[llvm-exegesis] [NFC] Fixing typo.
[llvm-core.git] / lib / Bitcode / Reader / BitcodeReader.cpp
blobb94bb66a0d66c1043aba7b90f80acfb512b640d1
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
88 using namespace llvm;
90 static cl::opt<bool> PrintSummaryGUIDs(
91 "print-summary-global-ids", cl::init(false), cl::Hidden,
92 cl::desc(
93 "Print the global id for each value when reading the module summary"));
95 namespace {
97 enum {
98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
101 } // end anonymous namespace
103 static Error error(const Twine &Message) {
104 return make_error<StringError>(
105 Message, make_error_code(BitcodeError::CorruptedBitcode));
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110 // Sniff for the signature.
111 if (!Stream.canSkipToPos(4) ||
112 Stream.Read(8) != 'B' ||
113 Stream.Read(8) != 'C' ||
114 Stream.Read(4) != 0x0 ||
115 Stream.Read(4) != 0xC ||
116 Stream.Read(4) != 0xE ||
117 Stream.Read(4) != 0xD)
118 return false;
119 return true;
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
126 if (Buffer.getBufferSize() & 3)
127 return error("Invalid bitcode signature");
129 // If we have a wrapper header, parse it and ignore the non-bc file contents.
130 // The magic number is 0x0B17C0DE stored in little endian.
131 if (isBitcodeWrapper(BufPtr, BufEnd))
132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133 return error("Invalid bitcode wrapper header");
135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136 if (!hasValidBitcodeHeader(Stream))
137 return error("Invalid bitcode signature");
139 return std::move(Stream);
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145 StrTy &Result) {
146 if (Idx > Record.size())
147 return true;
149 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150 Result += (char)Record[i];
151 return false;
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156 for (auto &F : *M) {
157 if (F.isMaterializable())
158 continue;
159 for (auto &I : instructions(F))
160 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168 return error("Invalid record");
170 // Read all the records.
171 SmallVector<uint64_t, 64> Record;
173 std::string ProducerIdentification;
175 while (true) {
176 BitstreamEntry Entry = Stream.advance();
178 switch (Entry.Kind) {
179 default:
180 case BitstreamEntry::Error:
181 return error("Malformed block");
182 case BitstreamEntry::EndBlock:
183 return ProducerIdentification;
184 case BitstreamEntry::Record:
185 // The interesting case.
186 break;
189 // Read a record.
190 Record.clear();
191 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192 switch (BitCode) {
193 default: // Default behavior: reject
194 return error("Invalid value");
195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196 convertToString(Record, 0, ProducerIdentification);
197 break;
198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199 unsigned epoch = (unsigned)Record[0];
200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201 return error(
202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211 // We expect a number of well-defined blocks, though we don't necessarily
212 // need to understand them all.
213 while (true) {
214 if (Stream.AtEndOfStream())
215 return "";
217 BitstreamEntry Entry = Stream.advance();
218 switch (Entry.Kind) {
219 case BitstreamEntry::EndBlock:
220 case BitstreamEntry::Error:
221 return error("Malformed block");
223 case BitstreamEntry::SubBlock:
224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225 return readIdentificationBlock(Stream);
227 // Ignore other sub-blocks.
228 if (Stream.SkipBlock())
229 return error("Malformed block");
230 continue;
231 case BitstreamEntry::Record:
232 Stream.skipRecord(Entry.ID);
233 continue;
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240 return error("Invalid record");
242 SmallVector<uint64_t, 64> Record;
243 // Read all the records for this module.
245 while (true) {
246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
248 switch (Entry.Kind) {
249 case BitstreamEntry::SubBlock: // Handled for us already.
250 case BitstreamEntry::Error:
251 return error("Malformed block");
252 case BitstreamEntry::EndBlock:
253 return false;
254 case BitstreamEntry::Record:
255 // The interesting case.
256 break;
259 // Read a record.
260 switch (Stream.readRecord(Entry.ID, Record)) {
261 default:
262 break; // Default behavior, ignore unknown content.
263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264 std::string S;
265 if (convertToString(Record, 0, S))
266 return error("Invalid record");
267 // Check for the i386 and other (x86_64, ARM) conventions
268 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269 S.find("__OBJC,__category") != std::string::npos)
270 return true;
271 break;
274 Record.clear();
276 llvm_unreachable("Exit infinite loop");
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280 // We expect a number of well-defined blocks, though we don't necessarily
281 // need to understand them all.
282 while (true) {
283 BitstreamEntry Entry = Stream.advance();
285 switch (Entry.Kind) {
286 case BitstreamEntry::Error:
287 return error("Malformed block");
288 case BitstreamEntry::EndBlock:
289 return false;
291 case BitstreamEntry::SubBlock:
292 if (Entry.ID == bitc::MODULE_BLOCK_ID)
293 return hasObjCCategoryInModule(Stream);
295 // Ignore other sub-blocks.
296 if (Stream.SkipBlock())
297 return error("Malformed block");
298 continue;
300 case BitstreamEntry::Record:
301 Stream.skipRecord(Entry.ID);
302 continue;
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309 return error("Invalid record");
311 SmallVector<uint64_t, 64> Record;
313 std::string Triple;
315 // Read all the records for this module.
316 while (true) {
317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
319 switch (Entry.Kind) {
320 case BitstreamEntry::SubBlock: // Handled for us already.
321 case BitstreamEntry::Error:
322 return error("Malformed block");
323 case BitstreamEntry::EndBlock:
324 return Triple;
325 case BitstreamEntry::Record:
326 // The interesting case.
327 break;
330 // Read a record.
331 switch (Stream.readRecord(Entry.ID, Record)) {
332 default: break; // Default behavior, ignore unknown content.
333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
334 std::string S;
335 if (convertToString(Record, 0, S))
336 return error("Invalid record");
337 Triple = S;
338 break;
341 Record.clear();
343 llvm_unreachable("Exit infinite loop");
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347 // We expect a number of well-defined blocks, though we don't necessarily
348 // need to understand them all.
349 while (true) {
350 BitstreamEntry Entry = Stream.advance();
352 switch (Entry.Kind) {
353 case BitstreamEntry::Error:
354 return error("Malformed block");
355 case BitstreamEntry::EndBlock:
356 return "";
358 case BitstreamEntry::SubBlock:
359 if (Entry.ID == bitc::MODULE_BLOCK_ID)
360 return readModuleTriple(Stream);
362 // Ignore other sub-blocks.
363 if (Stream.SkipBlock())
364 return error("Malformed block");
365 continue;
367 case BitstreamEntry::Record:
368 Stream.skipRecord(Entry.ID);
369 continue;
374 namespace {
376 class BitcodeReaderBase {
377 protected:
378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379 : Stream(std::move(Stream)), Strtab(Strtab) {
380 this->Stream.setBlockInfo(&BlockInfo);
383 BitstreamBlockInfo BlockInfo;
384 BitstreamCursor Stream;
385 StringRef Strtab;
387 /// In version 2 of the bitcode we store names of global values and comdats in
388 /// a string table rather than in the VST.
389 bool UseStrtab = false;
391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
393 /// If this module uses a string table, pop the reference to the string table
394 /// and return the referenced string and the rest of the record. Otherwise
395 /// just return the record itself.
396 std::pair<StringRef, ArrayRef<uint64_t>>
397 readNameFromStrtab(ArrayRef<uint64_t> Record);
399 bool readBlockInfo();
401 // Contains an arbitrary and optional string identifying the bitcode producer
402 std::string ProducerIdentification;
404 Error error(const Twine &Message);
407 } // end anonymous namespace
409 Error BitcodeReaderBase::error(const Twine &Message) {
410 std::string FullMsg = Message.str();
411 if (!ProducerIdentification.empty())
412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413 LLVM_VERSION_STRING "')";
414 return ::error(FullMsg);
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419 if (Record.empty())
420 return error("Invalid record");
421 unsigned ModuleVersion = Record[0];
422 if (ModuleVersion > 2)
423 return error("Invalid value");
424 UseStrtab = ModuleVersion >= 2;
425 return ModuleVersion;
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430 if (!UseStrtab)
431 return {"", Record};
432 // Invalid reference. Let the caller complain about the record being empty.
433 if (Record[0] + Record[1] > Strtab.size())
434 return {"", {}};
435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
438 namespace {
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441 LLVMContext &Context;
442 Module *TheModule = nullptr;
443 // Next offset to start scanning for lazy parsing of function bodies.
444 uint64_t NextUnreadBit = 0;
445 // Last function offset found in the VST.
446 uint64_t LastFunctionBlockBit = 0;
447 bool SeenValueSymbolTable = false;
448 uint64_t VSTOffset = 0;
450 std::vector<std::string> SectionTable;
451 std::vector<std::string> GCTable;
453 std::vector<Type*> TypeList;
454 BitcodeReaderValueList ValueList;
455 Optional<MetadataLoader> MDLoader;
456 std::vector<Comdat *> ComdatList;
457 SmallVector<Instruction *, 64> InstructionList;
459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
465 /// The set of attributes by index. Index zero in the file is for null, and
466 /// is thus not represented here. As such all indices are off by one.
467 std::vector<AttributeList> MAttributes;
469 /// The set of attribute groups.
470 std::map<unsigned, AttributeList> MAttributeGroups;
472 /// While parsing a function body, this is a list of the basic blocks for the
473 /// function.
474 std::vector<BasicBlock*> FunctionBBs;
476 // When reading the module header, this list is populated with functions that
477 // have bodies later in the file.
478 std::vector<Function*> FunctionsWithBodies;
480 // When intrinsic functions are encountered which require upgrading they are
481 // stored here with their replacement function.
482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483 UpdatedIntrinsicMap UpgradedIntrinsics;
484 // Intrinsics which were remangled because of types rename
485 UpdatedIntrinsicMap RemangledIntrinsics;
487 // Several operations happen after the module header has been read, but
488 // before function bodies are processed. This keeps track of whether
489 // we've done this yet.
490 bool SeenFirstFunctionBody = false;
492 /// When function bodies are initially scanned, this map contains info about
493 /// where to find deferred function body in the stream.
494 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
496 /// When Metadata block is initially scanned when parsing the module, we may
497 /// choose to defer parsing of the metadata. This vector contains info about
498 /// which Metadata blocks are deferred.
499 std::vector<uint64_t> DeferredMetadataInfo;
501 /// These are basic blocks forward-referenced by block addresses. They are
502 /// inserted lazily into functions when they're loaded. The basic block ID is
503 /// its index into the vector.
504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505 std::deque<Function *> BasicBlockFwdRefQueue;
507 /// Indicates that we are using a new encoding for instruction operands where
508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509 /// instruction number, for a more compact encoding. Some instruction
510 /// operands are not relative to the instruction ID: basic block numbers, and
511 /// types. Once the old style function blocks have been phased out, we would
512 /// not need this flag.
513 bool UseRelativeIDs = false;
515 /// True if all functions will be materialized, negating the need to process
516 /// (e.g.) blockaddress forward references.
517 bool WillMaterializeAllForwardRefs = false;
519 bool StripDebugInfo = false;
520 TBAAVerifier TBAAVerifyHelper;
522 std::vector<std::string> BundleTags;
523 SmallVector<SyncScope::ID, 8> SSIDs;
525 public:
526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527 StringRef ProducerIdentification, LLVMContext &Context);
529 Error materializeForwardReferencedFunctions();
531 Error materialize(GlobalValue *GV) override;
532 Error materializeModule() override;
533 std::vector<StructType *> getIdentifiedStructTypes() const override;
535 /// Main interface to parsing a bitcode buffer.
536 /// \returns true if an error occurred.
537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538 bool IsImporting = false);
540 static uint64_t decodeSignRotatedValue(uint64_t V);
542 /// Materialize any deferred Metadata block.
543 Error materializeMetadata() override;
545 void setStripDebugInfo() override;
547 private:
548 std::vector<StructType *> IdentifiedStructTypes;
549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550 StructType *createIdentifiedStructType(LLVMContext &Context);
552 Type *getTypeByID(unsigned ID);
554 Value *getFnValueByID(unsigned ID, Type *Ty) {
555 if (Ty && Ty->isMetadataTy())
556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557 return ValueList.getValueFwdRef(ID, Ty);
560 Metadata *getFnMetadataByID(unsigned ID) {
561 return MDLoader->getMetadataFwdRefOrLoad(ID);
564 BasicBlock *getBasicBlock(unsigned ID) const {
565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566 return FunctionBBs[ID];
569 AttributeList getAttributes(unsigned i) const {
570 if (i-1 < MAttributes.size())
571 return MAttributes[i-1];
572 return AttributeList();
575 /// Read a value/type pair out of the specified record from slot 'Slot'.
576 /// Increment Slot past the number of slots used in the record. Return true on
577 /// failure.
578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579 unsigned InstNum, Value *&ResVal) {
580 if (Slot == Record.size()) return true;
581 unsigned ValNo = (unsigned)Record[Slot++];
582 // Adjust the ValNo, if it was encoded relative to the InstNum.
583 if (UseRelativeIDs)
584 ValNo = InstNum - ValNo;
585 if (ValNo < InstNum) {
586 // If this is not a forward reference, just return the value we already
587 // have.
588 ResVal = getFnValueByID(ValNo, nullptr);
589 return ResVal == nullptr;
591 if (Slot == Record.size())
592 return true;
594 unsigned TypeNo = (unsigned)Record[Slot++];
595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596 return ResVal == nullptr;
599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600 /// past the number of slots used by the value in the record. Return true if
601 /// there is an error.
602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603 unsigned InstNum, Type *Ty, Value *&ResVal) {
604 if (getValue(Record, Slot, InstNum, Ty, ResVal))
605 return true;
606 // All values currently take a single record slot.
607 ++Slot;
608 return false;
611 /// Like popValue, but does not increment the Slot number.
612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613 unsigned InstNum, Type *Ty, Value *&ResVal) {
614 ResVal = getValue(Record, Slot, InstNum, Ty);
615 return ResVal == nullptr;
618 /// Version of getValue that returns ResVal directly, or 0 if there is an
619 /// error.
620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621 unsigned InstNum, Type *Ty) {
622 if (Slot == Record.size()) return nullptr;
623 unsigned ValNo = (unsigned)Record[Slot];
624 // Adjust the ValNo, if it was encoded relative to the InstNum.
625 if (UseRelativeIDs)
626 ValNo = InstNum - ValNo;
627 return getFnValueByID(ValNo, Ty);
630 /// Like getValue, but decodes signed VBRs.
631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632 unsigned InstNum, Type *Ty) {
633 if (Slot == Record.size()) return nullptr;
634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635 // Adjust the ValNo, if it was encoded relative to the InstNum.
636 if (UseRelativeIDs)
637 ValNo = InstNum - ValNo;
638 return getFnValueByID(ValNo, Ty);
641 /// Converts alignment exponent (i.e. power of two (or zero)) to the
642 /// corresponding alignment to use. If alignment is too large, returns
643 /// a corresponding error code.
644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
648 Error parseComdatRecord(ArrayRef<uint64_t> Record);
649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652 ArrayRef<uint64_t> Record);
654 Error parseAttributeBlock();
655 Error parseAttributeGroupBlock();
656 Error parseTypeTable();
657 Error parseTypeTableBody();
658 Error parseOperandBundleTags();
659 Error parseSyncScopeNames();
661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662 unsigned NameIndex, Triple &TT);
663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664 ArrayRef<uint64_t> Record);
665 Error parseValueSymbolTable(uint64_t Offset = 0);
666 Error parseGlobalValueSymbolTable();
667 Error parseConstants();
668 Error rememberAndSkipFunctionBodies();
669 Error rememberAndSkipFunctionBody();
670 /// Save the positions of the Metadata blocks and skip parsing the blocks.
