Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / LoopUnrollRuntime.cpp
blob1ff3811e23648a8fb537b6bc51af862d14fa9e3d
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include <algorithm>
44 using namespace llvm;
46 #define DEBUG_TYPE "loop-unroll"
48 STATISTIC(NumRuntimeUnrolled,
49 "Number of loops unrolled with run-time trip counts");
50 static cl::opt<bool> UnrollRuntimeMultiExit(
51 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
52 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
53 "epilog is generated"));
55 /// Connect the unrolling prolog code to the original loop.
56 /// The unrolling prolog code contains code to execute the
57 /// 'extra' iterations if the run-time trip count modulo the
58 /// unroll count is non-zero.
59 ///
60 /// This function performs the following:
61 /// - Create PHI nodes at prolog end block to combine values
62 /// that exit the prolog code and jump around the prolog.
63 /// - Add a PHI operand to a PHI node at the loop exit block
64 /// for values that exit the prolog and go around the loop.
65 /// - Branch around the original loop if the trip count is less
66 /// than the unroll factor.
67 ///
68 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
69 BasicBlock *PrologExit,
70 BasicBlock *OriginalLoopLatchExit,
71 BasicBlock *PreHeader, BasicBlock *NewPreHeader,
72 ValueToValueMapTy &VMap, DominatorTree *DT,
73 LoopInfo *LI, bool PreserveLCSSA) {
74 BasicBlock *Latch = L->getLoopLatch();
75 assert(Latch && "Loop must have a latch");
76 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
78 // Create a PHI node for each outgoing value from the original loop
79 // (which means it is an outgoing value from the prolog code too).
80 // The new PHI node is inserted in the prolog end basic block.
81 // The new PHI node value is added as an operand of a PHI node in either
82 // the loop header or the loop exit block.
83 for (BasicBlock *Succ : successors(Latch)) {
84 for (Instruction &BBI : *Succ) {
85 PHINode *PN = dyn_cast<PHINode>(&BBI);
86 // Exit when we passed all PHI nodes.
87 if (!PN)
88 break;
89 // Add a new PHI node to the prolog end block and add the
90 // appropriate incoming values.
91 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
92 PrologExit->getFirstNonPHI());
93 // Adding a value to the new PHI node from the original loop preheader.
94 // This is the value that skips all the prolog code.
95 if (L->contains(PN)) {
96 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
97 PreHeader);
98 } else {
99 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
102 Value *V = PN->getIncomingValueForBlock(Latch);
103 if (Instruction *I = dyn_cast<Instruction>(V)) {
104 if (L->contains(I)) {
105 V = VMap.lookup(I);
108 // Adding a value to the new PHI node from the last prolog block
109 // that was created.
110 NewPN->addIncoming(V, PrologLatch);
112 // Update the existing PHI node operand with the value from the
113 // new PHI node. How this is done depends on if the existing
114 // PHI node is in the original loop block, or the exit block.
115 if (L->contains(PN)) {
116 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
117 } else {
118 PN->addIncoming(NewPN, PrologExit);
123 // Make sure that created prolog loop is in simplified form
124 SmallVector<BasicBlock *, 4> PrologExitPreds;
125 Loop *PrologLoop = LI->getLoopFor(PrologLatch);
126 if (PrologLoop) {
127 for (BasicBlock *PredBB : predecessors(PrologExit))
128 if (PrologLoop->contains(PredBB))
129 PrologExitPreds.push_back(PredBB);
131 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
132 PreserveLCSSA);
135 // Create a branch around the original loop, which is taken if there are no
136 // iterations remaining to be executed after running the prologue.
137 Instruction *InsertPt = PrologExit->getTerminator();
138 IRBuilder<> B(InsertPt);
140 assert(Count != 0 && "nonsensical Count!");
142 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
143 // This means %xtraiter is (BECount + 1) and all of the iterations of this
144 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
145 // then (BECount + 1) cannot unsigned-overflow.
