Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / Local.cpp
blob21412dcf68e41fbfd2b64d2e94bd998667d1a734
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 using namespace llvm;
53 using namespace llvm::PatternMatch;
55 #define DEBUG_TYPE "local"
57 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
59 //===----------------------------------------------------------------------===//
60 // Local constant propagation.
63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
64 /// constant value, convert it into an unconditional branch to the constant
65 /// destination. This is a nontrivial operation because the successors of this
66 /// basic block must have their PHI nodes updated.
67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
68 /// conditions and indirectbr addresses this might make dead if
69 /// DeleteDeadConditions is true.
70 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
71 const TargetLibraryInfo *TLI) {
72 TerminatorInst *T = BB->getTerminator();
73 IRBuilder<> Builder(T);
75 // Branch - See if we are conditional jumping on constant
76 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
77 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
78 BasicBlock *Dest1 = BI->getSuccessor(0);
79 BasicBlock *Dest2 = BI->getSuccessor(1);
81 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
82 // Are we branching on constant?
83 // YES. Change to unconditional branch...
84 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
85 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
87 //cerr << "Function: " << T->getParent()->getParent()
88 // << "\nRemoving branch from " << T->getParent()
89 // << "\n\nTo: " << OldDest << endl;
91 // Let the basic block know that we are letting go of it. Based on this,
92 // it will adjust it's PHI nodes.
93 OldDest->removePredecessor(BB);
95 // Replace the conditional branch with an unconditional one.
96 Builder.CreateBr(Destination);
97 BI->eraseFromParent();
98 return true;
101 if (Dest2 == Dest1) { // Conditional branch to same location?
102 // This branch matches something like this:
103 // br bool %cond, label %Dest, label %Dest
104 // and changes it into: br label %Dest
106 // Let the basic block know that we are letting go of one copy of it.
107 assert(BI->getParent() && "Terminator not inserted in block!");
108 Dest1->removePredecessor(BI->getParent());
110 // Replace the conditional branch with an unconditional one.
111 Builder.CreateBr(Dest1);
112 Value *Cond = BI->getCondition();
113 BI->eraseFromParent();
114 if (DeleteDeadConditions)
115 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
116 return true;
118 return false;
121 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
122 // If we are switching on a constant, we can convert the switch to an
123 // unconditional branch.
124 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
125 BasicBlock *DefaultDest = SI->getDefaultDest();
126 BasicBlock *TheOnlyDest = DefaultDest;
128 // If the default is unreachable, ignore it when searching for TheOnlyDest.
129 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
130 SI->getNumCases() > 0) {
131 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
134 // Figure out which case it goes to.
135 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
136 // Found case matching a constant operand?
137 if (i->getCaseValue() == CI) {
138 TheOnlyDest = i->getCaseSuccessor();
139 break;
142 // Check to see if this branch is going to the same place as the default
143 // dest. If so, eliminate it as an explicit compare.
144 if (i->getCaseSuccessor() == DefaultDest) {
145 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
146 unsigned NCases = SI->getNumCases();
147 // Fold the case metadata into the default if there will be any branches
148 // left, unless the metadata doesn't match the switch.
149 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
150 // Collect branch weights into a vector.
151 SmallVector<uint32_t, 8> Weights;
152 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
153 ++MD_i) {
154 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
155 Weights.push_back(CI->getValue().getZExtValue());
157 // Merge weight of this case to the default weight.
158 unsigned idx = i->getCaseIndex();
159 Weights[0] += Weights[idx+1];
160 // Remove weight for this case.
161 std::swap(Weights[idx+1], Weights.back());
162 Weights.pop_back();
163 SI->setMetadata(LLVMContext::MD_prof,
164 MDBuilder(BB->getContext()).
165 createBranchWeights(Weights));
167 // Remove this entry.
168 DefaultDest->removePredecessor(SI->getParent());
169 i = SI->removeCase(i);
170 e = SI->case_end();
171 continue;
174 // Otherwise, check to see if the switch only branches to one destination.
175 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
176 // destinations.
177 if (i->getCaseSuccessor() != TheOnlyDest)
178 TheOnlyDest = nullptr;
180 // Increment this iterator as we haven't removed the case.
181 ++i;
184 if (CI && !TheOnlyDest) {
185 // Branching on a constant, but not any of the cases, go to the default
186 // successor.
187 TheOnlyDest = SI->getDefaultDest();
190 // If we found a single destination that we can fold the switch into, do so
191 // now.
192 if (TheOnlyDest) {
193 // Insert the new branch.
194 Builder.CreateBr(TheOnlyDest);
195 BasicBlock *BB = SI->getParent();
197 // Remove entries from PHI nodes which we no longer branch to...
198 for (BasicBlock *Succ : SI->successors()) {
199 // Found case matching a constant operand?
200 if (Succ == TheOnlyDest)
201 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
202 else
203 Succ->removePredecessor(BB);
206 // Delete the old switch.
207 Value *Cond = SI->getCondition();
208 SI->eraseFromParent();
209 if (DeleteDeadConditions)
210 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
211 return true;
214 if (SI->getNumCases() == 1) {
215 // Otherwise, we can fold this switch into a conditional branch
216 // instruction if it has only one non-default destination.
217 auto FirstCase = *SI->case_begin();
218 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
219 FirstCase.getCaseValue(), "cond");
221 // Insert the new branch.
222 BranchInst *NewBr = Builder.CreateCondBr(Cond,
223 FirstCase.getCaseSuccessor(),
224 SI->getDefaultDest());
225 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
226 if (MD && MD->getNumOperands() == 3) {
227 ConstantInt *SICase =
228 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
229 ConstantInt *SIDef =
230 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
231 assert(SICase && SIDef);
232 // The TrueWeight should be the weight for the single case of SI.
233 NewBr->setMetadata(LLVMContext::MD_prof,
234 MDBuilder(BB->getContext()).
235 createBranchWeights(SICase->getValue().getZExtValue(),
236 SIDef->getValue().getZExtValue()));
239 // Update make.implicit metadata to the newly-created conditional branch.
240 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
241 if (MakeImplicitMD)
242 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
244 // Delete the old switch.
245 SI->eraseFromParent();
246 return true;
248 return false;
251 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
252 // indirectbr blockaddress(@F, @BB) -> br label @BB
253 if (BlockAddress *BA =
254 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
255 BasicBlock *TheOnlyDest = BA->getBasicBlock();
256 // Insert the new branch.
257 Builder.CreateBr(TheOnlyDest);
259 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
260 if (IBI->getDestination(i) == TheOnlyDest)
261 TheOnlyDest = nullptr;
262 else
263 IBI->getDestination(i)->removePredecessor(IBI->getParent());
265 Value *Address = IBI->getAddress();
266 IBI->eraseFromParent();
267 if (DeleteDeadConditions)
268 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
270 // If we didn't find our destination in the IBI successor list, then we
271 // have undefined behavior. Replace the unconditional branch with an
272 // 'unreachable' instruction.
273 if (TheOnlyDest) {
274 BB->getTerminator()->eraseFromParent();
275 new UnreachableInst(BB->getContext(), BB);
278 return true;
282 return false;
286 //===----------------------------------------------------------------------===//
287 // Local dead code elimination.
290 /// isInstructionTriviallyDead - Return true if the result produced by the
291 /// instruction is not used, and the instruction has no side effects.
293 bool llvm::isInstructionTriviallyDead(Instruction *I,
294 const TargetLibraryInfo *TLI) {
295 if (!I->use_empty())
296 return false;
297 return wouldInstructionBeTriviallyDead(I, TLI);
300 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
301 const TargetLibraryInfo *TLI) {
302 if (isa<TerminatorInst>(I))
303 return false;
305 // We don't want the landingpad-like instructions removed by anything this
306 // general.
307 if (I->isEHPad())
308 return false;
310 // We don't want debug info removed by anything this general, unless
311 // debug info is empty.
312 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
313 if (DDI->getAddress())
314 return false;
315 return true;
317 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
318 if (DVI->getValue())
319 return false;
320 return true;
323 if (!I->mayHaveSideEffects())
324 return true;
326 // Special case intrinsics that "may have side effects" but can be deleted
327 // when dead.
328 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
329 // Safe to delete llvm.stacksave if dead.
330 if (II->getIntrinsicID() == Intrinsic::stacksave)
331 return true;
333 // Lifetime intrinsics are dead when their right-hand is undef.
