Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / LCSSA.cpp
blob089f2b5f3b181166f3c63aaf1d941765a52cf834
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 using namespace llvm;
50 #define DEBUG_TYPE "lcssa"
52 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
54 #ifdef EXPENSIVE_CHECKS
55 static bool VerifyLoopLCSSA = true;
56 #else
57 static bool VerifyLoopLCSSA = false;
58 #endif
59 static cl::opt<bool,true>
60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
61 cl::desc("Verify loop lcssa form (time consuming)"));
63 /// Return true if the specified block is in the list.
64 static bool isExitBlock(BasicBlock *BB,
65 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
66 return is_contained(ExitBlocks, BB);
69 /// For every instruction from the worklist, check to see if it has any uses
70 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
71 /// rewrite the uses.
72 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
73 DominatorTree &DT, LoopInfo &LI) {
74 SmallVector<Use *, 16> UsesToRewrite;
75 SmallSetVector<PHINode *, 16> PHIsToRemove;
76 PredIteratorCache PredCache;
77 bool Changed = false;
79 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
80 // instructions within the same loops, computing the exit blocks is
81 // expensive, and we're not mutating the loop structure.
82 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
84 while (!Worklist.empty()) {
85 UsesToRewrite.clear();
87 Instruction *I = Worklist.pop_back_val();
88 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
89 BasicBlock *InstBB = I->getParent();
90 Loop *L = LI.getLoopFor(InstBB);
91 assert(L && "Instruction belongs to a BB that's not part of a loop");
92 if (!LoopExitBlocks.count(L))
93 L->getExitBlocks(LoopExitBlocks[L]);
94 assert(LoopExitBlocks.count(L));
95 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
97 if (ExitBlocks.empty())
98 continue;
100 for (Use &U : I->uses()) {
101 Instruction *User = cast<Instruction>(U.getUser());
102 BasicBlock *UserBB = User->getParent();
103 if (auto *PN = dyn_cast<PHINode>(User))
104 UserBB = PN->getIncomingBlock(U);
106 if (InstBB != UserBB && !L->contains(UserBB))
107 UsesToRewrite.push_back(&U);
110 // If there are no uses outside the loop, exit with no change.
111 if (UsesToRewrite.empty())
112 continue;
114 ++NumLCSSA; // We are applying the transformation
116 // Invoke instructions are special in that their result value is not
117 // available along their unwind edge. The code below tests to see whether
118 // DomBB dominates the value, so adjust DomBB to the normal destination
119 // block, which is effectively where the value is first usable.
120 BasicBlock *DomBB = InstBB;
121 if (auto *Inv = dyn_cast<InvokeInst>(I))
122 DomBB = Inv->getNormalDest();
124 DomTreeNode *DomNode = DT.getNode(DomBB);
126 SmallVector<PHINode *, 16> AddedPHIs;
127 SmallVector<PHINode *, 8> PostProcessPHIs;
129 SmallVector<PHINode *, 4> InsertedPHIs;
130 SSAUpdater SSAUpdate(&InsertedPHIs);
131 SSAUpdate.Initialize(I->getType(), I->getName());
133 // Insert the LCSSA phi's into all of the exit blocks dominated by the
134 // value, and add them to the Phi's map.
135 for (BasicBlock *ExitBB : ExitBlocks) {
136 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
137 continue;
139 // If we already inserted something for this BB, don't reprocess it.
140 if (SSAUpdate.HasValueForBlock(ExitBB))
141 continue;
143 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
144 I->getName() + ".lcssa", &ExitBB->front());
146 // Add inputs from inside the loop for this PHI.
147 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
148 PN->addIncoming(I, Pred);
150 // If the exit block has a predecessor not within the loop, arrange for
151 // the incoming value use corresponding to that predecessor to be
152 // rewritten in terms of a different LCSSA PHI.
153 if (!L->contains(Pred))
154 UsesToRewrite.push_back(
155 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
156 PN->getNumIncomingValues() - 1)));
159 AddedPHIs.push_back(PN);
161 // Remember that this phi makes the value alive in this block.
162 SSAUpdate.AddAvailableValue(ExitBB, PN);
164 // LoopSimplify might fail to simplify some loops (e.g. when indirect
165 // branches are involved). In such situations, it might happen that an
166 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
167 // create PHIs in such an exit block, we are also inserting PHIs into L2's
168 // header. This could break LCSSA form for L2 because these inserted PHIs
169 // can also have uses outside of L2. Remember all PHIs in such situation
170 // as to revisit than later on. FIXME: Remove this if indirectbr support
171 // into LoopSimplify gets improved.
