Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / DemoteRegToStack.cpp
blob6d3d287defdb2fb2074ce7e3f85b636b76413f63
1 //===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/Analysis/CFG.h"
12 #include "llvm/IR/Function.h"
13 #include "llvm/IR/Instructions.h"
14 #include "llvm/IR/Type.h"
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Transforms/Utils/Local.h"
17 using namespace llvm;
19 /// DemoteRegToStack - This function takes a virtual register computed by an
20 /// Instruction and replaces it with a slot in the stack frame, allocated via
21 /// alloca. This allows the CFG to be changed around without fear of
22 /// invalidating the SSA information for the value. It returns the pointer to
23 /// the alloca inserted to create a stack slot for I.
24 AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
25 Instruction *AllocaPoint) {
26 if (I.use_empty()) {
27 I.eraseFromParent();
28 return nullptr;
31 Function *F = I.getParent()->getParent();
32 const DataLayout &DL = F->getParent()->getDataLayout();
34 // Create a stack slot to hold the value.
35 AllocaInst *Slot;
36 if (AllocaPoint) {
37 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
38 I.getName()+".reg2mem", AllocaPoint);
39 } else {
40 Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr,
41 I.getName() + ".reg2mem", &F->getEntryBlock().front());
44 // We cannot demote invoke instructions to the stack if their normal edge
45 // is critical. Therefore, split the critical edge and create a basic block
46 // into which the store can be inserted.
47 if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
48 if (!II->getNormalDest()->getSinglePredecessor()) {
49 unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest());
50 assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
51 BasicBlock *BB = SplitCriticalEdge(II, SuccNum);
52 assert(BB && "Unable to split critical edge.");
53 (void)BB;
57 // Change all of the users of the instruction to read from the stack slot.
58 while (!I.use_empty()) {
59 Instruction *U = cast<Instruction>(I.user_back());
60 if (PHINode *PN = dyn_cast<PHINode>(U)) {
61 // If this is a PHI node, we can't insert a load of the value before the
62 // use. Instead insert the load in the predecessor block corresponding
63 // to the incoming value.
65 // Note that if there are multiple edges from a basic block to this PHI
66 // node that we cannot have multiple loads. The problem is that the
67 // resulting PHI node will have multiple values (from each load) coming in
68 // from the same block, which is illegal SSA form. For this reason, we
69 // keep track of and reuse loads we insert.
70 DenseMap<BasicBlock*, Value*> Loads;
71 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
72 if (PN->getIncomingValue(i) == &I) {
73 Value *&V = Loads[PN->getIncomingBlock(i)];
74 if (!V) {
75 // Insert the load into the predecessor block
76 V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads,
77 PN->getIncomingBlock(i)->getTerminator());
79 PN->setIncomingValue(i, V);
82 } else {
83 // If this is a normal instruction, just insert a load.
84 Value *V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads, U);
85 U->replaceUsesOfWith(&I, V);
89 // Insert stores of the computed value into the stack slot. We have to be
90 // careful if I is an invoke instruction, because we can't insert the store
91 // AFTER the terminator instruction.
92 BasicBlock::iterator InsertPt;
93 if (!isa<TerminatorInst>(I)) {
94 InsertPt = ++I.getIterator();
95 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
96 /* empty */; // Don't insert before PHI nodes or landingpad instrs.
97 } else {
98 InvokeInst &II = cast<InvokeInst>(I);
99 InsertPt = II.getNormalDest()->getFirstInsertionPt();
102 new StoreInst(&I, Slot, &*InsertPt);
103 return Slot;
106 /// DemotePHIToStack - This function takes a virtual register computed by a PHI
107 /// node and replaces it with a slot in the stack frame allocated via alloca.
108 /// The PHI node is deleted. It returns the pointer to the alloca inserted.
109 AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
110 if (P->use_empty()) {
111 P->eraseFromParent();
112 return nullptr;
115 const DataLayout &DL = P->getModule()->getDataLayout();
117 // Create a stack slot to hold the value.
118 AllocaInst *Slot;
119 if (AllocaPoint) {
120 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
121 P->getName()+".reg2mem", AllocaPoint);
122 } else {
123 Function *F = P->getParent()->getParent();
124 Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr,
125 P->getName() + ".reg2mem",
126 &F->getEntryBlock().front());
129 // Iterate over each operand inserting a store in each predecessor.
130 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
131 if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
132 assert(II->getParent() != P->getIncomingBlock(i) &&
133 "Invoke edge not supported yet"); (void)II;
135 new StoreInst(P->getIncomingValue(i), Slot,
136 P->getIncomingBlock(i)->getTerminator());
139 // Insert a load in place of the PHI and replace all uses.
140 BasicBlock::iterator InsertPt = P->getIterator();
142 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
143 /* empty */; // Don't insert before PHI nodes or landingpad instrs.
145 Value *V = new LoadInst(Slot, P->getName() + ".reload", &*InsertPt);
146 P->replaceAllUsesWith(V);
148 // Delete PHI.
149 P->eraseFromParent();
150 return Slot;