1 //===-- Local.cpp - Functions to perform local transformations ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform various local transformations to the
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
53 using namespace llvm::PatternMatch
;
55 #define DEBUG_TYPE "local"
57 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
59 //===----------------------------------------------------------------------===//
60 // Local constant propagation.
63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
64 /// constant value, convert it into an unconditional branch to the constant
65 /// destination. This is a nontrivial operation because the successors of this
66 /// basic block must have their PHI nodes updated.
67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
68 /// conditions and indirectbr addresses this might make dead if
69 /// DeleteDeadConditions is true.
70 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
71 const TargetLibraryInfo
*TLI
) {
72 TerminatorInst
*T
= BB
->getTerminator();
73 IRBuilder
<> Builder(T
);
75 // Branch - See if we are conditional jumping on constant
76 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
77 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
78 BasicBlock
*Dest1
= BI
->getSuccessor(0);
79 BasicBlock
*Dest2
= BI
->getSuccessor(1);
81 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
82 // Are we branching on constant?
83 // YES. Change to unconditional branch...
84 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
85 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
87 //cerr << "Function: " << T->getParent()->getParent()
88 // << "\nRemoving branch from " << T->getParent()
89 // << "\n\nTo: " << OldDest << endl;
91 // Let the basic block know that we are letting go of it. Based on this,
92 // it will adjust it's PHI nodes.
93 OldDest
->removePredecessor(BB
);
95 // Replace the conditional branch with an unconditional one.
96 Builder
.CreateBr(Destination
);
97 BI
->eraseFromParent();
101 if (Dest2
== Dest1
) { // Conditional branch to same location?
102 // This branch matches something like this:
103 // br bool %cond, label %Dest, label %Dest
104 // and changes it into: br label %Dest
106 // Let the basic block know that we are letting go of one copy of it.
107 assert(BI
->getParent() && "Terminator not inserted in block!");
108 Dest1
->removePredecessor(BI
->getParent());
110 // Replace the conditional branch with an unconditional one.
111 Builder
.CreateBr(Dest1
);
112 Value
*Cond
= BI
->getCondition();
113 BI
->eraseFromParent();
114 if (DeleteDeadConditions
)
115 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
121 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(T
)) {
122 // If we are switching on a constant, we can convert the switch to an
123 // unconditional branch.
124 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
125 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
126 BasicBlock
*TheOnlyDest
= DefaultDest
;
128 // If the default is unreachable, ignore it when searching for TheOnlyDest.
129 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
130 SI
->getNumCases() > 0) {
131 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
134 // Figure out which case it goes to.
135 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
136 // Found case matching a constant operand?
137 if (i
->getCaseValue() == CI
) {
138 TheOnlyDest
= i
->getCaseSuccessor();
142 // Check to see if this branch is going to the same place as the default
143 // dest. If so, eliminate it as an explicit compare.
144 if (i
->getCaseSuccessor() == DefaultDest
) {
145 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
146 unsigned NCases
= SI
->getNumCases();
147 // Fold the case metadata into the default if there will be any branches
148 // left, unless the metadata doesn't match the switch.
149 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
150 // Collect branch weights into a vector.
151 SmallVector
<uint32_t, 8> Weights
;
152 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
154 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
155 Weights
.push_back(CI
->getValue().getZExtValue());
157 // Merge weight of this case to the default weight.
158 unsigned idx
= i
->getCaseIndex();
159 Weights
[0] += Weights
[idx
+1];
160 // Remove weight for this case.
161 std::swap(Weights
[idx
+1], Weights
.back());
163 SI
->setMetadata(LLVMContext::MD_prof
,
164 MDBuilder(BB
->getContext()).
165 createBranchWeights(Weights
));
167 // Remove this entry.
168 DefaultDest
->removePredecessor(SI
->getParent());
169 i
= SI
->removeCase(i
);
174 // Otherwise, check to see if the switch only branches to one destination.
175 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
177 if (i
->getCaseSuccessor() != TheOnlyDest
)
178 TheOnlyDest
= nullptr;
180 // Increment this iterator as we haven't removed the case.
184 if (CI
&& !TheOnlyDest
) {
185 // Branching on a constant, but not any of the cases, go to the default
187 TheOnlyDest
= SI
->getDefaultDest();
190 // If we found a single destination that we can fold the switch into, do so
193 // Insert the new branch.
194 Builder
.CreateBr(TheOnlyDest
);
195 BasicBlock
*BB
= SI
->getParent();
197 // Remove entries from PHI nodes which we no longer branch to...
198 for (BasicBlock
*Succ
: SI
->successors()) {
199 // Found case matching a constant operand?
200 if (Succ
== TheOnlyDest
)
201 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
203 Succ
->removePredecessor(BB
);
206 // Delete the old switch.
207 Value
*Cond
= SI
->getCondition();
208 SI
->eraseFromParent();
209 if (DeleteDeadConditions
)
210 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
214 if (SI
->getNumCases() == 1) {
215 // Otherwise, we can fold this switch into a conditional branch
216 // instruction if it has only one non-default destination.
217 auto FirstCase
= *SI
->case_begin();
218 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
219 FirstCase
.getCaseValue(), "cond");
221 // Insert the new branch.
222 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
223 FirstCase
.getCaseSuccessor(),
224 SI
->getDefaultDest());
225 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
226 if (MD
&& MD
->getNumOperands() == 3) {
227 ConstantInt
*SICase
=
228 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
230 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
231 assert(SICase
&& SIDef
);
232 // The TrueWeight should be the weight for the single case of SI.
233 NewBr
->setMetadata(LLVMContext::MD_prof
,
234 MDBuilder(BB
->getContext()).
235 createBranchWeights(SICase
->getValue().getZExtValue(),
236 SIDef
->getValue().getZExtValue()));
239 // Update make.implicit metadata to the newly-created conditional branch.
240 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
242 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
244 // Delete the old switch.
245 SI
->eraseFromParent();
251 if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
252 // indirectbr blockaddress(@F, @BB) -> br label @BB
253 if (BlockAddress
*BA
=
254 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
255 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
256 // Insert the new branch.
257 Builder
.CreateBr(TheOnlyDest
);
259 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
260 if (IBI
->getDestination(i
) == TheOnlyDest
)
261 TheOnlyDest
= nullptr;
263 IBI
->getDestination(i
)->removePredecessor(IBI
->getParent());
265 Value
*Address
= IBI
->getAddress();
266 IBI
->eraseFromParent();
267 if (DeleteDeadConditions
)
268 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
270 // If we didn't find our destination in the IBI successor list, then we
271 // have undefined behavior. Replace the unconditional branch with an
272 // 'unreachable' instruction.
274 BB
->getTerminator()->eraseFromParent();
275 new UnreachableInst(BB
->getContext(), BB
);
286 //===----------------------------------------------------------------------===//
287 // Local dead code elimination.
290 /// isInstructionTriviallyDead - Return true if the result produced by the
291 /// instruction is not used, and the instruction has no side effects.
293 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
294 const TargetLibraryInfo
*TLI
) {
297 return wouldInstructionBeTriviallyDead(I
, TLI
);
300 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
301 const TargetLibraryInfo
*TLI
) {
302 if (isa
<TerminatorInst
>(I
))
305 // We don't want the landingpad-like instructions removed by anything this
310 // We don't want debug info removed by anything this general, unless
311 // debug info is empty.
312 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
313 if (DDI
->getAddress())
317 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
323 if (!I
->mayHaveSideEffects())
326 // Special case intrinsics that "may have side effects" but can be deleted
328 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
329 // Safe to delete llvm.stacksave if dead.
330 if (II
->getIntrinsicID() == Intrinsic::stacksave
)
333 // Lifetime intrinsics are dead when their right-hand is undef.
