1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
14 // for (...) for (...)
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
50 #define DEBUG_TYPE "lcssa"
52 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
54 #ifdef EXPENSIVE_CHECKS
55 static bool VerifyLoopLCSSA
= true;
57 static bool VerifyLoopLCSSA
= false;
59 static cl::opt
<bool,true>
60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
61 cl::desc("Verify loop lcssa form (time consuming)"));
63 /// Return true if the specified block is in the list.
64 static bool isExitBlock(BasicBlock
*BB
,
65 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
66 return is_contained(ExitBlocks
, BB
);
69 /// For every instruction from the worklist, check to see if it has any uses
70 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
72 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
73 DominatorTree
&DT
, LoopInfo
&LI
) {
74 SmallVector
<Use
*, 16> UsesToRewrite
;
75 SmallSetVector
<PHINode
*, 16> PHIsToRemove
;
76 PredIteratorCache PredCache
;
79 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
80 // instructions within the same loops, computing the exit blocks is
81 // expensive, and we're not mutating the loop structure.
82 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
84 while (!Worklist
.empty()) {
85 UsesToRewrite
.clear();
87 Instruction
*I
= Worklist
.pop_back_val();
88 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
89 BasicBlock
*InstBB
= I
->getParent();
90 Loop
*L
= LI
.getLoopFor(InstBB
);
91 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
92 if (!LoopExitBlocks
.count(L
))
93 L
->getExitBlocks(LoopExitBlocks
[L
]);
94 assert(LoopExitBlocks
.count(L
));
95 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
97 if (ExitBlocks
.empty())
100 for (Use
&U
: I
->uses()) {
101 Instruction
*User
= cast
<Instruction
>(U
.getUser());
102 BasicBlock
*UserBB
= User
->getParent();
103 if (auto *PN
= dyn_cast
<PHINode
>(User
))
104 UserBB
= PN
->getIncomingBlock(U
);
106 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
107 UsesToRewrite
.push_back(&U
);
110 // If there are no uses outside the loop, exit with no change.
111 if (UsesToRewrite
.empty())
114 ++NumLCSSA
; // We are applying the transformation
116 // Invoke instructions are special in that their result value is not
117 // available along their unwind edge. The code below tests to see whether
118 // DomBB dominates the value, so adjust DomBB to the normal destination
119 // block, which is effectively where the value is first usable.
120 BasicBlock
*DomBB
= InstBB
;
121 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
122 DomBB
= Inv
->getNormalDest();
124 DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
126 SmallVector
<PHINode
*, 16> AddedPHIs
;
127 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
129 SmallVector
<PHINode
*, 4> InsertedPHIs
;
130 SSAUpdater
SSAUpdate(&InsertedPHIs
);
131 SSAUpdate
.Initialize(I
->getType(), I
->getName());
133 // Insert the LCSSA phi's into all of the exit blocks dominated by the
134 // value, and add them to the Phi's map.
135 for (BasicBlock
*ExitBB
: ExitBlocks
) {
136 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
139 // If we already inserted something for this BB, don't reprocess it.
140 if (SSAUpdate
.HasValueForBlock(ExitBB
))
143 PHINode
*PN
= PHINode::Create(I
->getType(), PredCache
.size(ExitBB
),
144 I
->getName() + ".lcssa", &ExitBB
->front());
146 // Add inputs from inside the loop for this PHI.
147 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
148 PN
->addIncoming(I
, Pred
);
150 // If the exit block has a predecessor not within the loop, arrange for
151 // the incoming value use corresponding to that predecessor to be
152 // rewritten in terms of a different LCSSA PHI.
153 if (!L
->contains(Pred
))
154 UsesToRewrite
.push_back(
155 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
156 PN
->getNumIncomingValues() - 1)));
159 AddedPHIs
.push_back(PN
);
161 // Remember that this phi makes the value alive in this block.