146 Value *BrLoopExit =
147 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
148 // Split the exit to maintain loop canonicalization guarantees
149 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
150 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
151 PreserveLCSSA);
152 // Add the branch to the exit block (around the unrolled loop)
153 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
154 InsertPt->eraseFromParent();
155 if (DT)
156 DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
159 /// Connect the unrolling epilog code to the original loop.
160 /// The unrolling epilog code contains code to execute the
161 /// 'extra' iterations if the run-time trip count modulo the
162 /// unroll count is non-zero.
164 /// This function performs the following:
165 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
166 /// - Create PHI nodes at the unrolling loop exit to combine
167 /// values that exit the unrolling loop code and jump around it.
168 /// - Update PHI operands in the epilog loop by the new PHI nodes
169 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
171 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
172 BasicBlock *Exit, BasicBlock *PreHeader,
173 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
174 ValueToValueMapTy &VMap, DominatorTree *DT,
175 LoopInfo *LI, bool PreserveLCSSA) {
176 BasicBlock *Latch = L->getLoopLatch();
177 assert(Latch && "Loop must have a latch");
178 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
180 // Loop structure should be the following:
182 // PreHeader
183 // NewPreHeader
184 // Header
185 // ...
186 // Latch
187 // NewExit (PN)
188 // EpilogPreHeader
189 // EpilogHeader
190 // ...
191 // EpilogLatch
192 // Exit (EpilogPN)
194 // Update PHI nodes at NewExit and Exit.
195 for (Instruction &BBI : *NewExit) {
196 PHINode *PN = dyn_cast<PHINode>(&BBI);
197 // Exit when we passed all PHI nodes.
198 if (!PN)
199 break;
200 // PN should be used in another PHI located in Exit block as
201 // Exit was split by SplitBlockPredecessors into Exit and NewExit
202 // Basicaly it should look like:
203 // NewExit:
204 // PN = PHI [I, Latch]
205 // ...
206 // Exit:
207 // EpilogPN = PHI [PN, EpilogPreHeader]
209 // There is EpilogPreHeader incoming block instead of NewExit as
210 // NewExit was spilt 1 more time to get EpilogPreHeader.
211 assert(PN->hasOneUse() && "The phi should have 1 use");
212 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
213 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
215 // Add incoming PreHeader from branch around the Loop
216 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
218 Value *V = PN->getIncomingValueForBlock(Latch);
219 Instruction *I = dyn_cast<Instruction>(V);
220 if (I && L->contains(I))
221 // If value comes from an instruction in the loop add VMap value.
222 V = VMap.lookup(I);
223 // For the instruction out of the loop, constant or undefined value
224 // insert value itself.
225 EpilogPN->addIncoming(V, EpilogLatch);
227 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
228 "EpilogPN should have EpilogPreHeader incoming block");
229 // Change EpilogPreHeader incoming block to NewExit.
230 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
231 NewExit);
232 // Now PHIs should look like:
233 // NewExit:
234 // PN = PHI [I, Latch], [undef, PreHeader]
235 // ...
236 // Exit:
237 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
240 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
241 // Update corresponding PHI nodes in epilog loop.
242 for (BasicBlock *Succ : successors(Latch)) {
243 // Skip this as we already updated phis in exit blocks.
244 if (!L->contains(Succ))
245 continue;
246 for (Instruction &BBI : *Succ) {
247 PHINode *PN = dyn_cast<PHINode>(&BBI);
248 // Exit when we passed all PHI nodes.
249 if (!PN)
250 break;
251 // Add new PHI nodes to the loop exit block and update epilog
252 // PHIs with the new PHI values.
253 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
254 NewExit->getFirstNonPHI());
255 // Adding a value to the new PHI node from the unrolling loop preheader.
256 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
257 // Adding a value to the new PHI node from the unrolling loop latch.
258 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
260 // Update the existing PHI node operand with the value from the new PHI
261 // node. Corresponding instruction in epilog loop should be PHI.