172 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
173 if (!L->contains(OtherLoop))
174 PostProcessPHIs.push_back(PN);
177 // Rewrite all uses outside the loop in terms of the new PHIs we just
178 // inserted.
179 for (Use *UseToRewrite : UsesToRewrite) {
180 // If this use is in an exit block, rewrite to use the newly inserted PHI.
181 // This is required for correctness because SSAUpdate doesn't handle uses
182 // in the same block. It assumes the PHI we inserted is at the end of the
183 // block.
184 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
185 BasicBlock *UserBB = User->getParent();
186 if (auto *PN = dyn_cast<PHINode>(User))
187 UserBB = PN->getIncomingBlock(*UseToRewrite);
189 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
190 // Tell the VHs that the uses changed. This updates SCEV's caches.
191 if (UseToRewrite->get()->hasValueHandle())
192 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
193 UseToRewrite->set(&UserBB->front());
194 continue;
197 // Otherwise, do full PHI insertion.
198 SSAUpdate.RewriteUse(*UseToRewrite);
201 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
202 // to post-process them to keep LCSSA form.
203 for (PHINode *InsertedPN : InsertedPHIs) {
204 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
205 if (!L->contains(OtherLoop))
206 PostProcessPHIs.push_back(InsertedPN);
209 // Post process PHI instructions that were inserted into another disjoint
210 // loop and update their exits properly.
211 for (auto *PostProcessPN : PostProcessPHIs)
212 if (!PostProcessPN->use_empty())
213 Worklist.push_back(PostProcessPN);
215 // Keep track of PHI nodes that we want to remove because they did not have
216 // any uses rewritten.
217 for (PHINode *PN : AddedPHIs)
218 if (PN->use_empty())
219 PHIsToRemove.insert(PN);
221 Changed = true;
223 // Remove PHI nodes that did not have any uses rewritten.
224 for (PHINode *PN : PHIsToRemove) {
225 assert (PN->use_empty() && "Trying to remove a phi with uses.");
226 PN->eraseFromParent();
228 return Changed;
231 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
232 static void computeBlocksDominatingExits(
233 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
234 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
235 SmallVector<BasicBlock *, 8> BBWorklist;
237 // We start from the exit blocks, as every block trivially dominates itself
238 // (not strictly).
239 for (BasicBlock *BB : ExitBlocks)
240 BBWorklist.push_back(BB);
242 while (!BBWorklist.empty()) {
243 BasicBlock *BB = BBWorklist.pop_back_val();
245 // Check if this is a loop header. If this is the case, we're done.
246 if (L.getHeader() == BB)
247 continue;
249 // Otherwise, add its immediate predecessor in the dominator tree to the
250 // worklist, unless we visited it already.
251 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
253 // Exit blocks can have an immediate dominator not beloinging to the
254 // loop. For an exit block to be immediately dominated by another block
255 // outside the loop, it implies not all paths from that dominator, to the
256 // exit block, go through the loop.
257 // Example:
259 // |---- A
260 // | |
261 // | B<--
262 // | | |
263 // |---> C --
264 // |
265 // D
267 // C is the exit block of the loop and it's immediately dominated by A,
268 // which doesn't belong to the loop.
269 if (!L.contains(IDomBB))
270 continue;
272 if (BlocksDominatingExits.insert(IDomBB))
273 BBWorklist.push_back(IDomBB);
277 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
278 ScalarEvolution *SE) {
279 bool Changed = false;
281 SmallVector<BasicBlock *, 8> ExitBlocks;
282 L.getExitBlocks(ExitBlocks);
283 if (ExitBlocks.empty())
284 return false;
286 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
288 // We want to avoid use-scanning leveraging dominance informations.
289 // If a block doesn't dominate any of the loop exits, the none of the values
290 // defined in the loop can be used outside.
291 // We compute the set of blocks fullfilling the conditions in advance
292 // walking the dominator tree upwards until we hit a loop header.
293 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
295 SmallVector<Instruction *, 8> Worklist;
297 // Look at all the instructions in the loop, checking to see if they have uses
298 // outside the loop. If so, put them into the worklist to rewrite those uses.
299 for (BasicBlock *BB : BlocksDominatingExits) {
300 for (Instruction &I : *BB) {
301 // Reject two common cases fast: instructions with no uses (like stores)
302 // and instructions with one use that is in the same block as this.
