[ARM] Rejig MVE load store tests. NFC
[llvm-core.git] / lib / Transforms / Utils / VNCoercion.cpp
bloba77bf50fe10b882181094be712b3865e35d9372c
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/AliasAnalysis.h"
3 #include "llvm/Analysis/ConstantFolding.h"
4 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
5 #include "llvm/Analysis/ValueTracking.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/IntrinsicInst.h"
8 #include "llvm/Support/Debug.h"
10 #define DEBUG_TYPE "vncoerce"
11 namespace llvm {
12 namespace VNCoercion {
14 /// Return true if coerceAvailableValueToLoadType will succeed.
15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
16 const DataLayout &DL) {
17 Type *StoredTy = StoredVal->getType();
18 if (StoredTy == LoadTy)
19 return true;
21 // If the loaded or stored value is an first class array or struct, don't try
22 // to transform them. We need to be able to bitcast to integer.
23 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredTy->isStructTy() ||
24 StoredTy->isArrayTy())
25 return false;
27 uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy);
29 // The store size must be byte-aligned to support future type casts.
30 if (llvm::alignTo(StoreSize, 8) != StoreSize)
31 return false;
33 // The store has to be at least as big as the load.
34 if (StoreSize < DL.getTypeSizeInBits(LoadTy))
35 return false;
37 // Don't coerce non-integral pointers to integers or vice versa.
38 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
39 DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
40 // As a special case, allow coercion of memset used to initialize
41 // an array w/null. Despite non-integral pointers not generally having a
42 // specific bit pattern, we do assume null is zero.
43 if (auto *CI = dyn_cast<Constant>(StoredVal))
44 return CI->isNullValue();
45 return false;
48 return true;
51 template <class T, class HelperClass>
52 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
53 HelperClass &Helper,
54 const DataLayout &DL) {
55 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
56 "precondition violation - materialization can't fail");
57 if (auto *C = dyn_cast<Constant>(StoredVal))
58 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
59 StoredVal = FoldedStoredVal;
61 // If this is already the right type, just return it.
62 Type *StoredValTy = StoredVal->getType();
64 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
65 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
67 // If the store and reload are the same size, we can always reuse it.
68 if (StoredValSize == LoadedValSize) {
69 // Pointer to Pointer -> use bitcast.
70 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
71 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
72 } else {
73 // Convert source pointers to integers, which can be bitcast.
74 if (StoredValTy->isPtrOrPtrVectorTy()) {
75 StoredValTy = DL.getIntPtrType(StoredValTy);
76 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
79 Type *TypeToCastTo = LoadedTy;
80 if (TypeToCastTo->isPtrOrPtrVectorTy())
81 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
83 if (StoredValTy != TypeToCastTo)
84 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
86 // Cast to pointer if the load needs a pointer type.
87 if (LoadedTy->isPtrOrPtrVectorTy())
88 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
91 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
92 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
93 StoredVal = FoldedStoredVal;
95 return StoredVal;
97 // If the loaded value is smaller than the available value, then we can
98 // extract out a piece from it. If the available value is too small, then we
99 // can't do anything.
100 assert(StoredValSize >= LoadedValSize &&
101 "canCoerceMustAliasedValueToLoad fail");
103 // Convert source pointers to integers, which can be manipulated.
104 if (StoredValTy->isPtrOrPtrVectorTy()) {
105 StoredValTy = DL.getIntPtrType(StoredValTy);
106 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
109 // Convert vectors and fp to integer, which can be manipulated.
110 if (!StoredValTy->isIntegerTy()) {
111 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
112 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
115 // If this is a big-endian system, we need to shift the value down to the low
116 // bits so that a truncate will work.
117 if (DL.isBigEndian()) {
118 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
119 DL.getTypeStoreSizeInBits(LoadedTy);
120 StoredVal = Helper.CreateLShr(
121 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
124 // Truncate the integer to the right size now.
125 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
126 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
128 if (LoadedTy != NewIntTy) {
129 // If the result is a pointer, inttoptr.
