Remove the default clause from a fully-covering switch
[llvm-core.git] / lib / Transforms / Vectorize / LoadStoreVectorizer.cpp
blob9cf66382b5817a3e209a4373c78dbf13a66d1ff0
1 //===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //===----------------------------------------------------------------------===//
12 #include "llvm/ADT/MapVector.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/OrderedBasicBlock.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Vectorize.h"
38 using namespace llvm;
40 #define DEBUG_TYPE "load-store-vectorizer"
41 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
42 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
44 namespace {
46 // FIXME: Assuming stack alignment of 4 is always good enough
47 static const unsigned StackAdjustedAlignment = 4;
48 typedef SmallVector<Instruction *, 8> InstrList;
49 typedef MapVector<Value *, InstrList> InstrListMap;
51 class Vectorizer {
52 Function &F;
53 AliasAnalysis &AA;
54 DominatorTree &DT;
55 ScalarEvolution &SE;
56 TargetTransformInfo &TTI;
57 const DataLayout &DL;
58 IRBuilder<> Builder;
60 public:
61 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
62 ScalarEvolution &SE, TargetTransformInfo &TTI)
63 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
64 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
66 bool run();
68 private:
69 Value *getPointerOperand(Value *I) const;
71 GetElementPtrInst *getSourceGEP(Value *Src) const;
73 unsigned getPointerAddressSpace(Value *I);
75 unsigned getAlignment(LoadInst *LI) const {
76 unsigned Align = LI->getAlignment();
77 if (Align != 0)
78 return Align;
80 return DL.getABITypeAlignment(LI->getType());
83 unsigned getAlignment(StoreInst *SI) const {
84 unsigned Align = SI->getAlignment();
85 if (Align != 0)
86 return Align;
88 return DL.getABITypeAlignment(SI->getValueOperand()->getType());
91 bool isConsecutiveAccess(Value *A, Value *B);
93 /// After vectorization, reorder the instructions that I depends on
94 /// (the instructions defining its operands), to ensure they dominate I.
95 void reorder(Instruction *I);
97 /// Returns the first and the last instructions in Chain.
98 std::pair<BasicBlock::iterator, BasicBlock::iterator>
99 getBoundaryInstrs(ArrayRef<Instruction *> Chain);
101 /// Erases the original instructions after vectorizing.
102 void eraseInstructions(ArrayRef<Instruction *> Chain);
104 /// "Legalize" the vector type that would be produced by combining \p
105 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
106 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
107 /// expected to have more than 4 elements.
108 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
109 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
111 /// Finds the largest prefix of Chain that's vectorizable, checking for
112 /// intervening instructions which may affect the memory accessed by the
113 /// instructions within Chain.
115 /// The elements of \p Chain must be all loads or all stores and must be in
116 /// address order.
117 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
119 /// Collects load and store instructions to vectorize.
120 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
122 /// Processes the collected instructions, the \p Map. The values of \p Map
123 /// should be all loads or all stores.
124 bool vectorizeChains(InstrListMap &Map);
126 /// Finds the load/stores to consecutive memory addresses and vectorizes them.
127 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
129 /// Vectorizes the load instructions in Chain.
130 bool
131 vectorizeLoadChain(ArrayRef<Instruction *> Chain,
132 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
134 /// Vectorizes the store instructions in Chain.
135 bool
136 vectorizeStoreChain(ArrayRef<Instruction *> Chain,
137 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
139 /// Check if this load/store access is misaligned accesses.
