlags(CI->getFastMathFlags());
1157 Value *Real, *Imag;
1158 if (CI->getNumArgOperands() == 1) {
1159 Value *Op = CI->getArgOperand(0);
1160 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1161 Real = B.CreateExtractValue(Op, 0, "real");
1162 Imag = B.CreateExtractValue(Op, 1, "imag");
1163 } else {
1164 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1165 Real = CI->getArgOperand(0);
1166 Imag = CI->getArgOperand(1);
1169 Value *RealReal = B.CreateFMul(Real, Real);
1170 Value *ImagImag = B.CreateFMul(Imag, Imag);
1172 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1173 CI->getType());
1174 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1177 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1178 IRBuilder<> &B) {
1179 if (!isa<FPMathOperator>(Call))
1180 return nullptr;
1182 IRBuilder<>::FastMathFlagGuard Guard(B);
1183 B.setFastMathFlags(Call->getFastMathFlags());
1185 // TODO: Can this be shared to also handle LLVM intrinsics?
1186 Value *X;
1187 switch (Func) {
1188 case LibFunc_sin:
1189 case LibFunc_sinf:
1190 case LibFunc_sinl:
1191 case LibFunc_tan:
1192 case LibFunc_tanf:
1193 case LibFunc_tanl:
1194 // sin(-X) --> -sin(X)
1195 // tan(-X) --> -tan(X)
1196 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1197 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1198 break;
1199 case LibFunc_cos:
1200 case LibFunc_cosf:
1201 case LibFunc_cosl:
1202 // cos(-X) --> cos(X)
1203 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1204 return B.CreateCall(Call->getCalledFunction(), X, "cos");
1205 break;
1206 default:
1207 break;
1209 return nullptr;
1212 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1213 // Multiplications calculated using Addition Chains.
1214 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1216 assert(Exp != 0 && "Incorrect exponent 0 not handled");
1218 if (InnerChain[Exp])
1219 return InnerChain[Exp];
1221 static const unsigned AddChain[33][2] = {
1222 {0, 0}, // Unused.
1223 {0, 0}, // Unused (base case = pow1).
1224 {1, 1}, // Unused (pre-computed).
1225 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1226 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1227 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1228 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1229 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1232 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1233 getPow(InnerChain, AddChain[Exp][1], B));
1234 return InnerChain[Exp];
1237 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1238 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x);
1239 /// exp2(log2(n) * x) for pow(n, x).
1240 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1241 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1242 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1243 Module *Mod = Pow->getModule();
1244 Type *Ty = Pow->getType();
1245 bool Ignored;
1247 // Evaluate special cases related to a nested function as the base.
1249 // pow(exp(x), y) -> exp(x * y)
1250 // pow(exp2(x), y) -> exp2(x * y)
1251 // If exp{,2}() is used only once, it is better to fold two transcendental
1252 // math functions into one. If used again, exp{,2}() would still have to be
1253 // called with the original argument, then keep both original transcendental
1254 // functions. However, this transformation is only safe with fully relaxed
1255 // math semantics, since, besides rounding differences, it changes overflow
1256 // and underflow behavior quite dramatically. For example:
1257 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1258 // Whereas:
1259 // exp(1000 * 0.001) = exp(1)
1260 // TODO: Loosen the requirement for fully relaxed math semantics.
1261 // TODO: Handle exp10() when more targets have it available.
1262 CallInst *BaseFn = dyn_cast<CallInst>(Base);
1263 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1264 LibFunc LibFn;
1266 Function *CalleeFn = BaseFn->getCalledFunction();
1267 if (CalleeFn &&
1268 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1269 StringRef ExpName;
1270 Intrinsic::ID ID;
1271 Value *ExpFn;
1272 LibFunc LibFnFloat;
1273 LibFunc LibFnDouble;
1274 LibFunc LibFnLongDouble;
1276 switch (LibFn) {
1277 default:
1278 return nullptr;
1279 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
1280 ExpName = TLI->getName(LibFunc_exp);
1281 ID = Intrinsic::exp;
1282 LibFnFloat = LibFunc_expf;
1283 LibFnDouble = LibFunc_exp;
1284 LibFnLongDouble = LibFunc_expl;
1285 break;
1286 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1287 ExpName = TLI->getName(LibFunc_exp2);
1288 ID = Intrinsic::exp2;
1289 LibFnFloat = LibFunc_exp2f;
1290 LibFnDouble = LibFunc_exp2;
1291 LibFnLongDouble = LibFunc_exp2l;
1292 break;
1295 // Create new exp{,2}() with the product as its argument.
1296 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1297 ExpFn = BaseFn->doesNotAccessMemory()
1298 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1299 FMul, ExpName)
1300 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1301 LibFnLongDouble, B,
1302 BaseFn->getAttributes());
1304 // Since the new exp{,2}() is different from the original one, dead code
1305 // elimination cannot be trusted to remove it, since it may have side
1306 // effects (e.g., errno). When the only consumer for the original
1307 // exp{,2}() is pow(), then it has to be explicitly erased.
1308 BaseFn->replaceAllUsesWith(ExpFn);
1309 eraseFromParent(BaseFn);
1311 return ExpFn;
1315 // Evaluate special cases related to a constant base.
1317 const APFloat *BaseF;
1318 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1319 return nullptr;
1321 // pow(2.0 ** n, x) -> exp2(n * x)
1322 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1323 APFloat BaseR = APFloat(1.0);
1324 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1325 BaseR = BaseR / *BaseF;
1326 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1327 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1328 APSInt NI(64, false);
1329 if ((IsInteger || IsReciprocal) &&
1330 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1331 APFloat::opOK &&
1332 NI > 1 && NI.isPowerOf2()) {
1333 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1334 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1335 if (Pow->doesNotAccessMemory())
1336 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1337 FMul, "exp2");
1338 else
1339 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1340 LibFunc_exp2l, B, Attrs);
1344 // pow(10.0, x) -> exp10(x)
1345 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1346 if (match(Base, m_SpecificFP(10.0)) &&
1347 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1348 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1349 LibFunc_exp10l, B, Attrs);
1351 // pow(n, x) -> exp2(log2(n) * x)
1352 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1353 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1354 Value *Log = nullptr;
1355 if (Ty->isFloatTy())
1356 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1357 else if (Ty->isDoubleTy())
1358 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1360 if (Log) {
1361 Value *FMul = B.CreateFMul(Log, Expo, "mul");
1362 if (Pow->doesNotAccessMemory()) {
1363 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1364 FMul, "exp2");
1365 } else {
1366 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1367 LibFunc_exp2l))
1368 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1369 LibFunc_exp2l, B, Attrs);
1373 return nullptr;
1376 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1377 Module *M, IRBuilder<> &B,
1378 const TargetLibraryInfo *TLI) {
1379 // If errno is never set, then use the intrinsic for sqrt().
1380 if (NoErrno) {
1381 Function *SqrtFn =
1382 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1383 return B.CreateCall(SqrtFn, V, "sqrt");
1386 // Otherwise, use the libcall for sqrt().
1387 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1388 LibFunc_sqrtl))
1389 // TODO: We also should check that the target can in fact lower the sqrt()
1390 // libcall. We currently have no way to ask this question, so we ask if
1391 // the target has a sqrt() libcall, which is not exactly the same.
1392 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1393 LibFunc_sqrtl, B, Attrs);
1395 return nullptr;
1398 /// Use square root in place of pow(x, +/-0.5).
