Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / FunctionComparator.cpp
blob4a2be3a5317678f7fda8dedbc3bab1623dd99cc8
1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the FunctionComparator and GlobalNumberState classes
11 // which are used by the MergeFunctions pass for comparing functions.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/FunctionComparator.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
24 using namespace llvm;
26 #define DEBUG_TYPE "functioncomparator"
28 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
29 if (L < R) return -1;
30 if (L > R) return 1;
31 return 0;
34 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
35 if ((int)L < (int)R) return -1;
36 if ((int)L > (int)R) return 1;
37 return 0;
40 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
41 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
42 return Res;
43 if (L.ugt(R)) return 1;
44 if (R.ugt(L)) return -1;
45 return 0;
48 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
49 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
50 // then by value interpreted as a bitstring (aka APInt).
51 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
52 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
53 APFloat::semanticsPrecision(SR)))
54 return Res;
55 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
56 APFloat::semanticsMaxExponent(SR)))
57 return Res;
58 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
59 APFloat::semanticsMinExponent(SR)))
60 return Res;
61 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
62 APFloat::semanticsSizeInBits(SR)))
63 return Res;
64 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
67 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
68 // Prevent heavy comparison, compare sizes first.
69 if (int Res = cmpNumbers(L.size(), R.size()))
70 return Res;
72 // Compare strings lexicographically only when it is necessary: only when
73 // strings are equal in size.
74 return L.compare(R);
77 int FunctionComparator::cmpAttrs(const AttributeList L,
78 const AttributeList R) const {
79 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
80 return Res;
82 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
83 AttributeSet LAS = L.getAttributes(i);
84 AttributeSet RAS = R.getAttributes(i);
85 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
86 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
87 for (; LI != LE && RI != RE; ++LI, ++RI) {
88 Attribute LA = *LI;
89 Attribute RA = *RI;
90 if (LA < RA)
91 return -1;
92 if (RA < LA)
93 return 1;
95 if (LI != LE)
96 return 1;
97 if (RI != RE)
98 return -1;
100 return 0;
103 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
104 const MDNode *R) const {
105 if (L == R)
106 return 0;
107 if (!L)
108 return -1;
109 if (!R)
110 return 1;
111 // Range metadata is a sequence of numbers. Make sure they are the same
112 // sequence.
113 // TODO: Note that as this is metadata, it is possible to drop and/or merge
114 // this data when considering functions to merge. Thus this comparison would
115 // return 0 (i.e. equivalent), but merging would become more complicated
116 // because the ranges would need to be unioned. It is not likely that
117 // functions differ ONLY in this metadata if they are actually the same
118 // function semantically.
119 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
120 return Res;
121 for (size_t I = 0; I < L->getNumOperands(); ++I) {
122 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
123 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
124 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
125 return Res;
127 return 0;
130 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
131 const Instruction *R) const {
132 ImmutableCallSite LCS(L);
133 ImmutableCallSite RCS(R);
135 assert(LCS && RCS && "Must be calls or invokes!");
136 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
138 if (int Res =
139 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
140 return Res;
142 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
143 auto OBL = LCS.getOperandBundleAt(i);
144 auto OBR = RCS.getOperandBundleAt(i);
146 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
147 return Res;
149 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
150 return Res;
153 return 0;
156 /// Constants comparison:
157 /// 1. Check whether type of L constant could be losslessly bitcasted to R
158 /// type.
159 /// 2. Compare constant contents.
160 /// For more details see declaration comments.
161 int FunctionComparator::cmpConstants(const Constant *L,
162 const Constant *R) const {
164 Type *TyL = L->getType();
165 Type *TyR = R->getType();
167 // Check whether types are bitcastable. This part is just re-factored
168 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
169 // we also pack into result which type is "less" for us.
170 int TypesRes = cmpTypes(TyL, TyR);
171 if (TypesRes != 0) {
172 // Types are different, but check whether we can bitcast them.
173 if (!TyL->isFirstClassType()) {
174 if (TyR->isFirstClassType())
175 return -1;
176 // Neither TyL nor TyR are values of first class type. Return the result
177 // of comparing the types
178 return TypesRes;
180 if (!TyR->isFirstClassType()) {
181 if (TyL->isFirstClassType())
182 return 1;
183 return TypesRes;
186 // Vector -> Vector conversions are always lossless if the two vector types
187 // have the same size, otherwise not.
