Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Utils / SimplifyIndVar.cpp
blob6d90e6b48358a1a9439c0562a61939864fdd2704
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
34 #define DEBUG_TYPE "indvars"
36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
37 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
39 STATISTIC(
40 NumSimplifiedSDiv,
41 "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
44 namespace {
45 /// This is a utility for simplifying induction variables
46 /// based on ScalarEvolution. It is the primary instrument of the
47 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
48 /// other loop passes that preserve SCEV.
49 class SimplifyIndvar {
50 Loop *L;
51 LoopInfo *LI;
52 ScalarEvolution *SE;
53 DominatorTree *DT;
55 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
57 bool Changed;
59 public:
60 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
61 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead)
62 : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
63 assert(LI && "IV simplification requires LoopInfo");
66 bool hasChanged() const { return Changed; }
68 /// Iteratively perform simplification on a worklist of users of the
69 /// specified induction variable. This is the top-level driver that applies
70 /// all simplifications to users of an IV.
71 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
73 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
75 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
77 bool eliminateOverflowIntrinsic(CallInst *CI);
78 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
79 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
80 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
81 bool IsSigned);
82 bool eliminateSDiv(BinaryOperator *SDiv);
83 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
84 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
88 /// Fold an IV operand into its use. This removes increments of an
89 /// aligned IV when used by a instruction that ignores the low bits.
90 ///
91 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
92 ///
93 /// Return the operand of IVOperand for this induction variable if IVOperand can
94 /// be folded (in case more folding opportunities have been exposed).
95 /// Otherwise return null.
96 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
97 Value *IVSrc = nullptr;
98 unsigned OperIdx = 0;
99 const SCEV *FoldedExpr = nullptr;
100 switch (UseInst->getOpcode()) {
101 default:
102 return nullptr;
103 case Instruction::UDiv:
104 case Instruction::LShr:
105 // We're only interested in the case where we know something about
106 // the numerator and have a constant denominator.
107 if (IVOperand != UseInst->getOperand(OperIdx) ||
108 !isa<ConstantInt>(UseInst->getOperand(1)))
109 return nullptr;
111 // Attempt to fold a binary operator with constant operand.
112 // e.g. ((I + 1) >> 2) => I >> 2
113 if (!isa<BinaryOperator>(IVOperand)
114 || !isa<ConstantInt>(IVOperand->getOperand(1)))
115 return nullptr;
117 IVSrc = IVOperand->getOperand(0);
118 // IVSrc must be the (SCEVable) IV, since the other operand is const.
119 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
121 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
122 if (UseInst->getOpcode() == Instruction::LShr) {
123 // Get a constant for the divisor. See createSCEV.
124 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
125 if (D->getValue().uge(BitWidth))
126 return nullptr;
128 D = ConstantInt::get(UseInst->getContext(),
129 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
131 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
133 // We have something that might fold it's operand. Compare SCEVs.
134 if (!SE->isSCEVable(UseInst->getType()))
135 return nullptr;
137 // Bypass the operand if SCEV can prove it has no effect.
138 if (SE->getSCEV(UseInst) != FoldedExpr)
139 return nullptr;
141 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
142 << " -> " << *UseInst << '\n');
144 UseInst->setOperand(OperIdx, IVSrc);
145 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
147 ++NumElimOperand;
148 Changed = true;
149 if (IVOperand->use_empty())
150 DeadInsts.emplace_back(IVOperand);
151 return IVSrc;
154 /// SimplifyIVUsers helper for eliminating useless
155 /// comparisons against an induction variable.
156 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
157 unsigned IVOperIdx = 0;
158 ICmpInst::Predicate Pred = ICmp->getPredicate();
159 ICmpInst::Predicate OriginalPred = Pred;
160 if (IVOperand != ICmp->getOperand(0)) {
161 // Swapped
162 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
163 IVOperIdx = 1;
164 Pred = ICmpInst::getSwappedPredicate(Pred);
167 // Get the SCEVs for the ICmp operands.
168 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
169 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
171 // Simplify unnecessary loops away.