334 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
335 II->getIntrinsicID() == Intrinsic::lifetime_end)
336 return isa<UndefValue>(II->getArgOperand(1));
338 // Assumptions are dead if their condition is trivially true. Guards on
339 // true are operationally no-ops. In the future we can consider more
340 // sophisticated tradeoffs for guards considering potential for check
341 // widening, but for now we keep things simple.
342 if (II->getIntrinsicID() == Intrinsic::assume ||
343 II->getIntrinsicID() == Intrinsic::experimental_guard) {
344 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
345 return !Cond->isZero();
347 return false;
351 if (isAllocLikeFn(I, TLI))
352 return true;
354 if (CallInst *CI = isFreeCall(I, TLI))
355 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
356 return C->isNullValue() || isa<UndefValue>(C);
358 if (CallSite CS = CallSite(I))
359 if (isMathLibCallNoop(CS, TLI))
360 return true;
362 return false;
365 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
366 /// trivially dead instruction, delete it. If that makes any of its operands
367 /// trivially dead, delete them too, recursively. Return true if any
368 /// instructions were deleted.
369 bool
370 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
371 const TargetLibraryInfo *TLI) {
372 Instruction *I = dyn_cast<Instruction>(V);
373 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
374 return false;
376 SmallVector<Instruction*, 16> DeadInsts;
377 DeadInsts.push_back(I);
379 do {
380 I = DeadInsts.pop_back_val();
382 // Null out all of the instruction's operands to see if any operand becomes
383 // dead as we go.
384 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
385 Value *OpV = I->getOperand(i);
386 I->setOperand(i, nullptr);
388 if (!OpV->use_empty()) continue;
390 // If the operand is an instruction that became dead as we nulled out the
391 // operand, and if it is 'trivially' dead, delete it in a future loop
392 // iteration.
393 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
394 if (isInstructionTriviallyDead(OpI, TLI))
395 DeadInsts.push_back(OpI);
398 I->eraseFromParent();
399 } while (!DeadInsts.empty());
401 return true;
404 /// areAllUsesEqual - Check whether the uses of a value are all the same.
405 /// This is similar to Instruction::hasOneUse() except this will also return
406 /// true when there are no uses or multiple uses that all refer to the same
407 /// value.
408 static bool areAllUsesEqual(Instruction *I) {
409 Value::user_iterator UI = I->user_begin();
410 Value::user_iterator UE = I->user_end();
411 if (UI == UE)
412 return true;
414 User *TheUse = *UI;
415 for (++UI; UI != UE; ++UI) {
416 if (*UI != TheUse)
417 return false;
419 return true;
422 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
423 /// dead PHI node, due to being a def-use chain of single-use nodes that
424 /// either forms a cycle or is terminated by a trivially dead instruction,
425 /// delete it. If that makes any of its operands trivially dead, delete them
426 /// too, recursively. Return true if a change was made.
427 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
428 const TargetLibraryInfo *TLI) {
429 SmallPtrSet<Instruction*, 4> Visited;
430 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
431 I = cast<Instruction>(*I->user_begin())) {
432 if (I->use_empty())
433 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
435 // If we find an instruction more than once, we're on a cycle that
436 // won't prove fruitful.
437 if (!Visited.insert(I).second) {
438 // Break the cycle and delete the instruction and its operands.
439 I->replaceAllUsesWith(UndefValue::get(I->getType()));
440 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
441 return true;
444 return false;
447 static bool
448 simplifyAndDCEInstruction(Instruction *I,
449 SmallSetVector<Instruction *, 16> &WorkList,
450 const DataLayout &DL,
451 const TargetLibraryInfo *TLI) {
452 if (isInstructionTriviallyDead(I, TLI)) {
453 // Null out all of the instruction's operands to see if any operand becomes
454 // dead as we go.
455 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
456 Value *OpV = I->getOperand(i);
457 I->setOperand(i, nullptr);
459 if (!OpV->use_empty() || I == OpV)
460 continue;
462 // If the operand is an instruction that became dead as we nulled out the
463 // operand, and if it is 'trivially' dead, delete it in a future loop
464 // iteration.
465 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
466 if (isInstructionTriviallyDead(OpI, TLI))
467 WorkList.insert(OpI);
470 I->eraseFromParent();
472 return true;
475 if (Value *SimpleV = SimplifyInstruction(I, DL)) {
476 // Add the users to the worklist. CAREFUL: an instruction can use itself,
477 // in the case of a phi node.
478 for (User *U : I->users()) {
479 if (U != I) {
480 WorkList.insert(cast<Instruction>(U));
484 // Replace the instruction with its simplified value.
485 bool Changed = false;
486 if (!I->use_empty()) {
487 I->replaceAllUsesWith(SimpleV);
488 Changed = true;
490 if (isInstructionTriviallyDead(I, TLI)) {
491 I->eraseFromParent();
492 Changed = true;
494 return Changed;
496 return false;
499 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
500 /// simplify any instructions in it and recursively delete dead instructions.
502 /// This returns true if it changed the code, note that it can delete
503 /// instructions in other blocks as well in this block.
504 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
505 const TargetLibraryInfo *TLI) {
506 bool MadeChange = false;
507 const DataLayout &DL = BB->getModule()->getDataLayout();
509 #ifndef NDEBUG
510 // In debug builds, ensure that the terminator of the block is never replaced
511 // or deleted by these simplifications. The idea of simplification is that it
512 // cannot introduce new instructions, and there is no way to replace the
513 // terminator of a block without introducing a new instruction.
514 AssertingVH<Instruction> TerminatorVH(&BB->back());
515 #endif
517 SmallSetVector<Instruction *, 16> WorkList;
518 // Iterate over the original function, only adding insts to the worklist
519 // if they actually need to be revisited. This avoids having to pre-init
520 // the worklist with the entire function's worth of instructions.
521 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
522 BI != E;) {
523 assert(!BI->isTerminator());
524 Instruction *I = &*BI;
525 ++BI;
527 // We're visiting this instruction now, so make sure it's not in the
528 // worklist from an earlier visit.
529 if (!WorkList.count(I))
530 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
533 while (!WorkList.empty()) {
534 Instruction *I = WorkList.pop_back_val();
535 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
537 return MadeChange;
540 //===----------------------------------------------------------------------===//
541 // Control Flow Graph Restructuring.
545 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
546 /// method is called when we're about to delete Pred as a predecessor of BB. If
547 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
549 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
550 /// nodes that collapse into identity values. For example, if we have:
551 /// x = phi(1, 0, 0, 0)
552 /// y = and x, z
554 /// .. and delete the predecessor corresponding to the '1', this will attempt to
555 /// recursively fold the and to 0.
556 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
557 // This only adjusts blocks with PHI nodes.
558 if (!isa<PHINode>(BB->begin()))
559 return;
561 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
562 // them down. This will leave us with single entry phi nodes and other phis
563 // that can be removed.
564 BB->removePredecessor(Pred, true);
566 WeakTrackingVH PhiIt = &BB->front();
567 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
568 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
569 Value *OldPhiIt = PhiIt;
571 if (!recursivelySimplifyInstruction(PN))
572 continue;
574 // If recursive simplification ended up deleting the next PHI node we would
575 // iterate to, then our iterator is invalid, restart scanning from the top
576 // of the block.
577 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
582 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
583 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
584 /// between them, moving the instructions in the predecessor into DestBB and
585 /// deleting the predecessor block.
587 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
588 // If BB has single-entry PHI nodes, fold them.
589 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
590 Value *NewVal = PN->getIncomingValue(0);
591 // Replace self referencing PHI with undef, it must be dead.
592 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
593 PN->replaceAllUsesWith(NewVal);
594 PN->eraseFromParent();
597 BasicBlock *PredBB = DestBB->getSinglePredecessor();
598 assert(PredBB && "Block doesn't have a single predecessor!");
600 // Zap anything that took the address of DestBB. Not doing this will give the
601 // address an invalid value.
602 if (DestBB->hasAddressTaken()) {
603 BlockAddress *BA = BlockAddress::get(DestBB);
604 Constant *Replacement =
605 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
606 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
607 BA->getType()));
608 BA->destroyConstant();
611 // Anything that branched to PredBB now branches to DestBB.
612 PredBB->replaceAllUsesWith(DestBB);
614 // Splice all the instructions from PredBB to DestBB.
615 PredBB->getTerminator()->eraseFromParent();
616 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
618 // If the PredBB is the entry block of the function, move DestBB up to
619 // become the entry block after we erase PredBB.