1399 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1400 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1401 AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1402 Module *Mod = Pow->getModule();
1403 Type *Ty = Pow->getType();
1405 const APFloat *ExpoF;
1406 if (!match(Expo, m_APFloat(ExpoF)) ||
1407 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1408 return nullptr;
1410 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1411 if (!Sqrt)
1412 return nullptr;
1414 // Handle signed zero base by expanding to fabs(sqrt(x)).
1415 if (!Pow->hasNoSignedZeros()) {
1416 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1417 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1420 // Handle non finite base by expanding to
1421 // (x == -infinity ? +infinity : sqrt(x)).
1422 if (!Pow->hasNoInfs()) {
1423 Value *PosInf = ConstantFP::getInfinity(Ty),
1424 *NegInf = ConstantFP::getInfinity(Ty, true);
1425 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1426 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1429 // If the exponent is negative, then get the reciprocal.
1430 if (ExpoF->isNegative())
1431 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1433 return Sqrt;
1436 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1437 IRBuilder<> &B) {
1438 Value *Args[] = {Base, Expo};
1439 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1440 return B.CreateCall(F, Args);
1443 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1444 Value *Base = Pow->getArgOperand(0);
1445 Value *Expo = Pow->getArgOperand(1);
1446 Function *Callee = Pow->getCalledFunction();
1447 StringRef Name = Callee->getName();
1448 Type *Ty = Pow->getType();
1449 Module *M = Pow->getModule();
1450 Value *Shrunk = nullptr;
1451 bool AllowApprox = Pow->hasApproxFunc();
1452 bool Ignored;
1454 // Bail out if simplifying libcalls to pow() is disabled.
1455 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1456 return nullptr;
1458 // Propagate the math semantics from the call to any created instructions.
1459 IRBuilder<>::FastMathFlagGuard Guard(B);
1460 B.setFastMathFlags(Pow->getFastMathFlags());
1462 // Shrink pow() to powf() if the arguments are single precision,
1463 // unless the result is expected to be double precision.
1464 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1465 hasFloatVersion(Name))
1466 Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1468 // Evaluate special cases related to the base.
1470 // pow(1.0, x) -> 1.0
1471 if (match(Base, m_FPOne()))
1472 return Base;
1474 if (Value *Exp = replacePowWithExp(Pow, B))
1475 return Exp;
1477 // Evaluate special cases related to the exponent.
1479 // pow(x, -1.0) -> 1.0 / x
1480 if (match(Expo, m_SpecificFP(-1.0)))
1481 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1483 // pow(x, 0.0) -> 1.0
1484 if (match(Expo, m_SpecificFP(0.0)))
1485 return ConstantFP::get(Ty, 1.0);
1487 // pow(x, 1.0) -> x
1488 if (match(Expo, m_FPOne()))
1489 return Base;
1491 // pow(x, 2.0) -> x * x
1492 if (match(Expo, m_SpecificFP(2.0)))
1493 return B.CreateFMul(Base, Base, "square");
1495 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1496 return Sqrt;
1498 // pow(x, n) -> x * x * x * ...
1499 const APFloat *ExpoF;
1500 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1501 // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1502 // If the exponent is an integer+0.5 we generate a call to sqrt and an
1503 // additional fmul.
1504 // TODO: This whole transformation should be backend specific (e.g. some
1505 // backends might prefer libcalls or the limit for the exponent might
1506 // be different) and it should also consider optimizing for size.
1507 APFloat LimF(ExpoF->getSemantics(), 33.0),
1508 ExpoA(abs(*ExpoF));
1509 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1510 // This transformation applies to integer or integer+0.5 exponents only.
1511 // For integer+0.5, we create a sqrt(Base) call.
1512 Value *Sqrt = nullptr;
1513 if (!ExpoA.isInteger()) {
1514 APFloat Expo2 = ExpoA;
1515 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1516 // is no floating point exception and the result is an integer, then
1517 // ExpoA == integer + 0.5
1518 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1519 return nullptr;
1521 if (!Expo2.isInteger())
1522 return nullptr;
1524 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1525 Pow->doesNotAccessMemory(), M, B, TLI);
1528 // We will memoize intermediate products of the Addition Chain.
1529 Value *InnerChain[33] = {nullptr};
1530 InnerChain[1] = Base;
1531 InnerChain[2] = B.CreateFMul(Base, Base, "square");
1533 // We cannot readily convert a non-double type (like float) to a double.
1534 // So we first convert it to something which could be converted to double.
1535 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1536 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1538 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1539 if (Sqrt)
1540 FMul = B.CreateFMul(FMul, Sqrt);
1542 // If the exponent is negative, then get the reciprocal.
1543 if (ExpoF->isNegative())
1544 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1546 return FMul;
1549 APSInt IntExpo(32, /*isUnsigned=*/false);
1550 // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1551 if (ExpoF->isInteger() &&
1552 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1553 APFloat::opOK) {
1554 return createPowWithIntegerExponent(
1555 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1559 // powf(x, itofp(y)) -> powi(x, y)
1560 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1561 Value *IntExpo = cast<Instruction>(Expo)->getOperand(0);
1562 Value *NewExpo = nullptr;
1563 unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits();
1564 if (isa<SIToFPInst>(Expo) && BitWidth == 32)
1565 NewExpo = IntExpo;
1566 else if (BitWidth < 32)
1567 NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty())
1568 : B.CreateZExt(IntExpo, B.getInt32Ty());
1569 if (NewExpo)
1570 return createPowWithIntegerExponent(Base, NewExpo, M, B);
1573 return Shrunk;
1576 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1577 Function *Callee = CI->getCalledFunction();
1578 Value *Ret = nullptr;
1579 StringRef Name = Callee->getName();
1580 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1581 Ret = optimizeUnaryDoubleFP(CI, B, true);
1583 Value *Op = CI->getArgOperand(0);
1584 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1585 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1586 LibFunc LdExp = LibFunc_ldexpl;
1587 if (Op->getType()->isFloatTy())
1588 LdExp = LibFunc_ldexpf;
1589 else if (Op->getType()->isDoubleTy())
1590 LdExp = LibFunc_ldexp;
1592 if (TLI->has(LdExp)) {
1593 Value *LdExpArg = nullptr;
1594 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1595 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1596 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1597 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1598 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1599 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1602 if (LdExpArg) {
1603 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1604 if (!Op->getType()->isFloatTy())
1605 One = ConstantExpr::getFPExtend(One, Op->getType());
1607 Module *M = CI->getModule();
1608 FunctionCallee NewCallee = M->getOrInsertFunction(
1609 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty());
1610 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1611 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1612 CI->setCallingConv(F->getCallingConv());
1614 return CI;
1617 return Ret;
1620 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1621 // If we can shrink the call to a float function rather than a double
1622 // function, do that first.
1623 Function *Callee = CI->getCalledFunction();
1624 StringRef Name = Callee->getName();
1625 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1626 if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1627 return Ret;
1629 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1630 // the intrinsics for improved optimization (for example, vectorization).
1631 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1632 // From the C standard draft WG14/N1256:
1633 // "Ideally, fmax would be sensitive to the sign of zero, for example
1634 // fmax(-0.0, +0.0) would return +0; however, implementation in software
1635 // might be impractical."
1636 IRBuilder<>::FastMathFlagGuard Guard(B);
1637 FastMathFlags FMF = CI->getFastMathFlags();
1638 FMF.setNoSignedZeros();
1639 B.setFastMathFlags(FMF);
1641 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1642 : Intrinsic::maxnum;
1643 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1644 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1647 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1648 Function *Callee = CI->getCalledFunction();
1649 Value *Ret = nullptr;
1650 StringRef Name = Callee->getName();
1651 if (UnsafeFPShrink && hasFloatVersion(Name))
1652 Ret = optimizeUnaryDoubleFP(CI, B, true);
1654 if (!CI->isFast())
1655 return Ret;
1656 Value *Op1 = CI->getArgOperand(0);
1657 auto *OpC = dyn_cast<CallInst>(Op1);
1659 // The earlier call must also be 'fast' in order to do these transforms.