162 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
164 // LoopSimplify might fail to simplify some loops (e.g. when indirect
165 // branches are involved). In such situations, it might happen that an
166 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
167 // create PHIs in such an exit block, we are also inserting PHIs into L2's
168 // header. This could break LCSSA form for L2 because these inserted PHIs
169 // can also have uses outside of L2. Remember all PHIs in such situation
170 // as to revisit than later on. FIXME: Remove this if indirectbr support
171 // into LoopSimplify gets improved.
172 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
173 if (!L
->contains(OtherLoop
))
174 PostProcessPHIs
.push_back(PN
);
177 // Rewrite all uses outside the loop in terms of the new PHIs we just
179 for (Use
*UseToRewrite
: UsesToRewrite
) {
180 // If this use is in an exit block, rewrite to use the newly inserted PHI.
181 // This is required for correctness because SSAUpdate doesn't handle uses
182 // in the same block. It assumes the PHI we inserted is at the end of the
184 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
185 BasicBlock
*UserBB
= User
->getParent();
186 if (auto *PN
= dyn_cast
<PHINode
>(User
))
187 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
189 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
190 // Tell the VHs that the uses changed. This updates SCEV's caches.
191 if (UseToRewrite
->get()->hasValueHandle())
192 ValueHandleBase::ValueIsRAUWd(*UseToRewrite
, &UserBB
->front());
193 UseToRewrite
->set(&UserBB
->front());
197 // Otherwise, do full PHI insertion.
198 SSAUpdate
.RewriteUse(*UseToRewrite
);
201 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
202 // to post-process them to keep LCSSA form.
203 for (PHINode
*InsertedPN
: InsertedPHIs
) {
204 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
205 if (!L
->contains(OtherLoop
))
206 PostProcessPHIs
.push_back(InsertedPN
);
209 // Post process PHI instructions that were inserted into another disjoint
210 // loop and update their exits properly.
211 for (auto *PostProcessPN
: PostProcessPHIs
)
212 if (!PostProcessPN
->use_empty())
213 Worklist
.push_back(PostProcessPN
);
215 // Keep track of PHI nodes that we want to remove because they did not have
216 // any uses rewritten.
217 for (PHINode
*PN
: AddedPHIs
)
219 PHIsToRemove
.insert(PN
);
223 // Remove PHI nodes that did not have any uses rewritten.
224 for (PHINode
*PN
: PHIsToRemove
) {
225 assert (PN
->use_empty() && "Trying to remove a phi with uses.");
226 PN
->eraseFromParent();
231 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
232 static void computeBlocksDominatingExits(
233 Loop
&L
, DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
234 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
235 SmallVector
<BasicBlock
*, 8> BBWorklist
;
237 // We start from the exit blocks, as every block trivially dominates itself
239 for (BasicBlock
*BB
: ExitBlocks
)
240 BBWorklist
.push_back(BB
);
242 while (!BBWorklist
.empty()) {
243 BasicBlock
*BB
= BBWorklist
.pop_back_val();
245 // Check if this is a loop header. If this is the case, we're done.
246 if (L
.getHeader() == BB
)
249 // Otherwise, add its immediate predecessor in the dominator tree to the
250 // worklist, unless we visited it already.
251 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
253 // Exit blocks can have an immediate dominator not beloinging to the
254 // loop. For an exit block to be immediately dominated by another block
255 // outside the loop, it implies not all paths from that dominator, to the
256 // exit block, go through the loop.
267 // C is the exit block of the loop and it's immediately dominated by A,
268 // which doesn't belong to the loop.
269 if (!L
.contains(IDomBB
))
272 if (BlocksDominatingExits
.insert(IDomBB
))
273 BBWorklist
.push_back(IDomBB
);
277 bool llvm::formLCSSA(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
278 ScalarEvolution
*SE
) {
279 bool Changed
= false;
281 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
282 L
.getExitBlocks(ExitBlocks
);
283 if (ExitBlocks
.empty())
286 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
288 // We want to avoid use-scanning leveraging dominance informations.
289 // If a block doesn't dominate any of the loop exits, the none of the values
290 // defined in the loop can be used outside.
291 // We compute the set of blocks fullfilling the conditions in advance
292 // walking the dominator tree upwards until we hit a loop header.