620 if (PredBB == &DestBB->getParent()->getEntryBlock())
621 DestBB->moveAfter(PredBB);
623 if (DT) {
624 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
625 DT->changeImmediateDominator(DestBB, PredBBIDom);
626 DT->eraseNode(PredBB);
628 // Nuke BB.
629 PredBB->eraseFromParent();
632 /// CanMergeValues - Return true if we can choose one of these values to use
633 /// in place of the other. Note that we will always choose the non-undef
634 /// value to keep.
635 static bool CanMergeValues(Value *First, Value *Second) {
636 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
639 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
640 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
642 /// Assumption: Succ is the single successor for BB.
644 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
645 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
647 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
648 << Succ->getName() << "\n");
649 // Shortcut, if there is only a single predecessor it must be BB and merging
650 // is always safe
651 if (Succ->getSinglePredecessor()) return true;
653 // Make a list of the predecessors of BB
654 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
656 // Look at all the phi nodes in Succ, to see if they present a conflict when
657 // merging these blocks
658 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
659 PHINode *PN = cast<PHINode>(I);
661 // If the incoming value from BB is again a PHINode in
662 // BB which has the same incoming value for *PI as PN does, we can
663 // merge the phi nodes and then the blocks can still be merged
664 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
665 if (BBPN && BBPN->getParent() == BB) {
666 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
667 BasicBlock *IBB = PN->getIncomingBlock(PI);
668 if (BBPreds.count(IBB) &&
669 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
670 PN->getIncomingValue(PI))) {
671 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
672 << Succ->getName() << " is conflicting with "
673 << BBPN->getName() << " with regard to common predecessor "
674 << IBB->getName() << "\n");
675 return false;
678 } else {
679 Value* Val = PN->getIncomingValueForBlock(BB);
680 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
681 // See if the incoming value for the common predecessor is equal to the
682 // one for BB, in which case this phi node will not prevent the merging
683 // of the block.
684 BasicBlock *IBB = PN->getIncomingBlock(PI);
685 if (BBPreds.count(IBB) &&
686 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
687 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
688 << Succ->getName() << " is conflicting with regard to common "
689 << "predecessor " << IBB->getName() << "\n");
690 return false;
696 return true;
699 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
700 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
702 /// \brief Determines the value to use as the phi node input for a block.
704 /// Select between \p OldVal any value that we know flows from \p BB
705 /// to a particular phi on the basis of which one (if either) is not
706 /// undef. Update IncomingValues based on the selected value.
708 /// \param OldVal The value we are considering selecting.
709 /// \param BB The block that the value flows in from.
710 /// \param IncomingValues A map from block-to-value for other phi inputs
711 /// that we have examined.
713 /// \returns the selected value.
714 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
715 IncomingValueMap &IncomingValues) {
716 if (!isa<UndefValue>(OldVal)) {
717 assert((!IncomingValues.count(BB) ||
718 IncomingValues.find(BB)->second == OldVal) &&
719 "Expected OldVal to match incoming value from BB!");
721 IncomingValues.insert(std::make_pair(BB, OldVal));
722 return OldVal;
725 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
726 if (It != IncomingValues.end()) return It->second;
728 return OldVal;
731 /// \brief Create a map from block to value for the operands of a
732 /// given phi.
734 /// Create a map from block to value for each non-undef value flowing
735 /// into \p PN.
737 /// \param PN The phi we are collecting the map for.
738 /// \param IncomingValues [out] The map from block to value for this phi.
739 static void gatherIncomingValuesToPhi(PHINode *PN,
740 IncomingValueMap &IncomingValues) {
741 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
742 BasicBlock *BB = PN->getIncomingBlock(i);
743 Value *V = PN->getIncomingValue(i);
745 if (!isa<UndefValue>(V))
746 IncomingValues.insert(std::make_pair(BB, V));
750 /// \brief Replace the incoming undef values to a phi with the values
751 /// from a block-to-value map.
753 /// \param PN The phi we are replacing the undefs in.
754 /// \param IncomingValues A map from block to value.
755 static void replaceUndefValuesInPhi(PHINode *PN,
756 const IncomingValueMap &IncomingValues) {
757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
758 Value *V = PN->getIncomingValue(i);
760 if (!isa<UndefValue>(V)) continue;
762 BasicBlock *BB = PN->getIncomingBlock(i);
763 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
764 if (It == IncomingValues.end()) continue;
766 PN->setIncomingValue(i, It->second);
770 /// \brief Replace a value flowing from a block to a phi with
771 /// potentially multiple instances of that value flowing from the
772 /// block's predecessors to the phi.
774 /// \param BB The block with the value flowing into the phi.
775 /// \param BBPreds The predecessors of BB.
776 /// \param PN The phi that we are updating.
777 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
778 const PredBlockVector &BBPreds,
779 PHINode *PN) {
780 Value *OldVal = PN->removeIncomingValue(BB, false);
781 assert(OldVal && "No entry in PHI for Pred BB!");
783 IncomingValueMap IncomingValues;
785 // We are merging two blocks - BB, and the block containing PN - and
786 // as a result we need to redirect edges from the predecessors of BB
787 // to go to the block containing PN, and update PN
788 // accordingly. Since we allow merging blocks in the case where the
789 // predecessor and successor blocks both share some predecessors,
790 // and where some of those common predecessors might have undef
791 // values flowing into PN, we want to rewrite those values to be
792 // consistent with the non-undef values.
794 gatherIncomingValuesToPhi(PN, IncomingValues);
796 // If this incoming value is one of the PHI nodes in BB, the new entries
797 // in the PHI node are the entries from the old PHI.
798 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
799 PHINode *OldValPN = cast<PHINode>(OldVal);
800 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
801 // Note that, since we are merging phi nodes and BB and Succ might
802 // have common predecessors, we could end up with a phi node with
803 // identical incoming branches. This will be cleaned up later (and
804 // will trigger asserts if we try to clean it up now, without also
805 // simplifying the corresponding conditional branch).
806 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
807 Value *PredVal = OldValPN->getIncomingValue(i);
808 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
809 IncomingValues);
811 // And add a new incoming value for this predecessor for the
812 // newly retargeted branch.
813 PN->addIncoming(Selected, PredBB);
815 } else {
816 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
817 // Update existing incoming values in PN for this
818 // predecessor of BB.
819 BasicBlock *PredBB = BBPreds[i];
820 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
821 IncomingValues);
823 // And add a new incoming value for this predecessor for the
824 // newly retargeted branch.
825 PN->addIncoming(Selected, PredBB);
829 replaceUndefValuesInPhi(PN, IncomingValues);
832 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
833 /// unconditional branch, and contains no instructions other than PHI nodes,
834 /// potential side-effect free intrinsics and the branch. If possible,
835 /// eliminate BB by rewriting all the predecessors to branch to the successor
836 /// block and return true. If we can't transform, return false.
837 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
838 assert(BB != &BB->getParent()->getEntryBlock() &&
839 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
841 // We can't eliminate infinite loops.
842 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
843 if (BB == Succ) return false;
845 // Check to see if merging these blocks would cause conflicts for any of the
846 // phi nodes in BB or Succ. If not, we can safely merge.
847 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
849 // Check for cases where Succ has multiple predecessors and a PHI node in BB
850 // has uses which will not disappear when the PHI nodes are merged. It is
851 // possible to handle such cases, but difficult: it requires checking whether
852 // BB dominates Succ, which is non-trivial to calculate in the case where
853 // Succ has multiple predecessors. Also, it requires checking whether
854 // constructing the necessary self-referential PHI node doesn't introduce any
855 // conflicts; this isn't too difficult, but the previous code for doing this
856 // was incorrect.
858 // Note that if this check finds a live use, BB dominates Succ, so BB is
859 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
860 // folding the branch isn't profitable in that case anyway.
861 if (!Succ->getSinglePredecessor()) {
862 BasicBlock::iterator BBI = BB->begin();
863 while (isa<PHINode>(*BBI)) {
864 for (Use &U : BBI->uses()) {
865 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
866 if (PN->getIncomingBlock(U) != BB)
867 return false;
868 } else {
869 return false;
872 ++BBI;
876 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
878 if (isa<PHINode>(Succ->begin())) {
879 // If there is more than one pred of succ, and there are PHI nodes in
880 // the successor, then we need to add incoming edges for the PHI nodes
882 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
884 // Loop over all of the PHI nodes in the successor of BB.