334 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
||
335 II
->getIntrinsicID() == Intrinsic::lifetime_end
)
336 return isa
<UndefValue
>(II
->getArgOperand(1));
338 // Assumptions are dead if their condition is trivially true. Guards on
339 // true are operationally no-ops. In the future we can consider more
340 // sophisticated tradeoffs for guards considering potential for check
341 // widening, but for now we keep things simple.
342 if (II
->getIntrinsicID() == Intrinsic::assume
||
343 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
344 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
345 return !Cond
->isZero();
351 if (isAllocLikeFn(I
, TLI
))
354 if (CallInst
*CI
= isFreeCall(I
, TLI
))
355 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
356 return C
->isNullValue() || isa
<UndefValue
>(C
);
358 if (CallSite CS
= CallSite(I
))
359 if (isMathLibCallNoop(CS
, TLI
))
365 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
366 /// trivially dead instruction, delete it. If that makes any of its operands
367 /// trivially dead, delete them too, recursively. Return true if any
368 /// instructions were deleted.
370 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value
*V
,
371 const TargetLibraryInfo
*TLI
) {
372 Instruction
*I
= dyn_cast
<Instruction
>(V
);
373 if (!I
|| !I
->use_empty() || !isInstructionTriviallyDead(I
, TLI
))
376 SmallVector
<Instruction
*, 16> DeadInsts
;
377 DeadInsts
.push_back(I
);
380 I
= DeadInsts
.pop_back_val();
382 // Null out all of the instruction's operands to see if any operand becomes
384 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
385 Value
*OpV
= I
->getOperand(i
);
386 I
->setOperand(i
, nullptr);
388 if (!OpV
->use_empty()) continue;
390 // If the operand is an instruction that became dead as we nulled out the
391 // operand, and if it is 'trivially' dead, delete it in a future loop
393 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
394 if (isInstructionTriviallyDead(OpI
, TLI
))
395 DeadInsts
.push_back(OpI
);
398 I
->eraseFromParent();
399 } while (!DeadInsts
.empty());
404 /// areAllUsesEqual - Check whether the uses of a value are all the same.
405 /// This is similar to Instruction::hasOneUse() except this will also return
406 /// true when there are no uses or multiple uses that all refer to the same
408 static bool areAllUsesEqual(Instruction
*I
) {
409 Value::user_iterator UI
= I
->user_begin();
410 Value::user_iterator UE
= I
->user_end();
415 for (++UI
; UI
!= UE
; ++UI
) {
422 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
423 /// dead PHI node, due to being a def-use chain of single-use nodes that
424 /// either forms a cycle or is terminated by a trivially dead instruction,
425 /// delete it. If that makes any of its operands trivially dead, delete them
426 /// too, recursively. Return true if a change was made.
427 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
428 const TargetLibraryInfo
*TLI
) {
429 SmallPtrSet
<Instruction
*, 4> Visited
;
430 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
431 I
= cast
<Instruction
>(*I
->user_begin())) {
433 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
435 // If we find an instruction more than once, we're on a cycle that
436 // won't prove fruitful.
437 if (!Visited
.insert(I
).second
) {
438 // Break the cycle and delete the instruction and its operands.
439 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
440 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
448 simplifyAndDCEInstruction(Instruction
*I
,
449 SmallSetVector
<Instruction
*, 16> &WorkList
,
450 const DataLayout
&DL
,
451 const TargetLibraryInfo
*TLI
) {
452 if (isInstructionTriviallyDead(I
, TLI
)) {
453 // Null out all of the instruction's operands to see if any operand becomes
455 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
456 Value
*OpV
= I
->getOperand(i
);
457 I
->setOperand(i
, nullptr);
459 if (!OpV
->use_empty() || I
== OpV
)
462 // If the operand is an instruction that became dead as we nulled out the
463 // operand, and if it is 'trivially' dead, delete it in a future loop
465 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
466 if (isInstructionTriviallyDead(OpI
, TLI
))
467 WorkList
.insert(OpI
);
470 I
->eraseFromParent();
475 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
476 // Add the users to the worklist. CAREFUL: an instruction can use itself,
477 // in the case of a phi node.
478 for (User
*U
: I
->users()) {
480 WorkList
.insert(cast
<Instruction
>(U
));
484 // Replace the instruction with its simplified value.
485 bool Changed
= false;
486 if (!I
->use_empty()) {
487 I
->replaceAllUsesWith(SimpleV
);
490 if (isInstructionTriviallyDead(I
, TLI
)) {
491 I
->eraseFromParent();
499 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
500 /// simplify any instructions in it and recursively delete dead instructions.
502 /// This returns true if it changed the code, note that it can delete
503 /// instructions in other blocks as well in this block.
504 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
505 const TargetLibraryInfo
*TLI
) {
506 bool MadeChange
= false;
507 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
510 // In debug builds, ensure that the terminator of the block is never replaced
511 // or deleted by these simplifications. The idea of simplification is that it
512 // cannot introduce new instructions, and there is no way to replace the
513 // terminator of a block without introducing a new instruction.
514 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
517 SmallSetVector
<Instruction
*, 16> WorkList
;
518 // Iterate over the original function, only adding insts to the worklist
519 // if they actually need to be revisited. This avoids having to pre-init
520 // the worklist with the entire function's worth of instructions.
521 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
523 assert(!BI
->isTerminator());
524 Instruction
*I
= &*BI
;
527 // We're visiting this instruction now, so make sure it's not in the
528 // worklist from an earlier visit.
529 if (!WorkList
.count(I
))
530 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
533 while (!WorkList
.empty()) {
534 Instruction
*I
= WorkList
.pop_back_val();
535 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
540 //===----------------------------------------------------------------------===//
541 // Control Flow Graph Restructuring.
545 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
546 /// method is called when we're about to delete Pred as a predecessor of BB. If
547 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
549 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
550 /// nodes that collapse into identity values. For example, if we have:
551 /// x = phi(1, 0, 0, 0)
554 /// .. and delete the predecessor corresponding to the '1', this will attempt to
555 /// recursively fold the and to 0.
556 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
) {
557 // This only adjusts blocks with PHI nodes.
558 if (!isa
<PHINode
>(BB
->begin()))
561 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
562 // them down. This will leave us with single entry phi nodes and other phis
563 // that can be removed.
564 BB
->removePredecessor(Pred
, true);
566 WeakTrackingVH PhiIt
= &BB
->front();
567 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
568 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
569 Value
*OldPhiIt
= PhiIt
;
571 if (!recursivelySimplifyInstruction(PN
))
574 // If recursive simplification ended up deleting the next PHI node we would
575 // iterate to, then our iterator is invalid, restart scanning from the top
577 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
582 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
583 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
584 /// between them, moving the instructions in the predecessor into DestBB and
585 /// deleting the predecessor block.
587 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
, DominatorTree
*DT
) {
588 // If BB has single-entry PHI nodes, fold them.
589 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
590 Value
*NewVal
= PN
->getIncomingValue(0);
591 // Replace self referencing PHI with undef, it must be dead.
592 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
593 PN
->replaceAllUsesWith(NewVal
);
594 PN
->eraseFromParent();
597 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
598 assert(PredBB
&& "Block doesn't have a single predecessor!");
600 // Zap anything that took the address of DestBB. Not doing this will give the
601 // address an invalid value.
602 if (DestBB
->hasAddressTaken()) {
603 BlockAddress
*BA
= BlockAddress::get(DestBB
);
604 Constant
*Replacement
=
605 ConstantInt::get(llvm::Type::getInt32Ty(BA
->getContext()), 1);
606 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
608 BA
->destroyConstant();
611 // Anything that branched to PredBB now branches to DestBB.
612 PredBB
->replaceAllUsesWith(DestBB
);
614 // Splice all the instructions from PredBB to DestBB.
615 PredBB
->getTerminator()->eraseFromParent();
616 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
618 // If the PredBB is the entry block of the function, move DestBB up to
619 // become the entry block after we erase PredBB.