671 Error rememberAndSkipMetadata();
672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673 Error parseFunctionBody(Function *F);
674 Error globalCleanup();
675 Error resolveGlobalAndIndirectSymbolInits();
676 Error parseUseLists();
677 Error findFunctionInStream(
678 Function *F,
679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
681 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687 /// The module index built during parsing.
688 ModuleSummaryIndex &TheIndex;
690 /// Indicates whether we have encountered a global value summary section
691 /// yet during parsing.
692 bool SeenGlobalValSummary = false;
694 /// Indicates whether we have already parsed the VST, used for error checking.
695 bool SeenValueSymbolTable = false;
697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698 /// Used to enable on-demand parsing of the VST.
699 uint64_t VSTOffset = 0;
701 // Map to save ValueId to ValueInfo association that was recorded in the
702 // ValueSymbolTable. It is used after the VST is parsed to convert
703 // call graph edges read from the function summary from referencing
704 // callees by their ValueId to using the ValueInfo instead, which is how
705 // they are recorded in the summary index being built.
706 // We save a GUID which refers to the same global as the ValueInfo, but
707 // ignoring the linkage, i.e. for values other than local linkage they are
708 // identical.
709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710 ValueIdToValueInfoMap;
712 /// Map populated during module path string table parsing, from the
713 /// module ID to a string reference owned by the index's module
714 /// path string table, used to correlate with combined index
715 /// summary records.
716 DenseMap<uint64_t, StringRef> ModuleIdMap;
718 /// Original source file name recorded in a bitcode record.
719 std::string SourceFileName;
721 /// The string identifier given to this module by the client, normally the
722 /// path to the bitcode file.
723 StringRef ModulePath;
725 /// For per-module summary indexes, the unique numerical identifier given to
726 /// this module by the client.
727 unsigned ModuleId;
729 public:
730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731 ModuleSummaryIndex &TheIndex,
732 StringRef ModulePath, unsigned ModuleId);
734 Error parseModule();
736 private:
737 void setValueGUID(uint64_t ValueID, StringRef ValueName,
738 GlobalValue::LinkageTypes Linkage,
739 StringRef SourceFileName);
740 Error parseValueSymbolTable(
741 uint64_t Offset,
742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745 bool IsOldProfileFormat,
746 bool HasProfile,
747 bool HasRelBF);
748 Error parseEntireSummary(unsigned ID);
749 Error parseModuleStringTable();
751 std::pair<ValueInfo, GlobalValue::GUID>
752 getValueInfoFromValueId(unsigned ValueId);
754 void addThisModule();
755 ModuleSummaryIndex::ModuleInfo *getThisModule();
758 } // end anonymous namespace
760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
761 Error Err) {
762 if (Err) {
763 std::error_code EC;
764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765 EC = EIB.convertToErrorCode();
766 Ctx.emitError(EIB.message());
768 return EC;
770 return std::error_code();
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774 StringRef ProducerIdentification,
775 LLVMContext &Context)
776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777 ValueList(Context) {
778 this->ProducerIdentification = ProducerIdentification;
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782 if (WillMaterializeAllForwardRefs)
783 return Error::success();
785 // Prevent recursion.
786 WillMaterializeAllForwardRefs = true;
788 while (!BasicBlockFwdRefQueue.empty()) {
789 Function *F = BasicBlockFwdRefQueue.front();
790 BasicBlockFwdRefQueue.pop_front();
791 assert(F && "Expected valid function");
792 if (!BasicBlockFwdRefs.count(F))
793 // Already materialized.
794 continue;
796 // Check for a function that isn't materializable to prevent an infinite
797 // loop. When parsing a blockaddress stored in a global variable, there
798 // isn't a trivial way to check if a function will have a body without a
799 // linear search through FunctionsWithBodies, so just check it here.
800 if (!F->isMaterializable())
801 return error("Never resolved function from blockaddress");
803 // Try to materialize F.
804 if (Error Err = materialize(F))
805 return Err;
807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
809 // Reset state.
810 WillMaterializeAllForwardRefs = false;
811 return Error::success();
814 //===----------------------------------------------------------------------===//
815 // Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
818 static bool hasImplicitComdat(size_t Val) {
819 switch (Val) {
820 default:
821 return false;
822 case 1: // Old WeakAnyLinkage
823 case 4: // Old LinkOnceAnyLinkage
824 case 10: // Old WeakODRLinkage
825 case 11: // Old LinkOnceODRLinkage
826 return true;
830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
831 switch (Val) {
832 default: // Map unknown/new linkages to external
833 case 0:
834 return GlobalValue::ExternalLinkage;
835 case 2:
836 return GlobalValue::AppendingLinkage;
837 case 3:
838 return GlobalValue::InternalLinkage;
839 case 5:
840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841 case 6:
842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843 case 7:
844 return GlobalValue::ExternalWeakLinkage;
845 case 8:
846 return GlobalValue::CommonLinkage;
847 case 9:
848 return GlobalValue::PrivateLinkage;
849 case 12:
850 return GlobalValue::AvailableExternallyLinkage;
851 case 13:
852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853 case 14:
854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855 case 15:
856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857 case 1: // Old value with implicit comdat.
858 case 16:
859 return GlobalValue::WeakAnyLinkage;
860 case 10: // Old value with implicit comdat.
861 case 17:
862 return GlobalValue::WeakODRLinkage;
863 case 4: // Old value with implicit comdat.
864 case 18:
865 return GlobalValue::LinkOnceAnyLinkage;
866 case 11: // Old value with implicit comdat.
867 case 19:
868 return GlobalValue::LinkOnceODRLinkage;
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
873 FunctionSummary::FFlags Flags;
874 Flags.ReadNone = RawFlags & 0x1;
875 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878 Flags.NoInline = (RawFlags >> 4) & 0x1;
879 return Flags;
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884 uint64_t Version) {
885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886 // like getDecodedLinkage() above. Any future change to the linkage enum and
887 // to getDecodedLinkage() will need to be taken into account here as above.
888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889 RawFlags = RawFlags >> 4;
890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891 // The Live flag wasn't introduced until version 3. For dead stripping
892 // to work correctly on earlier versions, we must conservatively treat all
893 // values as live.
894 bool Live = (RawFlags & 0x2) || Version < 3;
895 bool Local = (RawFlags & 0x4);
897 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
900 // Decode the flags for GlobalVariable in the summary
901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
902 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
906 switch (Val) {
907 default: // Map unknown visibilities to default.
908 case 0: return GlobalValue::DefaultVisibility;
909 case 1: return GlobalValue::HiddenVisibility;
910 case 2: return GlobalValue::ProtectedVisibility;
914 static GlobalValue::DLLStorageClassTypes
915 getDecodedDLLStorageClass(unsigned Val) {
916 switch (Val) {
917 default: // Map unknown values to default.
918 case 0: return GlobalValue::DefaultStorageClass;
919 case 1: return GlobalValue::DLLImportStorageClass;
920 case 2: return GlobalValue::DLLExportStorageClass;
924 static bool getDecodedDSOLocal(unsigned Val) {
925 switch(Val) {
926 default: // Map unknown values to preemptable.
927 case 0: return false;
928 case 1: return true;
932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
933 switch (Val) {
934 case 0: return GlobalVariable::NotThreadLocal;
935 default: // Map unknown non-zero value to general dynamic.
936 case 1: return GlobalVariable::GeneralDynamicTLSModel;
937 case 2: return GlobalVariable::LocalDynamicTLSModel;
938 case 3: return GlobalVariable::InitialExecTLSModel;
939 case 4: return GlobalVariable::LocalExecTLSModel;
943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
944 switch (Val) {
945 default: // Map unknown to UnnamedAddr::None.
946 case 0: return GlobalVariable::UnnamedAddr::None;
947 case 1: return GlobalVariable::UnnamedAddr::Global;
948 case 2: return GlobalVariable::UnnamedAddr::Local;
952 static int getDecodedCastOpcode(unsigned Val) {
953 switch (Val) {
954 default: return -1;
955 case bitc::CAST_TRUNC : return Instruction::Trunc;
956 case bitc::CAST_ZEXT : return Instruction::ZExt;
957 case bitc::CAST_SEXT : return Instruction::SExt;
958 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
959 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
960 case bitc::CAST_UITOFP : return Instruction::UIToFP;
961 case bitc::CAST_SITOFP : return Instruction::SIToFP;
962 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
963 case bitc::CAST_FPEXT : return Instruction::FPExt;
964 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
965 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
966 case bitc::CAST_BITCAST : return Instruction::BitCast;
967 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
972 bool IsFP = Ty->isFPOrFPVectorTy();
973 // UnOps are only valid for int/fp or vector of int/fp types
974 if (!IsFP && !Ty->isIntOrIntVectorTy())
975 return -1;
977 switch (Val) {
978 default:
979 return -1;
980 case bitc::UNOP_NEG:
981 return IsFP ? Instruction::FNeg : -1;
985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
986 bool IsFP = Ty->isFPOrFPVectorTy();
987 // BinOps are only valid for int/fp or vector of int/fp types
988 if (!IsFP && !Ty->isIntOrIntVectorTy())
989 return -1;
991 switch (Val) {
992 default:
993 return -1;
994 case bitc::BINOP_ADD:
995 return IsFP ? Instruction::FAdd : Instruction::Add;
996 case bitc::BINOP_SUB:
997 return IsFP ? Instruction::FSub : Instruction::Sub;
998 case bitc::BINOP_MUL:
999 return IsFP ? Instruction::FMul : Instruction::Mul;
1000 case bitc::BINOP_UDIV:
1001 return IsFP ? -1 : Instruction::UDiv;
1002 case bitc::BINOP_SDIV:
1003 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1004 case bitc::BINOP_UREM:
1005 return IsFP ? -1 : Instruction::URem;
1006 case bitc::BINOP_SREM:
1007 return IsFP ? Instruction::FRem : Instruction::SRem;
1008 case bitc::BINOP_SHL:
1009 return IsFP ? -1 : Instruction::Shl;
1010 case bitc::BINOP_LSHR:
1011 return IsFP ? -1 : Instruction::LShr;
1012 case bitc::BINOP_ASHR:
1013 return IsFP ? -1 : Instruction::AShr;
1014 case bitc::BINOP_AND:
1015 return IsFP ? -1 : Instruction::And;
1016 case bitc::BINOP_OR:
1017 return IsFP ? -1 : Instruction::Or;
1018 case bitc::BINOP_XOR:
1019 return IsFP ? -1 : Instruction::Xor;
1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1024 switch (Val) {
1025 default: return AtomicRMWInst::BAD_BINOP;
1026 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1027 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1028 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1029 case bitc::RMW_AND: return AtomicRMWInst::And;
1030 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1031 case bitc::RMW_OR: return AtomicRMWInst::Or;
1032 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1033 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1034 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1035 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1036 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1037 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1038 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1042 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1043 switch (Val) {
1044 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1045 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1046 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1047 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1048 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1049 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1050 default: // Map unknown orderings to sequentially-consistent.
1051 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1056 switch (Val) {
1057 default: // Map unknown selection kinds to any.
1058 case bitc::COMDAT_SELECTION_KIND_ANY:
1059 return Comdat::Any;
1060 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1061 return Comdat::ExactMatch;
1062 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1063 return Comdat::Largest;
1064 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1065 return Comdat::NoDuplicates;
1066 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1067 return Comdat::SameSize;
1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1072 FastMathFlags FMF;
1073 if (0 != (Val & bitc::UnsafeAlgebra))
1074 FMF.setFast();
1075 if (0 != (Val & bitc::AllowReassoc))
1076 FMF.setAllowReassoc();
1077 if (0 != (Val & bitc::NoNaNs))
1078 FMF.setNoNaNs();
1079 if (0 != (Val & bitc::NoInfs))
1080 FMF.setNoInfs();
1081 if (0 != (Val & bitc::NoSignedZeros))
1082 FMF.setNoSignedZeros();
1083 if (0 != (Val & bitc::AllowReciprocal))
1084 FMF.setAllowReciprocal();
1085 if (0 != (Val & bitc::AllowContract))
1086 FMF.setAllowContract(true);
1087 if (0 != (Val & bitc::ApproxFunc))
1088 FMF.setApproxFunc();
1089 return FMF;
1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1093 switch (Val) {
1094 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1095 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1099 Type *BitcodeReader::getTypeByID(unsigned ID) {
1100 // The type table size is always specified correctly.
1101 if (ID >= TypeList.size())
1102 return nullptr;
1104 if (Type *Ty = TypeList[ID])
1105 return Ty;
1107 // If we have a forward reference, the only possible case is when it is to a
1108 // named struct. Just create a placeholder for now.
1109 return TypeList[ID] = createIdentifiedStructType(Context);
1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1113 StringRef Name) {
1114 auto *Ret = StructType::create(Context, Name);
1115 IdentifiedStructTypes.push_back(Ret);
1116 return Ret;
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1120 auto *Ret = StructType::create(Context);
1121 IdentifiedStructTypes.push_back(Ret);
1122 return Ret;
1125 //===----------------------------------------------------------------------===//
1126 // Functions for parsing blocks from the bitcode file
1127 //===----------------------------------------------------------------------===//
1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1130 switch (Val) {
1131 case Attribute::EndAttrKinds:
1132 llvm_unreachable("Synthetic enumerators which should never get here");
1134 case Attribute::None: return 0;
1135 case Attribute::ZExt: return 1 << 0;
1136 case Attribute::SExt: return 1 << 1;
1137 case Attribute::NoReturn: return 1 << 2;
1138 case Attribute::InReg: return 1 << 3;
1139 case Attribute::StructRet: return 1 << 4;
1140 case Attribute::NoUnwind: return 1 << 5;
1141 case Attribute::NoAlias: return 1 << 6;
1142 case Attribute::ByVal: return 1 << 7;
1143 case Attribute::Nest: return 1 << 8;
1144 case Attribute::ReadNone: return 1 << 9;
1145 case Attribute::ReadOnly: return 1 << 10;
1146 case Attribute::NoInline: return 1 << 11;
1147 case Attribute::AlwaysInline: return 1 << 12;
1148 case Attribute::OptimizeForSize: return 1 << 13;
1149 case Attribute::StackProtect: return 1 << 14;
1150 case Attribute::StackProtectReq: return 1 << 15;
1151 case Attribute::Alignment: return 31 << 16;
1152 case Attribute::NoCapture: return 1 << 21;
1153 case Attribute::NoRedZone: return 1 << 22;
1154 case Attribute::NoImplicitFloat: return 1 << 23;
1155 case Attribute::Naked: return 1 << 24;
1156 case Attribute::InlineHint: return 1 << 25;
1157 case Attribute::StackAlignment: return 7 << 26;
1158 case Attribute::ReturnsTwice: return 1 << 29;
1159 case Attribute::UWTable: return 1 << 30;
1160 case Attribute::NonLazyBind: return 1U << 31;
1161 case Attribute::SanitizeAddress: return 1ULL << 32;
1162 case Attribute::MinSize: return 1ULL << 33;
1163 case Attribute::NoDuplicate: return 1ULL << 34;
1164 case Attribute::StackProtectStrong: return 1ULL << 35;
1165 case Attribute::SanitizeThread: return 1ULL << 36;
1166 case Attribute::SanitizeMemory: return 1ULL << 37;
1167 case Attribute::NoBuiltin: return 1ULL << 38;
1168 case Attribute::Returned: return 1ULL << 39;
1169 case Attribute::Cold: return 1ULL << 40;
1170 case Attribute::Builtin: return 1ULL << 41;
1171 case Attribute::OptimizeNone: return 1ULL << 42;
1172 case Attribute::InAlloca: return 1ULL << 43;
1173 case Attribute::NonNull: return 1ULL << 44;
1174 case Attribute::JumpTable: return 1ULL << 45;
1175 case Attribute::Convergent: return 1ULL << 46;
1176 case Attribute::SafeStack: return 1ULL << 47;
1177 case Attribute::NoRecurse: return 1ULL << 48;
1178 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1179 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1180 case Attribute::SwiftSelf: return 1ULL << 51;
1181 case Attribute::SwiftError: return 1ULL << 52;
1182 case Attribute::WriteOnly: return 1ULL << 53;
1183 case Attribute::Speculatable: return 1ULL << 54;
1184 case Attribute::StrictFP: return 1ULL << 55;
1185 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1186 case Attribute::NoCfCheck: return 1ULL << 57;
1187 case Attribute::OptForFuzzing: return 1ULL << 58;
1188 case Attribute::ShadowCallStack: return 1ULL << 59;
1189 case Attribute::SpeculativeLoadHardening:
1190 return 1ULL << 60;
1191 case Attribute::Dereferenceable:
1192 llvm_unreachable("dereferenceable attribute not supported in raw format");
1193 break;
1194 case Attribute::DereferenceableOrNull:
1195 llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1196 "format");
1197 break;
1198 case Attribute::ArgMemOnly:
1199 llvm_unreachable("argmemonly attribute not supported in raw format");
1200 break;
1201 case Attribute::AllocSize:
1202 llvm_unreachable("allocsize not supported in raw format");
1203 break;
1205 llvm_unreachable("Unsupported attribute type");
1208 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1209 if (!Val) return;
1211 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1212 I = Attribute::AttrKind(I + 1)) {
1213 if (I == Attribute::Dereferenceable ||
1214 I == Attribute::DereferenceableOrNull ||
1215 I == Attribute::ArgMemOnly ||
1216 I == Attribute::AllocSize)
1217 continue;
1218 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1219 if (I == Attribute::Alignment)
1220 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1221 else if (I == Attribute::StackAlignment)
1222 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1223 else
1224 B.addAttribute(I);
1229 /// This fills an AttrBuilder object with the LLVM attributes that have
1230 /// been decoded from the given integer. This function must stay in sync with
1231 /// 'encodeLLVMAttributesForBitcode'.