885 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
886 PHINode *PN = cast<PHINode>(I);
888 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
892 if (Succ->getSinglePredecessor()) {
893 // BB is the only predecessor of Succ, so Succ will end up with exactly
894 // the same predecessors BB had.
896 // Copy over any phi, debug or lifetime instruction.
897 BB->getTerminator()->eraseFromParent();
898 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
899 BB->getInstList());
900 } else {
901 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
902 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
903 assert(PN->use_empty() && "There shouldn't be any uses here!");
904 PN->eraseFromParent();
908 // If the unconditional branch we replaced contains llvm.loop metadata, we
909 // add the metadata to the branch instructions in the predecessors.
910 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
911 Instruction *TI = BB->getTerminator();
912 if (TI)
913 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
914 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
915 BasicBlock *Pred = *PI;
916 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
919 // Everything that jumped to BB now goes to Succ.
920 BB->replaceAllUsesWith(Succ);
921 if (!Succ->hasName()) Succ->takeName(BB);
922 BB->eraseFromParent(); // Delete the old basic block.
923 return true;
926 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
927 /// nodes in this block. This doesn't try to be clever about PHI nodes
928 /// which differ only in the order of the incoming values, but instcombine
929 /// orders them so it usually won't matter.
931 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
932 // This implementation doesn't currently consider undef operands
933 // specially. Theoretically, two phis which are identical except for
934 // one having an undef where the other doesn't could be collapsed.
936 struct PHIDenseMapInfo {
937 static PHINode *getEmptyKey() {
938 return DenseMapInfo<PHINode *>::getEmptyKey();
940 static PHINode *getTombstoneKey() {
941 return DenseMapInfo<PHINode *>::getTombstoneKey();
943 static unsigned getHashValue(PHINode *PN) {
944 // Compute a hash value on the operands. Instcombine will likely have
945 // sorted them, which helps expose duplicates, but we have to check all
946 // the operands to be safe in case instcombine hasn't run.
947 return static_cast<unsigned>(hash_combine(
948 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
949 hash_combine_range(PN->block_begin(), PN->block_end())));
951 static bool isEqual(PHINode *LHS, PHINode *RHS) {
952 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
953 RHS == getEmptyKey() || RHS == getTombstoneKey())
954 return LHS == RHS;
955 return LHS->isIdenticalTo(RHS);
959 // Set of unique PHINodes.
960 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
962 // Examine each PHI.
963 bool Changed = false;
964 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
965 auto Inserted = PHISet.insert(PN);
966 if (!Inserted.second) {
967 // A duplicate. Replace this PHI with its duplicate.
968 PN->replaceAllUsesWith(*Inserted.first);
969 PN->eraseFromParent();
970 Changed = true;
972 // The RAUW can change PHIs that we already visited. Start over from the
973 // beginning.
974 PHISet.clear();
975 I = BB->begin();
979 return Changed;
982 /// enforceKnownAlignment - If the specified pointer points to an object that
983 /// we control, modify the object's alignment to PrefAlign. This isn't
984 /// often possible though. If alignment is important, a more reliable approach
985 /// is to simply align all global variables and allocation instructions to
986 /// their preferred alignment from the beginning.
988 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
989 unsigned PrefAlign,
990 const DataLayout &DL) {
991 assert(PrefAlign > Align);
993 V = V->stripPointerCasts();
995 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
996 // TODO: ideally, computeKnownBits ought to have used
997 // AllocaInst::getAlignment() in its computation already, making
998 // the below max redundant. But, as it turns out,
999 // stripPointerCasts recurses through infinite layers of bitcasts,
1000 // while computeKnownBits is not allowed to traverse more than 6
1001 // levels.
1002 Align = std::max(AI->getAlignment(), Align);
1003 if (PrefAlign <= Align)
1004 return Align;
1006 // If the preferred alignment is greater than the natural stack alignment
1007 // then don't round up. This avoids dynamic stack realignment.
1008 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1009 return Align;
1010 AI->setAlignment(PrefAlign);
1011 return PrefAlign;
1014 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1015 // TODO: as above, this shouldn't be necessary.
1016 Align = std::max(GO->getAlignment(), Align);
1017 if (PrefAlign <= Align)
1018 return Align;
1020 // If there is a large requested alignment and we can, bump up the alignment
1021 // of the global. If the memory we set aside for the global may not be the
1022 // memory used by the final program then it is impossible for us to reliably
1023 // enforce the preferred alignment.
1024 if (!GO->canIncreaseAlignment())
1025 return Align;
1027 GO->setAlignment(PrefAlign);
1028 return PrefAlign;
1031 return Align;
1034 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1035 const DataLayout &DL,
1036 const Instruction *CxtI,
1037 AssumptionCache *AC,
1038 const DominatorTree *DT) {
1039 assert(V->getType()->isPointerTy() &&
1040 "getOrEnforceKnownAlignment expects a pointer!");
1042 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1043 unsigned TrailZ = Known.countMinTrailingZeros();
1045 // Avoid trouble with ridiculously large TrailZ values, such as
1046 // those computed from a null pointer.
1047 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1049 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1051 // LLVM doesn't support alignments larger than this currently.
1052 Align = std::min(Align, +Value::MaximumAlignment);
1054 if (PrefAlign > Align)
1055 Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1057 // We don't need to make any adjustment.
1058 return Align;
1061 ///===---------------------------------------------------------------------===//
1062 /// Dbg Intrinsic utilities
1065 /// See if there is a dbg.value intrinsic for DIVar before I.
1066 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1067 Instruction *I) {
1068 // Since we can't guarantee that the original dbg.declare instrinsic
1069 // is removed by LowerDbgDeclare(), we need to make sure that we are
1070 // not inserting the same dbg.value intrinsic over and over.
1071 llvm::BasicBlock::InstListType::iterator PrevI(I);
1072 if (PrevI != I->getParent()->getInstList().begin()) {
1073 --PrevI;
1074 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1075 if (DVI->getValue() == I->getOperand(0) &&
1076 DVI->getVariable() == DIVar &&
1077 DVI->getExpression() == DIExpr)
1078 return true;
1080 return false;
1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1084 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1085 DIExpression *DIExpr,
1086 PHINode *APN) {
1087 // Since we can't guarantee that the original dbg.declare instrinsic
1088 // is removed by LowerDbgDeclare(), we need to make sure that we are
1089 // not inserting the same dbg.value intrinsic over and over.
1090 SmallVector<DbgValueInst *, 1> DbgValues;
1091 findDbgValues(DbgValues, APN);
1092 for (auto *DVI : DbgValues) {
1093 assert(DVI->getValue() == APN);
1094 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1095 return true;
1097 return false;
1100 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1101 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1102 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1103 StoreInst *SI, DIBuilder &Builder) {
1104 assert(DII->isAddressOfVariable());
1105 auto *DIVar = DII->getVariable();
1106 assert(DIVar && "Missing variable");
1107 auto *DIExpr = DII->getExpression();
1108 Value *DV = SI->getOperand(0);
1110 // If an argument is zero extended then use argument directly. The ZExt
1111 // may be zapped by an optimization pass in future.
1112 Argument *ExtendedArg = nullptr;
1113 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1114 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1115 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1116 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1117 if (ExtendedArg) {
1118 // If this DII was already describing only a fragment of a variable, ensure
1119 // that fragment is appropriately narrowed here.
1120 // But if a fragment wasn't used, describe the value as the original
1121 // argument (rather than the zext or sext) so that it remains described even
1122 // if the sext/zext is optimized away. This widens the variable description,
1123 // leaving it up to the consumer to know how the smaller value may be
1124 // represented in a larger register.
1125 if (auto Fragment = DIExpr->getFragmentInfo()) {
1126 unsigned FragmentOffset = Fragment->OffsetInBits;
1127 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1128 DIExpr->elements_end() - 3);
1129 Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1130 Ops.push_back(FragmentOffset);
1131 const DataLayout &DL = DII->getModule()->getDataLayout();
1132 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1133 DIExpr = Builder.createExpression(Ops);
1135 DV = ExtendedArg;
1137 if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1138 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1139 SI);
1142 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1143 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1144 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1145 LoadInst *LI, DIBuilder &Builder) {
1146 auto *DIVar = DII->getVariable();
1147 auto *DIExpr = DII->getExpression();
1148 assert(DIVar && "Missing variable");
1150 if (LdStHasDebugValue(DIVar, DIExpr, LI))
1151 return;
1153 // We are now tracking the loaded value instead of the address. In the
1154 // future if multi-location support is added to the IR, it might be
1155 // preferable to keep tracking both the loaded value and the original
1156 // address in case the alloca can not be elided.