130 if (LoadedTy->isPtrOrPtrVectorTy())
131 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
132 else
133 // Otherwise, bitcast.
134 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
137 if (auto *C = dyn_cast<Constant>(StoredVal))
138 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
139 StoredVal = FoldedStoredVal;
141 return StoredVal;
144 /// If we saw a store of a value to memory, and
145 /// then a load from a must-aliased pointer of a different type, try to coerce
146 /// the stored value. LoadedTy is the type of the load we want to replace.
147 /// IRB is IRBuilder used to insert new instructions.
149 /// If we can't do it, return null.
150 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
151 IRBuilder<> &IRB, const DataLayout &DL) {
152 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
155 /// This function is called when we have a memdep query of a load that ends up
156 /// being a clobbering memory write (store, memset, memcpy, memmove). This
157 /// means that the write *may* provide bits used by the load but we can't be
158 /// sure because the pointers don't must-alias.
160 /// Check this case to see if there is anything more we can do before we give
161 /// up. This returns -1 if we have to give up, or a byte number in the stored
162 /// value of the piece that feeds the load.
163 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
164 Value *WritePtr,
165 uint64_t WriteSizeInBits,
166 const DataLayout &DL) {
167 // If the loaded or stored value is a first class array or struct, don't try
168 // to transform them. We need to be able to bitcast to integer.
169 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
170 return -1;
172 int64_t StoreOffset = 0, LoadOffset = 0;
173 Value *StoreBase =
174 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
175 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
176 if (StoreBase != LoadBase)
177 return -1;
179 // If the load and store are to the exact same address, they should have been
180 // a must alias. AA must have gotten confused.
181 // FIXME: Study to see if/when this happens. One case is forwarding a memset
182 // to a load from the base of the memset.
184 // If the load and store don't overlap at all, the store doesn't provide
185 // anything to the load. In this case, they really don't alias at all, AA
186 // must have gotten confused.
187 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
189 if ((WriteSizeInBits & 7) | (LoadSize & 7))
190 return -1;
191 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
192 LoadSize /= 8;
194 bool isAAFailure = false;
195 if (StoreOffset < LoadOffset)
196 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
197 else
198 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
200 if (isAAFailure)
201 return -1;
203 // If the Load isn't completely contained within the stored bits, we don't
204 // have all the bits to feed it. We could do something crazy in the future
205 // (issue a smaller load then merge the bits in) but this seems unlikely to be
206 // valuable.
207 if (StoreOffset > LoadOffset ||
208 StoreOffset + StoreSize < LoadOffset + LoadSize)
209 return -1;
211 // Okay, we can do this transformation. Return the number of bytes into the
212 // store that the load is.
213 return LoadOffset - StoreOffset;
216 /// This function is called when we have a
217 /// memdep query of a load that ends up being a clobbering store.
218 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
219 StoreInst *DepSI, const DataLayout &DL) {
220 auto *StoredVal = DepSI->getValueOperand();
222 // Cannot handle reading from store of first-class aggregate yet.
223 if (StoredVal->getType()->isStructTy() ||
224 StoredVal->getType()->isArrayTy())
225 return -1;
227 // Don't coerce non-integral pointers to integers or vice versa.
228 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
229 DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
230 // Allow casts of zero values to null as a special case
231 auto *CI = dyn_cast<Constant>(StoredVal);
232 if (!CI || !CI->isNullValue())
233 return -1;
236 Value *StorePtr = DepSI->getPointerOperand();
237 uint64_t StoreSize =
238 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
239 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
240 DL);
243 /// This function is called when we have a
244 /// memdep query of a load that ends up being clobbered by another load. See if
245 /// the other load can feed into the second load.
246 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
247 const DataLayout &DL) {
248 // Cannot handle reading from store of first-class aggregate yet.
249 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
250 return -1;
252 // Don't coerce non-integral pointers to integers or vice versa.