262 PHINode *VPN = cast<PHINode>(VMap[&BBI]);
263 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
267 Instruction *InsertPt = NewExit->getTerminator();
268 IRBuilder<> B(InsertPt);
269 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
270 assert(Exit && "Loop must have a single exit block only");
271 // Split the epilogue exit to maintain loop canonicalization guarantees
272 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
273 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
274 PreserveLCSSA);
275 // Add the branch to the exit block (around the unrolling loop)
276 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
277 InsertPt->eraseFromParent();
278 if (DT)
279 DT->changeImmediateDominator(Exit, NewExit);
281 // Split the main loop exit to maintain canonicalization guarantees.
282 SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
283 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
284 PreserveLCSSA);
287 /// Create a clone of the blocks in a loop and connect them together.
288 /// If CreateRemainderLoop is false, loop structure will not be cloned,
289 /// otherwise a new loop will be created including all cloned blocks, and the
290 /// iterator of it switches to count NewIter down to 0.
291 /// The cloned blocks should be inserted between InsertTop and InsertBot.
292 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
293 /// new loop exit.
294 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
295 static Loop *
296 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
297 const bool UseEpilogRemainder, const bool UnrollRemainder,
298 BasicBlock *InsertTop,
299 BasicBlock *InsertBot, BasicBlock *Preheader,
300 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
301 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
302 StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
303 BasicBlock *Header = L->getHeader();
304 BasicBlock *Latch = L->getLoopLatch();
305 Function *F = Header->getParent();
306 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
307 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
308 Loop *ParentLoop = L->getParentLoop();
309 NewLoopsMap NewLoops;
310 NewLoops[ParentLoop] = ParentLoop;
311 if (!CreateRemainderLoop)
312 NewLoops[L] = ParentLoop;
314 // For each block in the original loop, create a new copy,
315 // and update the value map with the newly created values.
316 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
317 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
318 NewBlocks.push_back(NewBB);
320 // If we're unrolling the outermost loop, there's no remainder loop,
321 // and this block isn't in a nested loop, then the new block is not
322 // in any loop. Otherwise, add it to loopinfo.
323 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
324 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
326 VMap[*BB] = NewBB;
327 if (Header == *BB) {
328 // For the first block, add a CFG connection to this newly
329 // created block.
330 InsertTop->getTerminator()->setSuccessor(0, NewBB);
333 if (DT) {
334 if (Header == *BB) {
335 // The header is dominated by the preheader.
336 DT->addNewBlock(NewBB, InsertTop);
337 } else {
338 // Copy information from original loop to unrolled loop.
339 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
340 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
344 if (Latch == *BB) {
345 // For the last block, if CreateRemainderLoop is false, create a direct
346 // jump to InsertBot. If not, create a loop back to cloned head.
347 VMap.erase((*BB)->getTerminator());
348 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
349 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
350 IRBuilder<> Builder(LatchBR);
351 if (!CreateRemainderLoop) {
352 Builder.CreateBr(InsertBot);
353 } else {
354 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
355 suffix + ".iter",
356 FirstLoopBB->getFirstNonPHI());
357 Value *IdxSub =
358 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
359 NewIdx->getName() + ".sub");
360 Value *IdxCmp =
361 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
362 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
363 NewIdx->addIncoming(NewIter, InsertTop);
364 NewIdx->addIncoming(IdxSub, NewBB);
366 LatchBR->eraseFromParent();
370 // Change the incoming values to the ones defined in the preheader or
371 // cloned loop.
372 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
373 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
374 if (!CreateRemainderLoop) {
375 if (UseEpilogRemainder) {
376 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
377 NewPHI->setIncomingBlock(idx, InsertTop);
378 NewPHI->removeIncomingValue(Latch, false);
379 } else {
380 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
381 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
383 } else {
384 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
385 NewPHI->setIncomingBlock(idx, InsertTop);
386 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
387 idx = NewPHI->getBasicBlockIndex(Latch);
388 Value *InVal = NewPHI->getIncomingValue(idx);
389 NewPHI->setIncomingBlock(idx, NewLatch);
390 if (Value *V = VMap.lookup(InVal))
391 NewPHI->setIncomingValue(idx, V);
394 if (CreateRemainderLoop) {
395 Loop *NewLoop = NewLoops[L];
396 assert(NewLoop && "L should have been cloned");
398 // Only add loop metadata if the loop is not going to be completely
399 // unrolled.