1232 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1233 uint64_t EncodedAttrs) {
1234 // FIXME: Remove in 4.0.
1236 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1237 // the bits above 31 down by 11 bits.
1238 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1239 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1240 "Alignment must be a power of two.");
1242 if (Alignment)
1243 B.addAlignmentAttr(Alignment);
1244 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1245 (EncodedAttrs & 0xffff));
1248 Error BitcodeReader::parseAttributeBlock() {
1249 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1250 return error("Invalid record");
1252 if (!MAttributes.empty())
1253 return error("Invalid multiple blocks");
1255 SmallVector<uint64_t, 64> Record;
1257 SmallVector<AttributeList, 8> Attrs;
1259 // Read all the records.
1260 while (true) {
1261 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1263 switch (Entry.Kind) {
1264 case BitstreamEntry::SubBlock: // Handled for us already.
1265 case BitstreamEntry::Error:
1266 return error("Malformed block");
1267 case BitstreamEntry::EndBlock:
1268 return Error::success();
1269 case BitstreamEntry::Record:
1270 // The interesting case.
1271 break;
1274 // Read a record.
1275 Record.clear();
1276 switch (Stream.readRecord(Entry.ID, Record)) {
1277 default: // Default behavior: ignore.
1278 break;
1279 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1280 // FIXME: Remove in 4.0.
1281 if (Record.size() & 1)
1282 return error("Invalid record");
1284 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1285 AttrBuilder B;
1286 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1287 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1290 MAttributes.push_back(AttributeList::get(Context, Attrs));
1291 Attrs.clear();
1292 break;
1293 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1294 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1295 Attrs.push_back(MAttributeGroups[Record[i]]);
1297 MAttributes.push_back(AttributeList::get(Context, Attrs));
1298 Attrs.clear();
1299 break;
1304 // Returns Attribute::None on unrecognized codes.
1305 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1306 switch (Code) {
1307 default:
1308 return Attribute::None;
1309 case bitc::ATTR_KIND_ALIGNMENT:
1310 return Attribute::Alignment;
1311 case bitc::ATTR_KIND_ALWAYS_INLINE:
1312 return Attribute::AlwaysInline;
1313 case bitc::ATTR_KIND_ARGMEMONLY:
1314 return Attribute::ArgMemOnly;
1315 case bitc::ATTR_KIND_BUILTIN:
1316 return Attribute::Builtin;
1317 case bitc::ATTR_KIND_BY_VAL:
1318 return Attribute::ByVal;
1319 case bitc::ATTR_KIND_IN_ALLOCA:
1320 return Attribute::InAlloca;
1321 case bitc::ATTR_KIND_COLD:
1322 return Attribute::Cold;
1323 case bitc::ATTR_KIND_CONVERGENT:
1324 return Attribute::Convergent;
1325 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1326 return Attribute::InaccessibleMemOnly;
1327 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1328 return Attribute::InaccessibleMemOrArgMemOnly;
1329 case bitc::ATTR_KIND_INLINE_HINT:
1330 return Attribute::InlineHint;
1331 case bitc::ATTR_KIND_IN_REG:
1332 return Attribute::InReg;
1333 case bitc::ATTR_KIND_JUMP_TABLE:
1334 return Attribute::JumpTable;
1335 case bitc::ATTR_KIND_MIN_SIZE:
1336 return Attribute::MinSize;
1337 case bitc::ATTR_KIND_NAKED:
1338 return Attribute::Naked;
1339 case bitc::ATTR_KIND_NEST:
1340 return Attribute::Nest;
1341 case bitc::ATTR_KIND_NO_ALIAS:
1342 return Attribute::NoAlias;
1343 case bitc::ATTR_KIND_NO_BUILTIN:
1344 return Attribute::NoBuiltin;
1345 case bitc::ATTR_KIND_NO_CAPTURE:
1346 return Attribute::NoCapture;
1347 case bitc::ATTR_KIND_NO_DUPLICATE:
1348 return Attribute::NoDuplicate;
1349 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1350 return Attribute::NoImplicitFloat;
1351 case bitc::ATTR_KIND_NO_INLINE:
1352 return Attribute::NoInline;
1353 case bitc::ATTR_KIND_NO_RECURSE:
1354 return Attribute::NoRecurse;
1355 case bitc::ATTR_KIND_NON_LAZY_BIND:
1356 return Attribute::NonLazyBind;
1357 case bitc::ATTR_KIND_NON_NULL:
1358 return Attribute::NonNull;
1359 case bitc::ATTR_KIND_DEREFERENCEABLE:
1360 return Attribute::Dereferenceable;
1361 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1362 return Attribute::DereferenceableOrNull;
1363 case bitc::ATTR_KIND_ALLOC_SIZE:
1364 return Attribute::AllocSize;
1365 case bitc::ATTR_KIND_NO_RED_ZONE:
1366 return Attribute::NoRedZone;
1367 case bitc::ATTR_KIND_NO_RETURN:
1368 return Attribute::NoReturn;
1369 case bitc::ATTR_KIND_NOCF_CHECK:
1370 return Attribute::NoCfCheck;
1371 case bitc::ATTR_KIND_NO_UNWIND:
1372 return Attribute::NoUnwind;
1373 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1374 return Attribute::OptForFuzzing;
1375 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1376 return Attribute::OptimizeForSize;
1377 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1378 return Attribute::OptimizeNone;
1379 case bitc::ATTR_KIND_READ_NONE:
1380 return Attribute::ReadNone;
1381 case bitc::ATTR_KIND_READ_ONLY:
1382 return Attribute::ReadOnly;
1383 case bitc::ATTR_KIND_RETURNED:
1384 return Attribute::Returned;
1385 case bitc::ATTR_KIND_RETURNS_TWICE:
1386 return Attribute::ReturnsTwice;
1387 case bitc::ATTR_KIND_S_EXT:
1388 return Attribute::SExt;
1389 case bitc::ATTR_KIND_SPECULATABLE:
1390 return Attribute::Speculatable;
1391 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1392 return Attribute::StackAlignment;
1393 case bitc::ATTR_KIND_STACK_PROTECT:
1394 return Attribute::StackProtect;
1395 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1396 return Attribute::StackProtectReq;
1397 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1398 return Attribute::StackProtectStrong;
1399 case bitc::ATTR_KIND_SAFESTACK:
1400 return Attribute::SafeStack;
1401 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1402 return Attribute::ShadowCallStack;
1403 case bitc::ATTR_KIND_STRICT_FP:
1404 return Attribute::StrictFP;
1405 case bitc::ATTR_KIND_STRUCT_RET:
1406 return Attribute::StructRet;
1407 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1408 return Attribute::SanitizeAddress;
1409 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1410 return Attribute::SanitizeHWAddress;
1411 case bitc::ATTR_KIND_SANITIZE_THREAD:
1412 return Attribute::SanitizeThread;
1413 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1414 return Attribute::SanitizeMemory;
1415 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1416 return Attribute::SpeculativeLoadHardening;
1417 case bitc::ATTR_KIND_SWIFT_ERROR:
1418 return Attribute::SwiftError;
1419 case bitc::ATTR_KIND_SWIFT_SELF:
1420 return Attribute::SwiftSelf;
1421 case bitc::ATTR_KIND_UW_TABLE:
1422 return Attribute::UWTable;
1423 case bitc::ATTR_KIND_WRITEONLY:
1424 return Attribute::WriteOnly;
1425 case bitc::ATTR_KIND_Z_EXT:
1426 return Attribute::ZExt;
1430 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1431 unsigned &Alignment) {
1432 // Note: Alignment in bitcode files is incremented by 1, so that zero
1433 // can be used for default alignment.
1434 if (Exponent > Value::MaxAlignmentExponent + 1)
1435 return error("Invalid alignment value");
1436 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1437 return Error::success();
1440 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1441 *Kind = getAttrFromCode(Code);
1442 if (*Kind == Attribute::None)
1443 return error("Unknown attribute kind (" + Twine(Code) + ")");
1444 return Error::success();
1447 Error BitcodeReader::parseAttributeGroupBlock() {
1448 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1449 return error("Invalid record");
1451 if (!MAttributeGroups.empty())
1452 return error("Invalid multiple blocks");
1454 SmallVector<uint64_t, 64> Record;
1456 // Read all the records.
1457 while (true) {
1458 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1460 switch (Entry.Kind) {
1461 case BitstreamEntry::SubBlock: // Handled for us already.
1462 case BitstreamEntry::Error:
1463 return error("Malformed block");
1464 case BitstreamEntry::EndBlock:
1465 return Error::success();
1466 case BitstreamEntry::Record:
1467 // The interesting case.
1468 break;
1471 // Read a record.
1472 Record.clear();
1473 switch (Stream.readRecord(Entry.ID, Record)) {
1474 default: // Default behavior: ignore.
1475 break;
1476 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1477 if (Record.size() < 3)
1478 return error("Invalid record");
1480 uint64_t GrpID = Record[0];
1481 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1483 AttrBuilder B;
1484 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1485 if (Record[i] == 0) { // Enum attribute
1486 Attribute::AttrKind Kind;
1487 if (Error Err = parseAttrKind(Record[++i], &Kind))
1488 return Err;
1490 B.addAttribute(Kind);
1491 } else if (Record[i] == 1) { // Integer attribute
1492 Attribute::AttrKind Kind;
1493 if (Error Err = parseAttrKind(Record[++i], &Kind))
1494 return Err;
1495 if (Kind == Attribute::Alignment)
1496 B.addAlignmentAttr(Record[++i]);
1497 else if (Kind == Attribute::StackAlignment)
1498 B.addStackAlignmentAttr(Record[++i]);
1499 else if (Kind == Attribute::Dereferenceable)
1500 B.addDereferenceableAttr(Record[++i]);
1501 else if (Kind == Attribute::DereferenceableOrNull)
1502 B.addDereferenceableOrNullAttr(Record[++i]);
1503 else if (Kind == Attribute::AllocSize)
1504 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1505 } else { // String attribute
1506 assert((Record[i] == 3 || Record[i] == 4) &&
1507 "Invalid attribute group entry");
1508 bool HasValue = (Record[i++] == 4);
1509 SmallString<64> KindStr;
1510 SmallString<64> ValStr;
1512 while (Record[i] != 0 && i != e)
1513 KindStr += Record[i++];
1514 assert(Record[i] == 0 && "Kind string not null terminated");
1516 if (HasValue) {
1517 // Has a value associated with it.
1518 ++i; // Skip the '0' that terminates the "kind" string.
1519 while (Record[i] != 0 && i != e)
1520 ValStr += Record[i++];
1521 assert(Record[i] == 0 && "Value string not null terminated");
1524 B.addAttribute(KindStr.str(), ValStr.str());
1528 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1529 break;
1535 Error BitcodeReader::parseTypeTable() {
1536 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1537 return error("Invalid record");
1539 return parseTypeTableBody();
1542 Error BitcodeReader::parseTypeTableBody() {
1543 if (!TypeList.empty())
1544 return error("Invalid multiple blocks");
1546 SmallVector<uint64_t, 64> Record;
1547 unsigned NumRecords = 0;
1549 SmallString<64> TypeName;
1551 // Read all the records for this type table.
1552 while (true) {
1553 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1555 switch (Entry.Kind) {
1556 case BitstreamEntry::SubBlock: // Handled for us already.
1557 case BitstreamEntry::Error:
1558 return error("Malformed block");
1559 case BitstreamEntry::EndBlock:
1560 if (NumRecords != TypeList.size())
1561 return error("Malformed block");
1562 return Error::success();
1563 case BitstreamEntry::Record:
1564 // The interesting case.
1565 break;
1568 // Read a record.
1569 Record.clear();
1570 Type *ResultTy = nullptr;
1571 switch (Stream.readRecord(Entry.ID, Record)) {
1572 default:
1573 return error("Invalid value");
1574 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1575 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1576 // type list. This allows us to reserve space.