188 unsigned TyLWidth = 0;
189 unsigned TyRWidth = 0;
191 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
192 TyLWidth = VecTyL->getBitWidth();
193 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
194 TyRWidth = VecTyR->getBitWidth();
196 if (TyLWidth != TyRWidth)
197 return cmpNumbers(TyLWidth, TyRWidth);
199 // Zero bit-width means neither TyL nor TyR are vectors.
200 if (!TyLWidth) {
201 PointerType *PTyL = dyn_cast<PointerType>(TyL);
202 PointerType *PTyR = dyn_cast<PointerType>(TyR);
203 if (PTyL && PTyR) {
204 unsigned AddrSpaceL = PTyL->getAddressSpace();
205 unsigned AddrSpaceR = PTyR->getAddressSpace();
206 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
207 return Res;
209 if (PTyL)
210 return 1;
211 if (PTyR)
212 return -1;
214 // TyL and TyR aren't vectors, nor pointers. We don't know how to
215 // bitcast them.
216 return TypesRes;
220 // OK, types are bitcastable, now check constant contents.
222 if (L->isNullValue() && R->isNullValue())
223 return TypesRes;
224 if (L->isNullValue() && !R->isNullValue())
225 return 1;
226 if (!L->isNullValue() && R->isNullValue())
227 return -1;
229 auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
230 auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
231 if (GlobalValueL && GlobalValueR) {
232 return cmpGlobalValues(GlobalValueL, GlobalValueR);
235 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
236 return Res;
238 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
239 const auto *SeqR = cast<ConstantDataSequential>(R);
240 // This handles ConstantDataArray and ConstantDataVector. Note that we
241 // compare the two raw data arrays, which might differ depending on the host
242 // endianness. This isn't a problem though, because the endiness of a module
243 // will affect the order of the constants, but this order is the same
244 // for a given input module and host platform.
245 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
248 switch (L->getValueID()) {
249 case Value::UndefValueVal:
250 case Value::ConstantTokenNoneVal:
251 return TypesRes;
252 case Value::ConstantIntVal: {
253 const APInt &LInt = cast<ConstantInt>(L)->getValue();
254 const APInt &RInt = cast<ConstantInt>(R)->getValue();
255 return cmpAPInts(LInt, RInt);
257 case Value::ConstantFPVal: {
258 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
259 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
260 return cmpAPFloats(LAPF, RAPF);
262 case Value::ConstantArrayVal: {
263 const ConstantArray *LA = cast<ConstantArray>(L);
264 const ConstantArray *RA = cast<ConstantArray>(R);
265 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
266 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
267 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
268 return Res;
269 for (uint64_t i = 0; i < NumElementsL; ++i) {
270 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
271 cast<Constant>(RA->getOperand(i))))
272 return Res;
274 return 0;
276 case Value::ConstantStructVal: {
277 const ConstantStruct *LS = cast<ConstantStruct>(L);
278 const ConstantStruct *RS = cast<ConstantStruct>(R);
279 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
280 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
281 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
282 return Res;
283 for (unsigned i = 0; i != NumElementsL; ++i) {
284 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
285 cast<Constant>(RS->getOperand(i))))
286 return Res;
288 return 0;
290 case Value::ConstantVectorVal: {
291 const ConstantVector *LV = cast<ConstantVector>(L);
292 const ConstantVector *RV = cast<ConstantVector>(R);
293 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
294 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
295 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
296 return Res;
297 for (uint64_t i = 0; i < NumElementsL; ++i) {
298 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
299 cast<Constant>(RV->getOperand(i))))
300 return Res;
302 return 0;
304 case Value::ConstantExprVal: {
305 const ConstantExpr *LE = cast<ConstantExpr>(L);
306 const ConstantExpr *RE = cast<ConstantExpr>(R);
307 unsigned NumOperandsL = LE->getNumOperands();
308 unsigned NumOperandsR = RE->getNumOperands();
309 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
310 return Res;
311 for (unsigned i = 0; i < NumOperandsL; ++i) {
312 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
313 cast<Constant>(RE->getOperand(i))))
314 return Res;
316 return 0;
318 case Value::BlockAddressVal: {
319 const BlockAddress *LBA = cast<BlockAddress>(L);
320 const BlockAddress *RBA = cast<BlockAddress>(R);
321 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
322 return Res;
323 if (LBA->getFunction() == RBA->getFunction()) {
324 // They are BBs in the same function. Order by which comes first in the
325 // BB order of the function. This order is deterministic.