140 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
141 unsigned Alignment);
144 class LoadStoreVectorizer : public FunctionPass {
145 public:
146 static char ID;
148 LoadStoreVectorizer() : FunctionPass(ID) {
149 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry());
152 bool runOnFunction(Function &F) override;
154 StringRef getPassName() const override {
155 return "GPU Load and Store Vectorizer";
158 void getAnalysisUsage(AnalysisUsage &AU) const override {
159 AU.addRequired<AAResultsWrapperPass>();
160 AU.addRequired<ScalarEvolutionWrapperPass>();
161 AU.addRequired<DominatorTreeWrapperPass>();
162 AU.addRequired<TargetTransformInfoWrapperPass>();
163 AU.setPreservesCFG();
168 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE,
169 "Vectorize load and Store instructions", false, false)
170 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
174 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
175 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE,
176 "Vectorize load and store instructions", false, false)
178 char LoadStoreVectorizer::ID = 0;
180 Pass *llvm::createLoadStoreVectorizerPass() {
181 return new LoadStoreVectorizer();
184 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
185 // vectors of Instructions.
186 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
187 SmallVector<Value *, 8> VL(IL.begin(), IL.end());
188 propagateMetadata(I, VL);
191 bool LoadStoreVectorizer::runOnFunction(Function &F) {
192 // Don't vectorize when the attribute NoImplicitFloat is used.
193 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
194 return false;
196 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
197 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
198 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
199 TargetTransformInfo &TTI =
200 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
202 Vectorizer V(F, AA, DT, SE, TTI);
203 return V.run();
206 // Vectorizer Implementation
207 bool Vectorizer::run() {
208 bool Changed = false;
210 // Scan the blocks in the function in post order.
211 for (BasicBlock *BB : post_order(&F)) {
212 InstrListMap LoadRefs, StoreRefs;
213 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
214 Changed |= vectorizeChains(LoadRefs);
215 Changed |= vectorizeChains(StoreRefs);
218 return Changed;
221 Value *Vectorizer::getPointerOperand(Value *I) const {
222 if (LoadInst *LI = dyn_cast<LoadInst>(I))
223 return LI->getPointerOperand();
224 if (StoreInst *SI = dyn_cast<StoreInst>(I))
225 return SI->getPointerOperand();
226 return nullptr;
229 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
230 if (LoadInst *L = dyn_cast<LoadInst>(I))
231 return L->getPointerAddressSpace();
232 if (StoreInst *S = dyn_cast<StoreInst>(I))
233 return S->getPointerAddressSpace();
234 return -1;
237 GetElementPtrInst *Vectorizer::getSourceGEP(Value *Src) const {
238 // First strip pointer bitcasts. Make sure pointee size is the same with
239 // and without casts.
240 // TODO: a stride set by the add instruction below can match the difference
241 // in pointee type size here. Currently it will not be vectorized.
242 Value *SrcPtr = getPointerOperand(Src);
243 Value *SrcBase = SrcPtr->stripPointerCasts();
244 if (DL.getTypeStoreSize(SrcPtr->getType()->getPointerElementType()) ==
245 DL.getTypeStoreSize(SrcBase->getType()->getPointerElementType()))
246 SrcPtr = SrcBase;
247 return dyn_cast<GetElementPtrInst>(SrcPtr);
250 // FIXME: Merge with llvm::isConsecutiveAccess
251 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
252 Value *PtrA = getPointerOperand(A);
253 Value *PtrB = getPointerOperand(B);
254 unsigned ASA = getPointerAddressSpace(A);
255 unsigned ASB = getPointerAddressSpace(B);
257 // Check that the address spaces match and that the pointers are valid.
258 if (!PtrA || !PtrB || (ASA != ASB))
259 return false;
261 // Make sure that A and B are different pointers of the same size type.
262 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
263 Type *PtrATy = PtrA->getType()->getPointerElementType();
264 Type *PtrBTy = PtrB->getType()->getPointerElementType();
265 if (PtrA == PtrB ||
266 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
267 DL.getTypeStoreSize(PtrATy->getScalarType()) !=
268 DL.getTypeStoreSize(PtrBTy->getScalarType()))
269 return false;
271 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
273 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
274 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
275 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
277 APInt OffsetDelta = OffsetB - OffsetA;
279 // Check if they are based on the same pointer. That makes the offsets
280 // sufficient.