1577 if (Record.size() < 1)
1578 return error("Invalid record");
1579 TypeList.resize(Record[0]);
1580 continue;
1581 case bitc::TYPE_CODE_VOID: // VOID
1582 ResultTy = Type::getVoidTy(Context);
1583 break;
1584 case bitc::TYPE_CODE_HALF: // HALF
1585 ResultTy = Type::getHalfTy(Context);
1586 break;
1587 case bitc::TYPE_CODE_FLOAT: // FLOAT
1588 ResultTy = Type::getFloatTy(Context);
1589 break;
1590 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1591 ResultTy = Type::getDoubleTy(Context);
1592 break;
1593 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1594 ResultTy = Type::getX86_FP80Ty(Context);
1595 break;
1596 case bitc::TYPE_CODE_FP128: // FP128
1597 ResultTy = Type::getFP128Ty(Context);
1598 break;
1599 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1600 ResultTy = Type::getPPC_FP128Ty(Context);
1601 break;
1602 case bitc::TYPE_CODE_LABEL: // LABEL
1603 ResultTy = Type::getLabelTy(Context);
1604 break;
1605 case bitc::TYPE_CODE_METADATA: // METADATA
1606 ResultTy = Type::getMetadataTy(Context);
1607 break;
1608 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1609 ResultTy = Type::getX86_MMXTy(Context);
1610 break;
1611 case bitc::TYPE_CODE_TOKEN: // TOKEN
1612 ResultTy = Type::getTokenTy(Context);
1613 break;
1614 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1615 if (Record.size() < 1)
1616 return error("Invalid record");
1618 uint64_t NumBits = Record[0];
1619 if (NumBits < IntegerType::MIN_INT_BITS ||
1620 NumBits > IntegerType::MAX_INT_BITS)
1621 return error("Bitwidth for integer type out of range");
1622 ResultTy = IntegerType::get(Context, NumBits);
1623 break;
1625 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1626 // [pointee type, address space]
1627 if (Record.size() < 1)
1628 return error("Invalid record");
1629 unsigned AddressSpace = 0;
1630 if (Record.size() == 2)
1631 AddressSpace = Record[1];
1632 ResultTy = getTypeByID(Record[0]);
1633 if (!ResultTy ||
1634 !PointerType::isValidElementType(ResultTy))
1635 return error("Invalid type");
1636 ResultTy = PointerType::get(ResultTy, AddressSpace);
1637 break;
1639 case bitc::TYPE_CODE_FUNCTION_OLD: {
1640 // FIXME: attrid is dead, remove it in LLVM 4.0
1641 // FUNCTION: [vararg, attrid, retty, paramty x N]
1642 if (Record.size() < 3)
1643 return error("Invalid record");
1644 SmallVector<Type*, 8> ArgTys;
1645 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1646 if (Type *T = getTypeByID(Record[i]))
1647 ArgTys.push_back(T);
1648 else
1649 break;
1652 ResultTy = getTypeByID(Record[2]);
1653 if (!ResultTy || ArgTys.size() < Record.size()-3)
1654 return error("Invalid type");
1656 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1657 break;
1659 case bitc::TYPE_CODE_FUNCTION: {
1660 // FUNCTION: [vararg, retty, paramty x N]
1661 if (Record.size() < 2)
1662 return error("Invalid record");
1663 SmallVector<Type*, 8> ArgTys;
1664 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1665 if (Type *T = getTypeByID(Record[i])) {
1666 if (!FunctionType::isValidArgumentType(T))
1667 return error("Invalid function argument type");
1668 ArgTys.push_back(T);
1670 else
1671 break;
1674 ResultTy = getTypeByID(Record[1]);
1675 if (!ResultTy || ArgTys.size() < Record.size()-2)
1676 return error("Invalid type");
1678 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1679 break;
1681 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1682 if (Record.size() < 1)
1683 return error("Invalid record");
1684 SmallVector<Type*, 8> EltTys;
1685 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1686 if (Type *T = getTypeByID(Record[i]))
1687 EltTys.push_back(T);
1688 else
1689 break;
1691 if (EltTys.size() != Record.size()-1)
1692 return error("Invalid type");
1693 ResultTy = StructType::get(Context, EltTys, Record[0]);
1694 break;
1696 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1697 if (convertToString(Record, 0, TypeName))
1698 return error("Invalid record");
1699 continue;
1701 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1702 if (Record.size() < 1)
1703 return error("Invalid record");
1705 if (NumRecords >= TypeList.size())
1706 return error("Invalid TYPE table");
1708 // Check to see if this was forward referenced, if so fill in the temp.
1709 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1710 if (Res) {
1711 Res->setName(TypeName);
1712 TypeList[NumRecords] = nullptr;
1713 } else // Otherwise, create a new struct.
1714 Res = createIdentifiedStructType(Context, TypeName);
1715 TypeName.clear();
1717 SmallVector<Type*, 8> EltTys;
1718 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1719 if (Type *T = getTypeByID(Record[i]))
1720 EltTys.push_back(T);
1721 else
1722 break;
1724 if (EltTys.size() != Record.size()-1)
1725 return error("Invalid record");
1726 Res->setBody(EltTys, Record[0]);
1727 ResultTy = Res;
1728 break;
1730 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1731 if (Record.size() != 1)
1732 return error("Invalid record");
1734 if (NumRecords >= TypeList.size())
1735 return error("Invalid TYPE table");
1737 // Check to see if this was forward referenced, if so fill in the temp.
1738 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1739 if (Res) {
1740 Res->setName(TypeName);
1741 TypeList[NumRecords] = nullptr;
1742 } else // Otherwise, create a new struct with no body.
1743 Res = createIdentifiedStructType(Context, TypeName);
1744 TypeName.clear();
1745 ResultTy = Res;
1746 break;
1748 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1749 if (Record.size() < 2)
1750 return error("Invalid record");
1751 ResultTy = getTypeByID(Record[1]);
1752 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1753 return error("Invalid type");
1754 ResultTy = ArrayType::get(ResultTy, Record[0]);
1755 break;
1756 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1757 if (Record.size() < 2)
1758 return error("Invalid record");
1759 if (Record[0] == 0)
1760 return error("Invalid vector length");
1761 ResultTy = getTypeByID(Record[1]);
1762 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1763 return error("Invalid type");
1764 ResultTy = VectorType::get(ResultTy, Record[0]);
1765 break;
1768 if (NumRecords >= TypeList.size())
1769 return error("Invalid TYPE table");
1770 if (TypeList[NumRecords])
1771 return error(
1772 "Invalid TYPE table: Only named structs can be forward referenced");
1773 assert(ResultTy && "Didn't read a type?");
1774 TypeList[NumRecords++] = ResultTy;
1778 Error BitcodeReader::parseOperandBundleTags() {
1779 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1780 return error("Invalid record");
1782 if (!BundleTags.empty())
1783 return error("Invalid multiple blocks");
1785 SmallVector<uint64_t, 64> Record;
1787 while (true) {
1788 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1790 switch (Entry.Kind) {
1791 case BitstreamEntry::SubBlock: // Handled for us already.
1792 case BitstreamEntry::Error:
1793 return error("Malformed block");
1794 case BitstreamEntry::EndBlock:
1795 return Error::success();
1796 case BitstreamEntry::Record:
1797 // The interesting case.
1798 break;
1801 // Tags are implicitly mapped to integers by their order.
1803 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1804 return error("Invalid record");
1806 // OPERAND_BUNDLE_TAG: [strchr x N]
1807 BundleTags.emplace_back();
1808 if (convertToString(Record, 0, BundleTags.back()))
1809 return error("Invalid record");
1810 Record.clear();
1814 Error BitcodeReader::parseSyncScopeNames() {
1815 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1816 return error("Invalid record");
1818 if (!SSIDs.empty())
1819 return error("Invalid multiple synchronization scope names blocks");
1821 SmallVector<uint64_t, 64> Record;
1822 while (true) {
1823 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1824 switch (Entry.Kind) {
1825 case BitstreamEntry::SubBlock: // Handled for us already.
1826 case BitstreamEntry::Error:
1827 return error("Malformed block");
1828 case BitstreamEntry::EndBlock:
1829 if (SSIDs.empty())
1830 return error("Invalid empty synchronization scope names block");
1831 return Error::success();
1832 case BitstreamEntry::Record:
1833 // The interesting case.
1834 break;
1837 // Synchronization scope names are implicitly mapped to synchronization
1838 // scope IDs by their order.
1840 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1841 return error("Invalid record");
1843 SmallString<16> SSN;
1844 if (convertToString(Record, 0, SSN))
1845 return error("Invalid record");
1847 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1848 Record.clear();
1852 /// Associate a value with its name from the given index in the provided record.
1853 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1854 unsigned NameIndex, Triple &TT) {
1855 SmallString<128> ValueName;
1856 if (convertToString(Record, NameIndex, ValueName))
1857 return error("Invalid record");
1858 unsigned ValueID = Record[0];
1859 if (ValueID >= ValueList.size() || !ValueList[ValueID])
1860 return error("Invalid record");
1861 Value *V = ValueList[ValueID];
1863 StringRef NameStr(ValueName.data(), ValueName.size());
1864 if (NameStr.find_first_of(0) != StringRef::npos)
1865 return error("Invalid value name");
1866 V->setName(NameStr);
1867 auto *GO = dyn_cast<GlobalObject>(V);
1868 if (GO) {
1869 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1870 if (TT.supportsCOMDAT())
1871 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1872 else
1873 GO->setComdat(nullptr);
1876 return V;
1879 /// Helper to note and return the current location, and jump to the given
1880 /// offset.
1881 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1882 BitstreamCursor &Stream) {
1883 // Save the current parsing location so we can jump back at the end
1884 // of the VST read.
1885 uint64_t CurrentBit = Stream.GetCurrentBitNo();
1886 Stream.JumpToBit(Offset * 32);
1887 #ifndef NDEBUG
1888 // Do some checking if we are in debug mode.
1889 BitstreamEntry Entry = Stream.advance();
1890 assert(Entry.Kind == BitstreamEntry::SubBlock);
1891 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1892 #else
1893 // In NDEBUG mode ignore the output so we don't get an unused variable
1894 // warning.
1895 Stream.advance();
1896 #endif
1897 return CurrentBit;
1900 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1901 Function *F,
1902 ArrayRef<uint64_t> Record) {
1903 // Note that we subtract 1 here because the offset is relative to one word
1904 // before the start of the identification or module block, which was
1905 // historically always the start of the regular bitcode header.
1906 uint64_t FuncWordOffset = Record[1] - 1;
1907 uint64_t FuncBitOffset = FuncWordOffset * 32;
1908 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1909 // Set the LastFunctionBlockBit to point to the last function block.
1910 // Later when parsing is resumed after function materialization,
1911 // we can simply skip that last function block.
1912 if (FuncBitOffset > LastFunctionBlockBit)
1913 LastFunctionBlockBit = FuncBitOffset;
1916 /// Read a new-style GlobalValue symbol table.
1917 Error BitcodeReader::parseGlobalValueSymbolTable() {
1918 unsigned FuncBitcodeOffsetDelta =
1919 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1921 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1922 return error("Invalid record");
1924 SmallVector<uint64_t, 64> Record;
1925 while (true) {
1926 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1928 switch (Entry.Kind) {
1929 case BitstreamEntry::SubBlock:
1930 case BitstreamEntry::Error:
1931 return error("Malformed block");
1932 case BitstreamEntry::EndBlock:
1933 return Error::success();
1934 case BitstreamEntry::Record:
1935 break;
1938 Record.clear();
1939 switch (Stream.readRecord(Entry.ID, Record)) {
1940 case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1941 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1942 cast<Function>(ValueList[Record[0]]), Record);
1943 break;
1948 /// Parse the value symbol table at either the current parsing location or
1949 /// at the given bit offset if provided.
1950 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1951 uint64_t CurrentBit;
1952 // Pass in the Offset to distinguish between calling for the module-level
1953 // VST (where we want to jump to the VST offset) and the function-level
1954 // VST (where we don't).
1955 if (Offset > 0) {
1956 CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1957 // If this module uses a string table, read this as a module-level VST.
1958 if (UseStrtab) {
1959 if (Error Err = parseGlobalValueSymbolTable())
1960 return Err;
1961 Stream.JumpToBit(CurrentBit);
1962 return Error::success();
1964 // Otherwise, the VST will be in a similar format to a function-level VST,
1965 // and will contain symbol names.
1968 // Compute the delta between the bitcode indices in the VST (the word offset
1969 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1970 // expected by the lazy reader. The reader's EnterSubBlock expects to have
1971 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1972 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1973 // just before entering the VST subblock because: 1) the EnterSubBlock
1974 // changes the AbbrevID width; 2) the VST block is nested within the same
1975 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1976 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1977 // jump to the FUNCTION_BLOCK using this offset later, we don't want
1978 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1979 unsigned FuncBitcodeOffsetDelta =
1980 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1982 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1983 return error("Invalid record");
1985 SmallVector<uint64_t, 64> Record;
1987 Triple TT(TheModule->getTargetTriple());
1989 // Read all the records for this value table.
1990 SmallString<128> ValueName;
1992 while (true) {
1993 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1995 switch (Entry.Kind) {
1996 case BitstreamEntry::SubBlock: // Handled for us already.
1997 case BitstreamEntry::Error:
1998 return error("Malformed block");
1999 case BitstreamEntry::EndBlock:
2000 if (Offset > 0)
2001 Stream.JumpToBit(CurrentBit);
2002 return Error::success();
2003 case BitstreamEntry::Record:
2004 // The interesting case.
2005 break;
2008 // Read a record.
2009 Record.clear();
2010 switch (Stream.readRecord(Entry.ID, Record)) {
2011 default: // Default behavior: unknown type.
2012 break;
2013 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2014 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2015 if (Error Err = ValOrErr.takeError())
2016 return Err;
2017 ValOrErr.get();
2018 break;
2020 case bitc::VST_CODE_FNENTRY: {
2021 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2022 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2023 if (Error Err = ValOrErr.takeError())
2024 return Err;
2025 Value *V = ValOrErr.get();
2027 // Ignore function offsets emitted for aliases of functions in older
2028 // versions of LLVM.
2029 if (auto *F = dyn_cast<Function>(V))
2030 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2031 break;
2033 case bitc::VST_CODE_BBENTRY: {
2034 if (convertToString(Record, 1, ValueName))
2035 return error("Invalid record");
2036 BasicBlock *BB = getBasicBlock(Record[0]);
2037 if (!BB)
2038 return error("Invalid record");
2040 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2041 ValueName.clear();
2042 break;
2048 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2049 /// encoding.
2050 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2051 if ((V & 1) == 0)
2052 return V >> 1;
2053 if (V != 1)
2054 return -(V >> 1);
2055 // There is no such thing as -0 with integers. "-0" really means MININT.
2056 return 1ULL << 63;
2059 /// Resolve all of the initializers for global values and aliases that we can.
2060 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2061 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2062 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2063 IndirectSymbolInitWorklist;
2064 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2065 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2066 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2068 GlobalInitWorklist.swap(GlobalInits);
2069 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2070 FunctionPrefixWorklist.swap(FunctionPrefixes);
2071 FunctionPrologueWorklist.swap(FunctionPrologues);
2072 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2074 while (!GlobalInitWorklist.empty()) {
2075 unsigned ValID = GlobalInitWorklist.back().second;
2076 if (ValID >= ValueList.size()) {
2077 // Not ready to resolve this yet, it requires something later in the file.
2078 GlobalInits.push_back(GlobalInitWorklist.back());
2079 } else {
2080 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2081 GlobalInitWorklist.back().first->setInitializer(C);
2082 else
2083 return error("Expected a constant");
2085 GlobalInitWorklist.pop_back();
2088 while (!IndirectSymbolInitWorklist.empty()) {
2089 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2090 if (ValID >= ValueList.size()) {
2091 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2092 } else {
2093 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2094 if (!C)
2095 return error("Expected a constant");
2096 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2097 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2098 return error("Alias and aliasee types don't match");
2099 GIS->setIndirectSymbol(C);
2101 IndirectSymbolInitWorklist.pop_back();
2104 while (!FunctionPrefixWorklist.empty()) {
2105 unsigned ValID = FunctionPrefixWorklist.back().second;
2106 if (ValID >= ValueList.size()) {
2107 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2108 } else {
2109 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2110 FunctionPrefixWorklist.back().first->setPrefixData(C);
2111 else
2112 return error("Expected a constant");
2114 FunctionPrefixWorklist.pop_back();
2117 while (!FunctionPrologueWorklist.empty()) {
2118 unsigned ValID = FunctionPrologueWorklist.back().second;
2119 if (ValID >= ValueList.size()) {
2120 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2121 } else {
2122 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2123 FunctionPrologueWorklist.back().first->setPrologueData(C);
2124 else
2125 return error("Expected a constant");
2127 FunctionPrologueWorklist.pop_back();
2130 while (!FunctionPersonalityFnWorklist.empty()) {
2131 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2132 if (ValID >= ValueList.size()) {
2133 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2134 } else {
2135 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2136 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2137 else
2138 return error("Expected a constant");
2140 FunctionPersonalityFnWorklist.pop_back();
2143 return Error::success();
2146 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2147 SmallVector<uint64_t, 8> Words(Vals.size());
2148 transform(Vals, Words.begin(),
2149 BitcodeReader::decodeSignRotatedValue);
2151 return APInt(TypeBits, Words);
2154 Error BitcodeReader::parseConstants() {
2155 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2156 return error("Invalid record");
2158 SmallVector<uint64_t, 64> Record;
2160 // Read all the records for this value table.
