Remove the default clause from a fully-covering switch
[llvm-core.git] / tools / llvm-xray / xray-color-helper.cc
blob7b6a73a5552b97d1df7c848bd968405109f0b534
1 //===-- xray-graph.cc - XRay Function Call Graph Renderer -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A class to get a color from a specified gradient.
12 //===----------------------------------------------------------------------===//
13 #include <algorithm>
14 #include <iostream>
16 #include "xray-color-helper.h"
17 #include "llvm/Support/FormatVariadic.h"
18 #include "llvm/Support/raw_ostream.h"
20 using namespace llvm;
21 using namespace xray;
23 // Sequential ColorMaps, which are used to represent information
24 // from some minimum to some maximum.
26 static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialMaps[][9] = {
27 {// The greys color scheme from http://colorbrewer2.org/
28 std::make_tuple(255, 255, 255), std::make_tuple(240, 240, 240),
29 std::make_tuple(217, 217, 217), std::make_tuple(189, 189, 189),
30 std::make_tuple(150, 150, 150), std::make_tuple(115, 115, 115),
31 std::make_tuple(82, 82, 82), std::make_tuple(37, 37, 37),
32 std::make_tuple(0, 0, 0)},
33 {// The OrRd color scheme from http://colorbrewer2.org/
34 std::make_tuple(255, 247, 236), std::make_tuple(254, 232, 200),
35 std::make_tuple(253, 212, 158), std::make_tuple(253, 187, 132),
36 std::make_tuple(252, 141, 89), std::make_tuple(239, 101, 72),
37 std::make_tuple(215, 48, 31), std::make_tuple(179, 0, 0),
38 std::make_tuple(127, 0, 0)},
39 {// The PuBu color scheme from http://colorbrewer2.org/
40 std::make_tuple(255, 247, 251), std::make_tuple(236, 231, 242),
41 std::make_tuple(208, 209, 230), std::make_tuple(166, 189, 219),
42 std::make_tuple(116, 169, 207), std::make_tuple(54, 144, 192),
43 std::make_tuple(5, 112, 176), std::make_tuple(4, 90, 141),
44 std::make_tuple(2, 56, 88)}};
46 // Sequential Maps extend the last colors given out of range inputs.
47 static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialBounds[][2] = {
48 {// The Bounds for the greys color scheme
49 std::make_tuple(255, 255, 255), std::make_tuple(0, 0, 0)},
50 {// The Bounds for the OrRd color Scheme
51 std::make_tuple(255, 247, 236), std::make_tuple(127, 0, 0)},
52 {// The Bounds for the PuBu color Scheme
53 std::make_tuple(255, 247, 251), std::make_tuple(2, 56, 88)}};
55 ColorHelper::ColorHelper(ColorHelper::SequentialScheme S)
56 : MinIn(0.0), MaxIn(1.0), ColorMap(SequentialMaps[static_cast<int>(S)]),
57 BoundMap(SequentialBounds[static_cast<int>(S)]) {}
59 // Diverging ColorMaps, which are used to represent information
60 // representing differenes, or a range that goes from negative to positive.
61 // These take an input in the range [-1,1].
63 static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingCoeffs[][11] = {
64 {// The PiYG color scheme from http://colorbrewer2.org/
65 std::make_tuple(142, 1, 82), std::make_tuple(197, 27, 125),
66 std::make_tuple(222, 119, 174), std::make_tuple(241, 182, 218),
67 std::make_tuple(253, 224, 239), std::make_tuple(247, 247, 247),
68 std::make_tuple(230, 245, 208), std::make_tuple(184, 225, 134),
69 std::make_tuple(127, 188, 65), std::make_tuple(77, 146, 33),
70 std::make_tuple(39, 100, 25)}};
72 // Diverging maps use out of bounds ranges to show missing data. Missing Right
73 // Being below min, and missing left being above max.
74 static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingBounds[][2] = {
75 {// The PiYG color scheme has green and red for missing right and left
76 // respectively.
77 std::make_tuple(255, 0, 0), std::make_tuple(0, 255, 0)}};
79 ColorHelper::ColorHelper(ColorHelper::DivergingScheme S)
80 : MinIn(-1.0), MaxIn(1.0), ColorMap(DivergingCoeffs[static_cast<int>(S)]),
81 BoundMap(DivergingBounds[static_cast<int>(S)]) {}
83 // Takes a tuple of uint8_ts representing a color in RGB and converts them to
84 // HSV represented by a tuple of doubles
85 static std::tuple<double, double, double>
86 convertToHSV(const std::tuple<uint8_t, uint8_t, uint8_t> &Color) {
87 double Scaled[3] = {std::get<0>(Color) / 255.0, std::get<1>(Color) / 255.0,
88 std::get<2>(Color) / 255.0};
89 int Min = 0;
90 int Max = 0;
91 for (int i = 1; i < 3; ++i) {
92 if (Scaled[i] < Scaled[Min])
93 Min = i;
94 if (Scaled[i] > Scaled[Max])
95 Max = i;
98 double C = Scaled[Max] - Scaled[Min];
100 double HPrime =
101 (C == 0) ? 0 : (Scaled[(Max + 1) % 3] - Scaled[(Max + 2) % 3]) / C;
102 HPrime = HPrime + 2.0 * Max;
104 double H = (HPrime < 0) ? (HPrime + 6.0) * 60
105 : HPrime * 60; // Scale to between 0 and 360
106 double V = Scaled[Max];
108 double S = (V == 0.0) ? 0.0 : C / V;
110 return std::make_tuple(H, S, V);
113 // Takes a double precision number, clips it between 0 and 1 and then converts
114 // that to an integer between 0x00 and 0xFF with proxpper rounding.