620 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
621 DestBB
->moveAfter(PredBB
);
624 BasicBlock
*PredBBIDom
= DT
->getNode(PredBB
)->getIDom()->getBlock();
625 DT
->changeImmediateDominator(DestBB
, PredBBIDom
);
626 DT
->eraseNode(PredBB
);
629 PredBB
->eraseFromParent();
632 /// CanMergeValues - Return true if we can choose one of these values to use
633 /// in place of the other. Note that we will always choose the non-undef
635 static bool CanMergeValues(Value
*First
, Value
*Second
) {
636 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
639 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
640 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
642 /// Assumption: Succ is the single successor for BB.
644 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
645 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
647 DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
648 << Succ
->getName() << "\n");
649 // Shortcut, if there is only a single predecessor it must be BB and merging
651 if (Succ
->getSinglePredecessor()) return true;
653 // Make a list of the predecessors of BB
654 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
656 // Look at all the phi nodes in Succ, to see if they present a conflict when
657 // merging these blocks
658 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
659 PHINode
*PN
= cast
<PHINode
>(I
);
661 // If the incoming value from BB is again a PHINode in
662 // BB which has the same incoming value for *PI as PN does, we can
663 // merge the phi nodes and then the blocks can still be merged
664 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
665 if (BBPN
&& BBPN
->getParent() == BB
) {
666 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
667 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
668 if (BBPreds
.count(IBB
) &&
669 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
670 PN
->getIncomingValue(PI
))) {
671 DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName() << " in "
672 << Succ
->getName() << " is conflicting with "
673 << BBPN
->getName() << " with regard to common predecessor "
674 << IBB
->getName() << "\n");
679 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
680 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
681 // See if the incoming value for the common predecessor is equal to the
682 // one for BB, in which case this phi node will not prevent the merging
684 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
685 if (BBPreds
.count(IBB
) &&
686 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
687 DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName() << " in "
688 << Succ
->getName() << " is conflicting with regard to common "
689 << "predecessor " << IBB
->getName() << "\n");
699 typedef SmallVector
<BasicBlock
*, 16> PredBlockVector
;
700 typedef DenseMap
<BasicBlock
*, Value
*> IncomingValueMap
;
702 /// \brief Determines the value to use as the phi node input for a block.
704 /// Select between \p OldVal any value that we know flows from \p BB
705 /// to a particular phi on the basis of which one (if either) is not
706 /// undef. Update IncomingValues based on the selected value.
708 /// \param OldVal The value we are considering selecting.
709 /// \param BB The block that the value flows in from.
710 /// \param IncomingValues A map from block-to-value for other phi inputs
711 /// that we have examined.
713 /// \returns the selected value.
714 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
715 IncomingValueMap
&IncomingValues
) {
716 if (!isa
<UndefValue
>(OldVal
)) {
717 assert((!IncomingValues
.count(BB
) ||
718 IncomingValues
.find(BB
)->second
== OldVal
) &&
719 "Expected OldVal to match incoming value from BB!");
721 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
725 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
726 if (It
!= IncomingValues
.end()) return It
->second
;
731 /// \brief Create a map from block to value for the operands of a
734 /// Create a map from block to value for each non-undef value flowing
737 /// \param PN The phi we are collecting the map for.
738 /// \param IncomingValues [out] The map from block to value for this phi.
739 static void gatherIncomingValuesToPhi(PHINode
*PN
,
740 IncomingValueMap
&IncomingValues
) {
741 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
742 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
743 Value
*V
= PN
->getIncomingValue(i
);
745 if (!isa
<UndefValue
>(V
))
746 IncomingValues
.insert(std::make_pair(BB
, V
));
750 /// \brief Replace the incoming undef values to a phi with the values
751 /// from a block-to-value map.
753 /// \param PN The phi we are replacing the undefs in.
754 /// \param IncomingValues A map from block to value.
755 static void replaceUndefValuesInPhi(PHINode
*PN
,
756 const IncomingValueMap
&IncomingValues
) {
757 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
758 Value
*V
= PN
->getIncomingValue(i
);
760 if (!isa
<UndefValue
>(V
)) continue;
762 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
763 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
764 if (It
== IncomingValues
.end()) continue;
766 PN
->setIncomingValue(i
, It
->second
);
770 /// \brief Replace a value flowing from a block to a phi with
771 /// potentially multiple instances of that value flowing from the
772 /// block's predecessors to the phi.
774 /// \param BB The block with the value flowing into the phi.
775 /// \param BBPreds The predecessors of BB.
776 /// \param PN The phi that we are updating.
777 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
778 const PredBlockVector
&BBPreds
,
780 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
781 assert(OldVal
&& "No entry in PHI for Pred BB!");
783 IncomingValueMap IncomingValues
;
785 // We are merging two blocks - BB, and the block containing PN - and
786 // as a result we need to redirect edges from the predecessors of BB
787 // to go to the block containing PN, and update PN
788 // accordingly. Since we allow merging blocks in the case where the
789 // predecessor and successor blocks both share some predecessors,
790 // and where some of those common predecessors might have undef
791 // values flowing into PN, we want to rewrite those values to be
792 // consistent with the non-undef values.
794 gatherIncomingValuesToPhi(PN
, IncomingValues
);
796 // If this incoming value is one of the PHI nodes in BB, the new entries
797 // in the PHI node are the entries from the old PHI.
798 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
799 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
800 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
801 // Note that, since we are merging phi nodes and BB and Succ might
802 // have common predecessors, we could end up with a phi node with
803 // identical incoming branches. This will be cleaned up later (and
804 // will trigger asserts if we try to clean it up now, without also
805 // simplifying the corresponding conditional branch).
806 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
807 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
808 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
811 // And add a new incoming value for this predecessor for the
812 // newly retargeted branch.
813 PN
->addIncoming(Selected
, PredBB
);
816 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
817 // Update existing incoming values in PN for this
818 // predecessor of BB.
819 BasicBlock
*PredBB
= BBPreds
[i
];
820 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
823 // And add a new incoming value for this predecessor for the
824 // newly retargeted branch.
825 PN
->addIncoming(Selected
, PredBB
);
829 replaceUndefValuesInPhi(PN
, IncomingValues
);
832 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
833 /// unconditional branch, and contains no instructions other than PHI nodes,
834 /// potential side-effect free intrinsics and the branch. If possible,
835 /// eliminate BB by rewriting all the predecessors to branch to the successor
836 /// block and return true. If we can't transform, return false.
837 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
) {
838 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
839 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
841 // We can't eliminate infinite loops.
842 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
843 if (BB
== Succ
) return false;
845 // Check to see if merging these blocks would cause conflicts for any of the
846 // phi nodes in BB or Succ. If not, we can safely merge.
847 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
849 // Check for cases where Succ has multiple predecessors and a PHI node in BB
850 // has uses which will not disappear when the PHI nodes are merged. It is
851 // possible to handle such cases, but difficult: it requires checking whether
852 // BB dominates Succ, which is non-trivial to calculate in the case where
853 // Succ has multiple predecessors. Also, it requires checking whether
854 // constructing the necessary self-referential PHI node doesn't introduce any
855 // conflicts; this isn't too difficult, but the previous code for doing this
858 // Note that if this check finds a live use, BB dominates Succ, so BB is
859 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
860 // folding the branch isn't profitable in that case anyway.
861 if (!Succ
->getSinglePredecessor()) {
862 BasicBlock::iterator BBI
= BB
->begin();
863 while (isa
<PHINode
>(*BBI
)) {
864 for (Use
&U
: BBI
->uses()) {
865 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
866 if (PN
->getIncomingBlock(U
) != BB
)
876 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
878 if (isa
<PHINode
>(Succ
->begin())) {
879 // If there is more than one pred of succ, and there are PHI nodes in
880 // the successor, then we need to add incoming edges for the PHI nodes
882 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
884 // Loop over all of the PHI nodes in the successor of BB.