281 if (PtrA == PtrB)
282 return OffsetDelta == Size;
284 // Compute the necessary base pointer delta to have the necessary final delta
285 // equal to the size.
286 APInt BaseDelta = Size - OffsetDelta;
288 // Compute the distance with SCEV between the base pointers.
289 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
290 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
291 const SCEV *C = SE.getConstant(BaseDelta);
292 const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
293 if (X == PtrSCEVB)
294 return true;
296 // Sometimes even this doesn't work, because SCEV can't always see through
297 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
298 // things the hard way.
300 // Look through GEPs after checking they're the same except for the last
301 // index.
302 GetElementPtrInst *GEPA = getSourceGEP(A);
303 GetElementPtrInst *GEPB = getSourceGEP(B);
304 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands())
305 return false;
306 unsigned FinalIndex = GEPA->getNumOperands() - 1;
307 for (unsigned i = 0; i < FinalIndex; i++)
308 if (GEPA->getOperand(i) != GEPB->getOperand(i))
309 return false;
311 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex));
312 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex));
313 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
314 OpA->getType() != OpB->getType())
315 return false;
317 // Only look through a ZExt/SExt.
318 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
319 return false;
321 bool Signed = isa<SExtInst>(OpA);
323 OpA = dyn_cast<Instruction>(OpA->getOperand(0));
324 OpB = dyn_cast<Instruction>(OpB->getOperand(0));
325 if (!OpA || !OpB || OpA->getType() != OpB->getType())
326 return false;
328 // Now we need to prove that adding 1 to OpA won't overflow.
329 bool Safe = false;
330 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA,
331 // we're okay.
332 if (OpB->getOpcode() == Instruction::Add &&
333 isa<ConstantInt>(OpB->getOperand(1)) &&
334 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) {
335 if (Signed)
336 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
337 else
338 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
341 unsigned BitWidth = OpA->getType()->getScalarSizeInBits();
343 // Second attempt:
344 // If any bits are known to be zero other than the sign bit in OpA, we can
345 // add 1 to it while guaranteeing no overflow of any sort.
346 if (!Safe) {
347 KnownBits Known(BitWidth);
348 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
349 if (Known.countMaxTrailingOnes() < (BitWidth - 1))
350 Safe = true;
353 if (!Safe)
354 return false;
356 const SCEV *OffsetSCEVA = SE.getSCEV(OpA);
357 const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
358 const SCEV *One = SE.getConstant(APInt(BitWidth, 1));
359 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One);
360 return X2 == OffsetSCEVB;
363 void Vectorizer::reorder(Instruction *I) {
364 OrderedBasicBlock OBB(I->getParent());
365 SmallPtrSet<Instruction *, 16> InstructionsToMove;
366 SmallVector<Instruction *, 16> Worklist;
368 Worklist.push_back(I);
369 while (!Worklist.empty()) {
370 Instruction *IW = Worklist.pop_back_val();
371 int NumOperands = IW->getNumOperands();
372 for (int i = 0; i < NumOperands; i++) {
373 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
374 if (!IM || IM->getOpcode() == Instruction::PHI)
375 continue;
377 // If IM is in another BB, no need to move it, because this pass only
378 // vectorizes instructions within one BB.
379 if (IM->getParent() != I->getParent())
380 continue;
382 if (!OBB.dominates(IM, I)) {
383 InstructionsToMove.insert(IM);
384 Worklist.push_back(IM);
389 // All instructions to move should follow I. Start from I, not from begin().
390 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
391 ++BBI) {
392 if (!InstructionsToMove.count(&*BBI))
393 continue;
394 Instruction *IM = &*BBI;
395 --BBI;
396 IM->removeFromParent();
397 IM->insertBefore(I);
401 std::pair<BasicBlock::iterator, BasicBlock::iterator>
402 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
403 Instruction *C0 = Chain[0];
404 BasicBlock::iterator FirstInstr = C0->getIterator();
405 BasicBlock::iterator LastInstr = C0->getIterator();
407 BasicBlock *BB = C0->getParent();
408 unsigned NumFound = 0;
409 for (Instruction &I : *BB) {
410 if (!is_contained(Chain, &I))
411 continue;
413 ++NumFound;
414 if (NumFound == 1) {
415 FirstInstr = I.getIterator();
417 if (NumFound == Chain.size()) {
418 LastInstr = I.getIterator();
419 break;
423 // Range is [first, last).