172 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
173 S = SE->getSCEVAtScope(S, ICmpLoop);
174 X = SE->getSCEVAtScope(X, ICmpLoop);
176 ICmpInst::Predicate InvariantPredicate;
177 const SCEV *InvariantLHS, *InvariantRHS;
179 // If the condition is always true or always false, replace it with
180 // a constant value.
181 if (SE->isKnownPredicate(Pred, S, X)) {
182 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
183 DeadInsts.emplace_back(ICmp);
184 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
185 } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
186 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
187 DeadInsts.emplace_back(ICmp);
188 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
189 } else if (isa<PHINode>(IVOperand) &&
190 SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
191 InvariantLHS, InvariantRHS)) {
193 // Rewrite the comparison to a loop invariant comparison if it can be done
194 // cheaply, where cheaply means "we don't need to emit any new
195 // instructions".
197 Value *NewLHS = nullptr, *NewRHS = nullptr;
199 if (S == InvariantLHS || X == InvariantLHS)
200 NewLHS =
201 ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));
203 if (S == InvariantRHS || X == InvariantRHS)
204 NewRHS =
205 ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));
207 auto *PN = cast<PHINode>(IVOperand);
208 for (unsigned i = 0, e = PN->getNumIncomingValues();
209 i != e && (!NewLHS || !NewRHS);
210 ++i) {
212 // If this is a value incoming from the backedge, then it cannot be a loop
213 // invariant value (since we know that IVOperand is an induction variable).
214 if (L->contains(PN->getIncomingBlock(i)))
215 continue;
217 // NB! This following assert does not fundamentally have to be true, but
218 // it is true today given how SCEV analyzes induction variables.
219 // Specifically, today SCEV will *not* recognize %iv as an induction
220 // variable in the following case:
222 // define void @f(i32 %k) {
223 // entry:
224 // br i1 undef, label %r, label %l
226 // l:
227 // %k.inc.l = add i32 %k, 1
228 // br label %loop
230 // r:
231 // %k.inc.r = add i32 %k, 1
232 // br label %loop
234 // loop:
235 // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
236 // %iv.inc = add i32 %iv, 1
237 // br label %loop
238 // }
240 // but if it starts to, at some point, then the assertion below will have
241 // to be changed to a runtime check.
243 Value *Incoming = PN->getIncomingValue(i);
245 #ifndef NDEBUG
246 if (auto *I = dyn_cast<Instruction>(Incoming))
247 assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
248 #endif
250 const SCEV *IncomingS = SE->getSCEV(Incoming);
252 if (!NewLHS && IncomingS == InvariantLHS)
253 NewLHS = Incoming;
254 if (!NewRHS && IncomingS == InvariantRHS)
255 NewRHS = Incoming;
258 if (!NewLHS || !NewRHS)
259 // We could not find an existing value to replace either LHS or RHS.
260 // Generating new instructions has subtler tradeoffs, so avoid doing that
261 // for now.
262 return;
264 DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
265 ICmp->setPredicate(InvariantPredicate);
266 ICmp->setOperand(0, NewLHS);
267 ICmp->setOperand(1, NewRHS);
268 } else if (ICmpInst::isSigned(OriginalPred) &&
269 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
270 // If we were unable to make anything above, all we can is to canonicalize
271 // the comparison hoping that it will open the doors for other
272 // optimizations. If we find out that we compare two non-negative values,
273 // we turn the instruction's predicate to its unsigned version. Note that
274 // we cannot rely on Pred here unless we check if we have swapped it.
275 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
276 DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n');
277 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
278 } else
279 return;
281 ++NumElimCmp;
282 Changed = true;
285 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
286 // Get the SCEVs for the ICmp operands.
287 auto *N = SE->getSCEV(SDiv->getOperand(0));
288 auto *D = SE->getSCEV(SDiv->getOperand(1));
290 // Simplify unnecessary loops away.