293 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
295 SmallVector
<Instruction
*, 8> Worklist
;
297 // Look at all the instructions in the loop, checking to see if they have uses
298 // outside the loop. If so, put them into the worklist to rewrite those uses.
299 for (BasicBlock
*BB
: BlocksDominatingExits
) {
300 for (Instruction
&I
: *BB
) {
301 // Reject two common cases fast: instructions with no uses (like stores)
302 // and instructions with one use that is in the same block as this.
304 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
305 !isa
<PHINode
>(I
.user_back())))
308 // Tokens cannot be used in PHI nodes, so we skip over them.
309 // We can run into tokens which are live out of a loop with catchswitch
310 // instructions in Windows EH if the catchswitch has one catchpad which
311 // is inside the loop and another which is not.
312 if (I
.getType()->isTokenTy())
315 Worklist
.push_back(&I
);
318 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
);
320 // If we modified the code, remove any caches about the loop from SCEV to
321 // avoid dangling entries.
322 // FIXME: This is a big hammer, can we clear the cache more selectively?
326 assert(L
.isLCSSAForm(DT
));
331 /// Process a loop nest depth first.
332 bool llvm::formLCSSARecursively(Loop
&L
, DominatorTree
&DT
, LoopInfo
*LI
,
333 ScalarEvolution
*SE
) {
334 bool Changed
= false;
336 // Recurse depth-first through inner loops.
337 for (Loop
*SubLoop
: L
.getSubLoops())
338 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
340 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
344 /// Process all loops in the function, inner-most out.
345 static bool formLCSSAOnAllLoops(LoopInfo
*LI
, DominatorTree
&DT
,
346 ScalarEvolution
*SE
) {
347 bool Changed
= false;
349 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
354 struct LCSSAWrapperPass
: public FunctionPass
{
355 static char ID
; // Pass identification, replacement for typeid
356 LCSSAWrapperPass() : FunctionPass(ID
) {
357 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
360 // Cached analysis information for the current function.
365 bool runOnFunction(Function
&F
) override
;
366 void verifyAnalysis() const override
{
367 // This check is very expensive. On the loop intensive compiles it may cause
368 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
369 // always does limited form of the LCSSA verification. Similar reasoning
370 // was used for the LoopInfo verifier.
371 if (VerifyLoopLCSSA
) {
374 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
376 "LCSSA form is broken!");
380 /// This transformation requires natural loop information & requires that
381 /// loop preheaders be inserted into the CFG. It maintains both of these,
382 /// as well as the CFG. It also requires dominator information.
383 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
384 AU
.setPreservesCFG();
386 AU
.addRequired
<DominatorTreeWrapperPass
>();
387 AU
.addRequired
<LoopInfoWrapperPass
>();
388 AU
.addPreservedID(LoopSimplifyID
);
389 AU
.addPreserved
<AAResultsWrapperPass
>();
390 AU
.addPreserved
<BasicAAWrapperPass
>();
391 AU
.addPreserved
<GlobalsAAWrapperPass
>();
392 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
393 AU
.addPreserved
<SCEVAAWrapperPass
>();
395 // This is needed to perform LCSSA verification inside LPPassManager
396 AU
.addRequired
<LCSSAVerificationPass
>();
397 AU
.addPreserved
<LCSSAVerificationPass
>();
402 char LCSSAWrapperPass::ID
= 0;
403 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
405 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
406 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
407 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
408 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
411 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
412 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
414 /// Transform \p F into loop-closed SSA form.
415 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
416 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
417 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
418 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
419 SE
= SEWP
? &SEWP
->getSE() : nullptr;
421 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
424 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
425 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
426 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
427 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
428 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
429 return PreservedAnalyses::all();
431 PreservedAnalyses PA
;
432 PA
.preserveSet
<CFGAnalyses
>();
433 PA
.preserve
<BasicAA
>();
434 PA
.preserve
<GlobalsAA
>();
435 PA
.preserve
<SCEVAA
>();
436 PA
.preserve
<ScalarEvolutionAnalysis
>();