1157 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1158 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1159 DbgValue->insertAfter(LI);
1162 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1163 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1164 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1165 PHINode *APN, DIBuilder &Builder) {
1166 auto *DIVar = DII->getVariable();
1167 auto *DIExpr = DII->getExpression();
1168 assert(DIVar && "Missing variable");
1170 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1171 return;
1173 BasicBlock *BB = APN->getParent();
1174 auto InsertionPt = BB->getFirstInsertionPt();
1176 // The block may be a catchswitch block, which does not have a valid
1177 // insertion point.
1178 // FIXME: Insert dbg.value markers in the successors when appropriate.
1179 if (InsertionPt != BB->end())
1180 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1181 &*InsertionPt);
1184 /// Determine whether this alloca is either a VLA or an array.
1185 static bool isArray(AllocaInst *AI) {
1186 return AI->isArrayAllocation() ||
1187 AI->getType()->getElementType()->isArrayTy();
1190 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1191 /// of llvm.dbg.value intrinsics.
1192 bool llvm::LowerDbgDeclare(Function &F) {
1193 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1194 SmallVector<DbgDeclareInst *, 4> Dbgs;
1195 for (auto &FI : F)
1196 for (Instruction &BI : FI)
1197 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1198 Dbgs.push_back(DDI);
1200 if (Dbgs.empty())
1201 return false;
1203 for (auto &I : Dbgs) {
1204 DbgDeclareInst *DDI = I;
1205 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1206 // If this is an alloca for a scalar variable, insert a dbg.value
1207 // at each load and store to the alloca and erase the dbg.declare.
1208 // The dbg.values allow tracking a variable even if it is not
1209 // stored on the stack, while the dbg.declare can only describe
1210 // the stack slot (and at a lexical-scope granularity). Later
1211 // passes will attempt to elide the stack slot.
1212 if (AI && !isArray(AI)) {
1213 for (auto &AIUse : AI->uses()) {
1214 User *U = AIUse.getUser();
1215 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1216 if (AIUse.getOperandNo() == 1)
1217 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1218 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1219 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1220 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1221 // This is a call by-value or some other instruction that
1222 // takes a pointer to the variable. Insert a *value*
1223 // intrinsic that describes the alloca.
1224 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1225 DDI->getExpression(), DDI->getDebugLoc(),
1226 CI);
1229 DDI->eraseFromParent();
1232 return true;
1235 /// Finds all intrinsics declaring local variables as living in the memory that
1236 /// 'V' points to. This may include a mix of dbg.declare and
1237 /// dbg.addr intrinsics.
1238 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1239 auto *L = LocalAsMetadata::getIfExists(V);
1240 if (!L)
1241 return {};
1242 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1243 if (!MDV)
1244 return {};
1246 TinyPtrVector<DbgInfoIntrinsic *> Declares;
1247 for (User *U : MDV->users()) {
1248 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1249 if (DII->isAddressOfVariable())
1250 Declares.push_back(DII);
1253 return Declares;
1256 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1257 if (auto *L = LocalAsMetadata::getIfExists(V))
1258 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1259 for (User *U : MDV->users())
1260 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1261 DbgValues.push_back(DVI);
1264 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1265 Instruction *InsertBefore, DIBuilder &Builder,
1266 bool Deref, int Offset) {
1267 auto DbgAddrs = FindDbgAddrUses(Address);
1268 for (DbgInfoIntrinsic *DII : DbgAddrs) {
1269 DebugLoc Loc = DII->getDebugLoc();
1270 auto *DIVar = DII->getVariable();
1271 auto *DIExpr = DII->getExpression();
1272 assert(DIVar && "Missing variable");
1273 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
1274 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1275 // llvm.dbg.declare.
1276 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1277 if (DII == InsertBefore)
1278 InsertBefore = &*std::next(InsertBefore->getIterator());
1279 DII->eraseFromParent();
1281 return !DbgAddrs.empty();
1284 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1285 DIBuilder &Builder, bool Deref, int Offset) {
1286 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1287 Deref, Offset);
1290 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1291 DIBuilder &Builder, int Offset) {
1292 DebugLoc Loc = DVI->getDebugLoc();
1293 auto *DIVar = DVI->getVariable();
1294 auto *DIExpr = DVI->getExpression();
1295 assert(DIVar && "Missing variable");
1297 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1298 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1299 // it and give up.
1300 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1301 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1302 return;
1304 // Insert the offset immediately after the first deref.
1305 // We could just change the offset argument of dbg.value, but it's unsigned...
1306 if (Offset) {
1307 SmallVector<uint64_t, 4> Ops;
1308 Ops.push_back(dwarf::DW_OP_deref);
1309 DIExpression::appendOffset(Ops, Offset);
1310 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1311 DIExpr = Builder.createExpression(Ops);
1314 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1315 DVI->eraseFromParent();
1318 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1319 DIBuilder &Builder, int Offset) {
1320 if (auto *L = LocalAsMetadata::getIfExists(AI))
1321 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1322 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1323 Use &U = *UI++;
1324 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1325 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1329 void llvm::salvageDebugInfo(Instruction &I) {
1330 SmallVector<DbgValueInst *, 1> DbgValues;
1331 auto &M = *I.getModule();
1333 auto MDWrap = [&](Value *V) {
1334 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1337 if (isa<BitCastInst>(&I)) {
1338 findDbgValues(DbgValues, &I);
1339 for (auto *DVI : DbgValues) {
1340 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
1341 // to use the cast's source.
1342 DVI->setOperand(0, MDWrap(I.getOperand(0)));
1343 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1345 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1346 findDbgValues(DbgValues, &I);
1347 for (auto *DVI : DbgValues) {
1348 unsigned BitWidth =
1349 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
1350 APInt Offset(BitWidth, 0);
1351 // Rewrite a constant GEP into a DIExpression. Since we are performing
1352 // arithmetic to compute the variable's *value* in the DIExpression, we
1353 // need to mark the expression with a DW_OP_stack_value.
1354 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1355 auto *DIExpr = DVI->getExpression();
1356 DIBuilder DIB(M, /*AllowUnresolved*/ false);
1357 // GEP offsets are i32 and thus always fit into an int64_t.
1358 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
1359 Offset.getSExtValue(),
1360 DIExpression::WithStackValue);
1361 DVI->setOperand(0, MDWrap(I.getOperand(0)));
1362 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1363 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1366 } else if (isa<LoadInst>(&I)) {
1367 findDbgValues(DbgValues, &I);
1368 for (auto *DVI : DbgValues) {
1369 // Rewrite the load into DW_OP_deref.
1370 auto *DIExpr = DVI->getExpression();
1371 DIBuilder DIB(M, /*AllowUnresolved*/ false);
1372 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1373 DVI->setOperand(0, MDWrap(I.getOperand(0)));
1374 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1375 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1380 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1381 unsigned NumDeadInst = 0;
1382 // Delete the instructions backwards, as it has a reduced likelihood of
1383 // having to update as many def-use and use-def chains.
1384 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1385 while (EndInst != &BB->front()) {
1386 // Delete the next to last instruction.
1387 Instruction *Inst = &*--EndInst->getIterator();
1388 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1389 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1390 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1391 EndInst = Inst;
1392 continue;
1394 if (!isa<DbgInfoIntrinsic>(Inst))
1395 ++NumDeadInst;
1396 Inst->eraseFromParent();
1398 return NumDeadInst;
1401 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1402 bool PreserveLCSSA) {
1403 BasicBlock *BB = I->getParent();
1404 // Loop over all of the successors, removing BB's entry from any PHI
1405 // nodes.
1406 for (BasicBlock *Successor : successors(BB))
1407 Successor->removePredecessor(BB, PreserveLCSSA);
1409 // Insert a call to llvm.trap right before this. This turns the undefined
1410 // behavior into a hard fail instead of falling through into random code.
1411 if (UseLLVMTrap) {
1412 Function *TrapFn =
1413 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1414 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1415 CallTrap->setDebugLoc(I->getDebugLoc());
1417 new UnreachableInst(I->getContext(), I);
1419 // All instructions after this are dead.