424 return std::make_pair(FirstInstr, ++LastInstr);
427 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
428 SmallVector<Instruction *, 16> Instrs;
429 for (Instruction *I : Chain) {
430 Value *PtrOperand = getPointerOperand(I);
431 assert(PtrOperand && "Instruction must have a pointer operand.");
432 Instrs.push_back(I);
433 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
434 Instrs.push_back(GEP);
437 // Erase instructions.
438 for (Instruction *I : Instrs)
439 if (I->use_empty())
440 I->eraseFromParent();
443 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
444 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
445 unsigned ElementSizeBits) {
446 unsigned ElementSizeBytes = ElementSizeBits / 8;
447 unsigned SizeBytes = ElementSizeBytes * Chain.size();
448 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
449 if (NumLeft == Chain.size()) {
450 if ((NumLeft & 1) == 0)
451 NumLeft /= 2; // Split even in half
452 else
453 --NumLeft; // Split off last element
454 } else if (NumLeft == 0)
455 NumLeft = 1;
456 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
459 ArrayRef<Instruction *>
460 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
461 // These are in BB order, unlike Chain, which is in address order.
462 SmallVector<Instruction *, 16> MemoryInstrs;
463 SmallVector<Instruction *, 16> ChainInstrs;
465 bool IsLoadChain = isa<LoadInst>(Chain[0]);
466 DEBUG({
467 for (Instruction *I : Chain) {
468 if (IsLoadChain)
469 assert(isa<LoadInst>(I) &&
470 "All elements of Chain must be loads, or all must be stores.");
471 else
472 assert(isa<StoreInst>(I) &&
473 "All elements of Chain must be loads, or all must be stores.");
477 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
478 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
479 if (!is_contained(Chain, &I))
480 MemoryInstrs.push_back(&I);
481 else
482 ChainInstrs.push_back(&I);
483 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
484 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n');
485 break;
486 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
487 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
488 << '\n');
489 break;
493 OrderedBasicBlock OBB(Chain[0]->getParent());
495 // Loop until we find an instruction in ChainInstrs that we can't vectorize.
496 unsigned ChainInstrIdx = 0;
497 Instruction *BarrierMemoryInstr = nullptr;
499 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
500 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
502 // If a barrier memory instruction was found, chain instructions that follow
503 // will not be added to the valid prefix.
504 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr))
505 break;
507 // Check (in BB order) if any instruction prevents ChainInstr from being
508 // vectorized. Find and store the first such "conflicting" instruction.
509 for (Instruction *MemInstr : MemoryInstrs) {
510 // If a barrier memory instruction was found, do not check past it.
511 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr))
512 break;
514 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr))
515 continue;
517 // We can ignore the alias as long as the load comes before the store,
518 // because that means we won't be moving the load past the store to
519 // vectorize it (the vectorized load is inserted at the location of the
520 // first load in the chain).
521 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) &&
522 OBB.dominates(ChainInstr, MemInstr))
523 continue;
525 // Same case, but in reverse.
526 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) &&
527 OBB.dominates(MemInstr, ChainInstr))
528 continue;
530 if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
531 MemoryLocation::get(ChainInstr))) {
532 DEBUG({
533 dbgs() << "LSV: Found alias:\n"
534 " Aliasing instruction and pointer:\n"
535 << " " << *MemInstr << '\n'
536 << " " << *getPointerOperand(MemInstr) << '\n'
537 << " Aliased instruction and pointer:\n"
538 << " " << *ChainInstr << '\n'
539 << " " << *getPointerOperand(ChainInstr) << '\n';
541 // Save this aliasing memory instruction as a barrier, but allow other
542 // instructions that precede the barrier to be vectorized with this one.