885 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
886 PHINode
*PN
= cast
<PHINode
>(I
);
888 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
892 if (Succ
->getSinglePredecessor()) {
893 // BB is the only predecessor of Succ, so Succ will end up with exactly
894 // the same predecessors BB had.
896 // Copy over any phi, debug or lifetime instruction.
897 BB
->getTerminator()->eraseFromParent();
898 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
901 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
902 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
903 assert(PN
->use_empty() && "There shouldn't be any uses here!");
904 PN
->eraseFromParent();
908 // If the unconditional branch we replaced contains llvm.loop metadata, we
909 // add the metadata to the branch instructions in the predecessors.
910 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
911 Instruction
*TI
= BB
->getTerminator();
913 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
914 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
915 BasicBlock
*Pred
= *PI
;
916 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
919 // Everything that jumped to BB now goes to Succ.
920 BB
->replaceAllUsesWith(Succ
);
921 if (!Succ
->hasName()) Succ
->takeName(BB
);
922 BB
->eraseFromParent(); // Delete the old basic block.
926 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
927 /// nodes in this block. This doesn't try to be clever about PHI nodes
928 /// which differ only in the order of the incoming values, but instcombine
929 /// orders them so it usually won't matter.
931 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
932 // This implementation doesn't currently consider undef operands
933 // specially. Theoretically, two phis which are identical except for
934 // one having an undef where the other doesn't could be collapsed.
936 struct PHIDenseMapInfo
{
937 static PHINode
*getEmptyKey() {
938 return DenseMapInfo
<PHINode
*>::getEmptyKey();
940 static PHINode
*getTombstoneKey() {
941 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
943 static unsigned getHashValue(PHINode
*PN
) {
944 // Compute a hash value on the operands. Instcombine will likely have
945 // sorted them, which helps expose duplicates, but we have to check all
946 // the operands to be safe in case instcombine hasn't run.
947 return static_cast<unsigned>(hash_combine(
948 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
949 hash_combine_range(PN
->block_begin(), PN
->block_end())));
951 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
952 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
953 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
955 return LHS
->isIdenticalTo(RHS
);
959 // Set of unique PHINodes.
960 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
963 bool Changed
= false;
964 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
965 auto Inserted
= PHISet
.insert(PN
);
966 if (!Inserted
.second
) {
967 // A duplicate. Replace this PHI with its duplicate.
968 PN
->replaceAllUsesWith(*Inserted
.first
);
969 PN
->eraseFromParent();
972 // The RAUW can change PHIs that we already visited. Start over from the
982 /// enforceKnownAlignment - If the specified pointer points to an object that
983 /// we control, modify the object's alignment to PrefAlign. This isn't
984 /// often possible though. If alignment is important, a more reliable approach
985 /// is to simply align all global variables and allocation instructions to
986 /// their preferred alignment from the beginning.
988 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
990 const DataLayout
&DL
) {
991 assert(PrefAlign
> Align
);
993 V
= V
->stripPointerCasts();
995 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
996 // TODO: ideally, computeKnownBits ought to have used
997 // AllocaInst::getAlignment() in its computation already, making
998 // the below max redundant. But, as it turns out,
999 // stripPointerCasts recurses through infinite layers of bitcasts,
1000 // while computeKnownBits is not allowed to traverse more than 6
1002 Align
= std::max(AI
->getAlignment(), Align
);
1003 if (PrefAlign
<= Align
)
1006 // If the preferred alignment is greater than the natural stack alignment
1007 // then don't round up. This avoids dynamic stack realignment.
1008 if (DL
.exceedsNaturalStackAlignment(PrefAlign
))
1010 AI
->setAlignment(PrefAlign
);
1014 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1015 // TODO: as above, this shouldn't be necessary.
1016 Align
= std::max(GO
->getAlignment(), Align
);
1017 if (PrefAlign
<= Align
)
1020 // If there is a large requested alignment and we can, bump up the alignment
1021 // of the global. If the memory we set aside for the global may not be the
1022 // memory used by the final program then it is impossible for us to reliably
1023 // enforce the preferred alignment.
1024 if (!GO
->canIncreaseAlignment())
1027 GO
->setAlignment(PrefAlign
);
1034 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1035 const DataLayout
&DL
,
1036 const Instruction
*CxtI
,
1037 AssumptionCache
*AC
,
1038 const DominatorTree
*DT
) {
1039 assert(V
->getType()->isPointerTy() &&
1040 "getOrEnforceKnownAlignment expects a pointer!");
1042 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1043 unsigned TrailZ
= Known
.countMinTrailingZeros();
1045 // Avoid trouble with ridiculously large TrailZ values, such as
1046 // those computed from a null pointer.
1047 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1049 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1051 // LLVM doesn't support alignments larger than this currently.
1052 Align
= std::min(Align
, +Value::MaximumAlignment
);
1054 if (PrefAlign
> Align
)
1055 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1057 // We don't need to make any adjustment.
1061 ///===---------------------------------------------------------------------===//
1062 /// Dbg Intrinsic utilities
1065 /// See if there is a dbg.value intrinsic for DIVar before I.
1066 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1068 // Since we can't guarantee that the original dbg.declare instrinsic
1069 // is removed by LowerDbgDeclare(), we need to make sure that we are
1070 // not inserting the same dbg.value intrinsic over and over.
1071 llvm::BasicBlock::InstListType::iterator
PrevI(I
);
1072 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1074 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1075 if (DVI
->getValue() == I
->getOperand(0) &&
1076 DVI
->getVariable() == DIVar
&&
1077 DVI
->getExpression() == DIExpr
)
1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1084 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1085 DIExpression
*DIExpr
,
1087 // Since we can't guarantee that the original dbg.declare instrinsic
1088 // is removed by LowerDbgDeclare(), we need to make sure that we are
1089 // not inserting the same dbg.value intrinsic over and over.
1090 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1091 findDbgValues(DbgValues
, APN
);
1092 for (auto *DVI
: DbgValues
) {
1093 assert(DVI
->getValue() == APN
);
1094 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1100 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1101 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1102 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1103 StoreInst
*SI
, DIBuilder
&Builder
) {
1104 assert(DII
->isAddressOfVariable());
1105 auto *DIVar
= DII
->getVariable();
1106 assert(DIVar
&& "Missing variable");
1107 auto *DIExpr
= DII
->getExpression();
1108 Value
*DV
= SI
->getOperand(0);
1110 // If an argument is zero extended then use argument directly. The ZExt
1111 // may be zapped by an optimization pass in future.
1112 Argument
*ExtendedArg
= nullptr;
1113 if (ZExtInst
*ZExt
= dyn_cast
<ZExtInst
>(SI
->getOperand(0)))
1114 ExtendedArg
= dyn_cast
<Argument
>(ZExt
->getOperand(0));
1115 if (SExtInst
*SExt
= dyn_cast
<SExtInst
>(SI
->getOperand(0)))
1116 ExtendedArg
= dyn_cast
<Argument
>(SExt
->getOperand(0));
1118 // If this DII was already describing only a fragment of a variable, ensure
1119 // that fragment is appropriately narrowed here.
1120 // But if a fragment wasn't used, describe the value as the original
1121 // argument (rather than the zext or sext) so that it remains described even
1122 // if the sext/zext is optimized away. This widens the variable description,
1123 // leaving it up to the consumer to know how the smaller value may be
1124 // represented in a larger register.