253 if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) !=
254 DL.isNonIntegralPointerType(LoadTy->getScalarType()))
255 return -1;
257 Value *DepPtr = DepLI->getPointerOperand();
258 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
259 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
260 if (R != -1)
261 return R;
263 // If we have a load/load clobber an DepLI can be widened to cover this load,
264 // then we should widen it!
265 int64_t LoadOffs = 0;
266 const Value *LoadBase =
267 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
268 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
270 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
271 LoadBase, LoadOffs, LoadSize, DepLI);
272 if (Size == 0)
273 return -1;
275 // Check non-obvious conditions enforced by MDA which we rely on for being
276 // able to materialize this potentially available value
277 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
278 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
280 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
283 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
284 MemIntrinsic *MI, const DataLayout &DL) {
285 // If the mem operation is a non-constant size, we can't handle it.
286 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
287 if (!SizeCst)
288 return -1;
289 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
291 // If this is memset, we just need to see if the offset is valid in the size
292 // of the memset..
293 if (MI->getIntrinsicID() == Intrinsic::memset) {
294 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
295 auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
296 if (!CI || !CI->isZero())
297 return -1;
299 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
300 MemSizeInBits, DL);
303 // If we have a memcpy/memmove, the only case we can handle is if this is a
304 // copy from constant memory. In that case, we can read directly from the
305 // constant memory.
306 MemTransferInst *MTI = cast<MemTransferInst>(MI);
308 Constant *Src = dyn_cast<Constant>(MTI->getSource());
309 if (!Src)
310 return -1;
312 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
313 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
314 return -1;
316 // See if the access is within the bounds of the transfer.
317 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
318 MemSizeInBits, DL);
319 if (Offset == -1)
320 return Offset;
322 // Don't coerce non-integral pointers to integers or vice versa, and the
323 // memtransfer is implicitly a raw byte code
324 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
325 // TODO: Can allow nullptrs from constant zeros
326 return -1;
328 unsigned AS = Src->getType()->getPointerAddressSpace();
329 // Otherwise, see if we can constant fold a load from the constant with the
330 // offset applied as appropriate.
331 Src =
332 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
333 Constant *OffsetCst =
334 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
335 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
336 OffsetCst);
337 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
338 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
339 return Offset;
340 return -1;
343 template <class T, class HelperClass>
344 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
345 HelperClass &Helper,
346 const DataLayout &DL) {
347 LLVMContext &Ctx = SrcVal->getType()->getContext();
349 // If two pointers are in the same address space, they have the same size,
350 // so we don't need to do any truncation, etc. This avoids introducing
351 // ptrtoint instructions for pointers that may be non-integral.
352 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
353 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
354 cast<PointerType>(LoadTy)->getAddressSpace()) {
355 return SrcVal;
358 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
359 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
360 // Compute which bits of the stored value are being used by the load. Convert
361 // to an integer type to start with.
362 if (SrcVal->getType()->isPtrOrPtrVectorTy())
363 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
364 if (!SrcVal->getType()->isIntegerTy())
365 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
367 // Shift the bits to the least significant depending on endianness.
368 unsigned ShiftAmt;
369 if (DL.isLittleEndian())
370 ShiftAmt = Offset * 8;
371 else
372 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
373 if (ShiftAmt)
374 SrcVal = Helper.CreateLShr(SrcVal,
375 ConstantInt::get(SrcVal->getType(), ShiftAmt));
377 if (LoadSize != StoreSize)
378 SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
379 IntegerType::get(Ctx, LoadSize * 8));
380 return SrcVal;
383 /// This function is called when we have a memdep query of a load that ends up
384 /// being a clobbering store. This means that the store provides bits used by
385 /// the load but the pointers don't must-alias. Check this case to see if
386 /// there is anything more we can do before we give up.
387 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
388 Instruction *InsertPt, const DataLayout &DL) {
390 IRBuilder<> Builder(InsertPt);
391 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
392 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
395 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
396 Type *LoadTy, const DataLayout &DL) {
397 ConstantFolder F;
398 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
399 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
402 /// This function is called when we have a memdep query of a load that ends up
403 /// being a clobbering load. This means that the load *may* provide bits used
404 /// by the load but we can't be sure because the pointers don't must-alias.