115 static uint8_t unitIntervalTo8BitChar(double B) {
116 double n = std::max(std::min(B, 1.0), 0.0);
117 return static_cast<uint8_t>(255 * n + 0.5);
120 // Takes a typle of doubles representing a color in HSV and converts them to
121 // RGB represented as a tuple of uint8_ts
122 static std::tuple<uint8_t, uint8_t, uint8_t>
123 convertToRGB(const std::tuple<double, double, double> &Color) {
124 const double &H = std::get<0>(Color);
125 const double &S = std::get<1>(Color);
126 const double &V = std::get<2>(Color);
128 double C = V * S;
130 double HPrime = H / 60;
131 double X = C * (1 - std::abs(std::fmod(HPrime, 2.0) - 1));
133 double RGB1[3];
134 int HPrimeInt = static_cast<int>(HPrime);
135 if (HPrimeInt % 2 == 0) {
136 RGB1[(HPrimeInt / 2) % 3] = C;
137 RGB1[(HPrimeInt / 2 + 1) % 3] = X;
138 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
139 } else {
140 RGB1[(HPrimeInt / 2) % 3] = X;
141 RGB1[(HPrimeInt / 2 + 1) % 3] = C;
142 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
145 double Min = V - C;
146 double RGB2[3] = {RGB1[0] + Min, RGB1[1] + Min, RGB1[2] + Min};
148 return std::make_tuple(unitIntervalTo8BitChar(RGB2[0]),
149 unitIntervalTo8BitChar(RGB2[1]),
150 unitIntervalTo8BitChar(RGB2[2]));
153 // The Hue component of the HSV interpolation Routine
154 static double interpolateHue(double H0, double H1, double T) {
155 double D = H1 - H0;
156 if (H0 > H1) {
157 std::swap(H0, H1);
159 D = -D;
160 T = 1 - T;
163 if (D <= 180) {
164 return H0 + T * (H1 - H0);
165 } else {
166 H0 = H0 + 360;
167 return std::fmod(H0 + T * (H1 - H0) + 720, 360);
171 // Interpolates between two HSV Colors both represented as a tuple of doubles
172 // Returns an HSV Color represented as a tuple of doubles
173 static std::tuple<double, double, double>
174 interpolateHSV(const std::tuple<double, double, double> &C0,
175 const std::tuple<double, double, double> &C1, double T) {
176 double H = interpolateHue(std::get<0>(C0), std::get<0>(C1), T);
177 double S = std::get<1>(C0) + T * (std::get<1>(C1) - std::get<1>(C0));
178 double V = std::get<2>(C0) + T * (std::get<2>(C1) - std::get<2>(C0));
179 return std::make_tuple(H, S, V);
182 // Get the Color as a tuple of uint8_ts
183 std::tuple<uint8_t, uint8_t, uint8_t>
184 ColorHelper::getColorTuple(double Point) const {
185 assert(!ColorMap.empty() && "ColorMap must not be empty!");
186 assert(!BoundMap.empty() && "BoundMap must not be empty!");
188 if (Point < MinIn)
189 return BoundMap[0];
190 if (Point > MaxIn)
191 return BoundMap[1];
193 size_t MaxIndex = ColorMap.size() - 1;
194 double IntervalWidth = MaxIn - MinIn;
195 double OffsetP = Point - MinIn;
196 double SectionWidth = IntervalWidth / static_cast<double>(MaxIndex);
197 size_t SectionNo = std::floor(OffsetP / SectionWidth);
198 double T = (OffsetP - SectionNo * SectionWidth) / SectionWidth;
200 auto &RGBColor0 = ColorMap[SectionNo];
201 auto &RGBColor1 = ColorMap[std::min(SectionNo + 1, MaxIndex)];
203 auto HSVColor0 = convertToHSV(RGBColor0);
204 auto HSVColor1 = convertToHSV(RGBColor1);
206 auto InterpolatedHSVColor = interpolateHSV(HSVColor0, HSVColor1, T);
207 return convertToRGB(InterpolatedHSVColor);
210 // A helper method to convert a color represented as tuple of uint8s to a hex
211 // string.
212 std::string
213 ColorHelper::getColorString(std::tuple<uint8_t, uint8_t, uint8_t> t) {
214 return llvm::formatv("#{0:X-2}{1:X-2}{2:X-2}", std::get<0>(t), std::get<1>(t),
215 std::get<2>(t));
218 // Gets a color in a gradient given a number in the interval [0,1], it does this
219 // by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G
220 // and B values in the color. It then converts this [0,1] colors to a 24 bit
221 // color as a hex string.
222 std::string ColorHelper::getColorString(double Point) const {
223 return getColorString(getColorTuple(Point));