326 Function* F = LBA->getFunction();
327 BasicBlock *LBB = LBA->getBasicBlock();
328 BasicBlock *RBB = RBA->getBasicBlock();
329 if (LBB == RBB)
330 return 0;
331 for(BasicBlock &BB : F->getBasicBlockList()) {
332 if (&BB == LBB) {
333 assert(&BB != RBB);
334 return -1;
336 if (&BB == RBB)
337 return 1;
339 llvm_unreachable("Basic Block Address does not point to a basic block in "
340 "its function.");
341 return -1;
342 } else {
343 // cmpValues said the functions are the same. So because they aren't
344 // literally the same pointer, they must respectively be the left and
345 // right functions.
346 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
347 // cmpValues will tell us if these are equivalent BasicBlocks, in the
348 // context of their respective functions.
349 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
352 default: // Unknown constant, abort.
353 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
354 llvm_unreachable("Constant ValueID not recognized.");
355 return -1;
359 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
360 uint64_t LNumber = GlobalNumbers->getNumber(L);
361 uint64_t RNumber = GlobalNumbers->getNumber(R);
362 return cmpNumbers(LNumber, RNumber);
365 /// cmpType - compares two types,
366 /// defines total ordering among the types set.
367 /// See method declaration comments for more details.
368 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
369 PointerType *PTyL = dyn_cast<PointerType>(TyL);
370 PointerType *PTyR = dyn_cast<PointerType>(TyR);
372 const DataLayout &DL = FnL->getParent()->getDataLayout();
373 if (PTyL && PTyL->getAddressSpace() == 0)
374 TyL = DL.getIntPtrType(TyL);
375 if (PTyR && PTyR->getAddressSpace() == 0)
376 TyR = DL.getIntPtrType(TyR);
378 if (TyL == TyR)
379 return 0;
381 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
382 return Res;
384 switch (TyL->getTypeID()) {
385 default:
386 llvm_unreachable("Unknown type!");
387 // Fall through in Release mode.
388 LLVM_FALLTHROUGH;
389 case Type::IntegerTyID:
390 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
391 cast<IntegerType>(TyR)->getBitWidth());
392 // TyL == TyR would have returned true earlier, because types are uniqued.
393 case Type::VoidTyID:
394 case Type::FloatTyID:
395 case Type::DoubleTyID:
396 case Type::X86_FP80TyID:
397 case Type::FP128TyID:
398 case Type::PPC_FP128TyID:
399 case Type::LabelTyID:
400 case Type::MetadataTyID:
401 case Type::TokenTyID:
402 return 0;
404 case Type::PointerTyID: {
405 assert(PTyL && PTyR && "Both types must be pointers here.");
406 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
409 case Type::StructTyID: {
410 StructType *STyL = cast<StructType>(TyL);
411 StructType *STyR = cast<StructType>(TyR);
412 if (STyL->getNumElements() != STyR->getNumElements())
413 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
415 if (STyL->isPacked() != STyR->isPacked())
416 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
418 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
419 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
420 return Res;
422 return 0;
425 case Type::FunctionTyID: {
426 FunctionType *FTyL = cast<FunctionType>(TyL);
427 FunctionType *FTyR = cast<FunctionType>(TyR);
428 if (FTyL->getNumParams() != FTyR->getNumParams())
429 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
431 if (FTyL->isVarArg() != FTyR->isVarArg())
432 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
434 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
435 return Res;
437 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
438 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
439 return Res;
441 return 0;
444 case Type::ArrayTyID:
445 case Type::VectorTyID: {
446 auto *STyL = cast<SequentialType>(TyL);
447 auto *STyR = cast<SequentialType>(TyR);
448 if (STyL->getNumElements() != STyR->getNumElements())
449 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
450 return cmpTypes(STyL->getElementType(), STyR->getElementType());
455 // Determine whether the two operations are the same except that pointer-to-A
456 // and pointer-to-B are equivalent. This should be kept in sync with
457 // Instruction::isSameOperationAs.