1660 if (!OpC || !OpC->isFast())
1661 return Ret;
1663 // log(pow(x,y)) -> y*log(x)
1664 // This is only applicable to log, log2, log10.
1665 if (Name != "log" && Name != "log2" && Name != "log10")
1666 return Ret;
1668 IRBuilder<>::FastMathFlagGuard Guard(B);
1669 FastMathFlags FMF;
1670 FMF.setFast();
1671 B.setFastMathFlags(FMF);
1673 LibFunc Func;
1674 Function *F = OpC->getCalledFunction();
1675 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1676 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1677 return B.CreateFMul(OpC->getArgOperand(1),
1678 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1679 Callee->getAttributes()), "mul");
1681 // log(exp2(y)) -> y*log(2)
1682 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1683 TLI->has(Func) && Func == LibFunc_exp2)
1684 return B.CreateFMul(
1685 OpC->getArgOperand(0),
1686 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1687 Callee->getName(), B, Callee->getAttributes()),
1688 "logmul");
1689 return Ret;
1692 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1693 Function *Callee = CI->getCalledFunction();
1694 Value *Ret = nullptr;
1695 // TODO: Once we have a way (other than checking for the existince of the
1696 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1697 // condition below.
1698 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1699 Callee->getIntrinsicID() == Intrinsic::sqrt))
1700 Ret = optimizeUnaryDoubleFP(CI, B, true);
1702 if (!CI->isFast())
1703 return Ret;
1705 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1706 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1707 return Ret;
1709 // We're looking for a repeated factor in a multiplication tree,
1710 // so we can do this fold: sqrt(x * x) -> fabs(x);
1711 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1712 Value *Op0 = I->getOperand(0);
1713 Value *Op1 = I->getOperand(1);
1714 Value *RepeatOp = nullptr;
1715 Value *OtherOp = nullptr;
1716 if (Op0 == Op1) {
1717 // Simple match: the operands of the multiply are identical.
1718 RepeatOp = Op0;
1719 } else {
1720 // Look for a more complicated pattern: one of the operands is itself
1721 // a multiply, so search for a common factor in that multiply.
1722 // Note: We don't bother looking any deeper than this first level or for
1723 // variations of this pattern because instcombine's visitFMUL and/or the
1724 // reassociation pass should give us this form.
1725 Value *OtherMul0, *OtherMul1;
1726 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1727 // Pattern: sqrt((x * y) * z)
1728 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1729 // Matched: sqrt((x * x) * z)
1730 RepeatOp = OtherMul0;
1731 OtherOp = Op1;
1735 if (!RepeatOp)
1736 return Ret;
1738 // Fast math flags for any created instructions should match the sqrt
1739 // and multiply.
1740 IRBuilder<>::FastMathFlagGuard Guard(B);
1741 B.setFastMathFlags(I->getFastMathFlags());
1743 // If we found a repeated factor, hoist it out of the square root and
1744 // replace it with the fabs of that factor.
1745 Module *M = Callee->getParent();
1746 Type *ArgType = I->getType();
1747 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1748 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1749 if (OtherOp) {
1750 // If we found a non-repeated factor, we still need to get its square
1751 // root. We then multiply that by the value that was simplified out
1752 // of the square root calculation.
1753 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1754 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1755 return B.CreateFMul(FabsCall, SqrtCall);
1757 return FabsCall;
1760 // TODO: Generalize to handle any trig function and its inverse.
1761 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1762 Function *Callee = CI->getCalledFunction();
1763 Value *Ret = nullptr;
1764 StringRef Name = Callee->getName();
1765 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1766 Ret = optimizeUnaryDoubleFP(CI, B, true);
1768 Value *Op1 = CI->getArgOperand(0);
1769 auto *OpC = dyn_cast<CallInst>(Op1);
1770 if (!OpC)
1771 return Ret;
1773 // Both calls must be 'fast' in order to remove them.
1774 if (!CI->isFast() || !OpC->isFast())
1775 return Ret;
1777 // tan(atan(x)) -> x
1778 // tanf(atanf(x)) -> x
1779 // tanl(atanl(x)) -> x
1780 LibFunc Func;
1781 Function *F = OpC->getCalledFunction();
1782 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1783 ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1784 (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1785 (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1786 Ret = OpC->getArgOperand(0);
1787 return Ret;
1790 static bool isTrigLibCall(CallInst *CI) {
1791 // We can only hope to do anything useful if we can ignore things like errno
1792 // and floating-point exceptions.
1793 // We already checked the prototype.
1794 return CI->hasFnAttr(Attribute::NoUnwind) &&
1795 CI->hasFnAttr(Attribute::ReadNone);
1798 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1799 bool UseFloat, Value *&Sin, Value *&Cos,
1800 Value *&SinCos) {
1801 Type *ArgTy = Arg->getType();
1802 Type *ResTy;
1803 StringRef Name;
1805 Triple T(OrigCallee->getParent()->getTargetTriple());
1806 if (UseFloat) {
1807 Name = "__sincospif_stret";
1809 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1810 // x86_64 can't use {float, float} since that would be returned in both
1811 // xmm0 and xmm1, which isn't what a real struct would do.
1812 ResTy = T.getArch() == Triple::x86_64
1813 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1814 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1815 } else {
1816 Name = "__sincospi_stret";
1817 ResTy = StructType::get(ArgTy, ArgTy);
1820 Module *M = OrigCallee->getParent();
1821 FunctionCallee Callee =
1822 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
1824 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1825 // If the argument is an instruction, it must dominate all uses so put our
1826 // sincos call there.
1827 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1828 } else {
1829 // Otherwise (e.g. for a constant) the beginning of the function is as
1830 // good a place as any.
1831 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1832 B.SetInsertPoint(&EntryBB, EntryBB.begin());
1835 SinCos = B.CreateCall(Callee, Arg, "sincospi");
1837 if (SinCos->getType()->isStructTy()) {
1838 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1839 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1840 } else {
1841 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1842 "sinpi");
1843 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1844 "cospi");
1848 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1849 // Make sure the prototype is as expected, otherwise the rest of the
1850 // function is probably invalid and likely to abort.
1851 if (!isTrigLibCall(CI))
1852 return nullptr;
1854 Value *Arg = CI->getArgOperand(0);
1855 SmallVector<CallInst *, 1> SinCalls;
1856 SmallVector<CallInst *, 1> CosCalls;
1857 SmallVector<CallInst *, 1> SinCosCalls;
1859 bool IsFloat = Arg->getType()->isFloatTy();
1861 // Look for all compatible sinpi, cospi and sincospi calls with the same
1862 // argument. If there are enough (in some sense) we can make the
1863 // substitution.
1864 Function *F = CI->getFunction();
1865 for (User *U : Arg->users())
1866 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1868 // It's only worthwhile if both sinpi and cospi are actually used.