400 if (UnrollRemainder)
401 return NewLoop;
403 // Add unroll disable metadata to disable future unrolling for this loop.
404 SmallVector<Metadata *, 4> MDs;
405 // Reserve first location for self reference to the LoopID metadata node.
406 MDs.push_back(nullptr);
407 MDNode *LoopID = NewLoop->getLoopID();
408 if (LoopID) {
409 // First remove any existing loop unrolling metadata.
410 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
411 bool IsUnrollMetadata = false;
412 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
413 if (MD) {
414 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
415 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
417 if (!IsUnrollMetadata)
418 MDs.push_back(LoopID->getOperand(i));
422 LLVMContext &Context = NewLoop->getHeader()->getContext();
423 SmallVector<Metadata *, 1> DisableOperands;
424 DisableOperands.push_back(MDString::get(Context,
425 "llvm.loop.unroll.disable"));
426 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
427 MDs.push_back(DisableNode);
429 MDNode *NewLoopID = MDNode::get(Context, MDs);
430 // Set operand 0 to refer to the loop id itself.
431 NewLoopID->replaceOperandWith(0, NewLoopID);
432 NewLoop->setLoopID(NewLoopID);
433 return NewLoop;
435 else
436 return nullptr;
439 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
440 /// is populated with all the loop exit blocks other than the LatchExit block.
441 static bool
442 canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
443 BasicBlock *LatchExit, bool PreserveLCSSA,
444 bool UseEpilogRemainder) {
446 // We currently have some correctness constrains in unrolling a multi-exit
447 // loop. Check for these below.
449 // We rely on LCSSA form being preserved when the exit blocks are transformed.
450 if (!PreserveLCSSA)
451 return false;
452 SmallVector<BasicBlock *, 4> Exits;
453 L->getUniqueExitBlocks(Exits);
454 for (auto *BB : Exits)
455 if (BB != LatchExit)
456 OtherExits.push_back(BB);
458 // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
459 // UnrollRuntimeMultiExit is true. This will need updating the logic in
460 // connectEpilog/connectProlog.
461 if (!LatchExit->getSinglePredecessor()) {
462 DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
463 "predecessor.\n");
464 return false;
466 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
467 // and L is an inner loop. This is because in presence of multiple exits, the
468 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
469 // outer loop. This is automatically handled in the prolog case, so we do not
470 // have that bug in prolog generation.
471 if (UseEpilogRemainder && L->getParentLoop())
472 return false;
474 // All constraints have been satisfied.
475 return true;
478 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
479 /// we return true only if UnrollRuntimeMultiExit is set to true.
480 static bool canProfitablyUnrollMultiExitLoop(
481 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
482 bool PreserveLCSSA, bool UseEpilogRemainder) {
484 #if !defined(NDEBUG)
485 SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
486 assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
487 PreserveLCSSA, UseEpilogRemainder) &&
488 "Should be safe to unroll before checking profitability!");
489 #endif
491 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
492 if (UnrollRuntimeMultiExit.getNumOccurrences())
493 return UnrollRuntimeMultiExit;
495 // The main pain point with multi-exit loop unrolling is that once unrolled,
496 // we will not be able to merge all blocks into a straight line code.
497 // There are branches within the unrolled loop that go to the OtherExits.
498 // The second point is the increase in code size, but this is true
499 // irrespective of multiple exits.
501 // Note: Both the heuristics below are coarse grained. We are essentially
502 // enabling unrolling of loops that have a single side exit other than the
503 // normal LatchExit (i.e. exiting into a deoptimize block).
504 // The heuristics considered are:
505 // 1. low number of branches in the unrolled version.
506 // 2. high predictability of these extra branches.