1125 if (auto Fragment
= DIExpr
->getFragmentInfo()) {
1126 unsigned FragmentOffset
= Fragment
->OffsetInBits
;
1127 SmallVector
<uint64_t, 3> Ops(DIExpr
->elements_begin(),
1128 DIExpr
->elements_end() - 3);
1129 Ops
.push_back(dwarf::DW_OP_LLVM_fragment
);
1130 Ops
.push_back(FragmentOffset
);
1131 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1132 Ops
.push_back(DL
.getTypeSizeInBits(ExtendedArg
->getType()));
1133 DIExpr
= Builder
.createExpression(Ops
);
1137 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1138 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1142 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1143 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1144 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1145 LoadInst
*LI
, DIBuilder
&Builder
) {
1146 auto *DIVar
= DII
->getVariable();
1147 auto *DIExpr
= DII
->getExpression();
1148 assert(DIVar
&& "Missing variable");
1150 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1153 // We are now tracking the loaded value instead of the address. In the
1154 // future if multi-location support is added to the IR, it might be
1155 // preferable to keep tracking both the loaded value and the original
1156 // address in case the alloca can not be elided.
1157 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1158 LI
, DIVar
, DIExpr
, DII
->getDebugLoc(), (Instruction
*)nullptr);
1159 DbgValue
->insertAfter(LI
);
1162 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1163 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1164 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic
*DII
,
1165 PHINode
*APN
, DIBuilder
&Builder
) {
1166 auto *DIVar
= DII
->getVariable();
1167 auto *DIExpr
= DII
->getExpression();
1168 assert(DIVar
&& "Missing variable");
1170 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1173 BasicBlock
*BB
= APN
->getParent();
1174 auto InsertionPt
= BB
->getFirstInsertionPt();
1176 // The block may be a catchswitch block, which does not have a valid
1178 // FIXME: Insert dbg.value markers in the successors when appropriate.
1179 if (InsertionPt
!= BB
->end())
1180 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, DII
->getDebugLoc(),
1184 /// Determine whether this alloca is either a VLA or an array.
1185 static bool isArray(AllocaInst
*AI
) {
1186 return AI
->isArrayAllocation() ||
1187 AI
->getType()->getElementType()->isArrayTy();
1190 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1191 /// of llvm.dbg.value intrinsics.
1192 bool llvm::LowerDbgDeclare(Function
&F
) {
1193 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1194 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1196 for (Instruction
&BI
: FI
)
1197 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1198 Dbgs
.push_back(DDI
);
1203 for (auto &I
: Dbgs
) {
1204 DbgDeclareInst
*DDI
= I
;
1205 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1206 // If this is an alloca for a scalar variable, insert a dbg.value
1207 // at each load and store to the alloca and erase the dbg.declare.
1208 // The dbg.values allow tracking a variable even if it is not
1209 // stored on the stack, while the dbg.declare can only describe
1210 // the stack slot (and at a lexical-scope granularity). Later
1211 // passes will attempt to elide the stack slot.
1212 if (AI
&& !isArray(AI
)) {
1213 for (auto &AIUse
: AI
->uses()) {
1214 User
*U
= AIUse
.getUser();
1215 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1216 if (AIUse
.getOperandNo() == 1)
1217 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1218 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1219 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1220 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1221 // This is a call by-value or some other instruction that
1222 // takes a pointer to the variable. Insert a *value*
1223 // intrinsic that describes the alloca.
1224 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(),
1225 DDI
->getExpression(), DDI
->getDebugLoc(),
1229 DDI
->eraseFromParent();
1235 /// Finds all intrinsics declaring local variables as living in the memory that
1236 /// 'V' points to. This may include a mix of dbg.declare and
1237 /// dbg.addr intrinsics.
1238 TinyPtrVector
<DbgInfoIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1239 auto *L
= LocalAsMetadata::getIfExists(V
);
1242 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1246 TinyPtrVector
<DbgInfoIntrinsic
*> Declares
;
1247 for (User
*U
: MDV
->users()) {
1248 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(U
))
1249 if (DII
->isAddressOfVariable())
1250 Declares
.push_back(DII
);
1256 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1257 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1258 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1259 for (User
*U
: MDV
->users())
1260 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1261 DbgValues
.push_back(DVI
);
1264 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1265 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1266 bool Deref
, int Offset
) {
1267 auto DbgAddrs
= FindDbgAddrUses(Address
);
1268 for (DbgInfoIntrinsic
*DII
: DbgAddrs
) {
1269 DebugLoc Loc
= DII
->getDebugLoc();
1270 auto *DIVar
= DII
->getVariable();
1271 auto *DIExpr
= DII
->getExpression();
1272 assert(DIVar
&& "Missing variable");
1273 DIExpr
= DIExpression::prepend(DIExpr
, Deref
, Offset
);
1274 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1275 // llvm.dbg.declare.
1276 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1277 if (DII
== InsertBefore
)
1278 InsertBefore
= &*std::next(InsertBefore
->getIterator());
1279 DII
->eraseFromParent();
1281 return !DbgAddrs
.empty();
1284 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1285 DIBuilder
&Builder
, bool Deref
, int Offset
) {
1286 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1290 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1291 DIBuilder
&Builder
, int Offset
) {
1292 DebugLoc Loc
= DVI
->getDebugLoc();
1293 auto *DIVar
= DVI
->getVariable();
1294 auto *DIExpr
= DVI
->getExpression();
1295 assert(DIVar
&& "Missing variable");
1297 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1298 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1300 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1301 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1304 // Insert the offset immediately after the first deref.
1305 // We could just change the offset argument of dbg.value, but it's unsigned...
1307 SmallVector
<uint64_t, 4> Ops
;
1308 Ops
.push_back(dwarf::DW_OP_deref
);
1309 DIExpression::appendOffset(Ops
, Offset
);
1310 Ops
.append(DIExpr
->elements_begin() + 1, DIExpr
->elements_end());
1311 DIExpr
= Builder
.createExpression(Ops
);
1314 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1315 DVI
->eraseFromParent();
1318 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1319 DIBuilder
&Builder
, int Offset
) {
1320 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1321 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1322 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1324 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1325 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1329 void llvm::salvageDebugInfo(Instruction
&I
) {
1330 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1331 auto &M
= *I
.getModule();
1333 auto MDWrap
= [&](Value
*V
) {
1334 return MetadataAsValue::get(I
.getContext(), ValueAsMetadata::get(V
));
1337 if (isa
<BitCastInst
>(&I
)) {
1338 findDbgValues(DbgValues
, &I
);
1339 for (auto *DVI
: DbgValues
) {
1340 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
1341 // to use the cast's source.
1342 DVI
->setOperand(0, MDWrap(I
.getOperand(0)));
1343 DEBUG(dbgs() << "SALVAGE: " << *DVI
<< '\n');
1345 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1346 findDbgValues(DbgValues
, &I
);
1347 for (auto *DVI
: DbgValues
) {
1349 M
.getDataLayout().getPointerSizeInBits(GEP
->getPointerAddressSpace());
1350 APInt
Offset(BitWidth
, 0);
1351 // Rewrite a constant GEP into a DIExpression. Since we are performing
1352 // arithmetic to compute the variable's *value* in the DIExpression, we
1353 // need to mark the expression with a DW_OP_stack_value.
1354 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
)) {
1355 auto *DIExpr
= DVI
->getExpression();
1356 DIBuilder
DIB(M
, /*AllowUnresolved*/ false);
1357 // GEP offsets are i32 and thus always fit into an int64_t.
1358 DIExpr
= DIExpression::prepend(DIExpr
, DIExpression::NoDeref
,
1359 Offset
.getSExtValue(),
1360 DIExpression::WithStackValue
);
1361 DVI
->setOperand(0, MDWrap(I
.getOperand(0)));
1362 DVI
->setOperand(2, MetadataAsValue::get(I
.getContext(), DIExpr
));
1363 DEBUG(dbgs() << "SALVAGE: " << *DVI
<< '\n');
1366 } else if (isa
<LoadInst
>(&I
)) {
1367 findDbgValues(DbgValues
, &I
);
1368 for (auto *DVI
: DbgValues
) {
1369 // Rewrite the load into DW_OP_deref.