1420 unsigned NumInstrsRemoved = 0;
1421 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1422 while (BBI != BBE) {
1423 if (!BBI->use_empty())
1424 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1425 BB->getInstList().erase(BBI++);
1426 ++NumInstrsRemoved;
1428 return NumInstrsRemoved;
1431 /// changeToCall - Convert the specified invoke into a normal call.
1432 static void changeToCall(InvokeInst *II) {
1433 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1434 SmallVector<OperandBundleDef, 1> OpBundles;
1435 II->getOperandBundlesAsDefs(OpBundles);
1436 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1437 "", II);
1438 NewCall->takeName(II);
1439 NewCall->setCallingConv(II->getCallingConv());
1440 NewCall->setAttributes(II->getAttributes());
1441 NewCall->setDebugLoc(II->getDebugLoc());
1442 II->replaceAllUsesWith(NewCall);
1444 // Follow the call by a branch to the normal destination.
1445 BranchInst::Create(II->getNormalDest(), II);
1447 // Update PHI nodes in the unwind destination
1448 II->getUnwindDest()->removePredecessor(II->getParent());
1449 II->eraseFromParent();
1452 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1453 BasicBlock *UnwindEdge) {
1454 BasicBlock *BB = CI->getParent();
1456 // Convert this function call into an invoke instruction. First, split the
1457 // basic block.
1458 BasicBlock *Split =
1459 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1461 // Delete the unconditional branch inserted by splitBasicBlock
1462 BB->getInstList().pop_back();
1464 // Create the new invoke instruction.
1465 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1466 SmallVector<OperandBundleDef, 1> OpBundles;
1468 CI->getOperandBundlesAsDefs(OpBundles);
1470 // Note: we're round tripping operand bundles through memory here, and that
1471 // can potentially be avoided with a cleverer API design that we do not have
1472 // as of this time.
1474 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1475 InvokeArgs, OpBundles, CI->getName(), BB);
1476 II->setDebugLoc(CI->getDebugLoc());
1477 II->setCallingConv(CI->getCallingConv());
1478 II->setAttributes(CI->getAttributes());
1480 // Make sure that anything using the call now uses the invoke! This also
1481 // updates the CallGraph if present, because it uses a WeakTrackingVH.
1482 CI->replaceAllUsesWith(II);
1484 // Delete the original call
1485 Split->getInstList().pop_front();
1486 return Split;
1489 static bool markAliveBlocks(Function &F,
1490 SmallPtrSetImpl<BasicBlock*> &Reachable) {
1492 SmallVector<BasicBlock*, 128> Worklist;
1493 BasicBlock *BB = &F.front();
1494 Worklist.push_back(BB);
1495 Reachable.insert(BB);
1496 bool Changed = false;
1497 do {
1498 BB = Worklist.pop_back_val();
1500 // Do a quick scan of the basic block, turning any obviously unreachable
1501 // instructions into LLVM unreachable insts. The instruction combining pass
1502 // canonicalizes unreachable insts into stores to null or undef.
1503 for (Instruction &I : *BB) {
1504 // Assumptions that are known to be false are equivalent to unreachable.
1505 // Also, if the condition is undefined, then we make the choice most
1506 // beneficial to the optimizer, and choose that to also be unreachable.
1507 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1508 if (II->getIntrinsicID() == Intrinsic::assume) {
1509 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1510 // Don't insert a call to llvm.trap right before the unreachable.
1511 changeToUnreachable(II, false);
1512 Changed = true;
1513 break;
1517 if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1518 // A call to the guard intrinsic bails out of the current compilation
1519 // unit if the predicate passed to it is false. If the predicate is a
1520 // constant false, then we know the guard will bail out of the current
1521 // compile unconditionally, so all code following it is dead.
1523 // Note: unlike in llvm.assume, it is not "obviously profitable" for
1524 // guards to treat `undef` as `false` since a guard on `undef` can
1525 // still be useful for widening.
1526 if (match(II->getArgOperand(0), m_Zero()))
1527 if (!isa<UnreachableInst>(II->getNextNode())) {
1528 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1529 Changed = true;
1530 break;
1535 if (auto *CI = dyn_cast<CallInst>(&I)) {
1536 Value *Callee = CI->getCalledValue();
1537 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1538 changeToUnreachable(CI, /*UseLLVMTrap=*/false);
1539 Changed = true;
1540 break;
1542 if (CI->doesNotReturn()) {
1543 // If we found a call to a no-return function, insert an unreachable
1544 // instruction after it. Make sure there isn't *already* one there
1545 // though.
1546 if (!isa<UnreachableInst>(CI->getNextNode())) {
1547 // Don't insert a call to llvm.trap right before the unreachable.
1548 changeToUnreachable(CI->getNextNode(), false);
1549 Changed = true;
1551 break;
1555 // Store to undef and store to null are undefined and used to signal that
1556 // they should be changed to unreachable by passes that can't modify the
1557 // CFG.
1558 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1559 // Don't touch volatile stores.
1560 if (SI->isVolatile()) continue;
1562 Value *Ptr = SI->getOperand(1);
1564 if (isa<UndefValue>(Ptr) ||
1565 (isa<ConstantPointerNull>(Ptr) &&
1566 SI->getPointerAddressSpace() == 0)) {
1567 changeToUnreachable(SI, true);
1568 Changed = true;
1569 break;
1574 TerminatorInst *Terminator = BB->getTerminator();
1575 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1576 // Turn invokes that call 'nounwind' functions into ordinary calls.
1577 Value *Callee = II->getCalledValue();
1578 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1579 changeToUnreachable(II, true);
1580 Changed = true;
1581 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1582 if (II->use_empty() && II->onlyReadsMemory()) {
1583 // jump to the normal destination branch.
1584 BranchInst::Create(II->getNormalDest(), II);
1585 II->getUnwindDest()->removePredecessor(II->getParent());
1586 II->eraseFromParent();
1587 } else
1588 changeToCall(II);
1589 Changed = true;
1591 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1592 // Remove catchpads which cannot be reached.
1593 struct CatchPadDenseMapInfo {
1594 static CatchPadInst *getEmptyKey() {
1595 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1597 static CatchPadInst *getTombstoneKey() {
1598 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1600 static unsigned getHashValue(CatchPadInst *CatchPad) {
1601 return static_cast<unsigned>(hash_combine_range(
1602 CatchPad->value_op_begin(), CatchPad->value_op_end()));
1604 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1605 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1606 RHS == getEmptyKey() || RHS == getTombstoneKey())
1607 return LHS == RHS;
1608 return LHS->isIdenticalTo(RHS);
1612 // Set of unique CatchPads.
1613 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1614 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1615 HandlerSet;
1616 detail::DenseSetEmpty Empty;
1617 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1618 E = CatchSwitch->handler_end();
1619 I != E; ++I) {
1620 BasicBlock *HandlerBB = *I;
1621 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1622 if (!HandlerSet.insert({CatchPad, Empty}).second) {
1623 CatchSwitch->removeHandler(I);
1624 --I;
1625 --E;
1626 Changed = true;
1631 Changed |= ConstantFoldTerminator(BB, true);
1632 for (BasicBlock *Successor : successors(BB))
1633 if (Reachable.insert(Successor).second)
1634 Worklist.push_back(Successor);
1635 } while (!Worklist.empty());
1636 return Changed;
1639 void llvm::removeUnwindEdge(BasicBlock *BB) {
1640 TerminatorInst *TI = BB->getTerminator();
1642 if (auto *II = dyn_cast<InvokeInst>(TI)) {
1643 changeToCall(II);
1644 return;
1647 TerminatorInst *NewTI;
1648 BasicBlock *UnwindDest;
1650 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1651 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1652 UnwindDest = CRI->getUnwindDest();
1653 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1654 auto *NewCatchSwitch = CatchSwitchInst::Create(
1655 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1656 CatchSwitch->getName(), CatchSwitch);
1657 for (BasicBlock *PadBB : CatchSwitch->handlers())
1658 NewCatchSwitch->addHandler(PadBB);
1660 NewTI = NewCatchSwitch;
1661 UnwindDest = CatchSwitch->getUnwindDest();
1662 } else {
1663 llvm_unreachable("Could not find unwind successor");
1666 NewTI->takeName(TI);
1667 NewTI->setDebugLoc(TI->getDebugLoc());
1668 UnwindDest->removePredecessor(BB);
1669 TI->replaceAllUsesWith(NewTI);
1670 TI->eraseFromParent();
1673 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1674 /// if they are in a dead cycle. Return true if a change was made, false
1675 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1676 /// after modifying the CFG.