2161 Type *CurTy = Type::getInt32Ty(Context);
2162 unsigned NextCstNo = ValueList.size();
2164 while (true) {
2165 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2167 switch (Entry.Kind) {
2168 case BitstreamEntry::SubBlock: // Handled for us already.
2169 case BitstreamEntry::Error:
2170 return error("Malformed block");
2171 case BitstreamEntry::EndBlock:
2172 if (NextCstNo != ValueList.size())
2173 return error("Invalid constant reference");
2175 // Once all the constants have been read, go through and resolve forward
2176 // references.
2177 ValueList.resolveConstantForwardRefs();
2178 return Error::success();
2179 case BitstreamEntry::Record:
2180 // The interesting case.
2181 break;
2184 // Read a record.
2185 Record.clear();
2186 Type *VoidType = Type::getVoidTy(Context);
2187 Value *V = nullptr;
2188 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2189 switch (BitCode) {
2190 default: // Default behavior: unknown constant
2191 case bitc::CST_CODE_UNDEF: // UNDEF
2192 V = UndefValue::get(CurTy);
2193 break;
2194 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2195 if (Record.empty())
2196 return error("Invalid record");
2197 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2198 return error("Invalid record");
2199 if (TypeList[Record[0]] == VoidType)
2200 return error("Invalid constant type");
2201 CurTy = TypeList[Record[0]];
2202 continue; // Skip the ValueList manipulation.
2203 case bitc::CST_CODE_NULL: // NULL
2204 V = Constant::getNullValue(CurTy);
2205 break;
2206 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2207 if (!CurTy->isIntegerTy() || Record.empty())
2208 return error("Invalid record");
2209 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2210 break;
2211 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2212 if (!CurTy->isIntegerTy() || Record.empty())
2213 return error("Invalid record");
2215 APInt VInt =
2216 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2217 V = ConstantInt::get(Context, VInt);
2219 break;
2221 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2222 if (Record.empty())
2223 return error("Invalid record");
2224 if (CurTy->isHalfTy())
2225 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2226 APInt(16, (uint16_t)Record[0])));
2227 else if (CurTy->isFloatTy())
2228 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2229 APInt(32, (uint32_t)Record[0])));
2230 else if (CurTy->isDoubleTy())
2231 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2232 APInt(64, Record[0])));
2233 else if (CurTy->isX86_FP80Ty()) {
2234 // Bits are not stored the same way as a normal i80 APInt, compensate.
2235 uint64_t Rearrange[2];
2236 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2237 Rearrange[1] = Record[0] >> 48;
2238 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2239 APInt(80, Rearrange)));
2240 } else if (CurTy->isFP128Ty())
2241 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2242 APInt(128, Record)));
2243 else if (CurTy->isPPC_FP128Ty())
2244 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2245 APInt(128, Record)));
2246 else
2247 V = UndefValue::get(CurTy);
2248 break;
2251 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2252 if (Record.empty())
2253 return error("Invalid record");
2255 unsigned Size = Record.size();
2256 SmallVector<Constant*, 16> Elts;
2258 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2259 for (unsigned i = 0; i != Size; ++i)
2260 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2261 STy->getElementType(i)));
2262 V = ConstantStruct::get(STy, Elts);
2263 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2264 Type *EltTy = ATy->getElementType();
2265 for (unsigned i = 0; i != Size; ++i)
2266 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2267 V = ConstantArray::get(ATy, Elts);
2268 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2269 Type *EltTy = VTy->getElementType();
2270 for (unsigned i = 0; i != Size; ++i)
2271 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2272 V = ConstantVector::get(Elts);
2273 } else {
2274 V = UndefValue::get(CurTy);
2276 break;
2278 case bitc::CST_CODE_STRING: // STRING: [values]
2279 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2280 if (Record.empty())
2281 return error("Invalid record");
2283 SmallString<16> Elts(Record.begin(), Record.end());
2284 V = ConstantDataArray::getString(Context, Elts,
2285 BitCode == bitc::CST_CODE_CSTRING);
2286 break;
2288 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2289 if (Record.empty())
2290 return error("Invalid record");
2292 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2293 if (EltTy->isIntegerTy(8)) {
2294 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2295 if (isa<VectorType>(CurTy))
2296 V = ConstantDataVector::get(Context, Elts);
2297 else
2298 V = ConstantDataArray::get(Context, Elts);
2299 } else if (EltTy->isIntegerTy(16)) {
2300 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2301 if (isa<VectorType>(CurTy))
2302 V = ConstantDataVector::get(Context, Elts);
2303 else
2304 V = ConstantDataArray::get(Context, Elts);
2305 } else if (EltTy->isIntegerTy(32)) {
2306 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2307 if (isa<VectorType>(CurTy))
2308 V = ConstantDataVector::get(Context, Elts);
2309 else
2310 V = ConstantDataArray::get(Context, Elts);
2311 } else if (EltTy->isIntegerTy(64)) {
2312 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2313 if (isa<VectorType>(CurTy))
2314 V = ConstantDataVector::get(Context, Elts);
2315 else
2316 V = ConstantDataArray::get(Context, Elts);
2317 } else if (EltTy->isHalfTy()) {
2318 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2319 if (isa<VectorType>(CurTy))
2320 V = ConstantDataVector::getFP(Context, Elts);
2321 else
2322 V = ConstantDataArray::getFP(Context, Elts);
2323 } else if (EltTy->isFloatTy()) {
2324 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2325 if (isa<VectorType>(CurTy))
2326 V = ConstantDataVector::getFP(Context, Elts);
2327 else
2328 V = ConstantDataArray::getFP(Context, Elts);
2329 } else if (EltTy->isDoubleTy()) {
2330 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2331 if (isa<VectorType>(CurTy))
2332 V = ConstantDataVector::getFP(Context, Elts);
2333 else
2334 V = ConstantDataArray::getFP(Context, Elts);
2335 } else {
2336 return error("Invalid type for value");
2338 break;
2340 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2341 if (Record.size() < 2)
2342 return error("Invalid record");
2343 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2344 if (Opc < 0) {
2345 V = UndefValue::get(CurTy); // Unknown unop.
2346 } else {
2347 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2348 unsigned Flags = 0;
2349 V = ConstantExpr::get(Opc, LHS, Flags);
2351 break;
2353 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2354 if (Record.size() < 3)
2355 return error("Invalid record");
2356 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2357 if (Opc < 0) {
2358 V = UndefValue::get(CurTy); // Unknown binop.
2359 } else {
2360 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2361 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2362 unsigned Flags = 0;
2363 if (Record.size() >= 4) {
2364 if (Opc == Instruction::Add ||
2365 Opc == Instruction::Sub ||
2366 Opc == Instruction::Mul ||
2367 Opc == Instruction::Shl) {
2368 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2369 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2370 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2371 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2372 } else if (Opc == Instruction::SDiv ||
2373 Opc == Instruction::UDiv ||
2374 Opc == Instruction::LShr ||
2375 Opc == Instruction::AShr) {
2376 if (Record[3] & (1 << bitc::PEO_EXACT))
2377 Flags |= SDivOperator::IsExact;
2380 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2382 break;
2384 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2385 if (Record.size() < 3)
2386 return error("Invalid record");
2387 int Opc = getDecodedCastOpcode(Record[0]);
2388 if (Opc < 0) {
2389 V = UndefValue::get(CurTy); // Unknown cast.
2390 } else {
2391 Type *OpTy = getTypeByID(Record[1]);
2392 if (!OpTy)
2393 return error("Invalid record");
2394 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2395 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2396 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2398 break;
2400 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2401 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2402 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2403 // operands]
2404 unsigned OpNum = 0;
2405 Type *PointeeType = nullptr;
2406 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2407 Record.size() % 2)
2408 PointeeType = getTypeByID(Record[OpNum++]);
2410 bool InBounds = false;
2411 Optional<unsigned> InRangeIndex;
2412 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2413 uint64_t Op = Record[OpNum++];
2414 InBounds = Op & 1;
2415 InRangeIndex = Op >> 1;
2416 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2417 InBounds = true;
2419 SmallVector<Constant*, 16> Elts;
2420 while (OpNum != Record.size()) {
2421 Type *ElTy = getTypeByID(Record[OpNum++]);
2422 if (!ElTy)
2423 return error("Invalid record");
2424 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2427 if (Elts.size() < 1)
2428 return error("Invalid gep with no operands");
2430 Type *ImplicitPointeeType =
2431 cast<PointerType>(Elts[0]->getType()->getScalarType())
2432 ->getElementType();
2433 if (!PointeeType)
2434 PointeeType = ImplicitPointeeType;
2435 else if (PointeeType != ImplicitPointeeType)
2436 return error("Explicit gep operator type does not match pointee type "
2437 "of pointer operand");
2439 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2440 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2441 InBounds, InRangeIndex);
2442 break;
2444 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2445 if (Record.size() < 3)
2446 return error("Invalid record");
2448 Type *SelectorTy = Type::getInt1Ty(Context);
2450 // The selector might be an i1 or an <n x i1>
2451 // Get the type from the ValueList before getting a forward ref.
2452 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2453 if (Value *V = ValueList[Record[0]])
2454 if (SelectorTy != V->getType())
2455 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2457 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2458 SelectorTy),
2459 ValueList.getConstantFwdRef(Record[1],CurTy),
2460 ValueList.getConstantFwdRef(Record[2],CurTy));
2461 break;
2463 case bitc::CST_CODE_CE_EXTRACTELT
2464 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2465 if (Record.size() < 3)
2466 return error("Invalid record");
2467 VectorType *OpTy =
2468 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2469 if (!OpTy)
2470 return error("Invalid record");
2471 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2472 Constant *Op1 = nullptr;
2473 if (Record.size() == 4) {
2474 Type *IdxTy = getTypeByID(Record[2]);
2475 if (!IdxTy)
2476 return error("Invalid record");
2477 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2478 } else // TODO: Remove with llvm 4.0
2479 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2480 if (!Op1)
2481 return error("Invalid record");
2482 V = ConstantExpr::getExtractElement(Op0, Op1);
2483 break;
2485 case bitc::CST_CODE_CE_INSERTELT
2486 : { // CE_INSERTELT: [opval, opval, opty, opval]
2487 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2488 if (Record.size() < 3 || !OpTy)
2489 return error("Invalid record");
2490 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2491 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2492 OpTy->getElementType());
2493 Constant *Op2 = nullptr;
2494 if (Record.size() == 4) {
2495 Type *IdxTy = getTypeByID(Record[2]);
2496 if (!IdxTy)
2497 return error("Invalid record");
2498 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2499 } else // TODO: Remove with llvm 4.0
2500 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2501 if (!Op2)
2502 return error("Invalid record");
2503 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2504 break;
2506 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2507 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2508 if (Record.size() < 3 || !OpTy)
2509 return error("Invalid record");
2510 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2511 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2512 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2513 OpTy->getNumElements());
2514 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2515 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2516 break;
2518 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2519 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2520 VectorType *OpTy =
2521 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2522 if (Record.size() < 4 || !RTy || !OpTy)
2523 return error("Invalid record");
2524 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2525 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2526 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2527 RTy->getNumElements());
2528 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2529 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2530 break;
2532 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2533 if (Record.size() < 4)
2534 return error("Invalid record");
2535 Type *OpTy = getTypeByID(Record[0]);
2536 if (!OpTy)
2537 return error("Invalid record");
2538 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2539 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2541 if (OpTy->isFPOrFPVectorTy())
2542 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2543 else
2544 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2545 break;
2547 // This maintains backward compatibility, pre-asm dialect keywords.
2548 // FIXME: Remove with the 4.0 release.
2549 case bitc::CST_CODE_INLINEASM_OLD: {
2550 if (Record.size() < 2)
2551 return error("Invalid record");
2552 std::string AsmStr, ConstrStr;
2553 bool HasSideEffects = Record[0] & 1;
2554 bool IsAlignStack = Record[0] >> 1;
2555 unsigned AsmStrSize = Record[1];
2556 if (2+AsmStrSize >= Record.size())
2557 return error("Invalid record");
2558 unsigned ConstStrSize = Record[2+AsmStrSize];
2559 if (3+AsmStrSize+ConstStrSize > Record.size())
2560 return error("Invalid record");
2562 for (unsigned i = 0; i != AsmStrSize; ++i)
2563 AsmStr += (char)Record[2+i];
2564 for (unsigned i = 0; i != ConstStrSize; ++i)
2565 ConstrStr += (char)Record[3+AsmStrSize+i];
2566 PointerType *PTy = cast<PointerType>(CurTy);
2567 UpgradeInlineAsmString(&AsmStr);
2568 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2569 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2570 break;
2572 // This version adds support for the asm dialect keywords (e.g.,
2573 // inteldialect).
2574 case bitc::CST_CODE_INLINEASM: {
2575 if (Record.size() < 2)
2576 return error("Invalid record");
2577 std::string AsmStr, ConstrStr;
2578 bool HasSideEffects = Record[0] & 1;
2579 bool IsAlignStack = (Record[0] >> 1) & 1;
2580 unsigned AsmDialect = Record[0] >> 2;
2581 unsigned AsmStrSize = Record[1];
2582 if (2+AsmStrSize >= Record.size())
2583 return error("Invalid record");
2584 unsigned ConstStrSize = Record[2+AsmStrSize];
2585 if (3+AsmStrSize+ConstStrSize > Record.size())
2586 return error("Invalid record");
2588 for (unsigned i = 0; i != AsmStrSize; ++i)
2589 AsmStr += (char)Record[2+i];
2590 for (unsigned i = 0; i != ConstStrSize; ++i)
2591 ConstrStr += (char)Record[3+AsmStrSize+i];
2592 PointerType *PTy = cast<PointerType>(CurTy);
2593 UpgradeInlineAsmString(&AsmStr);
2594 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2595 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2596 InlineAsm::AsmDialect(AsmDialect));
2597 break;
2599 case bitc::CST_CODE_BLOCKADDRESS:{
2600 if (Record.size() < 3)
2601 return error("Invalid record");
2602 Type *FnTy = getTypeByID(Record[0]);
2603 if (!FnTy)
2604 return error("Invalid record");
2605 Function *Fn =
2606 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2607 if (!Fn)
2608 return error("Invalid record");
2610 // If the function is already parsed we can insert the block address right
2611 // away.
2612 BasicBlock *BB;
2613 unsigned BBID = Record[2];
2614 if (!BBID)
2615 // Invalid reference to entry block.
2616 return error("Invalid ID");
2617 if (!Fn->empty()) {
2618 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2619 for (size_t I = 0, E = BBID; I != E; ++I) {
2620 if (BBI == BBE)
2621 return error("Invalid ID");
2622 ++BBI;
2624 BB = &*BBI;
2625 } else {
2626 // Otherwise insert a placeholder and remember it so it can be inserted
2627 // when the function is parsed.