1370 auto *DIExpr
= DVI
->getExpression();
1371 DIBuilder
DIB(M
, /*AllowUnresolved*/ false);
1372 DIExpr
= DIExpression::prepend(DIExpr
, DIExpression::WithDeref
);
1373 DVI
->setOperand(0, MDWrap(I
.getOperand(0)));
1374 DVI
->setOperand(2, MetadataAsValue::get(I
.getContext(), DIExpr
));
1375 DEBUG(dbgs() << "SALVAGE: " << *DVI
<< '\n');
1380 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1381 unsigned NumDeadInst
= 0;
1382 // Delete the instructions backwards, as it has a reduced likelihood of
1383 // having to update as many def-use and use-def chains.
1384 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1385 while (EndInst
!= &BB
->front()) {
1386 // Delete the next to last instruction.
1387 Instruction
*Inst
= &*--EndInst
->getIterator();
1388 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1389 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1390 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1394 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1396 Inst
->eraseFromParent();
1401 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1402 bool PreserveLCSSA
) {
1403 BasicBlock
*BB
= I
->getParent();
1404 // Loop over all of the successors, removing BB's entry from any PHI
1406 for (BasicBlock
*Successor
: successors(BB
))
1407 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1409 // Insert a call to llvm.trap right before this. This turns the undefined
1410 // behavior into a hard fail instead of falling through into random code.
1413 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1414 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1415 CallTrap
->setDebugLoc(I
->getDebugLoc());
1417 new UnreachableInst(I
->getContext(), I
);
1419 // All instructions after this are dead.
1420 unsigned NumInstrsRemoved
= 0;
1421 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1422 while (BBI
!= BBE
) {
1423 if (!BBI
->use_empty())
1424 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1425 BB
->getInstList().erase(BBI
++);
1428 return NumInstrsRemoved
;
1431 /// changeToCall - Convert the specified invoke into a normal call.
1432 static void changeToCall(InvokeInst
*II
) {
1433 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1434 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1435 II
->getOperandBundlesAsDefs(OpBundles
);
1436 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(), Args
, OpBundles
,
1438 NewCall
->takeName(II
);
1439 NewCall
->setCallingConv(II
->getCallingConv());
1440 NewCall
->setAttributes(II
->getAttributes());
1441 NewCall
->setDebugLoc(II
->getDebugLoc());
1442 II
->replaceAllUsesWith(NewCall
);
1444 // Follow the call by a branch to the normal destination.
1445 BranchInst::Create(II
->getNormalDest(), II
);
1447 // Update PHI nodes in the unwind destination
1448 II
->getUnwindDest()->removePredecessor(II
->getParent());
1449 II
->eraseFromParent();
1452 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
1453 BasicBlock
*UnwindEdge
) {
1454 BasicBlock
*BB
= CI
->getParent();
1456 // Convert this function call into an invoke instruction. First, split the
1459 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
1461 // Delete the unconditional branch inserted by splitBasicBlock
1462 BB
->getInstList().pop_back();
1464 // Create the new invoke instruction.
1465 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
1466 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1468 CI
->getOperandBundlesAsDefs(OpBundles
);
1470 // Note: we're round tripping operand bundles through memory here, and that
1471 // can potentially be avoided with a cleverer API design that we do not have
1474 InvokeInst
*II
= InvokeInst::Create(CI
->getCalledValue(), Split
, UnwindEdge
,
1475 InvokeArgs
, OpBundles
, CI
->getName(), BB
);
1476 II
->setDebugLoc(CI
->getDebugLoc());
1477 II
->setCallingConv(CI
->getCallingConv());
1478 II
->setAttributes(CI
->getAttributes());
1480 // Make sure that anything using the call now uses the invoke! This also
1481 // updates the CallGraph if present, because it uses a WeakTrackingVH.
1482 CI
->replaceAllUsesWith(II
);
1484 // Delete the original call
1485 Split
->getInstList().pop_front();
1489 static bool markAliveBlocks(Function
&F
,
1490 SmallPtrSetImpl
<BasicBlock
*> &Reachable
) {
1492 SmallVector
<BasicBlock
*, 128> Worklist
;
1493 BasicBlock
*BB
= &F
.front();
1494 Worklist
.push_back(BB
);
1495 Reachable
.insert(BB
);
1496 bool Changed
= false;
1498 BB
= Worklist
.pop_back_val();
1500 // Do a quick scan of the basic block, turning any obviously unreachable
1501 // instructions into LLVM unreachable insts. The instruction combining pass
1502 // canonicalizes unreachable insts into stores to null or undef.
1503 for (Instruction
&I
: *BB
) {
1504 // Assumptions that are known to be false are equivalent to unreachable.
1505 // Also, if the condition is undefined, then we make the choice most
1506 // beneficial to the optimizer, and choose that to also be unreachable.
1507 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
1508 if (II
->getIntrinsicID() == Intrinsic::assume
) {
1509 if (match(II
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1510 // Don't insert a call to llvm.trap right before the unreachable.
1511 changeToUnreachable(II
, false);
1517 if (II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
1518 // A call to the guard intrinsic bails out of the current compilation
1519 // unit if the predicate passed to it is false. If the predicate is a
1520 // constant false, then we know the guard will bail out of the current
1521 // compile unconditionally, so all code following it is dead.
1523 // Note: unlike in llvm.assume, it is not "obviously profitable" for
1524 // guards to treat `undef` as `false` since a guard on `undef` can
1525 // still be useful for widening.
1526 if (match(II
->getArgOperand(0), m_Zero()))
1527 if (!isa
<UnreachableInst
>(II
->getNextNode())) {
1528 changeToUnreachable(II
->getNextNode(), /*UseLLVMTrap=*/ false);
1535 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
1536 Value
*Callee
= CI
->getCalledValue();
1537 if (isa
<ConstantPointerNull
>(Callee
) || isa
<UndefValue
>(Callee
)) {
1538 changeToUnreachable(CI
, /*UseLLVMTrap=*/false);
1542 if (CI
->doesNotReturn()) {
1543 // If we found a call to a no-return function, insert an unreachable
1544 // instruction after it. Make sure there isn't *already* one there
1546 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
1547 // Don't insert a call to llvm.trap right before the unreachable.
1548 changeToUnreachable(CI
->getNextNode(), false);
1555 // Store to undef and store to null are undefined and used to signal that
1556 // they should be changed to unreachable by passes that can't modify the
1558 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
1559 // Don't touch volatile stores.
1560 if (SI
->isVolatile()) continue;
1562 Value
*Ptr
= SI
->getOperand(1);
1564 if (isa
<UndefValue
>(Ptr
) ||
1565 (isa
<ConstantPointerNull
>(Ptr
) &&
1566 SI
->getPointerAddressSpace() == 0)) {
1567 changeToUnreachable(SI
, true);
1574 TerminatorInst
*Terminator
= BB
->getTerminator();
1575 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
1576 // Turn invokes that call 'nounwind' functions into ordinary calls.
1577 Value
*Callee
= II
->getCalledValue();
1578 if (isa
<ConstantPointerNull
>(Callee
) || isa
<UndefValue
>(Callee
)) {
1579 changeToUnreachable(II
, true);
1581 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
1582 if (II
->use_empty() && II
->onlyReadsMemory()) {
1583 // jump to the normal destination branch.
1584 BranchInst::Create(II
->getNormalDest(), II
);
1585 II
->getUnwindDest()->removePredecessor(II
->getParent());
1586 II
->eraseFromParent();
1591 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
1592 // Remove catchpads which cannot be reached.
1593 struct CatchPadDenseMapInfo
{
1594 static CatchPadInst
*getEmptyKey() {
1595 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
1597 static CatchPadInst
*getTombstoneKey() {
1598 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
1600 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
1601 return static_cast<unsigned>(hash_combine_range(
1602 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
1604 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
1605 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1606 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1608 return LHS
->isIdenticalTo(RHS
);
1612 // Set of unique CatchPads.