1869 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1870 return nullptr;
1872 Value *Sin, *Cos, *SinCos;
1873 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1875 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1876 Value *Res) {
1877 for (CallInst *C : Calls)
1878 replaceAllUsesWith(C, Res);
1881 replaceTrigInsts(SinCalls, Sin);
1882 replaceTrigInsts(CosCalls, Cos);
1883 replaceTrigInsts(SinCosCalls, SinCos);
1885 return nullptr;
1888 void LibCallSimplifier::classifyArgUse(
1889 Value *Val, Function *F, bool IsFloat,
1890 SmallVectorImpl<CallInst *> &SinCalls,
1891 SmallVectorImpl<CallInst *> &CosCalls,
1892 SmallVectorImpl<CallInst *> &SinCosCalls) {
1893 CallInst *CI = dyn_cast<CallInst>(Val);
1895 if (!CI)
1896 return;
1898 // Don't consider calls in other functions.
1899 if (CI->getFunction() != F)
1900 return;
1902 Function *Callee = CI->getCalledFunction();
1903 LibFunc Func;
1904 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1905 !isTrigLibCall(CI))
1906 return;
1908 if (IsFloat) {
1909 if (Func == LibFunc_sinpif)
1910 SinCalls.push_back(CI);
1911 else if (Func == LibFunc_cospif)
1912 CosCalls.push_back(CI);
1913 else if (Func == LibFunc_sincospif_stret)
1914 SinCosCalls.push_back(CI);
1915 } else {
1916 if (Func == LibFunc_sinpi)
1917 SinCalls.push_back(CI);
1918 else if (Func == LibFunc_cospi)
1919 CosCalls.push_back(CI);
1920 else if (Func == LibFunc_sincospi_stret)
1921 SinCosCalls.push_back(CI);
1925 //===----------------------------------------------------------------------===//
1926 // Integer Library Call Optimizations
1927 //===----------------------------------------------------------------------===//
1929 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1930 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1931 Value *Op = CI->getArgOperand(0);
1932 Type *ArgType = Op->getType();
1933 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1934 Intrinsic::cttz, ArgType);
1935 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1936 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1937 V = B.CreateIntCast(V, B.getInt32Ty(), false);
1939 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1940 return B.CreateSelect(Cond, V, B.getInt32(0));
1943 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1944 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1945 Value *Op = CI->getArgOperand(0);
1946 Type *ArgType = Op->getType();
1947 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1948 Intrinsic::ctlz, ArgType);
1949 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1950 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1952 return B.CreateIntCast(V, CI->getType(), false);
1955 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1956 // abs(x) -> x <s 0 ? -x : x
1957 // The negation has 'nsw' because abs of INT_MIN is undefined.
1958 Value *X = CI->getArgOperand(0);
1959 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1960 Value *NegX = B.CreateNSWNeg(X, "neg");
1961 return B.CreateSelect(IsNeg, NegX, X);
1964 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1965 // isdigit(c) -> (c-'0') <u 10
1966 Value *Op = CI->getArgOperand(0);
1967 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1968 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1969 return B.CreateZExt(Op, CI->getType());
1972 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1973 // isascii(c) -> c <u 128
1974 Value *Op = CI->getArgOperand(0);
1975 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1976 return B.CreateZExt(Op, CI->getType());
1979 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1980 // toascii(c) -> c & 0x7f
1981 return B.CreateAnd(CI->getArgOperand(0),
1982 ConstantInt::get(CI->getType(), 0x7F));
1985 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1986 StringRef Str;
1987 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1988 return nullptr;
1990 return convertStrToNumber(CI, Str, 10);
1993 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1994 StringRef Str;
1995 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1996 return nullptr;
1998 if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1999 return nullptr;
2001 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2002 return convertStrToNumber(CI, Str, CInt->getSExtValue());
2005 return nullptr;
2008 //===----------------------------------------------------------------------===//
2009 // Formatting and IO Library Call Optimizations
2010 //===----------------------------------------------------------------------===//
2012 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2014 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2015 int StreamArg) {
2016 Function *Callee = CI->getCalledFunction();
2017 // Error reporting calls should be cold, mark them as such.
2018 // This applies even to non-builtin calls: it is only a hint and applies to
2019 // functions that the frontend might not understand as builtins.
2021 // This heuristic was suggested in:
2022 // Improving Static Branch Prediction in a Compiler
2023 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2024 // Proceedings of PACT'98, Oct. 1998, IEEE
2025 if (!CI->hasFnAttr(Attribute::Cold) &&
2026 isReportingError(Callee, CI, StreamArg)) {
2027 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2030 return nullptr;
2033 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2034 if (!Callee || !Callee->isDeclaration())
2035 return false;
2037 if (StreamArg < 0)
2038 return true;
2040 // These functions might be considered cold, but only if their stream
2041 // argument is stderr.
2043 if (StreamArg >= (int)CI->getNumArgOperands())
2044 return false;
2045 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2046 if (!LI)
2047 return false;
2048 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2049 if (!GV || !GV->isDeclaration())
2050 return false;
2051 return GV->getName() == "stderr";
2054 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2055 // Check for a fixed format string.
2056 StringRef FormatStr;
2057 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2058 return nullptr;
2060 // Empty format string -> noop.
2061 if (FormatStr.empty()) // Tolerate printf's declared void.
2062 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2064 // Do not do any of the following transformations if the printf return value
2065 // is used, in general the printf return value is not compatible with either
2066 // putchar() or puts().
2067 if (!CI->use_empty())
2068 return nullptr;
2070 // printf("x") -> putchar('x'), even for "%" and "%%".
2071 if (FormatStr.size() == 1 || FormatStr == "%%")
2072 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2074 // printf("%s", "a") --> putchar('a')
2075 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2076 StringRef ChrStr;
2077 if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2078 return nullptr;
2079 if (ChrStr.size() != 1)
2080 return nullptr;
2081 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2084 // printf("foo\n") --> puts("foo")
2085 if (FormatStr[FormatStr.size() - 1] == '\n' &&
2086 FormatStr.find('%') == StringRef::npos) { // No format characters.
2087 // Create a string literal with no \n on it. We expect the constant merge
2088 // pass to be run after this pass, to merge duplicate strings.
2089 FormatStr = FormatStr.drop_back();
2090 Value *GV = B.CreateGlobalString(FormatStr, "str");
2091 return emitPutS(GV, B, TLI);
2094 // Optimize specific format strings.
2095 // printf("%c", chr) --> putchar(chr)
2096 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2097 CI->getArgOperand(1)->getType()->isIntegerTy())
2098 return emitPutChar(CI->getArgOperand(1), B, TLI);
2100 // printf("%s\n", str) --> puts(str)
2101 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2102 CI->getArgOperand(1)->getType()->isPointerTy())
2103 return emitPutS(CI->getArgOperand(1), B, TLI);
2104 return nullptr;
2107 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2109 Function *Callee = CI->getCalledFunction();
2110 FunctionType *FT = Callee->getFunctionType();
2111 if (Value *V = optimizePrintFString(CI, B)) {
2112 return V;
2115 // printf(format, ...) -> iprintf(format, ...) if no floating point
2116 // arguments.
2117 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2118 Module *M = B.GetInsertBlock()->getParent()->getParent();
2119 FunctionCallee IPrintFFn =
2120 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2121 CallInst *New = cast<CallInst>(CI->clone());
2122 New->setCalledFunction(IPrintFFn);
2123 B.Insert(New);
2124 return New;
2127 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2128 // arguments.
2129 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2130 Module *M = B.GetInsertBlock()->getParent()->getParent();
2131 auto SmallPrintFFn =
2132 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2133 FT, Callee->getAttributes());
2134 CallInst *New = cast<CallInst>(CI->clone());
2135 New->setCalledFunction(SmallPrintFFn);
2136 B.Insert(New);
2137 return New;
2140 return nullptr;
2143 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2144 // Check for a fixed format string.