543 BarrierMemoryInstr = MemInstr;
544 break;
547 // Continue the search only for store chains, since vectorizing stores that
548 // precede an aliasing load is valid. Conversely, vectorizing loads is valid
549 // up to an aliasing store, but should not pull loads from further down in
550 // the basic block.
551 if (IsLoadChain && BarrierMemoryInstr) {
552 // The BarrierMemoryInstr is a store that precedes ChainInstr.
553 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr));
554 break;
558 // Find the largest prefix of Chain whose elements are all in
559 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
560 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
561 // order.)
562 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
563 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
564 unsigned ChainIdx = 0;
565 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
566 if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
567 break;
569 return Chain.slice(0, ChainIdx);
572 std::pair<InstrListMap, InstrListMap>
573 Vectorizer::collectInstructions(BasicBlock *BB) {
574 InstrListMap LoadRefs;
575 InstrListMap StoreRefs;
577 for (Instruction &I : *BB) {
578 if (!I.mayReadOrWriteMemory())
579 continue;
581 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
582 if (!LI->isSimple())
583 continue;
585 // Skip if it's not legal.
586 if (!TTI.isLegalToVectorizeLoad(LI))
587 continue;
589 Type *Ty = LI->getType();
590 if (!VectorType::isValidElementType(Ty->getScalarType()))
591 continue;
593 // Skip weird non-byte sizes. They probably aren't worth the effort of
594 // handling correctly.
595 unsigned TySize = DL.getTypeSizeInBits(Ty);
596 if (TySize < 8)
597 continue;
599 Value *Ptr = LI->getPointerOperand();
600 unsigned AS = Ptr->getType()->getPointerAddressSpace();
601 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
603 // No point in looking at these if they're too big to vectorize.
604 if (TySize > VecRegSize / 2)
605 continue;
607 // Make sure all the users of a vector are constant-index extracts.
608 if (isa<VectorType>(Ty) && !all_of(LI->users(), [](const User *U) {
609 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
610 return EEI && isa<ConstantInt>(EEI->getOperand(1));
612 continue;
614 // Save the load locations.
615 Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
616 LoadRefs[ObjPtr].push_back(LI);
618 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
619 if (!SI->isSimple())
620 continue;
622 // Skip if it's not legal.
623 if (!TTI.isLegalToVectorizeStore(SI))
624 continue;
626 Type *Ty = SI->getValueOperand()->getType();
627 if (!VectorType::isValidElementType(Ty->getScalarType()))
628 continue;
630 // Skip weird non-byte sizes. They probably aren't worth the effort of
631 // handling correctly.
632 unsigned TySize = DL.getTypeSizeInBits(Ty);
633 if (TySize < 8)
634 continue;
636 Value *Ptr = SI->getPointerOperand();
637 unsigned AS = Ptr->getType()->getPointerAddressSpace();
638 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
639 if (TySize > VecRegSize / 2)
640 continue;
642 if (isa<VectorType>(Ty) && !all_of(SI->users(), [](const User *U) {
643 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
644 return EEI && isa<ConstantInt>(EEI->getOperand(1));
646 continue;
648 // Save store location.
649 Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
650 StoreRefs[ObjPtr].push_back(SI);
654 return {LoadRefs, StoreRefs};
657 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
658 bool Changed = false;
660 for (const std::pair<Value *, InstrList> &Chain : Map) {
661 unsigned Size = Chain.second.size();
662 if (Size < 2)
663 continue;
665 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
667 // Process the stores in chunks of 64.
668 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
669 unsigned Len = std::min<unsigned>(CE - CI, 64);
670 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
671 Changed |= vectorizeInstructions(Chunk);
675 return Changed;
678 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
679 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n");
680 SmallVector<int, 16> Heads, Tails;
681 int ConsecutiveChain[64];
683 // Do a quadratic search on all of the given stores and find all of the pairs
684 // of stores that follow each other.