507 // We avoid unrolling loops that have more than two exiting blocks. This
508 // limits the total number of branches in the unrolled loop to be atmost
509 // the unroll factor (since one of the exiting blocks is the latch block).
510 SmallVector<BasicBlock*, 4> ExitingBlocks;
511 L->getExitingBlocks(ExitingBlocks);
512 if (ExitingBlocks.size() > 2)
513 return false;
515 // The second heuristic is that L has one exit other than the latchexit and
516 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
517 // taken, which also implies the branch leading to the deoptimize block is
518 // highly predictable.
519 return (OtherExits.size() == 1 &&
520 OtherExits[0]->getTerminatingDeoptimizeCall());
521 // TODO: These can be fine-tuned further to consider code size or deopt states
522 // that are captured by the deoptimize exit block.
523 // Also, we can extend this to support more cases, if we actually
524 // know of kinds of multiexit loops that would benefit from unrolling.
527 /// Insert code in the prolog/epilog code when unrolling a loop with a
528 /// run-time trip-count.
530 /// This method assumes that the loop unroll factor is total number
531 /// of loop bodies in the loop after unrolling. (Some folks refer
532 /// to the unroll factor as the number of *extra* copies added).
533 /// We assume also that the loop unroll factor is a power-of-two. So, after
534 /// unrolling the loop, the number of loop bodies executed is 2,
535 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
536 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
537 /// the switch instruction is generated.
539 /// ***Prolog case***
540 /// extraiters = tripcount % loopfactor
541 /// if (extraiters == 0) jump Loop:
542 /// else jump Prol:
543 /// Prol: LoopBody;
544 /// extraiters -= 1 // Omitted if unroll factor is 2.
545 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
546 /// if (tripcount < loopfactor) jump End:
547 /// Loop:
548 /// ...
549 /// End:
551 /// ***Epilog case***
552 /// extraiters = tripcount % loopfactor
553 /// if (tripcount < loopfactor) jump LoopExit:
554 /// unroll_iters = tripcount - extraiters
555 /// Loop: LoopBody; (executes unroll_iter times);
556 /// unroll_iter -= 1
557 /// if (unroll_iter != 0) jump Loop:
558 /// LoopExit:
559 /// if (extraiters == 0) jump EpilExit:
560 /// Epil: LoopBody; (executes extraiters times)
561 /// extraiters -= 1 // Omitted if unroll factor is 2.
562 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
563 /// EpilExit:
565 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
566 bool AllowExpensiveTripCount,
567 bool UseEpilogRemainder,
568 bool UnrollRemainder,
569 LoopInfo *LI, ScalarEvolution *SE,
570 DominatorTree *DT, AssumptionCache *AC,
571 OptimizationRemarkEmitter *ORE,
572 bool PreserveLCSSA) {
573 DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
574 DEBUG(L->dump());
575 DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" :
576 dbgs() << "Using prolog remainder.\n");
578 // Make sure the loop is in canonical form.
579 if (!L->isLoopSimplifyForm()) {
580 DEBUG(dbgs() << "Not in simplify form!\n");
581 return false;
584 // Guaranteed by LoopSimplifyForm.
585 BasicBlock *Latch = L->getLoopLatch();
586 BasicBlock *Header = L->getHeader();
588 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
589 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
590 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
591 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
592 // targets of the Latch be an exit block out of the loop. This needs
593 // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
594 assert(!L->contains(LatchExit) &&
595 "one of the loop latch successors should be the exit block!");
596 // These are exit blocks other than the target of the latch exiting block.
597 SmallVector<BasicBlock *, 4> OtherExits;
598 bool isMultiExitUnrollingEnabled =
599 canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
600 UseEpilogRemainder) &&
601 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
602 UseEpilogRemainder);
603 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
604 if (!isMultiExitUnrollingEnabled &&
605 (!L->getExitingBlock() || OtherExits.size())) {
606 DEBUG(
607 dbgs()
608 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
609 "enabled!\n");
610 return false;
612 // Use Scalar Evolution to compute the trip count. This allows more loops to
613 // be unrolled than relying on induction var simplification.