405 /// Check this case to see if there is anything more we can do before we give
406 /// up.
407 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
408 Instruction *InsertPt, const DataLayout &DL) {
409 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
410 // widen SrcVal out to a larger load.
411 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
412 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
413 if (Offset + LoadSize > SrcValStoreSize) {
414 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
415 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
416 // If we have a load/load clobber an DepLI can be widened to cover this
417 // load, then we should widen it to the next power of 2 size big enough!
418 unsigned NewLoadSize = Offset + LoadSize;
419 if (!isPowerOf2_32(NewLoadSize))
420 NewLoadSize = NextPowerOf2(NewLoadSize);
422 Value *PtrVal = SrcVal->getPointerOperand();
423 // Insert the new load after the old load. This ensures that subsequent
424 // memdep queries will find the new load. We can't easily remove the old
425 // load completely because it is already in the value numbering table.
426 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
427 Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
428 Type *DestPTy =
429 PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
430 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
431 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
432 LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
433 NewLoad->takeName(SrcVal);
434 NewLoad->setAlignment(SrcVal->getAlignment());
436 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
437 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
439 // Replace uses of the original load with the wider load. On a big endian
440 // system, we need to shift down to get the relevant bits.
441 Value *RV = NewLoad;
442 if (DL.isBigEndian())
443 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
444 RV = Builder.CreateTrunc(RV, SrcVal->getType());
445 SrcVal->replaceAllUsesWith(RV);
447 SrcVal = NewLoad;
450 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
453 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
454 Type *LoadTy, const DataLayout &DL) {
455 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
456 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
457 if (Offset + LoadSize > SrcValStoreSize)
458 return nullptr;
459 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
462 template <class T, class HelperClass>
463 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
464 Type *LoadTy, HelperClass &Helper,
465 const DataLayout &DL) {
466 LLVMContext &Ctx = LoadTy->getContext();
467 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
469 // We know that this method is only called when the mem transfer fully
470 // provides the bits for the load.
471 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
472 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
473 // independently of what the offset is.
474 T *Val = cast<T>(MSI->getValue());
475 if (LoadSize != 1)
476 Val =
477 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
478 T *OneElt = Val;
480 // Splat the value out to the right number of bits.
481 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
482 // If we can double the number of bytes set, do it.
483 if (NumBytesSet * 2 <= LoadSize) {
484 T *ShVal = Helper.CreateShl(
485 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
486 Val = Helper.CreateOr(Val, ShVal);
487 NumBytesSet <<= 1;
488 continue;
491 // Otherwise insert one byte at a time.
492 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
493 Val = Helper.CreateOr(OneElt, ShVal);
494 ++NumBytesSet;
497 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
500 // Otherwise, this is a memcpy/memmove from a constant global.
501 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
502 Constant *Src = cast<Constant>(MTI->getSource());
503 unsigned AS = Src->getType()->getPointerAddressSpace();
505 // Otherwise, see if we can constant fold a load from the constant with the
506 // offset applied as appropriate.
507 Src =
508 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
509 Constant *OffsetCst =
510 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
511 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
512 OffsetCst);
513 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
514 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
517 /// This function is called when we have a
518 /// memdep query of a load that ends up being a clobbering mem intrinsic.
519 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
520 Type *LoadTy, Instruction *InsertPt,
521 const DataLayout &DL) {
522 IRBuilder<> Builder(InsertPt);
523 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
524 LoadTy, Builder, DL);
527 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
528 Type *LoadTy, const DataLayout &DL) {
529 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
530 // constant is when it's a memset of a non-constant.
531 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
532 if (!isa<Constant>(MSI->getValue()))
533 return nullptr;
534 ConstantFolder F;
535 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
536 LoadTy, F, DL);
538 } // namespace VNCoercion
539 } // namespace llvm