685 for (int i = 0, e = Instrs.size(); i < e; ++i) {
686 ConsecutiveChain[i] = -1;
687 for (int j = e - 1; j >= 0; --j) {
688 if (i == j)
689 continue;
691 if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
692 if (ConsecutiveChain[i] != -1) {
693 int CurDistance = std::abs(ConsecutiveChain[i] - i);
694 int NewDistance = std::abs(ConsecutiveChain[i] - j);
695 if (j < i || NewDistance > CurDistance)
696 continue; // Should not insert.
699 Tails.push_back(j);
700 Heads.push_back(i);
701 ConsecutiveChain[i] = j;
706 bool Changed = false;
707 SmallPtrSet<Instruction *, 16> InstructionsProcessed;
709 for (int Head : Heads) {
710 if (InstructionsProcessed.count(Instrs[Head]))
711 continue;
712 bool LongerChainExists = false;
713 for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
714 if (Head == Tails[TIt] &&
715 !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
716 LongerChainExists = true;
717 break;
719 if (LongerChainExists)
720 continue;
722 // We found an instr that starts a chain. Now follow the chain and try to
723 // vectorize it.
724 SmallVector<Instruction *, 16> Operands;
725 int I = Head;
726 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
727 if (InstructionsProcessed.count(Instrs[I]))
728 break;
730 Operands.push_back(Instrs[I]);
731 I = ConsecutiveChain[I];
734 bool Vectorized = false;
735 if (isa<LoadInst>(*Operands.begin()))
736 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
737 else
738 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
740 Changed |= Vectorized;
743 return Changed;
746 bool Vectorizer::vectorizeStoreChain(
747 ArrayRef<Instruction *> Chain,
748 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
749 StoreInst *S0 = cast<StoreInst>(Chain[0]);
751 // If the vector has an int element, default to int for the whole load.
752 Type *StoreTy;
753 for (Instruction *I : Chain) {
754 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
755 if (StoreTy->isIntOrIntVectorTy())
756 break;
758 if (StoreTy->isPtrOrPtrVectorTy()) {
759 StoreTy = Type::getIntNTy(F.getParent()->getContext(),
760 DL.getTypeSizeInBits(StoreTy));
761 break;
765 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
766 unsigned AS = S0->getPointerAddressSpace();
767 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
768 unsigned VF = VecRegSize / Sz;
769 unsigned ChainSize = Chain.size();
770 unsigned Alignment = getAlignment(S0);
772 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
773 InstructionsProcessed->insert(Chain.begin(), Chain.end());
774 return false;
777 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
778 if (NewChain.empty()) {
779 // No vectorization possible.
780 InstructionsProcessed->insert(Chain.begin(), Chain.end());
781 return false;
783 if (NewChain.size() == 1) {
784 // Failed after the first instruction. Discard it and try the smaller chain.
785 InstructionsProcessed->insert(NewChain.front());
786 return false;
789 // Update Chain to the valid vectorizable subchain.
790 Chain = NewChain;
791 ChainSize = Chain.size();
793 // Check if it's legal to vectorize this chain. If not, split the chain and
794 // try again.
795 unsigned EltSzInBytes = Sz / 8;
796 unsigned SzInBytes = EltSzInBytes * ChainSize;
797 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
798 auto Chains = splitOddVectorElts(Chain, Sz);
799 return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
800 vectorizeStoreChain(Chains.second, InstructionsProcessed);
803 VectorType *VecTy;
804 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
805 if (VecStoreTy)
806 VecTy = VectorType::get(StoreTy->getScalarType(),
807 Chain.size() * VecStoreTy->getNumElements());
808 else
809 VecTy = VectorType::get(StoreTy, Chain.size());
811 // If it's more than the max vector size or the target has a better
812 // vector factor, break it into two pieces.