1677 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1678 SmallPtrSet<BasicBlock*, 16> Reachable;
1679 bool Changed = markAliveBlocks(F, Reachable);
1681 // If there are unreachable blocks in the CFG...
1682 if (Reachable.size() == F.size())
1683 return Changed;
1685 assert(Reachable.size() < F.size());
1686 NumRemoved += F.size()-Reachable.size();
1688 // Loop over all of the basic blocks that are not reachable, dropping all of
1689 // their internal references...
1690 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1691 if (Reachable.count(&*BB))
1692 continue;
1694 for (BasicBlock *Successor : successors(&*BB))
1695 if (Reachable.count(Successor))
1696 Successor->removePredecessor(&*BB);
1697 if (LVI)
1698 LVI->eraseBlock(&*BB);
1699 BB->dropAllReferences();
1702 for (Function::iterator I = ++F.begin(); I != F.end();)
1703 if (!Reachable.count(&*I))
1704 I = F.getBasicBlockList().erase(I);
1705 else
1706 ++I;
1708 return true;
1711 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1712 ArrayRef<unsigned> KnownIDs) {
1713 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1714 K->dropUnknownNonDebugMetadata(KnownIDs);
1715 K->getAllMetadataOtherThanDebugLoc(Metadata);
1716 for (const auto &MD : Metadata) {
1717 unsigned Kind = MD.first;
1718 MDNode *JMD = J->getMetadata(Kind);
1719 MDNode *KMD = MD.second;
1721 switch (Kind) {
1722 default:
1723 K->setMetadata(Kind, nullptr); // Remove unknown metadata
1724 break;
1725 case LLVMContext::MD_dbg:
1726 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1727 case LLVMContext::MD_tbaa:
1728 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1729 break;
1730 case LLVMContext::MD_alias_scope:
1731 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1732 break;
1733 case LLVMContext::MD_noalias:
1734 case LLVMContext::MD_mem_parallel_loop_access:
1735 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1736 break;
1737 case LLVMContext::MD_range:
1738 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1739 break;
1740 case LLVMContext::MD_fpmath:
1741 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1742 break;
1743 case LLVMContext::MD_invariant_load:
1744 // Only set the !invariant.load if it is present in both instructions.
1745 K->setMetadata(Kind, JMD);
1746 break;
1747 case LLVMContext::MD_nonnull:
1748 // Only set the !nonnull if it is present in both instructions.
1749 K->setMetadata(Kind, JMD);
1750 break;
1751 case LLVMContext::MD_invariant_group:
1752 // Preserve !invariant.group in K.
1753 break;
1754 case LLVMContext::MD_align:
1755 K->setMetadata(Kind,
1756 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1757 break;
1758 case LLVMContext::MD_dereferenceable:
1759 case LLVMContext::MD_dereferenceable_or_null:
1760 K->setMetadata(Kind,
1761 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1762 break;
1765 // Set !invariant.group from J if J has it. If both instructions have it
1766 // then we will just pick it from J - even when they are different.
1767 // Also make sure that K is load or store - f.e. combining bitcast with load
1768 // could produce bitcast with invariant.group metadata, which is invalid.
1769 // FIXME: we should try to preserve both invariant.group md if they are
1770 // different, but right now instruction can only have one invariant.group.
1771 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1772 if (isa<LoadInst>(K) || isa<StoreInst>(K))
1773 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1776 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1777 unsigned KnownIDs[] = {
1778 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1779 LLVMContext::MD_noalias, LLVMContext::MD_range,
1780 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
1781 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1782 LLVMContext::MD_dereferenceable,
1783 LLVMContext::MD_dereferenceable_or_null};
1784 combineMetadata(K, J, KnownIDs);
1787 template <typename RootType, typename DominatesFn>
1788 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
1789 const RootType &Root,
1790 const DominatesFn &Dominates) {
1791 assert(From->getType() == To->getType());
1793 unsigned Count = 0;
1794 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1795 UI != UE;) {
1796 Use &U = *UI++;
1797 if (!Dominates(Root, U))
1798 continue;
1799 U.set(To);
1800 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1801 << *To << " in " << *U << "\n");
1802 ++Count;
1804 return Count;
1807 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
1808 assert(From->getType() == To->getType());
1809 auto *BB = From->getParent();
1810 unsigned Count = 0;
1812 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1813 UI != UE;) {
1814 Use &U = *UI++;
1815 auto *I = cast<Instruction>(U.getUser());
1816 if (I->getParent() == BB)
1817 continue;
1818 U.set(To);
1819 ++Count;
1821 return Count;
1824 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1825 DominatorTree &DT,
1826 const BasicBlockEdge &Root) {
1827 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
1828 return DT.dominates(Root, U);
1830 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
1833 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1834 DominatorTree &DT,
1835 const BasicBlock *BB) {
1836 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
1837 auto *I = cast<Instruction>(U.getUser())->getParent();
1838 return DT.properlyDominates(BB, I);
1840 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
1843 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
1844 const TargetLibraryInfo &TLI) {
1845 // Check if the function is specifically marked as a gc leaf function.
1846 if (CS.hasFnAttr("gc-leaf-function"))
1847 return true;
1848 if (const Function *F = CS.getCalledFunction()) {
1849 if (F->hasFnAttribute("gc-leaf-function"))
1850 return true;
1852 if (auto IID = F->getIntrinsicID())
1853 // Most LLVM intrinsics do not take safepoints.
1854 return IID != Intrinsic::experimental_gc_statepoint &&
1855 IID != Intrinsic::experimental_deoptimize;
1858 // Lib calls can be materialized by some passes, and won't be
1859 // marked as 'gc-leaf-function.' All available Libcalls are
1860 // GC-leaf.
1861 LibFunc LF;
1862 if (TLI.getLibFunc(CS, LF)) {
1863 return TLI.has(LF);
1866 return false;
1869 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
1870 LoadInst &NewLI) {
1871 auto *NewTy = NewLI.getType();
1873 // This only directly applies if the new type is also a pointer.
1874 if (NewTy->isPointerTy()) {
1875 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
1876 return;
1879 // The only other translation we can do is to integral loads with !range
1880 // metadata.
1881 if (!NewTy->isIntegerTy())
1882 return;
1884 MDBuilder MDB(NewLI.getContext());
1885 const Value *Ptr = OldLI.getPointerOperand();
1886 auto *ITy = cast<IntegerType>(NewTy);
1887 auto *NullInt = ConstantExpr::getPtrToInt(
1888 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
1889 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
1890 NewLI.setMetadata(LLVMContext::MD_range,
1891 MDB.createRange(NonNullInt, NullInt));
1894 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
1895 MDNode *N, LoadInst &NewLI) {
1896 auto *NewTy = NewLI.getType();
1898 // Give up unless it is converted to a pointer where there is a single very
1899 // valuable mapping we can do reliably.
1900 // FIXME: It would be nice to propagate this in more ways, but the type
1901 // conversions make it hard.
1902 if (!NewTy->isPointerTy())
1903 return;
1905 unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
1906 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
1907 MDNode *NN = MDNode::get(OldLI.getContext(), None);
1908 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
1912 namespace {
1913 /// A potential constituent of a bitreverse or bswap expression. See
1914 /// collectBitParts for a fuller explanation.
1915 struct BitPart {
1916 BitPart(Value *P, unsigned BW) : Provider(P) {
1917 Provenance.resize(BW);
1920 /// The Value that this is a bitreverse/bswap of.
1921 Value *Provider;
1922 /// The "provenance" of each bit. Provenance[A] = B means that bit A
1923 /// in Provider becomes bit B in the result of this expression.
1924 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1926 enum { Unset = -1 };
1928 } // end anonymous namespace
1930 /// Analyze the specified subexpression and see if it is capable of providing
1931 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1932 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1933 /// the output of the expression came from a corresponding bit in some other
1934 /// value. This function is recursive, and the end result is a mapping of
1935 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1936 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1938 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1939 /// that the expression deposits the low byte of %X into the high byte of the
1940 /// result and that all other bits are zero. This expression is accepted and a
1941 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1942 /// [0-7].
1944 /// To avoid revisiting values, the BitPart results are memoized into the
1945 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1946 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1947 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1948 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1949 /// type instead to provide the same functionality.
1951 /// Because we pass around references into \c BPS, we must use a container that
1952 /// does not invalidate internal references (std::map instead of DenseMap).