458 // Read method declaration comments for more details.
459 int FunctionComparator::cmpOperations(const Instruction *L,
460 const Instruction *R,
461 bool &needToCmpOperands) const {
462 needToCmpOperands = true;
463 if (int Res = cmpValues(L, R))
464 return Res;
466 // Differences from Instruction::isSameOperationAs:
467 // * replace type comparison with calls to cmpTypes.
468 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
469 // * because of the above, we don't test for the tail bit on calls later on.
470 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
471 return Res;
473 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
474 needToCmpOperands = false;
475 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
476 if (int Res =
477 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
478 return Res;
479 return cmpGEPs(GEPL, GEPR);
482 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
483 return Res;
485 if (int Res = cmpTypes(L->getType(), R->getType()))
486 return Res;
488 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
489 R->getRawSubclassOptionalData()))
490 return Res;
492 // We have two instructions of identical opcode and #operands. Check to see
493 // if all operands are the same type
494 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
495 if (int Res =
496 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
497 return Res;
500 // Check special state that is a part of some instructions.
501 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
502 if (int Res = cmpTypes(AI->getAllocatedType(),
503 cast<AllocaInst>(R)->getAllocatedType()))
504 return Res;
505 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
507 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
508 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
509 return Res;
510 if (int Res =
511 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
512 return Res;
513 if (int Res =
514 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
515 return Res;
516 if (int Res = cmpNumbers(LI->getSyncScopeID(),
517 cast<LoadInst>(R)->getSyncScopeID()))
518 return Res;
519 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
520 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
522 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
523 if (int Res =
524 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
525 return Res;
526 if (int Res =
527 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
528 return Res;
529 if (int Res =
530 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
531 return Res;
532 return cmpNumbers(SI->getSyncScopeID(),
533 cast<StoreInst>(R)->getSyncScopeID());
535 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
536 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
537 if (const CallInst *CI = dyn_cast<CallInst>(L)) {
538 if (int Res = cmpNumbers(CI->getCallingConv(),
539 cast<CallInst>(R)->getCallingConv()))
540 return Res;
541 if (int Res =
542 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
543 return Res;
544 if (int Res = cmpOperandBundlesSchema(CI, R))
545 return Res;
546 return cmpRangeMetadata(
547 CI->getMetadata(LLVMContext::MD_range),
548 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
550 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
551 if (int Res = cmpNumbers(II->getCallingConv(),
552 cast<InvokeInst>(R)->getCallingConv()))
553 return Res;
554 if (int Res =
555 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
556 return Res;
557 if (int Res = cmpOperandBundlesSchema(II, R))
558 return Res;
559 return cmpRangeMetadata(
560 II->getMetadata(LLVMContext::MD_range),
561 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
563 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
564 ArrayRef<unsigned> LIndices = IVI->getIndices();
565 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
566 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
567 return Res;
568 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
569 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
570 return Res;
572 return 0;
574 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
575 ArrayRef<unsigned> LIndices = EVI->getIndices();
576 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
577 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
578 return Res;
579 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
580 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
581 return Res;
584 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
585 if (int Res =
586 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
587 return Res;
588 return cmpNumbers(FI->getSyncScopeID(),
589 cast<FenceInst>(R)->getSyncScopeID());
591 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
592 if (int Res = cmpNumbers(CXI->isVolatile(),
593 cast<AtomicCmpXchgInst>(R)->isVolatile()))
594 return Res;
595 if (int Res = cmpNumbers(CXI->isWeak(),
596 cast<AtomicCmpXchgInst>(R)->isWeak()))
597 return Res;
598 if (int Res =
599 cmpOrderings(CXI->getSuccessOrdering(),
600 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
601 return Res;
602 if (int Res =
603 cmpOrderings(CXI->getFailureOrdering(),
604 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
605 return Res;
606 return cmpNumbers(CXI->getSyncScopeID(),
607 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
609 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
610 if (int Res = cmpNumbers(RMWI->getOperation(),
611 cast<AtomicRMWInst>(R)->getOperation()))
612 return Res;
613 if (int Res = cmpNumbers(RMWI->isVolatile(),
614 cast<AtomicRMWInst>(R)->isVolatile()))
615 return Res;
616 if (int Res = cmpOrderings(RMWI->getOrdering(),
617 cast<AtomicRMWInst>(R)->getOrdering()))
618 return Res;
619 return cmpNumbers(RMWI->getSyncScopeID(),
620 cast<AtomicRMWInst>(R)->getSyncScopeID());
622 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
623 const PHINode *PNR = cast<PHINode>(R);
624 // Ensure that in addition to the incoming values being identical
625 // (checked by the caller of this function), the incoming blocks
626 // are also identical.