1613 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
1614 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
1616 detail::DenseSetEmpty Empty
;
1617 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
1618 E
= CatchSwitch
->handler_end();
1620 BasicBlock
*HandlerBB
= *I
;
1621 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
1622 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
1623 CatchSwitch
->removeHandler(I
);
1631 Changed
|= ConstantFoldTerminator(BB
, true);
1632 for (BasicBlock
*Successor
: successors(BB
))
1633 if (Reachable
.insert(Successor
).second
)
1634 Worklist
.push_back(Successor
);
1635 } while (!Worklist
.empty());
1639 void llvm::removeUnwindEdge(BasicBlock
*BB
) {
1640 TerminatorInst
*TI
= BB
->getTerminator();
1642 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
1647 TerminatorInst
*NewTI
;
1648 BasicBlock
*UnwindDest
;
1650 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
1651 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
1652 UnwindDest
= CRI
->getUnwindDest();
1653 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
1654 auto *NewCatchSwitch
= CatchSwitchInst::Create(
1655 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
1656 CatchSwitch
->getName(), CatchSwitch
);
1657 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
1658 NewCatchSwitch
->addHandler(PadBB
);
1660 NewTI
= NewCatchSwitch
;
1661 UnwindDest
= CatchSwitch
->getUnwindDest();
1663 llvm_unreachable("Could not find unwind successor");
1666 NewTI
->takeName(TI
);
1667 NewTI
->setDebugLoc(TI
->getDebugLoc());
1668 UnwindDest
->removePredecessor(BB
);
1669 TI
->replaceAllUsesWith(NewTI
);
1670 TI
->eraseFromParent();
1673 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1674 /// if they are in a dead cycle. Return true if a change was made, false
1675 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1676 /// after modifying the CFG.
1677 bool llvm::removeUnreachableBlocks(Function
&F
, LazyValueInfo
*LVI
) {
1678 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
1679 bool Changed
= markAliveBlocks(F
, Reachable
);
1681 // If there are unreachable blocks in the CFG...
1682 if (Reachable
.size() == F
.size())
1685 assert(Reachable
.size() < F
.size());
1686 NumRemoved
+= F
.size()-Reachable
.size();
1688 // Loop over all of the basic blocks that are not reachable, dropping all of
1689 // their internal references...
1690 for (Function::iterator BB
= ++F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1691 if (Reachable
.count(&*BB
))
1694 for (BasicBlock
*Successor
: successors(&*BB
))
1695 if (Reachable
.count(Successor
))
1696 Successor
->removePredecessor(&*BB
);
1698 LVI
->eraseBlock(&*BB
);
1699 BB
->dropAllReferences();
1702 for (Function::iterator I
= ++F
.begin(); I
!= F
.end();)
1703 if (!Reachable
.count(&*I
))
1704 I
= F
.getBasicBlockList().erase(I
);
1711 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
1712 ArrayRef
<unsigned> KnownIDs
) {
1713 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
1714 K
->dropUnknownNonDebugMetadata(KnownIDs
);
1715 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
1716 for (const auto &MD
: Metadata
) {
1717 unsigned Kind
= MD
.first
;
1718 MDNode
*JMD
= J
->getMetadata(Kind
);
1719 MDNode
*KMD
= MD
.second
;
1723 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
1725 case LLVMContext::MD_dbg
:
1726 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1727 case LLVMContext::MD_tbaa
:
1728 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
1730 case LLVMContext::MD_alias_scope
:
1731 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
1733 case LLVMContext::MD_noalias
:
1734 case LLVMContext::MD_mem_parallel_loop_access
:
1735 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
1737 case LLVMContext::MD_range
:
1738 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
1740 case LLVMContext::MD_fpmath
:
1741 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
1743 case LLVMContext::MD_invariant_load
:
1744 // Only set the !invariant.load if it is present in both instructions.
1745 K
->setMetadata(Kind
, JMD
);
1747 case LLVMContext::MD_nonnull
:
1748 // Only set the !nonnull if it is present in both instructions.
1749 K
->setMetadata(Kind
, JMD
);
1751 case LLVMContext::MD_invariant_group
:
1752 // Preserve !invariant.group in K.
1754 case LLVMContext::MD_align
:
1755 K
->setMetadata(Kind
,
1756 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
1758 case LLVMContext::MD_dereferenceable
:
1759 case LLVMContext::MD_dereferenceable_or_null
:
1760 K
->setMetadata(Kind
,
1761 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
1765 // Set !invariant.group from J if J has it. If both instructions have it
1766 // then we will just pick it from J - even when they are different.
1767 // Also make sure that K is load or store - f.e. combining bitcast with load
1768 // could produce bitcast with invariant.group metadata, which is invalid.
1769 // FIXME: we should try to preserve both invariant.group md if they are
1770 // different, but right now instruction can only have one invariant.group.
1771 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
1772 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
1773 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
1776 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
) {
1777 unsigned KnownIDs
[] = {
1778 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
1779 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
1780 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
1781 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
1782 LLVMContext::MD_dereferenceable
,
1783 LLVMContext::MD_dereferenceable_or_null
};
1784 combineMetadata(K
, J
, KnownIDs
);
1787 template <typename RootType
, typename DominatesFn
>
1788 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
1789 const RootType
&Root
,
1790 const DominatesFn
&Dominates
) {
1791 assert(From
->getType() == To
->getType());
1794 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
1797 if (!Dominates(Root
, U
))
1800 DEBUG(dbgs() << "Replace dominated use of '" << From
->getName() << "' as "
1801 << *To
<< " in " << *U
<< "\n");
1807 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
1808 assert(From
->getType() == To
->getType());
1809 auto *BB
= From
->getParent();
1812 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
1815 auto *I
= cast
<Instruction
>(U
.getUser());
1816 if (I
->getParent() == BB
)
1824 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
1826 const BasicBlockEdge
&Root
) {
1827 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
1828 return DT
.dominates(Root
, U
);
1830 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
1833 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
1835 const BasicBlock
*BB
) {
1836 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
1837 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
1838 return DT
.properlyDominates(BB
, I
);
1840 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
1843 bool llvm::callsGCLeafFunction(ImmutableCallSite CS
,
1844 const TargetLibraryInfo
&TLI
) {
1845 // Check if the function is specifically marked as a gc leaf function.
1846 if (CS
.hasFnAttr("gc-leaf-function"))
1848 if (const Function
*F
= CS
.getCalledFunction()) {
1849 if (F
->hasFnAttribute("gc-leaf-function"))
1852 if (auto IID
= F
->getIntrinsicID())
1853 // Most LLVM intrinsics do not take safepoints.
1854 return IID
!= Intrinsic::experimental_gc_statepoint
&&
1855 IID
!= Intrinsic::experimental_deoptimize
;
1858 // Lib calls can be materialized by some passes, and won't be
1859 // marked as 'gc-leaf-function.' All available Libcalls are
1862 if (TLI
.getLibFunc(CS
, LF
)) {
1869 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
1871 auto *NewTy
= NewLI
.getType();
1873 // This only directly applies if the new type is also a pointer.
1874 if (NewTy
->isPointerTy()) {
1875 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
1879 // The only other translation we can do is to integral loads with !range
1881 if (!NewTy
->isIntegerTy())
1884 MDBuilder
MDB(NewLI
.getContext());
1885 const Value
*Ptr
= OldLI
.getPointerOperand();
1886 auto *ITy
= cast
<IntegerType
>(NewTy
);
1887 auto *NullInt
= ConstantExpr::getPtrToInt(
1888 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
1889 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
1890 NewLI
.setMetadata(LLVMContext::MD_range
,
1891 MDB
.createRange(NonNullInt
, NullInt
));
1894 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
1895 MDNode
*N
, LoadInst
&NewLI
) {
1896 auto *NewTy
= NewLI
.getType();
1898 // Give up unless it is converted to a pointer where there is a single very
1899 // valuable mapping we can do reliably.
1900 // FIXME: It would be nice to propagate this in more ways, but the type
1901 // conversions make it hard.