291 const Loop *L = LI->getLoopFor(SDiv->getParent());
292 N = SE->getSCEVAtScope(N, L);
293 D = SE->getSCEVAtScope(D, L);
295 // Replace sdiv by udiv if both of the operands are non-negative
296 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
297 auto *UDiv = BinaryOperator::Create(
298 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
299 SDiv->getName() + ".udiv", SDiv);
300 UDiv->setIsExact(SDiv->isExact());
301 SDiv->replaceAllUsesWith(UDiv);
302 DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
303 ++NumSimplifiedSDiv;
304 Changed = true;
305 DeadInsts.push_back(SDiv);
306 return true;
309 return false;
312 /// SimplifyIVUsers helper for eliminating useless
313 /// remainder operations operating on an induction variable.
314 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
315 Value *IVOperand,
316 bool IsSigned) {
317 // We're only interested in the case where we know something about
318 // the numerator.
319 if (IVOperand != Rem->getOperand(0))
320 return;
322 // Get the SCEVs for the ICmp operands.
323 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
324 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
326 // Simplify unnecessary loops away.
327 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
328 S = SE->getSCEVAtScope(S, ICmpLoop);
329 X = SE->getSCEVAtScope(X, ICmpLoop);
331 // i % n --> i if i is in [0,n).
332 if ((!IsSigned || SE->isKnownNonNegative(S)) &&
333 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
334 S, X))
335 Rem->replaceAllUsesWith(Rem->getOperand(0));
336 else {
337 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
338 const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
339 if (IsSigned && !SE->isKnownNonNegative(LessOne))
340 return;
342 if (!SE->isKnownPredicate(IsSigned ?
343 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
344 LessOne, X))
345 return;
347 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
348 Rem->getOperand(0), Rem->getOperand(1));
349 SelectInst *Sel =
350 SelectInst::Create(ICmp,
351 ConstantInt::get(Rem->getType(), 0),
352 Rem->getOperand(0), "tmp", Rem);
353 Rem->replaceAllUsesWith(Sel);
356 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
357 ++NumElimRem;
358 Changed = true;
359 DeadInsts.emplace_back(Rem);
362 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
363 auto *F = CI->getCalledFunction();
364 if (!F)
365 return false;
367 typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
368 const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
369 typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
370 const SCEV *, Type *, unsigned);
372 OperationFunctionTy Operation;
373 ExtensionFunctionTy Extension;
375 Instruction::BinaryOps RawOp;
377 // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we
378 // have nuw.
379 bool NoSignedOverflow;
381 switch (F->getIntrinsicID()) {
382 default:
383 return false;
385 case Intrinsic::sadd_with_overflow:
386 Operation = &ScalarEvolution::getAddExpr;
387 Extension = &ScalarEvolution::getSignExtendExpr;
388 RawOp = Instruction::Add;
389 NoSignedOverflow = true;
390 break;
392 case Intrinsic::uadd_with_overflow:
393 Operation = &ScalarEvolution::getAddExpr;
394 Extension = &ScalarEvolution::getZeroExtendExpr;
395 RawOp = Instruction::Add;
396 NoSignedOverflow = false;
397 break;
399 case Intrinsic::ssub_with_overflow:
400 Operation = &ScalarEvolution::getMinusSCEV;
401 Extension = &ScalarEvolution::getSignExtendExpr;
402 RawOp = Instruction::Sub;
403 NoSignedOverflow = true;
404 break;
406 case Intrinsic::usub_with_overflow:
407 Operation = &ScalarEvolution::getMinusSCEV;
408 Extension = &ScalarEvolution::getZeroExtendExpr;
409 RawOp = Instruction::Sub;
410 NoSignedOverflow = false;
411 break;
414 const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
415 const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
417 auto *NarrowTy = cast<IntegerType>(LHS->getType());
418 auto *WideTy =
419 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
421 const SCEV *A =
422 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
423 WideTy, 0);
424 const SCEV *B =
425 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
426 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
428 if (A != B)
429 return false;
431 // Proved no overflow, nuke the overflow check and, if possible, the overflow
432 // intrinsic as well.