813 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
814 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
815 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
816 " Creating two separate arrays.\n");
817 return vectorizeStoreChain(Chain.slice(0, TargetVF),
818 InstructionsProcessed) |
819 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
822 DEBUG({
823 dbgs() << "LSV: Stores to vectorize:\n";
824 for (Instruction *I : Chain)
825 dbgs() << " " << *I << "\n";
828 // We won't try again to vectorize the elements of the chain, regardless of
829 // whether we succeed below.
830 InstructionsProcessed->insert(Chain.begin(), Chain.end());
832 // If the store is going to be misaligned, don't vectorize it.
833 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
834 if (S0->getPointerAddressSpace() != 0)
835 return false;
837 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
838 StackAdjustedAlignment,
839 DL, S0, nullptr, &DT);
840 if (NewAlign < StackAdjustedAlignment)
841 return false;
844 BasicBlock::iterator First, Last;
845 std::tie(First, Last) = getBoundaryInstrs(Chain);
846 Builder.SetInsertPoint(&*Last);
848 Value *Vec = UndefValue::get(VecTy);
850 if (VecStoreTy) {
851 unsigned VecWidth = VecStoreTy->getNumElements();
852 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
853 StoreInst *Store = cast<StoreInst>(Chain[I]);
854 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
855 unsigned NewIdx = J + I * VecWidth;
856 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
857 Builder.getInt32(J));
858 if (Extract->getType() != StoreTy->getScalarType())
859 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
861 Value *Insert =
862 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
863 Vec = Insert;
866 } else {
867 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
868 StoreInst *Store = cast<StoreInst>(Chain[I]);
869 Value *Extract = Store->getValueOperand();
870 if (Extract->getType() != StoreTy->getScalarType())
871 Extract =
872 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
874 Value *Insert =
875 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
876 Vec = Insert;
880 // This cast is safe because Builder.CreateStore() always creates a bona fide
881 // StoreInst.
882 StoreInst *SI = cast<StoreInst>(
883 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(),
884 VecTy->getPointerTo(AS))));
885 propagateMetadata(SI, Chain);
886 SI->setAlignment(Alignment);
888 eraseInstructions(Chain);
889 ++NumVectorInstructions;
890 NumScalarsVectorized += Chain.size();
891 return true;
894 bool Vectorizer::vectorizeLoadChain(
895 ArrayRef<Instruction *> Chain,
896 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
897 LoadInst *L0 = cast<LoadInst>(Chain[0]);
899 // If the vector has an int element, default to int for the whole load.
900 Type *LoadTy;
901 for (const auto &V : Chain) {
902 LoadTy = cast<LoadInst>(V)->getType();
903 if (LoadTy->isIntOrIntVectorTy())
904 break;
906 if (LoadTy->isPtrOrPtrVectorTy()) {
907 LoadTy = Type::getIntNTy(F.getParent()->getContext(),
908 DL.getTypeSizeInBits(LoadTy));
909 break;
913 unsigned Sz = DL.getTypeSizeInBits(LoadTy);
914 unsigned AS = L0->getPointerAddressSpace();
915 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
916 unsigned VF = VecRegSize / Sz;
917 unsigned ChainSize = Chain.size();
918 unsigned Alignment = getAlignment(L0);
920 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
921 InstructionsProcessed->insert(Chain.begin(), Chain.end());
922 return false;
925 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
926 if (NewChain.empty()) {
927 // No vectorization possible.
928 InstructionsProcessed->insert(Chain.begin(), Chain.end());
929 return false;
931 if (NewChain.size() == 1) {
932 // Failed after the first instruction. Discard it and try the smaller chain.
933 InstructionsProcessed->insert(NewChain.front());
934 return false;
937 // Update Chain to the valid vectorizable subchain.
938 Chain = NewChain;
939 ChainSize = Chain.size();
941 // Check if it's legal to vectorize this chain. If not, split the chain and
942 // try again.