614 if (!SE)
615 return false;
617 // Only unroll loops with a computable trip count, and the trip count needs
618 // to be an int value (allowing a pointer type is a TODO item).
619 // We calculate the backedge count by using getExitCount on the Latch block,
620 // which is proven to be the only exiting block in this loop. This is same as
621 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
622 // exiting blocks).
623 const SCEV *BECountSC = SE->getExitCount(L, Latch);
624 if (isa<SCEVCouldNotCompute>(BECountSC) ||
625 !BECountSC->getType()->isIntegerTy()) {
626 DEBUG(dbgs() << "Could not compute exit block SCEV\n");
627 return false;
630 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
632 // Add 1 since the backedge count doesn't include the first loop iteration.
633 const SCEV *TripCountSC =
634 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
635 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
636 DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
637 return false;
640 BasicBlock *PreHeader = L->getLoopPreheader();
641 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
642 const DataLayout &DL = Header->getModule()->getDataLayout();
643 SCEVExpander Expander(*SE, DL, "loop-unroll");
644 if (!AllowExpensiveTripCount &&
645 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
646 DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
647 return false;
650 // This constraint lets us deal with an overflowing trip count easily; see the
651 // comment on ModVal below.
652 if (Log2_32(Count) > BEWidth) {
653 DEBUG(dbgs()
654 << "Count failed constraint on overflow trip count calculation.\n");
655 return false;
658 // Loop structure is the following:
660 // PreHeader
661 // Header
662 // ...
663 // Latch
664 // LatchExit
666 BasicBlock *NewPreHeader;
667 BasicBlock *NewExit = nullptr;
668 BasicBlock *PrologExit = nullptr;
669 BasicBlock *EpilogPreHeader = nullptr;
670 BasicBlock *PrologPreHeader = nullptr;
672 if (UseEpilogRemainder) {
673 // If epilog remainder
674 // Split PreHeader to insert a branch around loop for unrolling.
675 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
676 NewPreHeader->setName(PreHeader->getName() + ".new");
677 // Split LatchExit to create phi nodes from branch above.
678 SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
679 NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
680 DT, LI, PreserveLCSSA);
681 // Split NewExit to insert epilog remainder loop.
682 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
683 EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
684 } else {
685 // If prolog remainder
686 // Split the original preheader twice to insert prolog remainder loop
687 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
688 PrologPreHeader->setName(Header->getName() + ".prol.preheader");
689 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
690 DT, LI);
691 PrologExit->setName(Header->getName() + ".prol.loopexit");
692 // Split PrologExit to get NewPreHeader.
693 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
694 NewPreHeader->setName(PreHeader->getName() + ".new");
696 // Loop structure should be the following:
697 // Epilog Prolog
699 // PreHeader PreHeader
700 // *NewPreHeader *PrologPreHeader
701 // Header *PrologExit
702 // ... *NewPreHeader
703 // Latch Header
704 // *NewExit ...
705 // *EpilogPreHeader Latch
706 // LatchExit LatchExit
708 // Calculate conditions for branch around loop for unrolling
709 // in epilog case and around prolog remainder loop in prolog case.
710 // Compute the number of extra iterations required, which is:
711 // extra iterations = run-time trip count % loop unroll factor
712 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
713 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
714 PreHeaderBR);
715 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
716 PreHeaderBR);
717 IRBuilder<> B(PreHeaderBR);
718 Value *ModVal;
719 // Calculate ModVal = (BECount + 1) % Count.
720 // Note that TripCount is BECount + 1.
721 if (isPowerOf2_32(Count)) {
722 // When Count is power of 2 we don't BECount for epilog case, however we'll
723 // need it for a branch around unrolling loop for prolog case.
724 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
725 // 1. There are no iterations to be run in the prolog/epilog loop.
726 // OR
727 // 2. The addition computing TripCount overflowed.
729 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
730 // the number of iterations that remain to be run in the original loop is a
731 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
732 // explicitly check this above).