434 BinaryOperator *NewResult = BinaryOperator::Create(
435 RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
437 if (NoSignedOverflow)
438 NewResult->setHasNoSignedWrap(true);
439 else
440 NewResult->setHasNoUnsignedWrap(true);
442 SmallVector<ExtractValueInst *, 4> ToDelete;
444 for (auto *U : CI->users()) {
445 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446 if (EVI->getIndices()[0] == 1)
447 EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
448 else {
449 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450 EVI->replaceAllUsesWith(NewResult);
452 ToDelete.push_back(EVI);
456 for (auto *EVI : ToDelete)
457 EVI->eraseFromParent();
459 if (CI->use_empty())
460 CI->eraseFromParent();
462 return true;
465 /// Eliminate an operation that consumes a simple IV and has no observable
466 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
467 /// but UseInst may not be.
468 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
469 Instruction *IVOperand) {
470 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
471 eliminateIVComparison(ICmp, IVOperand);
472 return true;
474 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
475 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
476 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
477 eliminateIVRemainder(Bin, IVOperand, IsSRem);
478 return true;
481 if (Bin->getOpcode() == Instruction::SDiv)
482 return eliminateSDiv(Bin);
485 if (auto *CI = dyn_cast<CallInst>(UseInst))
486 if (eliminateOverflowIntrinsic(CI))
487 return true;
489 if (eliminateIdentitySCEV(UseInst, IVOperand))
490 return true;
492 return false;
495 /// Eliminate any operation that SCEV can prove is an identity function.
496 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
497 Instruction *IVOperand) {
498 if (!SE->isSCEVable(UseInst->getType()) ||
499 (UseInst->getType() != IVOperand->getType()) ||
500 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
501 return false;
503 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
504 // dominator tree, even if X is an operand to Y. For instance, in
506 // %iv = phi i32 {0,+,1}
507 // br %cond, label %left, label %merge
509 // left:
510 // %X = add i32 %iv, 0
511 // br label %merge
513 // merge:
514 // %M = phi (%X, %iv)
516 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
517 // %M.replaceAllUsesWith(%X) would be incorrect.
519 if (isa<PHINode>(UseInst))
520 // If UseInst is not a PHI node then we know that IVOperand dominates
521 // UseInst directly from the legality of SSA.
522 if (!DT || !DT->dominates(IVOperand, UseInst))
523 return false;
525 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
526 return false;
528 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
530 UseInst->replaceAllUsesWith(IVOperand);
531 ++NumElimIdentity;
532 Changed = true;
533 DeadInsts.emplace_back(UseInst);
534 return true;
537 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
538 /// unsigned-overflow. Returns true if anything changed, false otherwise.
539 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
540 Value *IVOperand) {
542 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
543 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
544 return false;
546 const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
547 SCEV::NoWrapFlags, unsigned);
548 switch (BO->getOpcode()) {
549 default:
550 return false;
552 case Instruction::Add:
553 GetExprForBO = &ScalarEvolution::getAddExpr;
554 break;
556 case Instruction::Sub:
557 GetExprForBO = &ScalarEvolution::getMinusSCEV;
558 break;
560 case Instruction::Mul:
561 GetExprForBO = &ScalarEvolution::getMulExpr;
562 break;
565 unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
566 Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
567 const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
568 const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
570 bool Changed = false;
572 if (!BO->hasNoUnsignedWrap()) {
573 const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
574 const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
575 SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
576 SCEV::FlagAnyWrap, 0u);
577 if (ExtendAfterOp == OpAfterExtend) {
578 BO->setHasNoUnsignedWrap();
579 SE->forgetValue(BO);
580 Changed = true;
584 if (!BO->hasNoSignedWrap()) {
585 const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
586 const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
587 SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
588 SCEV::FlagAnyWrap, 0u);
589 if (ExtendAfterOp == OpAfterExtend) {
590 BO->setHasNoSignedWrap();
591 SE->forgetValue(BO);
592 Changed = true;
596 return Changed;
599 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
600 /// information from the IV's range. Returns true if anything changed, false
601 /// otherwise.