2628 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2629 if (FwdBBs.empty())
2630 BasicBlockFwdRefQueue.push_back(Fn);
2631 if (FwdBBs.size() < BBID + 1)
2632 FwdBBs.resize(BBID + 1);
2633 if (!FwdBBs[BBID])
2634 FwdBBs[BBID] = BasicBlock::Create(Context);
2635 BB = FwdBBs[BBID];
2637 V = BlockAddress::get(Fn, BB);
2638 break;
2642 ValueList.assignValue(V, NextCstNo);
2643 ++NextCstNo;
2647 Error BitcodeReader::parseUseLists() {
2648 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2649 return error("Invalid record");
2651 // Read all the records.
2652 SmallVector<uint64_t, 64> Record;
2654 while (true) {
2655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2657 switch (Entry.Kind) {
2658 case BitstreamEntry::SubBlock: // Handled for us already.
2659 case BitstreamEntry::Error:
2660 return error("Malformed block");
2661 case BitstreamEntry::EndBlock:
2662 return Error::success();
2663 case BitstreamEntry::Record:
2664 // The interesting case.
2665 break;
2668 // Read a use list record.
2669 Record.clear();
2670 bool IsBB = false;
2671 switch (Stream.readRecord(Entry.ID, Record)) {
2672 default: // Default behavior: unknown type.
2673 break;
2674 case bitc::USELIST_CODE_BB:
2675 IsBB = true;
2676 LLVM_FALLTHROUGH;
2677 case bitc::USELIST_CODE_DEFAULT: {
2678 unsigned RecordLength = Record.size();
2679 if (RecordLength < 3)
2680 // Records should have at least an ID and two indexes.
2681 return error("Invalid record");
2682 unsigned ID = Record.back();
2683 Record.pop_back();
2685 Value *V;
2686 if (IsBB) {
2687 assert(ID < FunctionBBs.size() && "Basic block not found");
2688 V = FunctionBBs[ID];
2689 } else
2690 V = ValueList[ID];
2691 unsigned NumUses = 0;
2692 SmallDenseMap<const Use *, unsigned, 16> Order;
2693 for (const Use &U : V->materialized_uses()) {
2694 if (++NumUses > Record.size())
2695 break;
2696 Order[&U] = Record[NumUses - 1];
2698 if (Order.size() != Record.size() || NumUses > Record.size())
2699 // Mismatches can happen if the functions are being materialized lazily
2700 // (out-of-order), or a value has been upgraded.
2701 break;
2703 V->sortUseList([&](const Use &L, const Use &R) {
2704 return Order.lookup(&L) < Order.lookup(&R);
2706 break;
2712 /// When we see the block for metadata, remember where it is and then skip it.
2713 /// This lets us lazily deserialize the metadata.
2714 Error BitcodeReader::rememberAndSkipMetadata() {
2715 // Save the current stream state.
2716 uint64_t CurBit = Stream.GetCurrentBitNo();
2717 DeferredMetadataInfo.push_back(CurBit);
2719 // Skip over the block for now.
2720 if (Stream.SkipBlock())
2721 return error("Invalid record");
2722 return Error::success();
2725 Error BitcodeReader::materializeMetadata() {
2726 for (uint64_t BitPos : DeferredMetadataInfo) {
2727 // Move the bit stream to the saved position.
2728 Stream.JumpToBit(BitPos);
2729 if (Error Err = MDLoader->parseModuleMetadata())
2730 return Err;
2733 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2734 // metadata.
2735 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2736 NamedMDNode *LinkerOpts =
2737 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2738 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2739 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2742 DeferredMetadataInfo.clear();
2743 return Error::success();
2746 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2748 /// When we see the block for a function body, remember where it is and then
2749 /// skip it. This lets us lazily deserialize the functions.
2750 Error BitcodeReader::rememberAndSkipFunctionBody() {
2751 // Get the function we are talking about.
2752 if (FunctionsWithBodies.empty())
2753 return error("Insufficient function protos");
2755 Function *Fn = FunctionsWithBodies.back();
2756 FunctionsWithBodies.pop_back();
2758 // Save the current stream state.
2759 uint64_t CurBit = Stream.GetCurrentBitNo();
2760 assert(
2761 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2762 "Mismatch between VST and scanned function offsets");
2763 DeferredFunctionInfo[Fn] = CurBit;
2765 // Skip over the function block for now.
2766 if (Stream.SkipBlock())
2767 return error("Invalid record");
2768 return Error::success();
2771 Error BitcodeReader::globalCleanup() {
2772 // Patch the initializers for globals and aliases up.
2773 if (Error Err = resolveGlobalAndIndirectSymbolInits())
2774 return Err;
2775 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2776 return error("Malformed global initializer set");
2778 // Look for intrinsic functions which need to be upgraded at some point
2779 for (Function &F : *TheModule) {
2780 MDLoader->upgradeDebugIntrinsics(F);
2781 Function *NewFn;
2782 if (UpgradeIntrinsicFunction(&F, NewFn))
2783 UpgradedIntrinsics[&F] = NewFn;
2784 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2785 // Some types could be renamed during loading if several modules are
2786 // loaded in the same LLVMContext (LTO scenario). In this case we should
2787 // remangle intrinsics names as well.
2788 RemangledIntrinsics[&F] = Remangled.getValue();
2791 // Look for global variables which need to be renamed.
2792 for (GlobalVariable &GV : TheModule->globals())
2793 UpgradeGlobalVariable(&GV);
2795 // Force deallocation of memory for these vectors to favor the client that
2796 // want lazy deserialization.
2797 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2798 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2799 IndirectSymbolInits);
2800 return Error::success();
2803 /// Support for lazy parsing of function bodies. This is required if we
2804 /// either have an old bitcode file without a VST forward declaration record,
2805 /// or if we have an anonymous function being materialized, since anonymous
2806 /// functions do not have a name and are therefore not in the VST.
2807 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2808 Stream.JumpToBit(NextUnreadBit);
2810 if (Stream.AtEndOfStream())
2811 return error("Could not find function in stream");
2813 if (!SeenFirstFunctionBody)
2814 return error("Trying to materialize functions before seeing function blocks");
2816 // An old bitcode file with the symbol table at the end would have
2817 // finished the parse greedily.
2818 assert(SeenValueSymbolTable);
2820 SmallVector<uint64_t, 64> Record;
2822 while (true) {
2823 BitstreamEntry Entry = Stream.advance();
2824 switch (Entry.Kind) {
2825 default:
2826 return error("Expect SubBlock");
2827 case BitstreamEntry::SubBlock:
2828 switch (Entry.ID) {
2829 default:
2830 return error("Expect function block");
2831 case bitc::FUNCTION_BLOCK_ID:
2832 if (Error Err = rememberAndSkipFunctionBody())
2833 return Err;
2834 NextUnreadBit = Stream.GetCurrentBitNo();
2835 return Error::success();
2841 bool BitcodeReaderBase::readBlockInfo() {
2842 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2843 if (!NewBlockInfo)
2844 return true;
2845 BlockInfo = std::move(*NewBlockInfo);
2846 return false;
2849 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2850 // v1: [selection_kind, name]
2851 // v2: [strtab_offset, strtab_size, selection_kind]
2852 StringRef Name;
2853 std::tie(Name, Record) = readNameFromStrtab(Record);
2855 if (Record.empty())
2856 return error("Invalid record");
2857 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2858 std::string OldFormatName;
2859 if (!UseStrtab) {
2860 if (Record.size() < 2)
2861 return error("Invalid record");
2862 unsigned ComdatNameSize = Record[1];
2863 OldFormatName.reserve(ComdatNameSize);
2864 for (unsigned i = 0; i != ComdatNameSize; ++i)
2865 OldFormatName += (char)Record[2 + i];
2866 Name = OldFormatName;
2868 Comdat *C = TheModule->getOrInsertComdat(Name);
2869 C->setSelectionKind(SK);
2870 ComdatList.push_back(C);
2871 return Error::success();
2874 static void inferDSOLocal(GlobalValue *GV) {
2875 // infer dso_local from linkage and visibility if it is not encoded.
2876 if (GV->hasLocalLinkage() ||
2877 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2878 GV->setDSOLocal(true);
2881 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2882 // v1: [pointer type, isconst, initid, linkage, alignment, section,
2883 // visibility, threadlocal, unnamed_addr, externally_initialized,
2884 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2885 // v2: [strtab_offset, strtab_size, v1]
2886 StringRef Name;
2887 std::tie(Name, Record) = readNameFromStrtab(Record);
2889 if (Record.size() < 6)
2890 return error("Invalid record");
2891 Type *Ty = getTypeByID(Record[0]);
2892 if (!Ty)
2893 return error("Invalid record");
2894 bool isConstant = Record[1] & 1;
2895 bool explicitType = Record[1] & 2;
2896 unsigned AddressSpace;
2897 if (explicitType) {
2898 AddressSpace = Record[1] >> 2;
2899 } else {
2900 if (!Ty->isPointerTy())
2901 return error("Invalid type for value");
2902 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2903 Ty = cast<PointerType>(Ty)->getElementType();
2906 uint64_t RawLinkage = Record[3];
2907 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2908 unsigned Alignment;
2909 if (Error Err = parseAlignmentValue(Record[4], Alignment))
2910 return Err;
2911 std::string Section;
2912 if (Record[5]) {
2913 if (Record[5] - 1 >= SectionTable.size())
2914 return error("Invalid ID");
2915 Section = SectionTable[Record[5] - 1];
2917 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2918 // Local linkage must have default visibility.
2919 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2920 // FIXME: Change to an error if non-default in 4.0.
2921 Visibility = getDecodedVisibility(Record[6]);
2923 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2924 if (Record.size() > 7)
2925 TLM = getDecodedThreadLocalMode(Record[7]);
2927 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2928 if (Record.size() > 8)
2929 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2931 bool ExternallyInitialized = false;
2932 if (Record.size() > 9)
2933 ExternallyInitialized = Record[9];
2935 GlobalVariable *NewGV =
2936 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2937 nullptr, TLM, AddressSpace, ExternallyInitialized);
2938 NewGV->setAlignment(Alignment);
2939 if (!Section.empty())
2940 NewGV->setSection(Section);
2941 NewGV->setVisibility(Visibility);
2942 NewGV->setUnnamedAddr(UnnamedAddr);
2944 if (Record.size() > 10)
2945 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2946 else
2947 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2949 ValueList.push_back(NewGV);
2951 // Remember which value to use for the global initializer.
2952 if (unsigned InitID = Record[2])
2953 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2955 if (Record.size() > 11) {
2956 if (unsigned ComdatID = Record[11]) {
2957 if (ComdatID > ComdatList.size())
2958 return error("Invalid global variable comdat ID");
2959 NewGV->setComdat(ComdatList[ComdatID - 1]);
2961 } else if (hasImplicitComdat(RawLinkage)) {
2962 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2965 if (Record.size() > 12) {
2966 auto AS = getAttributes(Record[12]).getFnAttributes();
2967 NewGV->setAttributes(AS);
2970 if (Record.size() > 13) {
2971 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2973 inferDSOLocal(NewGV);
2975 return Error::success();
2978 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2979 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2980 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2981 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
2982 // v2: [strtab_offset, strtab_size, v1]
2983 StringRef Name;
2984 std::tie(Name, Record) = readNameFromStrtab(Record);
2986 if (Record.size() < 8)
2987 return error("Invalid record");
2988 Type *Ty = getTypeByID(Record[0]);
2989 if (!Ty)
2990 return error("Invalid record");
2991 if (auto *PTy = dyn_cast<PointerType>(Ty))
2992 Ty = PTy->getElementType();
2993 auto *FTy = dyn_cast<FunctionType>(Ty);
2994 if (!FTy)
2995 return error("Invalid type for value");
2996 auto CC = static_cast<CallingConv::ID>(Record[1]);
2997 if (CC & ~CallingConv::MaxID)
2998 return error("Invalid calling convention ID");
3000 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3001 if (Record.size() > 16)
3002 AddrSpace = Record[16];
3004 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3005 AddrSpace, Name, TheModule);
3007 Func->setCallingConv(CC);
3008 bool isProto = Record[2];
3009 uint64_t RawLinkage = Record[3];
3010 Func->setLinkage(getDecodedLinkage(RawLinkage));
3011 Func->setAttributes(getAttributes(Record[4]));
3013 unsigned Alignment;
3014 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3015 return Err;
3016 Func->setAlignment(Alignment);
3017 if (Record[6]) {
3018 if (Record[6] - 1 >= SectionTable.size())
3019 return error("Invalid ID");
3020 Func->setSection(SectionTable[Record[6] - 1]);
3022 // Local linkage must have default visibility.
3023 if (!Func->hasLocalLinkage())
3024 // FIXME: Change to an error if non-default in 4.0.
3025 Func->setVisibility(getDecodedVisibility(Record[7]));
3026 if (Record.size() > 8 && Record[8]) {
3027 if (Record[8] - 1 >= GCTable.size())
3028 return error("Invalid ID");
3029 Func->setGC(GCTable[Record[8] - 1]);
3031 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3032 if (Record.size() > 9)
3033 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3034 Func->setUnnamedAddr(UnnamedAddr);
3035 if (Record.size() > 10 && Record[10] != 0)
3036 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3038 if (Record.size() > 11)
3039 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3040 else
3041 upgradeDLLImportExportLinkage(Func, RawLinkage);
3043 if (Record.size() > 12) {
3044 if (unsigned ComdatID = Record[12]) {
3045 if (ComdatID > ComdatList.size())
3046 return error("Invalid function comdat ID");
3047 Func->setComdat(ComdatList[ComdatID - 1]);
3049 } else if (hasImplicitComdat(RawLinkage)) {
3050 Func->setComdat(reinterpret_cast<Comdat *>(1));
3053 if (Record.size() > 13 && Record[13] != 0)
3054 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3056 if (Record.size() > 14 && Record[14] != 0)
3057 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3059 if (Record.size() > 15) {
3060 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3062 inferDSOLocal(Func);
3064 ValueList.push_back(Func);
3066 // If this is a function with a body, remember the prototype we are
3067 // creating now, so that we can match up the body with them later.
3068 if (!isProto) {
3069 Func->setIsMaterializable(true);
3070 FunctionsWithBodies.push_back(Func);
3071 DeferredFunctionInfo[Func] = 0;
3073 return Error::success();
3076 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3077 unsigned BitCode, ArrayRef<uint64_t> Record) {
3078 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3079 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3080 // dllstorageclass, threadlocal, unnamed_addr,
3081 // preemption specifier] (name in VST)
3082 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3083 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3084 // preemption specifier] (name in VST)
3085 // v2: [strtab_offset, strtab_size, v1]
3086 StringRef Name;
3087 std::tie(Name, Record) = readNameFromStrtab(Record);
3089 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3090 if (Record.size() < (3 + (unsigned)NewRecord))
3091 return error("Invalid record");
3092 unsigned OpNum = 0;
3093 Type *Ty = getTypeByID(Record[OpNum++]);
3094 if (!Ty)
3095 return error("Invalid record");
3097 unsigned AddrSpace;
3098 if (!NewRecord) {
3099 auto *PTy = dyn_cast<PointerType>(Ty);
3100 if (!PTy)
3101 return error("Invalid type for value");
3102 Ty = PTy->getElementType();
3103 AddrSpace = PTy->getAddressSpace();
3104 } else {
3105 AddrSpace = Record[OpNum++];
3108 auto Val = Record[OpNum++];
3109 auto Linkage = Record[OpNum++];
3110 GlobalIndirectSymbol *NewGA;
3111 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3112 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3113 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3114 TheModule);
3115 else
3116 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3117 nullptr, TheModule);
3118 // Old bitcode files didn't have visibility field.