2145 StringRef FormatStr;
2146 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2147 return nullptr;
2149 // If we just have a format string (nothing else crazy) transform it.
2150 if (CI->getNumArgOperands() == 2) {
2151 // Make sure there's no % in the constant array. We could try to handle
2152 // %% -> % in the future if we cared.
2153 if (FormatStr.find('%') != StringRef::npos)
2154 return nullptr; // we found a format specifier, bail out.
2156 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2157 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2158 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2159 FormatStr.size() + 1)); // Copy the null byte.
2160 return ConstantInt::get(CI->getType(), FormatStr.size());
2163 // The remaining optimizations require the format string to be "%s" or "%c"
2164 // and have an extra operand.
2165 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2166 CI->getNumArgOperands() < 3)
2167 return nullptr;
2169 // Decode the second character of the format string.
2170 if (FormatStr[1] == 'c') {
2171 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2172 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2173 return nullptr;
2174 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2175 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2176 B.CreateStore(V, Ptr);
2177 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2178 B.CreateStore(B.getInt8(0), Ptr);
2180 return ConstantInt::get(CI->getType(), 1);
2183 if (FormatStr[1] == 's') {
2184 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2185 // strlen(str)+1)
2186 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2187 return nullptr;
2189 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2190 if (!Len)
2191 return nullptr;
2192 Value *IncLen =
2193 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2194 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2196 // The sprintf result is the unincremented number of bytes in the string.
2197 return B.CreateIntCast(Len, CI->getType(), false);
2199 return nullptr;
2202 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2203 Function *Callee = CI->getCalledFunction();
2204 FunctionType *FT = Callee->getFunctionType();
2205 if (Value *V = optimizeSPrintFString(CI, B)) {
2206 return V;
2209 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2210 // point arguments.
2211 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2212 Module *M = B.GetInsertBlock()->getParent()->getParent();
2213 FunctionCallee SIPrintFFn =
2214 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2215 CallInst *New = cast<CallInst>(CI->clone());
2216 New->setCalledFunction(SIPrintFFn);
2217 B.Insert(New);
2218 return New;
2221 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2222 // floating point arguments.
2223 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2224 Module *M = B.GetInsertBlock()->getParent()->getParent();
2225 auto SmallSPrintFFn =
2226 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2227 FT, Callee->getAttributes());
2228 CallInst *New = cast<CallInst>(CI->clone());
2229 New->setCalledFunction(SmallSPrintFFn);
2230 B.Insert(New);
2231 return New;
2234 return nullptr;
2237 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2238 // Check for a fixed format string.
2239 StringRef FormatStr;
2240 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2241 return nullptr;
2243 // Check for size
2244 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2245 if (!Size)
2246 return nullptr;
2248 uint64_t N = Size->getZExtValue();
2250 // If we just have a format string (nothing else crazy) transform it.
2251 if (CI->getNumArgOperands() == 3) {
2252 // Make sure there's no % in the constant array. We could try to handle
2253 // %% -> % in the future if we cared.
2254 if (FormatStr.find('%') != StringRef::npos)
2255 return nullptr; // we found a format specifier, bail out.
2257 if (N == 0)
2258 return ConstantInt::get(CI->getType(), FormatStr.size());
2259 else if (N < FormatStr.size() + 1)
2260 return nullptr;
2262 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2263 // strlen(fmt)+1)
2264 B.CreateMemCpy(
2265 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2266 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2267 FormatStr.size() + 1)); // Copy the null byte.
2268 return ConstantInt::get(CI->getType(), FormatStr.size());
2271 // The remaining optimizations require the format string to be "%s" or "%c"
2272 // and have an extra operand.
2273 if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2274 CI->getNumArgOperands() == 4) {
2276 // Decode the second character of the format string.
2277 if (FormatStr[1] == 'c') {
2278 if (N == 0)
2279 return ConstantInt::get(CI->getType(), 1);
2280 else if (N == 1)
2281 return nullptr;
2283 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2284 if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2285 return nullptr;
2286 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2287 Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2288 B.CreateStore(V, Ptr);
2289 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2290 B.CreateStore(B.getInt8(0), Ptr);
2292 return ConstantInt::get(CI->getType(), 1);
2295 if (FormatStr[1] == 's') {
2296 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2297 StringRef Str;
2298 if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2299 return nullptr;
2301 if (N == 0)
2302 return ConstantInt::get(CI->getType(), Str.size());
2303 else if (N < Str.size() + 1)
2304 return nullptr;
2306 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2307 ConstantInt::get(CI->getType(), Str.size() + 1));
2309 // The snprintf result is the unincremented number of bytes in the string.
2310 return ConstantInt::get(CI->getType(), Str.size());
2313 return nullptr;
2316 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2317 if (Value *V = optimizeSnPrintFString(CI, B)) {
2318 return V;
2321 return nullptr;
2324 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2325 optimizeErrorReporting(CI, B, 0);
2327 // All the optimizations depend on the format string.
2328 StringRef FormatStr;
2329 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2330 return nullptr;
2332 // Do not do any of the following transformations if the fprintf return
2333 // value is used, in general the fprintf return value is not compatible
2334 // with fwrite(), fputc() or fputs().
2335 if (!CI->use_empty())
2336 return nullptr;
2338 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2339 if (CI->getNumArgOperands() == 2) {
2340 // Could handle %% -> % if we cared.
2341 if (FormatStr.find('%') != StringRef::npos)
2342 return nullptr; // We found a format specifier.
2344 return emitFWrite(
2345 CI->getArgOperand(1),
2346 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2347 CI->getArgOperand(0), B, DL, TLI);
2350 // The remaining optimizations require the format string to be "%s" or "%c"
2351 // and have an extra operand.
2352 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2353 CI->getNumArgOperands() < 3)
2354 return nullptr;
2356 // Decode the second character of the format string.
2357 if (FormatStr[1] == 'c') {
2358 // fprintf(F, "%c", chr) --> fputc(chr, F)
2359 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2360 return nullptr;
2361 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2364 if (FormatStr[1] == 's') {
2365 // fprintf(F, "%s", str) --> fputs(str, F)
2366 if (!CI->getArgOperand(2)->getType()->isPointerTy())
2367 return nullptr;
2368 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2370 return nullptr;
2373 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2374 Function *Callee = CI->getCalledFunction();
2375 FunctionType *FT = Callee->getFunctionType();
2376 if (Value *V = optimizeFPrintFString(CI, B)) {
2377 return V;
2380 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2381 // floating point arguments.
2382 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2383 Module *M = B.GetInsertBlock()->getParent()->getParent();
2384 FunctionCallee FIPrintFFn =
2385 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2386 CallInst *New = cast<CallInst>(CI->clone());
2387 New->setCalledFunction(FIPrintFFn);
2388 B.Insert(New);
2389 return New;
2392 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2393 // 128-bit floating point arguments.
2394 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2395 Module *M = B.GetInsertBlock()->getParent()->getParent();
2396 auto SmallFPrintFFn =
2397 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2398 FT, Callee->getAttributes());
2399 CallInst *New = cast<CallInst>(CI->clone());
2400 New->setCalledFunction(SmallFPrintFFn);
2401 B.Insert(New);
2402 return New;
2405 return nullptr;
2408 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2409 optimizeErrorReporting(CI, B, 3);
2411 // Get the element size and count.
2412 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2413 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2414 if (SizeC && CountC) {
2415 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2417 // If this is writing zero records, remove the call (it's a noop).