602 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
603 Value *IVOperand) {
604 using namespace llvm::PatternMatch;
606 if (BO->getOpcode() == Instruction::Shl) {
607 bool Changed = false;
608 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
609 for (auto *U : BO->users()) {
610 const APInt *C;
611 if (match(U,
612 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
613 match(U,
614 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
615 BinaryOperator *Shr = cast<BinaryOperator>(U);
616 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
617 Shr->setIsExact(true);
618 Changed = true;
622 return Changed;
625 return false;
628 /// Add all uses of Def to the current IV's worklist.
629 static void pushIVUsers(
630 Instruction *Def,
631 SmallPtrSet<Instruction*,16> &Simplified,
632 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
634 for (User *U : Def->users()) {
635 Instruction *UI = cast<Instruction>(U);
637 // Avoid infinite or exponential worklist processing.
638 // Also ensure unique worklist users.
639 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
640 // self edges first.
641 if (UI != Def && Simplified.insert(UI).second)
642 SimpleIVUsers.push_back(std::make_pair(UI, Def));
646 /// Return true if this instruction generates a simple SCEV
647 /// expression in terms of that IV.
649 /// This is similar to IVUsers' isInteresting() but processes each instruction
650 /// non-recursively when the operand is already known to be a simpleIVUser.
652 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
653 if (!SE->isSCEVable(I->getType()))
654 return false;
656 // Get the symbolic expression for this instruction.
657 const SCEV *S = SE->getSCEV(I);
659 // Only consider affine recurrences.
660 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
661 if (AR && AR->getLoop() == L)
662 return true;
664 return false;
667 /// Iteratively perform simplification on a worklist of users
668 /// of the specified induction variable. Each successive simplification may push
669 /// more users which may themselves be candidates for simplification.
671 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
672 /// instructions in-place during analysis. Rather than rewriting induction
673 /// variables bottom-up from their users, it transforms a chain of IVUsers
674 /// top-down, updating the IR only when it encounters a clear optimization
675 /// opportunity.
677 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
679 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
680 if (!SE->isSCEVable(CurrIV->getType()))
681 return;
683 // Instructions processed by SimplifyIndvar for CurrIV.
684 SmallPtrSet<Instruction*,16> Simplified;
686 // Use-def pairs if IV users waiting to be processed for CurrIV.
687 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
689 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
690 // called multiple times for the same LoopPhi. This is the proper thing to
691 // do for loop header phis that use each other.
692 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
694 while (!SimpleIVUsers.empty()) {
695 std::pair<Instruction*, Instruction*> UseOper =
696 SimpleIVUsers.pop_back_val();
697 Instruction *UseInst = UseOper.first;
699 // Bypass back edges to avoid extra work.
700 if (UseInst == CurrIV) continue;
702 Instruction *IVOperand = UseOper.second;
703 for (unsigned N = 0; IVOperand; ++N) {
704 assert(N <= Simplified.size() && "runaway iteration");
706 Value *NewOper = foldIVUser(UseOper.first, IVOperand);
707 if (!NewOper)
708 break; // done folding
709 IVOperand = dyn_cast<Instruction>(NewOper);
711 if (!IVOperand)
712 continue;
714 if (eliminateIVUser(UseOper.first, IVOperand)) {
715 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
716 continue;
719 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
720 if ((isa<OverflowingBinaryOperator>(BO) &&
721 strengthenOverflowingOperation(BO, IVOperand)) ||
722 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
723 // re-queue uses of the now modified binary operator and fall
724 // through to the checks that remain.
725 pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
729 CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
730 if (V && Cast) {
731 V->visitCast(Cast);
732 continue;
734 if (isSimpleIVUser(UseOper.first, L, SE)) {
735 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
740 namespace llvm {
742 void IVVisitor::anchor() { }
744 /// Simplify instructions that use this induction variable
745 /// by using ScalarEvolution to analyze the IV's recurrence.
746 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
747 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
748 IVVisitor *V) {
749 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
750 SIV.simplifyUsers(CurrIV, V);
751 return SIV.hasChanged();
754 /// Simplify users of induction variables within this
755 /// loop. This does not actually change or add IVs.
756 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
757 LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
758 bool Changed = false;
759 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
760 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
762 return Changed;
765 } // namespace llvm