3119 // Local linkage must have default visibility.
3120 if (OpNum != Record.size()) {
3121 auto VisInd = OpNum++;
3122 if (!NewGA->hasLocalLinkage())
3123 // FIXME: Change to an error if non-default in 4.0.
3124 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3126 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3127 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3128 if (OpNum != Record.size())
3129 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3130 else
3131 upgradeDLLImportExportLinkage(NewGA, Linkage);
3132 if (OpNum != Record.size())
3133 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3134 if (OpNum != Record.size())
3135 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3137 if (OpNum != Record.size())
3138 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3139 inferDSOLocal(NewGA);
3141 ValueList.push_back(NewGA);
3142 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3143 return Error::success();
3146 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3147 bool ShouldLazyLoadMetadata) {
3148 if (ResumeBit)
3149 Stream.JumpToBit(ResumeBit);
3150 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3151 return error("Invalid record");
3153 SmallVector<uint64_t, 64> Record;
3155 // Read all the records for this module.
3156 while (true) {
3157 BitstreamEntry Entry = Stream.advance();
3159 switch (Entry.Kind) {
3160 case BitstreamEntry::Error:
3161 return error("Malformed block");
3162 case BitstreamEntry::EndBlock:
3163 return globalCleanup();
3165 case BitstreamEntry::SubBlock:
3166 switch (Entry.ID) {
3167 default: // Skip unknown content.
3168 if (Stream.SkipBlock())
3169 return error("Invalid record");
3170 break;
3171 case bitc::BLOCKINFO_BLOCK_ID:
3172 if (readBlockInfo())
3173 return error("Malformed block");
3174 break;
3175 case bitc::PARAMATTR_BLOCK_ID:
3176 if (Error Err = parseAttributeBlock())
3177 return Err;
3178 break;
3179 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3180 if (Error Err = parseAttributeGroupBlock())
3181 return Err;
3182 break;
3183 case bitc::TYPE_BLOCK_ID_NEW:
3184 if (Error Err = parseTypeTable())
3185 return Err;
3186 break;
3187 case bitc::VALUE_SYMTAB_BLOCK_ID:
3188 if (!SeenValueSymbolTable) {
3189 // Either this is an old form VST without function index and an
3190 // associated VST forward declaration record (which would have caused
3191 // the VST to be jumped to and parsed before it was encountered
3192 // normally in the stream), or there were no function blocks to
3193 // trigger an earlier parsing of the VST.
3194 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3195 if (Error Err = parseValueSymbolTable())
3196 return Err;
3197 SeenValueSymbolTable = true;
3198 } else {
3199 // We must have had a VST forward declaration record, which caused
3200 // the parser to jump to and parse the VST earlier.
3201 assert(VSTOffset > 0);
3202 if (Stream.SkipBlock())
3203 return error("Invalid record");
3205 break;
3206 case bitc::CONSTANTS_BLOCK_ID:
3207 if (Error Err = parseConstants())
3208 return Err;
3209 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3210 return Err;
3211 break;
3212 case bitc::METADATA_BLOCK_ID:
3213 if (ShouldLazyLoadMetadata) {
3214 if (Error Err = rememberAndSkipMetadata())
3215 return Err;
3216 break;
3218 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3219 if (Error Err = MDLoader->parseModuleMetadata())
3220 return Err;
3221 break;
3222 case bitc::METADATA_KIND_BLOCK_ID:
3223 if (Error Err = MDLoader->parseMetadataKinds())
3224 return Err;
3225 break;
3226 case bitc::FUNCTION_BLOCK_ID:
3227 // If this is the first function body we've seen, reverse the
3228 // FunctionsWithBodies list.
3229 if (!SeenFirstFunctionBody) {
3230 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3231 if (Error Err = globalCleanup())
3232 return Err;
3233 SeenFirstFunctionBody = true;
3236 if (VSTOffset > 0) {
3237 // If we have a VST forward declaration record, make sure we
3238 // parse the VST now if we haven't already. It is needed to
3239 // set up the DeferredFunctionInfo vector for lazy reading.
3240 if (!SeenValueSymbolTable) {
3241 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3242 return Err;
3243 SeenValueSymbolTable = true;
3244 // Fall through so that we record the NextUnreadBit below.
3245 // This is necessary in case we have an anonymous function that
3246 // is later materialized. Since it will not have a VST entry we
3247 // need to fall back to the lazy parse to find its offset.
3248 } else {
3249 // If we have a VST forward declaration record, but have already
3250 // parsed the VST (just above, when the first function body was
3251 // encountered here), then we are resuming the parse after
3252 // materializing functions. The ResumeBit points to the
3253 // start of the last function block recorded in the
3254 // DeferredFunctionInfo map. Skip it.
3255 if (Stream.SkipBlock())
3256 return error("Invalid record");
3257 continue;
3261 // Support older bitcode files that did not have the function
3262 // index in the VST, nor a VST forward declaration record, as
3263 // well as anonymous functions that do not have VST entries.
3264 // Build the DeferredFunctionInfo vector on the fly.
3265 if (Error Err = rememberAndSkipFunctionBody())
3266 return Err;
3268 // Suspend parsing when we reach the function bodies. Subsequent
3269 // materialization calls will resume it when necessary. If the bitcode
3270 // file is old, the symbol table will be at the end instead and will not
3271 // have been seen yet. In this case, just finish the parse now.
3272 if (SeenValueSymbolTable) {
3273 NextUnreadBit = Stream.GetCurrentBitNo();
3274 // After the VST has been parsed, we need to make sure intrinsic name
3275 // are auto-upgraded.
3276 return globalCleanup();
3278 break;
3279 case bitc::USELIST_BLOCK_ID:
3280 if (Error Err = parseUseLists())
3281 return Err;
3282 break;
3283 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3284 if (Error Err = parseOperandBundleTags())
3285 return Err;
3286 break;
3287 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3288 if (Error Err = parseSyncScopeNames())
3289 return Err;
3290 break;
3292 continue;
3294 case BitstreamEntry::Record:
3295 // The interesting case.
3296 break;
3299 // Read a record.
3300 auto BitCode = Stream.readRecord(Entry.ID, Record);
3301 switch (BitCode) {
3302 default: break; // Default behavior, ignore unknown content.
3303 case bitc::MODULE_CODE_VERSION: {
3304 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3305 if (!VersionOrErr)
3306 return VersionOrErr.takeError();
3307 UseRelativeIDs = *VersionOrErr >= 1;
3308 break;
3310 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3311 std::string S;
3312 if (convertToString(Record, 0, S))
3313 return error("Invalid record");
3314 TheModule->setTargetTriple(S);
3315 break;
3317 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3318 std::string S;
3319 if (convertToString(Record, 0, S))
3320 return error("Invalid record");
3321 TheModule->setDataLayout(S);
3322 break;
3324 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3325 std::string S;
3326 if (convertToString(Record, 0, S))
3327 return error("Invalid record");
3328 TheModule->setModuleInlineAsm(S);
3329 break;
3331 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3332 // FIXME: Remove in 4.0.
3333 std::string S;
3334 if (convertToString(Record, 0, S))
3335 return error("Invalid record");
3336 // Ignore value.
3337 break;
3339 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3340 std::string S;
3341 if (convertToString(Record, 0, S))
3342 return error("Invalid record");
3343 SectionTable.push_back(S);
3344 break;
3346 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3347 std::string S;
3348 if (convertToString(Record, 0, S))
3349 return error("Invalid record");
3350 GCTable.push_back(S);
3351 break;
3353 case bitc::MODULE_CODE_COMDAT:
3354 if (Error Err = parseComdatRecord(Record))
3355 return Err;
3356 break;
3357 case bitc::MODULE_CODE_GLOBALVAR:
3358 if (Error Err = parseGlobalVarRecord(Record))
3359 return Err;
3360 break;
3361 case bitc::MODULE_CODE_FUNCTION:
3362 if (Error Err = parseFunctionRecord(Record))
3363 return Err;
3364 break;
3365 case bitc::MODULE_CODE_IFUNC:
3366 case bitc::MODULE_CODE_ALIAS:
3367 case bitc::MODULE_CODE_ALIAS_OLD:
3368 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3369 return Err;
3370 break;
3371 /// MODULE_CODE_VSTOFFSET: [offset]
3372 case bitc::MODULE_CODE_VSTOFFSET:
3373 if (Record.size() < 1)
3374 return error("Invalid record");
3375 // Note that we subtract 1 here because the offset is relative to one word
3376 // before the start of the identification or module block, which was
3377 // historically always the start of the regular bitcode header.
3378 VSTOffset = Record[0] - 1;
3379 break;
3380 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3381 case bitc::MODULE_CODE_SOURCE_FILENAME:
3382 SmallString<128> ValueName;
3383 if (convertToString(Record, 0, ValueName))
3384 return error("Invalid record");
3385 TheModule->setSourceFileName(ValueName);
3386 break;
3388 Record.clear();
3392 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3393 bool IsImporting) {
3394 TheModule = M;
3395 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3396 [&](unsigned ID) { return getTypeByID(ID); });
3397 return parseModule(0, ShouldLazyLoadMetadata);
3400 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3401 if (!isa<PointerType>(PtrType))
3402 return error("Load/Store operand is not a pointer type");
3403 Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3405 if (ValType && ValType != ElemType)
3406 return error("Explicit load/store type does not match pointee "
3407 "type of pointer operand");
3408 if (!PointerType::isLoadableOrStorableType(ElemType))
3409 return error("Cannot load/store from pointer");
3410 return Error::success();
3413 /// Lazily parse the specified function body block.
3414 Error BitcodeReader::parseFunctionBody(Function *F) {
3415 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3416 return error("Invalid record");
3418 // Unexpected unresolved metadata when parsing function.
3419 if (MDLoader->hasFwdRefs())
3420 return error("Invalid function metadata: incoming forward references");
3422 InstructionList.clear();
3423 unsigned ModuleValueListSize = ValueList.size();
3424 unsigned ModuleMDLoaderSize = MDLoader->size();
3426 // Add all the function arguments to the value table.
3427 for (Argument &I : F->args())
3428 ValueList.push_back(&I);
3430 unsigned NextValueNo = ValueList.size();
3431 BasicBlock *CurBB = nullptr;
3432 unsigned CurBBNo = 0;
3434 DebugLoc LastLoc;
3435 auto getLastInstruction = [&]() -> Instruction * {
3436 if (CurBB && !CurBB->empty())
3437 return &CurBB->back();
3438 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3439 !FunctionBBs[CurBBNo - 1]->empty())
3440 return &FunctionBBs[CurBBNo - 1]->back();
3441 return nullptr;
3444 std::vector<OperandBundleDef> OperandBundles;
3446 // Read all the records.
3447 SmallVector<uint64_t, 64> Record;
3449 while (true) {
3450 BitstreamEntry Entry = Stream.advance();
3452 switch (Entry.Kind) {
3453 case BitstreamEntry::Error:
3454 return error("Malformed block");
3455 case BitstreamEntry::EndBlock:
3456 goto OutOfRecordLoop;
3458 case BitstreamEntry::SubBlock:
3459 switch (Entry.ID) {
3460 default: // Skip unknown content.
3461 if (Stream.SkipBlock())
3462 return error("Invalid record");
3463 break;
3464 case bitc::CONSTANTS_BLOCK_ID:
3465 if (Error Err = parseConstants())
3466 return Err;
3467 NextValueNo = ValueList.size();
3468 break;
3469 case bitc::VALUE_SYMTAB_BLOCK_ID:
3470 if (Error Err = parseValueSymbolTable())
3471 return Err;
3472 break;
3473 case bitc::METADATA_ATTACHMENT_ID:
3474 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3475 return Err;
3476 break;
3477 case bitc::METADATA_BLOCK_ID:
3478 assert(DeferredMetadataInfo.empty() &&
3479 "Must read all module-level metadata before function-level");
3480 if (Error Err = MDLoader->parseFunctionMetadata())
3481 return Err;
3482 break;
3483 case bitc::USELIST_BLOCK_ID:
3484 if (Error Err = parseUseLists())
3485 return Err;
3486 break;
3488 continue;
3490 case BitstreamEntry::Record:
3491 // The interesting case.
3492 break;
3495 // Read a record.
3496 Record.clear();
3497 Instruction *I = nullptr;
3498 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3499 switch (BitCode) {
3500 default: // Default behavior: reject
3501 return error("Invalid value");
3502 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3503 if (Record.size() < 1 || Record[0] == 0)
3504 return error("Invalid record");
3505 // Create all the basic blocks for the function.
3506 FunctionBBs.resize(Record[0]);
3508 // See if anything took the address of blocks in this function.
3509 auto BBFRI = BasicBlockFwdRefs.find(F);
3510 if (BBFRI == BasicBlockFwdRefs.end()) {
3511 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3512 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3513 } else {
3514 auto &BBRefs = BBFRI->second;
3515 // Check for invalid basic block references.
3516 if (BBRefs.size() > FunctionBBs.size())
3517 return error("Invalid ID");
3518 assert(!BBRefs.empty() && "Unexpected empty array");
3519 assert(!BBRefs.front() && "Invalid reference to entry block");
3520 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3521 ++I)
3522 if (I < RE && BBRefs[I]) {
3523 BBRefs[I]->insertInto(F);
3524 FunctionBBs[I] = BBRefs[I];
3525 } else {
3526 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3529 // Erase from the table.
3530 BasicBlockFwdRefs.erase(BBFRI);
3533 CurBB = FunctionBBs[0];
3534 continue;
3537 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3538 // This record indicates that the last instruction is at the same
3539 // location as the previous instruction with a location.