627 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
628 if (int Res =
629 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
630 return Res;
633 return 0;
636 // Determine whether two GEP operations perform the same underlying arithmetic.
637 // Read method declaration comments for more details.
638 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
639 const GEPOperator *GEPR) const {
641 unsigned int ASL = GEPL->getPointerAddressSpace();
642 unsigned int ASR = GEPR->getPointerAddressSpace();
644 if (int Res = cmpNumbers(ASL, ASR))
645 return Res;
647 // When we have target data, we can reduce the GEP down to the value in bytes
648 // added to the address.
649 const DataLayout &DL = FnL->getParent()->getDataLayout();
650 unsigned BitWidth = DL.getPointerSizeInBits(ASL);
651 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
652 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
653 GEPR->accumulateConstantOffset(DL, OffsetR))
654 return cmpAPInts(OffsetL, OffsetR);
655 if (int Res = cmpTypes(GEPL->getSourceElementType(),
656 GEPR->getSourceElementType()))
657 return Res;
659 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
660 return Res;
662 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
663 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
664 return Res;
667 return 0;
670 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
671 const InlineAsm *R) const {
672 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
673 // the same, otherwise compare the fields.
674 if (L == R)
675 return 0;
676 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
677 return Res;
678 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
679 return Res;
680 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
681 return Res;
682 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
683 return Res;
684 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
685 return Res;
686 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
687 return Res;
688 llvm_unreachable("InlineAsm blocks were not uniqued.");
689 return 0;
692 /// Compare two values used by the two functions under pair-wise comparison. If
693 /// this is the first time the values are seen, they're added to the mapping so
694 /// that we will detect mismatches on next use.
695 /// See comments in declaration for more details.
696 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
697 // Catch self-reference case.
698 if (L == FnL) {
699 if (R == FnR)
700 return 0;
701 return -1;
703 if (R == FnR) {
704 if (L == FnL)
705 return 0;
706 return 1;
709 const Constant *ConstL = dyn_cast<Constant>(L);
710 const Constant *ConstR = dyn_cast<Constant>(R);
711 if (ConstL && ConstR) {
712 if (L == R)
713 return 0;
714 return cmpConstants(ConstL, ConstR);
717 if (ConstL)
718 return 1;
719 if (ConstR)
720 return -1;
722 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
723 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
725 if (InlineAsmL && InlineAsmR)
726 return cmpInlineAsm(InlineAsmL, InlineAsmR);
727 if (InlineAsmL)
728 return 1;
729 if (InlineAsmR)
730 return -1;
732 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
733 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
735 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
738 // Test whether two basic blocks have equivalent behaviour.
739 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
740 const BasicBlock *BBR) const {
741 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
742 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
744 do {
745 bool needToCmpOperands = true;
746 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
747 return Res;
748 if (needToCmpOperands) {
749 assert(InstL->getNumOperands() == InstR->getNumOperands());
751 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
752 Value *OpL = InstL->getOperand(i);
753 Value *OpR = InstR->getOperand(i);
754 if (int Res = cmpValues(OpL, OpR))
755 return Res;
756 // cmpValues should ensure this is true.
757 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
761 ++InstL;
762 ++InstR;
763 } while (InstL != InstLE && InstR != InstRE);
765 if (InstL != InstLE && InstR == InstRE)
766 return 1;
767 if (InstL == InstLE && InstR != InstRE)
768 return -1;
769 return 0;
772 int FunctionComparator::compareSignature() const {
773 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
774 return Res;
776 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
777 return Res;
779 if (FnL->hasGC()) {
780 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
781 return Res;
784 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
785 return Res;
787 if (FnL->hasSection()) {
788 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
789 return Res;
792 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
793 return Res;
795 // TODO: if it's internal and only used in direct calls, we could handle this
796 // case too.