2418 if (Bytes == 0)
2419 return ConstantInt::get(CI->getType(), 0);
2421 // If this is writing one byte, turn it into fputc.
2422 // This optimisation is only valid, if the return value is unused.
2423 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2424 Value *Char = B.CreateLoad(B.getInt8Ty(),
2425 castToCStr(CI->getArgOperand(0), B), "char");
2426 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2427 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2431 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2432 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2433 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2434 TLI);
2436 return nullptr;
2439 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2440 optimizeErrorReporting(CI, B, 1);
2442 // Don't rewrite fputs to fwrite when optimising for size because fwrite
2443 // requires more arguments and thus extra MOVs are required.
2444 bool OptForSize = CI->getFunction()->hasOptSize() ||
2445 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
2446 if (OptForSize)
2447 return nullptr;
2449 // Check if has any use
2450 if (!CI->use_empty()) {
2451 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2452 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2453 TLI);
2454 else
2455 // We can't optimize if return value is used.
2456 return nullptr;
2459 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2460 uint64_t Len = GetStringLength(CI->getArgOperand(0));
2461 if (!Len)
2462 return nullptr;
2464 // Known to have no uses (see above).
2465 return emitFWrite(
2466 CI->getArgOperand(0),
2467 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2468 CI->getArgOperand(1), B, DL, TLI);
2471 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2472 optimizeErrorReporting(CI, B, 1);
2474 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2475 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2476 TLI);
2478 return nullptr;
2481 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2482 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2483 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2485 return nullptr;
2488 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2489 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2490 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2491 CI->getArgOperand(2), B, TLI);
2493 return nullptr;
2496 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2497 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2498 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2499 CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2500 TLI);
2502 return nullptr;
2505 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2506 if (!CI->use_empty())
2507 return nullptr;
2509 // Check for a constant string.
2510 // puts("") -> putchar('\n')
2511 StringRef Str;
2512 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2513 return emitPutChar(B.getInt32('\n'), B, TLI);
2515 return nullptr;
2518 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2519 LibFunc Func;
2520 SmallString<20> FloatFuncName = FuncName;
2521 FloatFuncName += 'f';
2522 if (TLI->getLibFunc(FloatFuncName, Func))
2523 return TLI->has(Func);
2524 return false;
2527 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2528 IRBuilder<> &Builder) {
2529 LibFunc Func;
2530 Function *Callee = CI->getCalledFunction();
2531 // Check for string/memory library functions.
2532 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2533 // Make sure we never change the calling convention.
2534 assert((ignoreCallingConv(Func) ||
2535 isCallingConvCCompatible(CI)) &&
2536 "Optimizing string/memory libcall would change the calling convention");
2537 switch (Func) {
2538 case LibFunc_strcat:
2539 return optimizeStrCat(CI, Builder);
2540 case LibFunc_strncat:
2541 return optimizeStrNCat(CI, Builder);
2542 case LibFunc_strchr:
2543 return optimizeStrChr(CI, Builder);
2544 case LibFunc_strrchr:
2545 return optimizeStrRChr(CI, Builder);
2546 case LibFunc_strcmp:
2547 return optimizeStrCmp(CI, Builder);
2548 case LibFunc_strncmp:
2549 return optimizeStrNCmp(CI, Builder);
2550 case LibFunc_strcpy:
2551 return optimizeStrCpy(CI, Builder);
2552 case LibFunc_stpcpy:
2553 return optimizeStpCpy(CI, Builder);
2554 case LibFunc_strncpy:
2555 return optimizeStrNCpy(CI, Builder);
2556 case LibFunc_strlen:
2557 return optimizeStrLen(CI, Builder);
2558 case LibFunc_strpbrk:
2559 return optimizeStrPBrk(CI, Builder);
2560 case LibFunc_strtol:
2561 case LibFunc_strtod:
2562 case LibFunc_strtof:
2563 case LibFunc_strtoul:
2564 case LibFunc_strtoll:
2565 case LibFunc_strtold:
2566 case LibFunc_strtoull:
2567 return optimizeStrTo(CI, Builder);
2568 case LibFunc_strspn:
2569 return optimizeStrSpn(CI, Builder);
2570 case LibFunc_strcspn:
2571 return optimizeStrCSpn(CI, Builder);
2572 case LibFunc_strstr:
2573 return optimizeStrStr(CI, Builder);
2574 case LibFunc_memchr:
2575 return optimizeMemChr(CI, Builder);
2576 case LibFunc_bcmp:
2577 return optimizeBCmp(CI, Builder);
2578 case LibFunc_memcmp:
2579 return optimizeMemCmp(CI, Builder);
2580 case LibFunc_memcpy:
2581 return optimizeMemCpy(CI, Builder);
2582 case LibFunc_memmove:
2583 return optimizeMemMove(CI, Builder);
2584 case LibFunc_memset:
2585 return optimizeMemSet(CI, Builder);
2586 case LibFunc_realloc:
2587 return optimizeRealloc(CI, Builder);
2588 case LibFunc_wcslen:
2589 return optimizeWcslen(CI, Builder);
2590 default:
2591 break;
2594 return nullptr;
2597 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2598 LibFunc Func,
2599 IRBuilder<> &Builder) {
2600 // Don't optimize calls that require strict floating point semantics.
2601 if (CI->isStrictFP())
2602 return nullptr;
2604 if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2605 return V;
2607 switch (Func) {
2608 case LibFunc_sinpif:
2609 case LibFunc_sinpi:
2610 case LibFunc_cospif:
2611 case LibFunc_cospi:
2612 return optimizeSinCosPi(CI, Builder);
2613 case LibFunc_powf:
2614 case LibFunc_pow:
2615 case LibFunc_powl:
2616 return optimizePow(CI, Builder);
2617 case LibFunc_exp2l:
2618 case LibFunc_exp2:
2619 case LibFunc_exp2f:
2620 return optimizeExp2(CI, Builder);
2621 case LibFunc_fabsf:
2622 case LibFunc_fabs:
2623 case LibFunc_fabsl:
2624 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2625 case LibFunc_sqrtf:
2626 case LibFunc_sqrt:
2627 case LibFunc_sqrtl:
2628 return optimizeSqrt(CI, Builder);
2629 case LibFunc_log:
2630 case LibFunc_log10:
2631 case LibFunc_log1p:
2632 case LibFunc_log2:
2633 case LibFunc_logb:
2634 return optimizeLog(CI, Builder);
2635 case LibFunc_tan:
2636 case LibFunc_tanf:
2637 case LibFunc_tanl:
2638 return optimizeTan(CI, Builder);
2639 case LibFunc_ceil:
2640 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2641 case LibFunc_floor:
2642 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2643 case LibFunc_round:
2644 return replaceUnaryCall(CI, Builder, Intrinsic::round);
2645 case LibFunc_nearbyint:
2646 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2647 case LibFunc_rint:
2648 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2649 case LibFunc_trunc:
2650 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2651 case LibFunc_acos:
2652 case LibFunc_acosh:
2653 case LibFunc_asin:
2654 case LibFunc_asinh:
2655 case LibFunc_atan:
2656 case LibFunc_atanh:
2657 case LibFunc_cbrt:
2658 case LibFunc_cosh:
2659 case LibFunc_exp:
2660 case LibFunc_exp10:
2661 case LibFunc_expm1:
2662 case LibFunc_cos:
2663 case LibFunc_sin:
2664 case LibFunc_sinh:
2665 case LibFunc_tanh:
2666 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2667 return optimizeUnaryDoubleFP(CI, Builder, true);
2668 return nullptr;
2669 case LibFunc_copysign:
2670 if (hasFloatVersion(CI->getCalledFunction()->getName()))
2671 return optimizeBinaryDoubleFP(CI, Builder);
2672 return nullptr;
2673 case LibFunc_fminf:
2674 case LibFunc_fmin:
2675 case LibFunc_fminl:
2676 case LibFunc_fmaxf:
2677 case LibFunc_fmax:
2678 case LibFunc_fmaxl:
2679 return optimizeFMinFMax(CI, Builder);
2680 case LibFunc_cabs:
2681 case LibFunc_cabsf:
2682 case LibFunc_cabsl:
2683 return optimizeCAbs(CI, Builder);
2684 default:
2685 return nullptr;
2689 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2690 // TODO: Split out the code below that operates on FP calls so that
2691 // we can all non-FP calls with the StrictFP attribute to be
2692 // optimized.