1954 static const Optional<BitPart> &
1955 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1956 std::map<Value *, Optional<BitPart>> &BPS) {
1957 auto I = BPS.find(V);
1958 if (I != BPS.end())
1959 return I->second;
1961 auto &Result = BPS[V] = None;
1962 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1964 if (Instruction *I = dyn_cast<Instruction>(V)) {
1965 // If this is an or instruction, it may be an inner node of the bswap.
1966 if (I->getOpcode() == Instruction::Or) {
1967 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1968 MatchBitReversals, BPS);
1969 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1970 MatchBitReversals, BPS);
1971 if (!A || !B)
1972 return Result;
1974 // Try and merge the two together.
1975 if (!A->Provider || A->Provider != B->Provider)
1976 return Result;
1978 Result = BitPart(A->Provider, BitWidth);
1979 for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1980 if (A->Provenance[i] != BitPart::Unset &&
1981 B->Provenance[i] != BitPart::Unset &&
1982 A->Provenance[i] != B->Provenance[i])
1983 return Result = None;
1985 if (A->Provenance[i] == BitPart::Unset)
1986 Result->Provenance[i] = B->Provenance[i];
1987 else
1988 Result->Provenance[i] = A->Provenance[i];
1991 return Result;
1994 // If this is a logical shift by a constant, recurse then shift the result.
1995 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1996 unsigned BitShift =
1997 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1998 // Ensure the shift amount is defined.
1999 if (BitShift > BitWidth)
2000 return Result;
2002 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2003 MatchBitReversals, BPS);
2004 if (!Res)
2005 return Result;
2006 Result = Res;
2008 // Perform the "shift" on BitProvenance.
2009 auto &P = Result->Provenance;
2010 if (I->getOpcode() == Instruction::Shl) {
2011 P.erase(std::prev(P.end(), BitShift), P.end());
2012 P.insert(P.begin(), BitShift, BitPart::Unset);
2013 } else {
2014 P.erase(P.begin(), std::next(P.begin(), BitShift));
2015 P.insert(P.end(), BitShift, BitPart::Unset);
2018 return Result;
2021 // If this is a logical 'and' with a mask that clears bits, recurse then
2022 // unset the appropriate bits.
2023 if (I->getOpcode() == Instruction::And &&
2024 isa<ConstantInt>(I->getOperand(1))) {
2025 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2026 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2028 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2029 // early exit.
2030 unsigned NumMaskedBits = AndMask.countPopulation();
2031 if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2032 return Result;
2034 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2035 MatchBitReversals, BPS);
2036 if (!Res)
2037 return Result;
2038 Result = Res;
2040 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2041 // If the AndMask is zero for this bit, clear the bit.
2042 if ((AndMask & Bit) == 0)
2043 Result->Provenance[i] = BitPart::Unset;
2044 return Result;
2047 // If this is a zext instruction zero extend the result.
2048 if (I->getOpcode() == Instruction::ZExt) {
2049 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2050 MatchBitReversals, BPS);
2051 if (!Res)
2052 return Result;
2054 Result = BitPart(Res->Provider, BitWidth);
2055 auto NarrowBitWidth =
2056 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2057 for (unsigned i = 0; i < NarrowBitWidth; ++i)
2058 Result->Provenance[i] = Res->Provenance[i];
2059 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2060 Result->Provenance[i] = BitPart::Unset;
2061 return Result;
2065 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2066 // the input value to the bswap/bitreverse.
2067 Result = BitPart(V, BitWidth);
2068 for (unsigned i = 0; i < BitWidth; ++i)
2069 Result->Provenance[i] = i;
2070 return Result;
2073 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2074 unsigned BitWidth) {
2075 if (From % 8 != To % 8)
2076 return false;
2077 // Convert from bit indices to byte indices and check for a byte reversal.
2078 From >>= 3;
2079 To >>= 3;
2080 BitWidth >>= 3;
2081 return From == BitWidth - To - 1;
2084 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2085 unsigned BitWidth) {
2086 return From == BitWidth - To - 1;
2089 /// Given an OR instruction, check to see if this is a bitreverse
2090 /// idiom. If so, insert the new intrinsic and return true.
2091 bool llvm::recognizeBSwapOrBitReverseIdiom(
2092 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2093 SmallVectorImpl<Instruction *> &InsertedInsts) {
2094 if (Operator::getOpcode(I) != Instruction::Or)
2095 return false;
2096 if (!MatchBSwaps && !MatchBitReversals)
2097 return false;
2098 IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2099 if (!ITy || ITy->getBitWidth() > 128)
2100 return false; // Can't do vectors or integers > 128 bits.
2101 unsigned BW = ITy->getBitWidth();
2103 unsigned DemandedBW = BW;
2104 IntegerType *DemandedTy = ITy;
2105 if (I->hasOneUse()) {
2106 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2107 DemandedTy = cast<IntegerType>(Trunc->getType());
2108 DemandedBW = DemandedTy->getBitWidth();
2112 // Try to find all the pieces corresponding to the bswap.
2113 std::map<Value *, Optional<BitPart>> BPS;
2114 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2115 if (!Res)
2116 return false;
2117 auto &BitProvenance = Res->Provenance;
2119 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2120 // only byteswap values with an even number of bytes.
2121 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2122 for (unsigned i = 0; i < DemandedBW; ++i) {
2123 OKForBSwap &=
2124 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2125 OKForBitReverse &=
2126 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2129 Intrinsic::ID Intrin;
2130 if (OKForBSwap && MatchBSwaps)
2131 Intrin = Intrinsic::bswap;
2132 else if (OKForBitReverse && MatchBitReversals)
2133 Intrin = Intrinsic::bitreverse;
2134 else
2135 return false;
2137 if (ITy != DemandedTy) {
2138 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2139 Value *Provider = Res->Provider;
2140 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2141 // We may need to truncate the provider.
2142 if (DemandedTy != ProviderTy) {
2143 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2144 "trunc", I);
2145 InsertedInsts.push_back(Trunc);
2146 Provider = Trunc;
2148 auto *CI = CallInst::Create(F, Provider, "rev", I);
2149 InsertedInsts.push_back(CI);
2150 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2151 InsertedInsts.push_back(ExtInst);
2152 return true;
2155 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2156 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2157 return true;
2160 // CodeGen has special handling for some string functions that may replace
2161 // them with target-specific intrinsics. Since that'd skip our interceptors
2162 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2163 // we mark affected calls as NoBuiltin, which will disable optimization
2164 // in CodeGen.
2165 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2166 CallInst *CI, const TargetLibraryInfo *TLI) {
2167 Function *F = CI->getCalledFunction();
2168 LibFunc Func;
2169 if (F && !F->hasLocalLinkage() && F->hasName() &&
2170 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2171 !F->doesNotAccessMemory())
2172 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2175 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2176 // We can't have a PHI with a metadata type.
2177 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2178 return false;
2180 // Early exit.
2181 if (!isa<Constant>(I->getOperand(OpIdx)))
2182 return true;
2184 switch (I->getOpcode()) {
2185 default:
2186 return true;
2187 case Instruction::Call:
2188 case Instruction::Invoke:
2189 // Can't handle inline asm. Skip it.
2190 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2191 return false;
2192 // Many arithmetic intrinsics have no issue taking a
2193 // variable, however it's hard to distingish these from
2194 // specials such as @llvm.frameaddress that require a constant.
2195 if (isa<IntrinsicInst>(I))
2196 return false;
2198 // Constant bundle operands may need to retain their constant-ness for
2199 // correctness.
2200 if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2201 return false;
2202 return true;
2203 case Instruction::ShuffleVector:
2204 // Shufflevector masks are constant.
2205 return OpIdx != 2;
2206 case Instruction::Switch:
2207 case Instruction::ExtractValue:
2208 // All operands apart from the first are constant.
2209 return OpIdx == 0;
2210 case Instruction::InsertValue:
2211 // All operands apart from the first and the second are constant.
2212 return OpIdx < 2;
2213 case Instruction::Alloca:
2214 // Static allocas (constant size in the entry block) are handled by
2215 // prologue/epilogue insertion so they're free anyway. We definitely don't
2216 // want to make them non-constant.
2217 return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
2218 case Instruction::GetElementPtr:
2219 if (OpIdx == 0)
2220 return true;
2221 gep_type_iterator It = gep_type_begin(I);
2222 for (auto E = std::next(It, OpIdx); It != E; ++It)
2223 if (It.isStruct())
2224 return false;
2225 return true;