733 } else {
734 // As (BECount + 1) can potentially unsigned overflow we count
735 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
736 Value *ModValTmp = B.CreateURem(BECount,
737 ConstantInt::get(BECount->getType(),
738 Count));
739 Value *ModValAdd = B.CreateAdd(ModValTmp,
740 ConstantInt::get(ModValTmp->getType(), 1));
741 // At that point (BECount % Count) + 1 could be equal to Count.
742 // To handle this case we need to take mod by Count one more time.
743 ModVal = B.CreateURem(ModValAdd,
744 ConstantInt::get(BECount->getType(), Count),
745 "xtraiter");
747 Value *BranchVal =
748 UseEpilogRemainder ? B.CreateICmpULT(BECount,
749 ConstantInt::get(BECount->getType(),
750 Count - 1)) :
751 B.CreateIsNotNull(ModVal, "lcmp.mod");
752 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
753 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
754 // Branch to either remainder (extra iterations) loop or unrolling loop.
755 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
756 PreHeaderBR->eraseFromParent();
757 if (DT) {
758 if (UseEpilogRemainder)
759 DT->changeImmediateDominator(NewExit, PreHeader);
760 else
761 DT->changeImmediateDominator(PrologExit, PreHeader);
763 Function *F = Header->getParent();
764 // Get an ordered list of blocks in the loop to help with the ordering of the
765 // cloned blocks in the prolog/epilog code
766 LoopBlocksDFS LoopBlocks(L);
767 LoopBlocks.perform(LI);
770 // For each extra loop iteration, create a copy of the loop's basic blocks
771 // and generate a condition that branches to the copy depending on the
772 // number of 'left over' iterations.
774 std::vector<BasicBlock *> NewBlocks;
775 ValueToValueMapTy VMap;
777 // For unroll factor 2 remainder loop will have 1 iterations.
778 // Do not create 1 iteration loop.
779 bool CreateRemainderLoop = (Count != 2);
781 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
782 // the loop, otherwise we create a cloned loop to execute the extra
783 // iterations. This function adds the appropriate CFG connections.
784 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
785 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
786 Loop *remainderLoop = CloneLoopBlocks(
787 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
788 InsertTop, InsertBot,
789 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
791 // Insert the cloned blocks into the function.
792 F->getBasicBlockList().splice(InsertBot->getIterator(),
793 F->getBasicBlockList(),
794 NewBlocks[0]->getIterator(),
795 F->end());
797 // Now the loop blocks are cloned and the other exiting blocks from the
798 // remainder are connected to the original Loop's exit blocks. The remaining
799 // work is to update the phi nodes in the original loop, and take in the
800 // values from the cloned region. Also update the dominator info for
801 // OtherExits and their immediate successors, since we have new edges into
802 // OtherExits.
803 SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
804 for (auto *BB : OtherExits) {
805 for (auto &II : *BB) {
807 // Given we preserve LCSSA form, we know that the values used outside the
808 // loop will be used through these phi nodes at the exit blocks that are
809 // transformed below.
810 if (!isa<PHINode>(II))
811 break;
812 PHINode *Phi = cast<PHINode>(&II);
813 unsigned oldNumOperands = Phi->getNumIncomingValues();
814 // Add the incoming values from the remainder code to the end of the phi
815 // node.
816 for (unsigned i =0; i < oldNumOperands; i++){
817 Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
818 // newVal can be a constant or derived from values outside the loop, and
819 // hence need not have a VMap value. Also, since lookup already generated
820 // a default "null" VMap entry for this value, we need to populate that
821 // VMap entry correctly, with the mapped entry being itself.
822 if (!newVal) {
823 newVal = Phi->getIncomingValue(i);
824 VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
826 Phi->addIncoming(newVal,
827 cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
830 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
831 for (BasicBlock *SuccBB : successors(BB)) {
832 assert(!(any_of(OtherExits,
833 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
834 SuccBB == LatchExit) &&
835 "Breaks the definition of dedicated exits!");
837 #endif
838 // Update the dominator info because the immediate dominator is no longer the
839 // header of the original Loop. BB has edges both from L and remainder code.