2693 if (CI->isNoBuiltin())
2694 return nullptr;
2696 LibFunc Func;
2697 Function *Callee = CI->getCalledFunction();
2699 SmallVector<OperandBundleDef, 2> OpBundles;
2700 CI->getOperandBundlesAsDefs(OpBundles);
2701 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2702 bool isCallingConvC = isCallingConvCCompatible(CI);
2704 // Command-line parameter overrides instruction attribute.
2705 // This can't be moved to optimizeFloatingPointLibCall() because it may be
2706 // used by the intrinsic optimizations.
2707 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2708 UnsafeFPShrink = EnableUnsafeFPShrink;
2709 else if (isa<FPMathOperator>(CI) && CI->isFast())
2710 UnsafeFPShrink = true;
2712 // First, check for intrinsics.
2713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2714 if (!isCallingConvC)
2715 return nullptr;
2716 // The FP intrinsics have corresponding constrained versions so we don't
2717 // need to check for the StrictFP attribute here.
2718 switch (II->getIntrinsicID()) {
2719 case Intrinsic::pow:
2720 return optimizePow(CI, Builder);
2721 case Intrinsic::exp2:
2722 return optimizeExp2(CI, Builder);
2723 case Intrinsic::log:
2724 return optimizeLog(CI, Builder);
2725 case Intrinsic::sqrt:
2726 return optimizeSqrt(CI, Builder);
2727 // TODO: Use foldMallocMemset() with memset intrinsic.
2728 default:
2729 return nullptr;
2733 // Also try to simplify calls to fortified library functions.
2734 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2735 // Try to further simplify the result.
2736 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2737 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2738 // Use an IR Builder from SimplifiedCI if available instead of CI
2739 // to guarantee we reach all uses we might replace later on.
2740 IRBuilder<> TmpBuilder(SimplifiedCI);
2741 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2742 // If we were able to further simplify, remove the now redundant call.
2743 SimplifiedCI->replaceAllUsesWith(V);
2744 eraseFromParent(SimplifiedCI);
2745 return V;
2748 return SimplifiedFortifiedCI;
2751 // Then check for known library functions.
2752 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2753 // We never change the calling convention.
2754 if (!ignoreCallingConv(Func) && !isCallingConvC)
2755 return nullptr;
2756 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2757 return V;
2758 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2759 return V;
2760 switch (Func) {
2761 case LibFunc_ffs:
2762 case LibFunc_ffsl:
2763 case LibFunc_ffsll:
2764 return optimizeFFS(CI, Builder);
2765 case LibFunc_fls:
2766 case LibFunc_flsl:
2767 case LibFunc_flsll:
2768 return optimizeFls(CI, Builder);
2769 case LibFunc_abs:
2770 case LibFunc_labs:
2771 case LibFunc_llabs:
2772 return optimizeAbs(CI, Builder);
2773 case LibFunc_isdigit:
2774 return optimizeIsDigit(CI, Builder);
2775 case LibFunc_isascii:
2776 return optimizeIsAscii(CI, Builder);
2777 case LibFunc_toascii:
2778 return optimizeToAscii(CI, Builder);
2779 case LibFunc_atoi:
2780 case LibFunc_atol:
2781 case LibFunc_atoll:
2782 return optimizeAtoi(CI, Builder);
2783 case LibFunc_strtol:
2784 case LibFunc_strtoll:
2785 return optimizeStrtol(CI, Builder);
2786 case LibFunc_printf:
2787 return optimizePrintF(CI, Builder);
2788 case LibFunc_sprintf:
2789 return optimizeSPrintF(CI, Builder);
2790 case LibFunc_snprintf:
2791 return optimizeSnPrintF(CI, Builder);
2792 case LibFunc_fprintf:
2793 return optimizeFPrintF(CI, Builder);
2794 case LibFunc_fwrite:
2795 return optimizeFWrite(CI, Builder);
2796 case LibFunc_fread:
2797 return optimizeFRead(CI, Builder);
2798 case LibFunc_fputs:
2799 return optimizeFPuts(CI, Builder);
2800 case LibFunc_fgets:
2801 return optimizeFGets(CI, Builder);
2802 case LibFunc_fputc:
2803 return optimizeFPutc(CI, Builder);
2804 case LibFunc_fgetc:
2805 return optimizeFGetc(CI, Builder);
2806 case LibFunc_puts:
2807 return optimizePuts(CI, Builder);
2808 case LibFunc_perror:
2809 return optimizeErrorReporting(CI, Builder);
2810 case LibFunc_vfprintf:
2811 case LibFunc_fiprintf:
2812 return optimizeErrorReporting(CI, Builder, 0);
2813 default:
2814 return nullptr;
2817 return nullptr;
2820 LibCallSimplifier::LibCallSimplifier(
2821 const DataLayout &DL, const TargetLibraryInfo *TLI,
2822 OptimizationRemarkEmitter &ORE,
2823 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
2824 function_ref<void(Instruction *, Value *)> Replacer,
2825 function_ref<void(Instruction *)> Eraser)
2826 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
2827 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
2829 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2830 // Indirect through the replacer used in this instance.
2831 Replacer(I, With);
2834 void LibCallSimplifier::eraseFromParent(Instruction *I) {
2835 Eraser(I);
2838 // TODO:
2839 // Additional cases that we need to add to this file:
2841 // cbrt:
2842 // * cbrt(expN(X)) -> expN(x/3)
2843 // * cbrt(sqrt(x)) -> pow(x,1/6)
2844 // * cbrt(cbrt(x)) -> pow(x,1/9)
2846 // exp, expf, expl:
2847 // * exp(log(x)) -> x
2849 // log, logf, logl:
2850 // * log(exp(x)) -> x
2851 // * log(exp(y)) -> y*log(e)
2852 // * log(exp10(y)) -> y*log(10)
2853 // * log(sqrt(x)) -> 0.5*log(x)
2855 // pow, powf, powl:
2856 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2857 // * pow(pow(x,y),z)-> pow(x,y*z)
2859 // signbit:
2860 // * signbit(cnst) -> cnst'
2861 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2863 // sqrt, sqrtf, sqrtl:
2864 // * sqrt(expN(x)) -> expN(x*0.5)
2865 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2866 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2869 //===----------------------------------------------------------------------===//
2870 // Fortified Library Call Optimizations
2871 //===----------------------------------------------------------------------===//
2873 bool
2874 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2875 unsigned ObjSizeOp,
2876 Optional<unsigned> SizeOp,
2877 Optional<unsigned> StrOp,
2878 Optional<unsigned> FlagOp) {
2879 // If this function takes a flag argument, the implementation may use it to
2880 // perform extra checks. Don't fold into the non-checking variant.