797 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
798 return Res;
800 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
801 return Res;
803 assert(FnL->arg_size() == FnR->arg_size() &&
804 "Identically typed functions have different numbers of args!");
806 // Visit the arguments so that they get enumerated in the order they're
807 // passed in.
808 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
809 ArgRI = FnR->arg_begin(),
810 ArgLE = FnL->arg_end();
811 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
812 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
813 llvm_unreachable("Arguments repeat!");
815 return 0;
818 // Test whether the two functions have equivalent behaviour.
819 int FunctionComparator::compare() {
820 beginCompare();
822 if (int Res = compareSignature())
823 return Res;
825 // We do a CFG-ordered walk since the actual ordering of the blocks in the
826 // linked list is immaterial. Our walk starts at the entry block for both
827 // functions, then takes each block from each terminator in order. As an
828 // artifact, this also means that unreachable blocks are ignored.
829 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
830 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
832 FnLBBs.push_back(&FnL->getEntryBlock());
833 FnRBBs.push_back(&FnR->getEntryBlock());
835 VisitedBBs.insert(FnLBBs[0]);
836 while (!FnLBBs.empty()) {
837 const BasicBlock *BBL = FnLBBs.pop_back_val();
838 const BasicBlock *BBR = FnRBBs.pop_back_val();
840 if (int Res = cmpValues(BBL, BBR))
841 return Res;
843 if (int Res = cmpBasicBlocks(BBL, BBR))
844 return Res;
846 const TerminatorInst *TermL = BBL->getTerminator();
847 const TerminatorInst *TermR = BBR->getTerminator();
849 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
850 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
851 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
852 continue;
854 FnLBBs.push_back(TermL->getSuccessor(i));
855 FnRBBs.push_back(TermR->getSuccessor(i));
858 return 0;
861 namespace {
863 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
864 // hash of a sequence of 64bit ints, but the entire input does not need to be
865 // available at once. This interface is necessary for functionHash because it
866 // needs to accumulate the hash as the structure of the function is traversed
867 // without saving these values to an intermediate buffer. This form of hashing
868 // is not often needed, as usually the object to hash is just read from a
869 // buffer.
870 class HashAccumulator64 {
871 uint64_t Hash;
872 public:
873 // Initialize to random constant, so the state isn't zero.
874 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
875 void add(uint64_t V) {
876 Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
878 // No finishing is required, because the entire hash value is used.
879 uint64_t getHash() { return Hash; }
881 } // end anonymous namespace
883 // A function hash is calculated by considering only the number of arguments and
884 // whether a function is varargs, the order of basic blocks (given by the
885 // successors of each basic block in depth first order), and the order of
886 // opcodes of each instruction within each of these basic blocks. This mirrors
887 // the strategy compare() uses to compare functions by walking the BBs in depth
888 // first order and comparing each instruction in sequence. Because this hash
889 // does not look at the operands, it is insensitive to things such as the
890 // target of calls and the constants used in the function, which makes it useful
891 // when possibly merging functions which are the same modulo constants and call
892 // targets.
893 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
894 HashAccumulator64 H;
895 H.add(F.isVarArg());
896 H.add(F.arg_size());
898 SmallVector<const BasicBlock *, 8> BBs;
899 SmallSet<const BasicBlock *, 16> VisitedBBs;
901 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
902 // accumulating the hash of the function "structure." (BB and opcode sequence)
903 BBs.push_back(&F.getEntryBlock());
904 VisitedBBs.insert(BBs[0]);
905 while (!BBs.empty()) {
906 const BasicBlock *BB = BBs.pop_back_val();
907 // This random value acts as a block header, as otherwise the partition of
908 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
909 H.add(45798);
910 for (auto &Inst : *BB) {
911 H.add(Inst.getOpcode());
913 const TerminatorInst *Term = BB->getTerminator();
914 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
915 if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
916 continue;
917 BBs.push_back(Term->getSuccessor(i));
920 return H.getHash();