303 if (I.use_empty() ||
304 (I.hasOneUse() && I.user_back()->getParent() == BB &&
305 !isa<PHINode>(I.user_back())))
306 continue;
308 // Tokens cannot be used in PHI nodes, so we skip over them.
309 // We can run into tokens which are live out of a loop with catchswitch
310 // instructions in Windows EH if the catchswitch has one catchpad which
311 // is inside the loop and another which is not.
312 if (I.getType()->isTokenTy())
313 continue;
315 Worklist.push_back(&I);
318 Changed = formLCSSAForInstructions(Worklist, DT, *LI);
320 // If we modified the code, remove any caches about the loop from SCEV to
321 // avoid dangling entries.
322 // FIXME: This is a big hammer, can we clear the cache more selectively?
323 if (SE && Changed)
324 SE->forgetLoop(&L);
326 assert(L.isLCSSAForm(DT));
328 return Changed;
331 /// Process a loop nest depth first.
332 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
333 ScalarEvolution *SE) {
334 bool Changed = false;
336 // Recurse depth-first through inner loops.
337 for (Loop *SubLoop : L.getSubLoops())
338 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
340 Changed |= formLCSSA(L, DT, LI, SE);
341 return Changed;
344 /// Process all loops in the function, inner-most out.
345 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
346 ScalarEvolution *SE) {
347 bool Changed = false;
348 for (auto &L : *LI)
349 Changed |= formLCSSARecursively(*L, DT, LI, SE);
350 return Changed;
353 namespace {
354 struct LCSSAWrapperPass : public FunctionPass {
355 static char ID; // Pass identification, replacement for typeid
356 LCSSAWrapperPass() : FunctionPass(ID) {
357 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
360 // Cached analysis information for the current function.
361 DominatorTree *DT;
362 LoopInfo *LI;
363 ScalarEvolution *SE;
365 bool runOnFunction(Function &F) override;
366 void verifyAnalysis() const override {
367 // This check is very expensive. On the loop intensive compiles it may cause
368 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
369 // always does limited form of the LCSSA verification. Similar reasoning
370 // was used for the LoopInfo verifier.
371 if (VerifyLoopLCSSA) {
372 assert(all_of(*LI,
373 [&](Loop *L) {
374 return L->isRecursivelyLCSSAForm(*DT, *LI);
375 }) &&
376 "LCSSA form is broken!");
380 /// This transformation requires natural loop information & requires that
381 /// loop preheaders be inserted into the CFG. It maintains both of these,
382 /// as well as the CFG. It also requires dominator information.
383 void getAnalysisUsage(AnalysisUsage &AU) const override {
384 AU.setPreservesCFG();
386 AU.addRequired<DominatorTreeWrapperPass>();
387 AU.addRequired<LoopInfoWrapperPass>();
388 AU.addPreservedID(LoopSimplifyID);
389 AU.addPreserved<AAResultsWrapperPass>();
390 AU.addPreserved<BasicAAWrapperPass>();
391 AU.addPreserved<GlobalsAAWrapperPass>();
392 AU.addPreserved<ScalarEvolutionWrapperPass>();
393 AU.addPreserved<SCEVAAWrapperPass>();
395 // This is needed to perform LCSSA verification inside LPPassManager
396 AU.addRequired<LCSSAVerificationPass>();
397 AU.addPreserved<LCSSAVerificationPass>();
402 char LCSSAWrapperPass::ID = 0;
403 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
404 false, false)
405 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
406 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
407 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
408 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
409 false, false)
411 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
412 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
414 /// Transform \p F into loop-closed SSA form.
415 bool LCSSAWrapperPass::runOnFunction(Function &F) {
416 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
417 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
418 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
419 SE = SEWP ? &SEWP->getSE() : nullptr;
421 return formLCSSAOnAllLoops(LI, *DT, SE);
424 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
425 auto &LI = AM.getResult<LoopAnalysis>(F);
426 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
427 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
428 if (!formLCSSAOnAllLoops(&LI, DT, SE))
429 return PreservedAnalyses::all();
431 PreservedAnalyses PA;
432 PA.preserveSet<CFGAnalyses>();
433 PA.preserve<BasicAA>();
434 PA.preserve<GlobalsAA>();
435 PA.preserve<SCEVAA>();
436 PA.preserve<ScalarEvolutionAnalysis>();
437 return PA;