2881 if (FlagOp) {
2882 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
2883 if (!Flag || !Flag->isZero())
2884 return false;
2887 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
2888 return true;
2890 if (ConstantInt *ObjSizeCI =
2891 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2892 if (ObjSizeCI->isMinusOne())
2893 return true;
2894 // If the object size wasn't -1 (unknown), bail out if we were asked to.
2895 if (OnlyLowerUnknownSize)
2896 return false;
2897 if (StrOp) {
2898 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
2899 // If the length is 0 we don't know how long it is and so we can't
2900 // remove the check.
2901 if (Len == 0)
2902 return false;
2903 return ObjSizeCI->getZExtValue() >= Len;
2906 if (SizeOp) {
2907 if (ConstantInt *SizeCI =
2908 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
2909 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2912 return false;
2915 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2916 IRBuilder<> &B) {
2917 if (isFortifiedCallFoldable(CI, 3, 2)) {
2918 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2919 CI->getArgOperand(2));
2920 return CI->getArgOperand(0);
2922 return nullptr;
2925 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2926 IRBuilder<> &B) {
2927 if (isFortifiedCallFoldable(CI, 3, 2)) {
2928 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2929 CI->getArgOperand(2));
2930 return CI->getArgOperand(0);
2932 return nullptr;
2935 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2936 IRBuilder<> &B) {
2937 // TODO: Try foldMallocMemset() here.
2939 if (isFortifiedCallFoldable(CI, 3, 2)) {
2940 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2941 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2942 return CI->getArgOperand(0);
2944 return nullptr;
2947 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2948 IRBuilder<> &B,
2949 LibFunc Func) {
2950 const DataLayout &DL = CI->getModule()->getDataLayout();
2951 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2952 *ObjSize = CI->getArgOperand(2);
2954 // __stpcpy_chk(x,x,...) -> x+strlen(x)
2955 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2956 Value *StrLen = emitStrLen(Src, B, DL, TLI);
2957 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2960 // If a) we don't have any length information, or b) we know this will
2961 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2962 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2963 // TODO: It might be nice to get a maximum length out of the possible
2964 // string lengths for varying.
2965 if (isFortifiedCallFoldable(CI, 2, None, 1)) {
2966 if (Func == LibFunc_strcpy_chk)
2967 return emitStrCpy(Dst, Src, B, TLI);
2968 else
2969 return emitStpCpy(Dst, Src, B, TLI);
2972 if (OnlyLowerUnknownSize)
2973 return nullptr;
2975 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2976 uint64_t Len = GetStringLength(Src);
2977 if (Len == 0)
2978 return nullptr;
2980 Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2981 Value *LenV = ConstantInt::get(SizeTTy, Len);
2982 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2983 // If the function was an __stpcpy_chk, and we were able to fold it into
2984 // a __memcpy_chk, we still need to return the correct end pointer.
2985 if (Ret && Func == LibFunc_stpcpy_chk)
2986 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2987 return Ret;
2990 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2991 IRBuilder<> &B,
2992 LibFunc Func) {
2993 if (isFortifiedCallFoldable(CI, 3, 2)) {
2994 if (Func == LibFunc_strncpy_chk)
2995 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2996 CI->getArgOperand(2), B, TLI);
2997 else
2998 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2999 CI->getArgOperand(2), B, TLI);
3002 return nullptr;
3005 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3006 IRBuilder<> &B) {
3007 if (isFortifiedCallFoldable(CI, 4, 3))
3008 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3009 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3011 return nullptr;
3014 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3015 IRBuilder<> &B) {
3016 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3017 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3018 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3019 CI->getArgOperand(4), VariadicArgs, B, TLI);
3022 return nullptr;
3025 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3026 IRBuilder<> &B) {
3027 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3028 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3029 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3030 B, TLI);
3033 return nullptr;
3036 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3037 IRBuilder<> &B) {
3038 if (isFortifiedCallFoldable(CI, 2))
3039 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3041 return nullptr;
3044 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3045 IRBuilder<> &B) {
3046 if (isFortifiedCallFoldable(CI, 3))
3047 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3048 CI->getArgOperand(2), B, TLI);
3050 return nullptr;
3053 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3054 IRBuilder<> &B) {
3055 if (isFortifiedCallFoldable(CI, 3))
3056 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3057 CI->getArgOperand(2), B, TLI);
3059 return nullptr;
3062 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3063 IRBuilder<> &B) {
3064 if (isFortifiedCallFoldable(CI, 3))
3065 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3066 CI->getArgOperand(2), B, TLI);
3068 return nullptr;
3071 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3072 IRBuilder<> &B) {
3073 if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3074 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3075 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3077 return nullptr;
3080 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3081 IRBuilder<> &B) {
3082 if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3083 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3084 CI->getArgOperand(4), B, TLI);
3086 return nullptr;
3089 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3090 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3091 // Some clang users checked for _chk libcall availability using:
3092 // __has_builtin(__builtin___memcpy_chk)
3093 // When compiling with -fno-builtin, this is always true.
3094 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3095 // end up with fortified libcalls, which isn't acceptable in a freestanding
3096 // environment which only provides their non-fortified counterparts.
3098 // Until we change clang and/or teach external users to check for availability
3099 // differently, disregard the "nobuiltin" attribute and TLI::has.
3101 // PR23093.
3103 LibFunc Func;
3104 Function *Callee = CI->getCalledFunction();
3106 SmallVector<OperandBundleDef, 2> OpBundles;
3107 CI->getOperandBundlesAsDefs(OpBundles);
3108 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3109 bool isCallingConvC = isCallingConvCCompatible(CI);
3111 // First, check that this is a known library functions and that the prototype
3112 // is correct.
3113 if (!TLI->getLibFunc(*Callee, Func))
3114 return nullptr;
3116 // We never change the calling convention.
3117 if (!ignoreCallingConv(Func) && !isCallingConvC)
3118 return nullptr;
3120 switch (Func) {
3121 case LibFunc_memcpy_chk:
3122 return optimizeMemCpyChk(CI, Builder);
3123 case LibFunc_memmove_chk:
3124 return optimizeMemMoveChk(CI, Builder);
3125 case LibFunc_memset_chk:
3126 return optimizeMemSetChk(CI, Builder);
3127 case LibFunc_stpcpy_chk:
3128 case LibFunc_strcpy_chk:
3129 return optimizeStrpCpyChk(CI, Builder, Func);
3130 case LibFunc_stpncpy_chk:
3131 case LibFunc_strncpy_chk:
3132 return optimizeStrpNCpyChk(CI, Builder, Func);
3133 case LibFunc_memccpy_chk:
3134 return optimizeMemCCpyChk(CI, Builder);
3135 case LibFunc_snprintf_chk:
3136 return optimizeSNPrintfChk(CI, Builder);
3137 case LibFunc_sprintf_chk:
3138 return optimizeSPrintfChk(CI, Builder);
3139 case LibFunc_strcat_chk:
3140 return optimizeStrCatChk(CI, Builder);
3141 case LibFunc_strlcat_chk:
3142 return optimizeStrLCat(CI, Builder);
3143 case LibFunc_strncat_chk:
3144 return optimizeStrNCatChk(CI, Builder);
3145 case LibFunc_strlcpy_chk:
3146 return optimizeStrLCpyChk(CI, Builder);
3147 case LibFunc_vsnprintf_chk:
3148 return optimizeVSNPrintfChk(CI, Builder);
3149 case LibFunc_vsprintf_chk:
3150 return optimizeVSPrintfChk(CI, Builder);
3151 default:
3152 break;
3154 return nullptr;
3157 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3158 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3159 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}