840 // Since the preheader determines which loop is run (L or directly jump to
841 // the remainder code), we set the immediate dominator as the preheader.
842 if (DT) {
843 DT->changeImmediateDominator(BB, PreHeader);
844 // Also update the IDom for immediate successors of BB. If the current
845 // IDom is the header, update the IDom to be the preheader because that is
846 // the nearest common dominator of all predecessors of SuccBB. We need to
847 // check for IDom being the header because successors of exit blocks can
848 // have edges from outside the loop, and we should not incorrectly update
849 // the IDom in that case.
850 for (BasicBlock *SuccBB: successors(BB))
851 if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
852 if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
853 assert(!SuccBB->getSinglePredecessor() &&
854 "BB should be the IDom then!");
855 DT->changeImmediateDominator(SuccBB, PreHeader);
861 // Loop structure should be the following:
862 // Epilog Prolog
864 // PreHeader PreHeader
865 // NewPreHeader PrologPreHeader
866 // Header PrologHeader
867 // ... ...
868 // Latch PrologLatch
869 // NewExit PrologExit
870 // EpilogPreHeader NewPreHeader
871 // EpilogHeader Header
872 // ... ...
873 // EpilogLatch Latch
874 // LatchExit LatchExit
876 // Rewrite the cloned instruction operands to use the values created when the
877 // clone is created.
878 for (BasicBlock *BB : NewBlocks) {
879 for (Instruction &I : *BB) {
880 RemapInstruction(&I, VMap,
881 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
885 if (UseEpilogRemainder) {
886 // Connect the epilog code to the original loop and update the
887 // PHI functions.
888 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
889 EpilogPreHeader, NewPreHeader, VMap, DT, LI,
890 PreserveLCSSA);
892 // Update counter in loop for unrolling.
893 // I should be multiply of Count.
894 IRBuilder<> B2(NewPreHeader->getTerminator());
895 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
896 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
897 B2.SetInsertPoint(LatchBR);
898 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
899 Header->getFirstNonPHI());
900 Value *IdxSub =
901 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
902 NewIdx->getName() + ".nsub");
903 Value *IdxCmp;
904 if (LatchBR->getSuccessor(0) == Header)
905 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
906 else
907 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
908 NewIdx->addIncoming(TestVal, NewPreHeader);
909 NewIdx->addIncoming(IdxSub, Latch);
910 LatchBR->setCondition(IdxCmp);
911 } else {
912 // Connect the prolog code to the original loop and update the
913 // PHI functions.
914 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
915 NewPreHeader, VMap, DT, LI, PreserveLCSSA);
918 // If this loop is nested, then the loop unroller changes the code in the
919 // parent loop, so the Scalar Evolution pass needs to be run again.
920 if (Loop *ParentLoop = L->getParentLoop())
921 SE->forgetLoop(ParentLoop);
923 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
924 // cannot rely on the LoopUnrollPass to do this because it only does
925 // canonicalization for parent/subloops and not the sibling loops.
926 if (OtherExits.size() > 0) {
927 // Generate dedicated exit blocks for the original loop, to preserve
928 // LoopSimplifyForm.
929 formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
930 // Generate dedicated exit blocks for the remainder loop if one exists, to
931 // preserve LoopSimplifyForm.
932 if (remainderLoop)
933 formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
936 if (remainderLoop && UnrollRemainder) {
937 DEBUG(dbgs() << "Unrolling remainder loop\n");
938 UnrollLoop(remainderLoop, /*Count*/Count - 1, /*TripCount*/Count - 1,
939 /*Force*/false, /*AllowRuntime*/false,
940 /*AllowExpensiveTripCount*/false, /*PreserveCondBr*/true,
941 /*PreserveOnlyFirst*/false, /*TripMultiple*/1,
942 /*PeelCount*/0, /*UnrollRemainder*/false, LI, SE, DT, AC, ORE,
943 PreserveLCSSA);
946 NumRuntimeUnrolled++;
947 return true;