1902 if (!NewTy
->isPointerTy())
1905 unsigned BitWidth
= DL
.getTypeSizeInBits(NewTy
);
1906 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
1907 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
1908 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
1913 /// A potential constituent of a bitreverse or bswap expression. See
1914 /// collectBitParts for a fuller explanation.
1916 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
1917 Provenance
.resize(BW
);
1920 /// The Value that this is a bitreverse/bswap of.
1922 /// The "provenance" of each bit. Provenance[A] = B means that bit A
1923 /// in Provider becomes bit B in the result of this expression.
1924 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
1926 enum { Unset
= -1 };
1928 } // end anonymous namespace
1930 /// Analyze the specified subexpression and see if it is capable of providing
1931 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1932 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1933 /// the output of the expression came from a corresponding bit in some other
1934 /// value. This function is recursive, and the end result is a mapping of
1935 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1936 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1938 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1939 /// that the expression deposits the low byte of %X into the high byte of the
1940 /// result and that all other bits are zero. This expression is accepted and a
1941 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1944 /// To avoid revisiting values, the BitPart results are memoized into the
1945 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1946 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1947 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1948 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1949 /// type instead to provide the same functionality.
1951 /// Because we pass around references into \c BPS, we must use a container that
1952 /// does not invalidate internal references (std::map instead of DenseMap).
1954 static const Optional
<BitPart
> &
1955 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
1956 std::map
<Value
*, Optional
<BitPart
>> &BPS
) {
1957 auto I
= BPS
.find(V
);
1961 auto &Result
= BPS
[V
] = None
;
1962 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
1964 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
1965 // If this is an or instruction, it may be an inner node of the bswap.
1966 if (I
->getOpcode() == Instruction::Or
) {
1967 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
1968 MatchBitReversals
, BPS
);
1969 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
1970 MatchBitReversals
, BPS
);
1974 // Try and merge the two together.
1975 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
1978 Result
= BitPart(A
->Provider
, BitWidth
);
1979 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
1980 if (A
->Provenance
[i
] != BitPart::Unset
&&
1981 B
->Provenance
[i
] != BitPart::Unset
&&
1982 A
->Provenance
[i
] != B
->Provenance
[i
])
1983 return Result
= None
;
1985 if (A
->Provenance
[i
] == BitPart::Unset
)
1986 Result
->Provenance
[i
] = B
->Provenance
[i
];
1988 Result
->Provenance
[i
] = A
->Provenance
[i
];
1994 // If this is a logical shift by a constant, recurse then shift the result.
1995 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
1997 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
1998 // Ensure the shift amount is defined.
1999 if (BitShift
> BitWidth
)
2002 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2003 MatchBitReversals
, BPS
);
2008 // Perform the "shift" on BitProvenance.
2009 auto &P
= Result
->Provenance
;
2010 if (I
->getOpcode() == Instruction::Shl
) {
2011 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2012 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2014 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2015 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2021 // If this is a logical 'and' with a mask that clears bits, recurse then
2022 // unset the appropriate bits.
2023 if (I
->getOpcode() == Instruction::And
&&
2024 isa
<ConstantInt
>(I
->getOperand(1))) {
2025 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2026 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2028 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2030 unsigned NumMaskedBits
= AndMask
.countPopulation();
2031 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2034 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2035 MatchBitReversals
, BPS
);
2040 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2041 // If the AndMask is zero for this bit, clear the bit.
2042 if ((AndMask
& Bit
) == 0)
2043 Result
->Provenance
[i
] = BitPart::Unset
;
2047 // If this is a zext instruction zero extend the result.
2048 if (I
->getOpcode() == Instruction::ZExt
) {
2049 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2050 MatchBitReversals
, BPS
);
2054 Result
= BitPart(Res
->Provider
, BitWidth
);
2055 auto NarrowBitWidth
=
2056 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2057 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2058 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2059 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2060 Result
->Provenance
[i
] = BitPart::Unset
;
2065 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2066 // the input value to the bswap/bitreverse.
2067 Result
= BitPart(V
, BitWidth
);
2068 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2069 Result
->Provenance
[i
] = i
;
2073 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2074 unsigned BitWidth
) {
2075 if (From
% 8 != To
% 8)
2077 // Convert from bit indices to byte indices and check for a byte reversal.
2081 return From
== BitWidth
- To
- 1;
2084 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2085 unsigned BitWidth
) {
2086 return From
== BitWidth
- To
- 1;
2089 /// Given an OR instruction, check to see if this is a bitreverse
2090 /// idiom. If so, insert the new intrinsic and return true.
2091 bool llvm::recognizeBSwapOrBitReverseIdiom(
2092 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2093 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2094 if (Operator::getOpcode(I
) != Instruction::Or
)
2096 if (!MatchBSwaps
&& !MatchBitReversals
)
2098 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2099 if (!ITy
|| ITy
->getBitWidth() > 128)
2100 return false; // Can't do vectors or integers > 128 bits.
2101 unsigned BW
= ITy
->getBitWidth();
2103 unsigned DemandedBW
= BW
;
2104 IntegerType
*DemandedTy
= ITy
;
2105 if (I
->hasOneUse()) {
2106 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2107 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2108 DemandedBW
= DemandedTy
->getBitWidth();
2112 // Try to find all the pieces corresponding to the bswap.
2113 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2114 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
);
2117 auto &BitProvenance
= Res
->Provenance
;
2119 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2120 // only byteswap values with an even number of bytes.
2121 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2122 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2124 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2126 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2129 Intrinsic::ID Intrin
;
2130 if (OKForBSwap
&& MatchBSwaps
)
2131 Intrin
= Intrinsic::bswap
;
2132 else if (OKForBitReverse
&& MatchBitReversals
)
2133 Intrin
= Intrinsic::bitreverse
;
2137 if (ITy
!= DemandedTy
) {
2138 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2139 Value
*Provider
= Res
->Provider
;
2140 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2141 // We may need to truncate the provider.
2142 if (DemandedTy
!= ProviderTy
) {
2143 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2145 InsertedInsts
.push_back(Trunc
);
2148 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2149 InsertedInsts
.push_back(CI
);
2150 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2151 InsertedInsts
.push_back(ExtInst
);
2155 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2156 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2160 // CodeGen has special handling for some string functions that may replace
2161 // them with target-specific intrinsics. Since that'd skip our interceptors
2162 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2163 // we mark affected calls as NoBuiltin, which will disable optimization
2165 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2166 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2167 Function
*F
= CI
->getCalledFunction();
2169 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2170 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2171 !F
->doesNotAccessMemory())
2172 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2175 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2176 // We can't have a PHI with a metadata type.
2177 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2181 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2184 switch (I
->getOpcode()) {
2187 case Instruction::Call
:
2188 case Instruction::Invoke
:
2189 // Can't handle inline asm. Skip it.
2190 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2192 // Many arithmetic intrinsics have no issue taking a
2193 // variable, however it's hard to distingish these from
2194 // specials such as @llvm.frameaddress that require a constant.
2195 if (isa
<IntrinsicInst
>(I
))
2198 // Constant bundle operands may need to retain their constant-ness for
2200 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2203 case Instruction::ShuffleVector
:
2204 // Shufflevector masks are constant.
2206 case Instruction::Switch
:
2207 case Instruction::ExtractValue
:
2208 // All operands apart from the first are constant.
2210 case Instruction::InsertValue
:
2211 // All operands apart from the first and the second are constant.
2213 case Instruction::Alloca
:
2214 // Static allocas (constant size in the entry block) are handled by
2215 // prologue/epilogue insertion so they're free anyway. We definitely don't
2216 // want to make them non-constant.
2217 return !dyn_cast
<AllocaInst
>(I
)->isStaticAlloca();
2218 case Instruction::GetElementPtr
:
2221 gep_type_iterator It
= gep_type_begin(I
);
2222 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)