943 unsigned EltSzInBytes = Sz / 8;
944 unsigned SzInBytes = EltSzInBytes * ChainSize;
945 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
946 auto Chains = splitOddVectorElts(Chain, Sz);
947 return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
948 vectorizeLoadChain(Chains.second, InstructionsProcessed);
951 VectorType *VecTy;
952 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
953 if (VecLoadTy)
954 VecTy = VectorType::get(LoadTy->getScalarType(),
955 Chain.size() * VecLoadTy->getNumElements());
956 else
957 VecTy = VectorType::get(LoadTy, Chain.size());
959 // If it's more than the max vector size or the target has a better
960 // vector factor, break it into two pieces.
961 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
962 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
963 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
964 " Creating two separate arrays.\n");
965 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
966 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
969 // We won't try again to vectorize the elements of the chain, regardless of
970 // whether we succeed below.
971 InstructionsProcessed->insert(Chain.begin(), Chain.end());
973 // If the load is going to be misaligned, don't vectorize it.
974 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
975 if (L0->getPointerAddressSpace() != 0)
976 return false;
978 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
979 StackAdjustedAlignment,
980 DL, L0, nullptr, &DT);
981 if (NewAlign < StackAdjustedAlignment)
982 return false;
984 Alignment = NewAlign;
987 DEBUG({
988 dbgs() << "LSV: Loads to vectorize:\n";
989 for (Instruction *I : Chain)
990 I->dump();
993 // getVectorizablePrefix already computed getBoundaryInstrs. The value of
994 // Last may have changed since then, but the value of First won't have. If it
995 // matters, we could compute getBoundaryInstrs only once and reuse it here.
996 BasicBlock::iterator First, Last;
997 std::tie(First, Last) = getBoundaryInstrs(Chain);
998 Builder.SetInsertPoint(&*First);
1000 Value *Bitcast =
1001 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1002 // This cast is safe because Builder.CreateLoad always creates a bona fide
1003 // LoadInst.
1004 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast));
1005 propagateMetadata(LI, Chain);
1006 LI->setAlignment(Alignment);
1008 if (VecLoadTy) {
1009 SmallVector<Instruction *, 16> InstrsToErase;
1011 unsigned VecWidth = VecLoadTy->getNumElements();
1012 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1013 for (auto Use : Chain[I]->users()) {
1014 // All users of vector loads are ExtractElement instructions with
1015 // constant indices, otherwise we would have bailed before now.
1016 Instruction *UI = cast<Instruction>(Use);
1017 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1018 unsigned NewIdx = Idx + I * VecWidth;
1019 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1020 UI->getName());
1021 if (V->getType() != UI->getType())
1022 V = Builder.CreateBitCast(V, UI->getType());
1024 // Replace the old instruction.
1025 UI->replaceAllUsesWith(V);
1026 InstrsToErase.push_back(UI);
1030 // Bitcast might not be an Instruction, if the value being loaded is a
1031 // constant. In that case, no need to reorder anything.
1032 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1033 reorder(BitcastInst);
1035 for (auto I : InstrsToErase)
1036 I->eraseFromParent();
1037 } else {
1038 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1039 Value *CV = Chain[I];
1040 Value *V =
1041 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1042 if (V->getType() != CV->getType()) {
1043 V = Builder.CreateBitOrPointerCast(V, CV->getType());
1046 // Replace the old instruction.
1047 CV->replaceAllUsesWith(V);
1050 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1051 reorder(BitcastInst);
1054 eraseInstructions(Chain);
1056 ++NumVectorInstructions;
1057 NumScalarsVectorized += Chain.size();
1058 return true;
1061 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1062 unsigned Alignment) {
1063 if (Alignment % SzInBytes == 0)
1064 return false;
1066 bool Fast = false;
1067 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1068 SzInBytes * 8, AddressSpace,
1069 Alignment, &Fast);
1070 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1071 << " and fast? " << Fast << "\n";);
1072 return !Allows || !Fast;