3540 I = getLastInstruction();
3542 if (!I)
3543 return error("Invalid record");
3544 I->setDebugLoc(LastLoc);
3545 I = nullptr;
3546 continue;
3548 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3549 I = getLastInstruction();
3550 if (!I || Record.size() < 4)
3551 return error("Invalid record");
3553 unsigned Line = Record[0], Col = Record[1];
3554 unsigned ScopeID = Record[2], IAID = Record[3];
3555 bool isImplicitCode = Record.size() == 5 && Record[4];
3557 MDNode *Scope = nullptr, *IA = nullptr;
3558 if (ScopeID) {
3559 Scope = dyn_cast_or_null<MDNode>(
3560 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3561 if (!Scope)
3562 return error("Invalid record");
3564 if (IAID) {
3565 IA = dyn_cast_or_null<MDNode>(
3566 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3567 if (!IA)
3568 return error("Invalid record");
3570 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3571 I->setDebugLoc(LastLoc);
3572 I = nullptr;
3573 continue;
3575 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
3576 unsigned OpNum = 0;
3577 Value *LHS;
3578 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3579 OpNum+1 > Record.size())
3580 return error("Invalid record");
3582 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3583 if (Opc == -1)
3584 return error("Invalid record");
3585 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3586 InstructionList.push_back(I);
3587 if (OpNum < Record.size()) {
3588 if (isa<FPMathOperator>(I)) {
3589 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3590 if (FMF.any())
3591 I->setFastMathFlags(FMF);
3594 break;
3596 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3597 unsigned OpNum = 0;
3598 Value *LHS, *RHS;
3599 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3600 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3601 OpNum+1 > Record.size())
3602 return error("Invalid record");
3604 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3605 if (Opc == -1)
3606 return error("Invalid record");
3607 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3608 InstructionList.push_back(I);
3609 if (OpNum < Record.size()) {
3610 if (Opc == Instruction::Add ||
3611 Opc == Instruction::Sub ||
3612 Opc == Instruction::Mul ||
3613 Opc == Instruction::Shl) {
3614 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3615 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3616 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3617 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3618 } else if (Opc == Instruction::SDiv ||
3619 Opc == Instruction::UDiv ||
3620 Opc == Instruction::LShr ||
3621 Opc == Instruction::AShr) {
3622 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3623 cast<BinaryOperator>(I)->setIsExact(true);
3624 } else if (isa<FPMathOperator>(I)) {
3625 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3626 if (FMF.any())
3627 I->setFastMathFlags(FMF);
3631 break;
3633 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3634 unsigned OpNum = 0;
3635 Value *Op;
3636 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3637 OpNum+2 != Record.size())
3638 return error("Invalid record");
3640 Type *ResTy = getTypeByID(Record[OpNum]);
3641 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3642 if (Opc == -1 || !ResTy)
3643 return error("Invalid record");
3644 Instruction *Temp = nullptr;
3645 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3646 if (Temp) {
3647 InstructionList.push_back(Temp);
3648 CurBB->getInstList().push_back(Temp);
3650 } else {
3651 auto CastOp = (Instruction::CastOps)Opc;
3652 if (!CastInst::castIsValid(CastOp, Op, ResTy))
3653 return error("Invalid cast");
3654 I = CastInst::Create(CastOp, Op, ResTy);
3656 InstructionList.push_back(I);
3657 break;
3659 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3660 case bitc::FUNC_CODE_INST_GEP_OLD:
3661 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3662 unsigned OpNum = 0;
3664 Type *Ty;
3665 bool InBounds;
3667 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3668 InBounds = Record[OpNum++];
3669 Ty = getTypeByID(Record[OpNum++]);
3670 } else {
3671 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3672 Ty = nullptr;
3675 Value *BasePtr;
3676 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3677 return error("Invalid record");
3679 if (!Ty)
3680 Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3681 ->getElementType();
3682 else if (Ty !=
3683 cast<PointerType>(BasePtr->getType()->getScalarType())
3684 ->getElementType())
3685 return error(
3686 "Explicit gep type does not match pointee type of pointer operand");
3688 SmallVector<Value*, 16> GEPIdx;
3689 while (OpNum != Record.size()) {
3690 Value *Op;
3691 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3692 return error("Invalid record");
3693 GEPIdx.push_back(Op);
3696 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3698 InstructionList.push_back(I);
3699 if (InBounds)
3700 cast<GetElementPtrInst>(I)->setIsInBounds(true);
3701 break;
3704 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3705 // EXTRACTVAL: [opty, opval, n x indices]
3706 unsigned OpNum = 0;
3707 Value *Agg;
3708 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3709 return error("Invalid record");
3711 unsigned RecSize = Record.size();
3712 if (OpNum == RecSize)
3713 return error("EXTRACTVAL: Invalid instruction with 0 indices");
3715 SmallVector<unsigned, 4> EXTRACTVALIdx;
3716 Type *CurTy = Agg->getType();
3717 for (; OpNum != RecSize; ++OpNum) {
3718 bool IsArray = CurTy->isArrayTy();
3719 bool IsStruct = CurTy->isStructTy();
3720 uint64_t Index = Record[OpNum];
3722 if (!IsStruct && !IsArray)
3723 return error("EXTRACTVAL: Invalid type");
3724 if ((unsigned)Index != Index)
3725 return error("Invalid value");
3726 if (IsStruct && Index >= CurTy->getStructNumElements())
3727 return error("EXTRACTVAL: Invalid struct index");
3728 if (IsArray && Index >= CurTy->getArrayNumElements())
3729 return error("EXTRACTVAL: Invalid array index");
3730 EXTRACTVALIdx.push_back((unsigned)Index);
3732 if (IsStruct)
3733 CurTy = CurTy->getStructElementType(Index);
3734 else
3735 CurTy = CurTy->getArrayElementType();
3738 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3739 InstructionList.push_back(I);
3740 break;
3743 case bitc::FUNC_CODE_INST_INSERTVAL: {
3744 // INSERTVAL: [opty, opval, opty, opval, n x indices]
3745 unsigned OpNum = 0;
3746 Value *Agg;
3747 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3748 return error("Invalid record");
3749 Value *Val;
3750 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3751 return error("Invalid record");
3753 unsigned RecSize = Record.size();
3754 if (OpNum == RecSize)
3755 return error("INSERTVAL: Invalid instruction with 0 indices");
3757 SmallVector<unsigned, 4> INSERTVALIdx;
3758 Type *CurTy = Agg->getType();
3759 for (; OpNum != RecSize; ++OpNum) {
3760 bool IsArray = CurTy->isArrayTy();
3761 bool IsStruct = CurTy->isStructTy();
3762 uint64_t Index = Record[OpNum];
3764 if (!IsStruct && !IsArray)
3765 return error("INSERTVAL: Invalid type");
3766 if ((unsigned)Index != Index)
3767 return error("Invalid value");
3768 if (IsStruct && Index >= CurTy->getStructNumElements())
3769 return error("INSERTVAL: Invalid struct index");
3770 if (IsArray && Index >= CurTy->getArrayNumElements())
3771 return error("INSERTVAL: Invalid array index");
3773 INSERTVALIdx.push_back((unsigned)Index);
3774 if (IsStruct)
3775 CurTy = CurTy->getStructElementType(Index);
3776 else
3777 CurTy = CurTy->getArrayElementType();
3780 if (CurTy != Val->getType())
3781 return error("Inserted value type doesn't match aggregate type");
3783 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3784 InstructionList.push_back(I);
3785 break;
3788 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3789 // obsolete form of select
3790 // handles select i1 ... in old bitcode
3791 unsigned OpNum = 0;
3792 Value *TrueVal, *FalseVal, *Cond;
3793 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3794 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3795 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3796 return error("Invalid record");
3798 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3799 InstructionList.push_back(I);
3800 break;
3803 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3804 // new form of select
3805 // handles select i1 or select [N x i1]
3806 unsigned OpNum = 0;
3807 Value *TrueVal, *FalseVal, *Cond;
3808 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3809 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3810 getValueTypePair(Record, OpNum, NextValueNo, Cond))
3811 return error("Invalid record");
3813 // select condition can be either i1 or [N x i1]
3814 if (VectorType* vector_type =
3815 dyn_cast<VectorType>(Cond->getType())) {
3816 // expect <n x i1>
3817 if (vector_type->getElementType() != Type::getInt1Ty(Context))
3818 return error("Invalid type for value");
3819 } else {
3820 // expect i1
3821 if (Cond->getType() != Type::getInt1Ty(Context))
3822 return error("Invalid type for value");
3825 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3826 InstructionList.push_back(I);
3827 break;
3830 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3831 unsigned OpNum = 0;
3832 Value *Vec, *Idx;
3833 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3834 getValueTypePair(Record, OpNum, NextValueNo, Idx))
3835 return error("Invalid record");
3836 if (!Vec->getType()->isVectorTy())
3837 return error("Invalid type for value");
3838 I = ExtractElementInst::Create(Vec, Idx);
3839 InstructionList.push_back(I);
3840 break;
3843 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3844 unsigned OpNum = 0;
3845 Value *Vec, *Elt, *Idx;
3846 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3847 return error("Invalid record");
3848 if (!Vec->getType()->isVectorTy())
3849 return error("Invalid type for value");
3850 if (popValue(Record, OpNum, NextValueNo,
3851 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3852 getValueTypePair(Record, OpNum, NextValueNo, Idx))
3853 return error("Invalid record");
3854 I = InsertElementInst::Create(Vec, Elt, Idx);
3855 InstructionList.push_back(I);
3856 break;
3859 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3860 unsigned OpNum = 0;
3861 Value *Vec1, *Vec2, *Mask;
3862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3863 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3864 return error("Invalid record");
3866 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3867 return error("Invalid record");
3868 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3869 return error("Invalid type for value");
3870 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3871 InstructionList.push_back(I);
3872 break;
3875 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3876 // Old form of ICmp/FCmp returning bool
3877 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3878 // both legal on vectors but had different behaviour.
3879 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3880 // FCmp/ICmp returning bool or vector of bool
3882 unsigned OpNum = 0;
3883 Value *LHS, *RHS;
3884 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3885 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3886 return error("Invalid record");
3888 unsigned PredVal = Record[OpNum];
3889 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3890 FastMathFlags FMF;
3891 if (IsFP && Record.size() > OpNum+1)
3892 FMF = getDecodedFastMathFlags(Record[++OpNum]);
3894 if (OpNum+1 != Record.size())
3895 return error("Invalid record");
3897 if (LHS->getType()->isFPOrFPVectorTy())
3898 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3899 else
3900 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3902 if (FMF.any())
3903 I->setFastMathFlags(FMF);
3904 InstructionList.push_back(I);
3905 break;
3908 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3910 unsigned Size = Record.size();
3911 if (Size == 0) {
3912 I = ReturnInst::Create(Context);
3913 InstructionList.push_back(I);
3914 break;
3917 unsigned OpNum = 0;
3918 Value *Op = nullptr;
3919 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3920 return error("Invalid record");
3921 if (OpNum != Record.size())
3922 return error("Invalid record");
3924 I = ReturnInst::Create(Context, Op);
3925 InstructionList.push_back(I);
3926 break;
3928 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3929 if (Record.size() != 1 && Record.size() != 3)
3930 return error("Invalid record");
3931 BasicBlock *TrueDest = getBasicBlock(Record[0]);
3932 if (!TrueDest)
3933 return error("Invalid record");
3935 if (Record.size() == 1) {
3936 I = BranchInst::Create(TrueDest);
3937 InstructionList.push_back(I);
3939 else {
3940 BasicBlock *FalseDest = getBasicBlock(Record[1]);
3941 Value *Cond = getValue(Record, 2, NextValueNo,
3942 Type::getInt1Ty(Context));
3943 if (!FalseDest || !Cond)
3944 return error("Invalid record");
3945 I = BranchInst::Create(TrueDest, FalseDest, Cond);
3946 InstructionList.push_back(I);
3948 break;
3950 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3951 if (Record.size() != 1 && Record.size() != 2)
3952 return error("Invalid record");
3953 unsigned Idx = 0;
3954 Value *CleanupPad =
3955 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3956 if (!CleanupPad)
3957 return error("Invalid record");
3958 BasicBlock *UnwindDest = nullptr;
3959 if (Record.size() == 2) {
3960 UnwindDest = getBasicBlock(Record[Idx++]);
3961 if (!UnwindDest)
3962 return error("Invalid record");
3965 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3966 InstructionList.push_back(I);
3967 break;
3969 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3970 if (Record.size() != 2)
3971 return error("Invalid record");
3972 unsigned Idx = 0;
3973 Value *CatchPad =
3974 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3975 if (!CatchPad)
3976 return error("Invalid record");
3977 BasicBlock *BB = getBasicBlock(Record[Idx++]);
3978 if (!BB)
3979 return error("Invalid record");
3981 I = CatchReturnInst::Create(CatchPad, BB);
3982 InstructionList.push_back(I);
3983 break;
3985 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3986 // We must have, at minimum, the outer scope and the number of arguments.
3987 if (Record.size() < 2)
3988 return error("Invalid record");
3990 unsigned Idx = 0;
3992 Value *ParentPad =
3993 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3995 unsigned NumHandlers = Record[Idx++];
3997 SmallVector<BasicBlock *, 2> Handlers;
3998 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3999 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4000 if (!BB)
4001 return error("Invalid record");
4002 Handlers.push_back(BB);
4005 BasicBlock *UnwindDest = nullptr;
4006 if (Idx + 1 == Record.size()) {
4007 UnwindDest = getBasicBlock(Record[Idx++]);
4008 if (!UnwindDest)
4009 return error("Invalid record");
4012 if (Record.size() != Idx)
4013 return error("Invalid record");
4015 auto *CatchSwitch =
4016 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4017 for (BasicBlock *Handler : Handlers)
4018 CatchSwitch->addHandler(Handler);
4019 I = CatchSwitch;
4020 InstructionList.push_back(I);
4021 break;
4023 case bitc::FUNC_CODE_INST_CATCHPAD:
4024 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4025 // We must have, at minimum, the outer scope and the number of arguments.
4026 if (Record.size() < 2)
4027 return error("Invalid record");
4029 unsigned Idx = 0;
4031 Value *ParentPad =
4032 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4034 unsigned NumArgOperands = Record[Idx++];
4036 SmallVector<Value *, 2> Args;
4037 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4038 Value *Val;
4039 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4040 return error("Invalid record");
4041 Args.push_back(Val);
4044 if (Record.size() != Idx)
4045 return error("Invalid record");
4047 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4048 I = CleanupPadInst::Create(ParentPad, Args);
4049 else
4050 I = CatchPadInst::Create(ParentPad, Args);
4051 InstructionList.push_back(I);
4052 break;
4054 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4055 // Check magic
4056 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4057 // "New" SwitchInst format with case ranges. The changes to write this
4058 // format were reverted but we still recognize bitcode that uses it.
4059 // Hopefully someday we will have support for case ranges and can use
4060 // this format again.
4062 Type *OpTy = getTypeByID(Record[1]);
4063 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4065 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4066 BasicBlock *Default = getBasicBlock(Record[3]);
4067 if (!OpTy || !Cond || !Default)
4068 return error("Invalid record");
4070 unsigned NumCases = Record[4];
4072 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4073 InstructionList.push_back(SI);
4075 unsigned CurIdx = 5;
4076 for (unsigned i = 0; i != NumCases; ++i) {
4077 SmallVector<ConstantInt*, 1> CaseVals;
4078 unsigned NumItems = Record[CurIdx++];
4079 for (unsigned ci = 0; ci != NumItems; ++ci) {
4080 bool isSingleNumber = Record[CurIdx++];
4082 APInt Low;
4083 unsigned ActiveWords = 1;
4084 if (ValueBitWidth > 64)
4085 ActiveWords = Record[CurIdx++];
4086 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4087 ValueBitWidth);
4088 CurIdx += ActiveWords;
4090 if (!isSingleNumber) {
4091 ActiveWords = 1;
4092 if (ValueBitWidth > 64)
4093 ActiveWords = Record[CurIdx++];
4094 APInt High = readWideAPInt(
4095 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4096 CurIdx += ActiveWords;
4098 // FIXME: It is not clear whether values in the range should be
4099 // compared as signed or unsigned values. The partially
4100 // implemented changes that used this format in the past used
4101 // unsigned comparisons.
4102 for ( ; Low.ule(High); ++Low)
4103 CaseVals.push_back(ConstantInt::get(Context, Low));
4104 } else
4105 CaseVals.push_back(ConstantInt::get(Context, Low));
4107 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4108 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4109 cve = CaseVals.end(); cvi != cve; ++cvi)
4110 SI->addCase(*cvi, DestBB);
4112 I = SI;
4113 break;
4116 // Old SwitchInst format without case ranges.
4118 if (Record.size() < 3 || (Record.size() & 1) == 0)
4119 return error("Invalid record");
4120 Type *OpTy = getTypeByID(Record[0]);
4121 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4122 BasicBlock *Default = getBasicBlock(Record[2]);
4123 if (!OpTy || !Cond || !Default)
4124 return error("Invalid record");
4125 unsigned NumCases = (Record.size()-3)/2;
4126 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4127 InstructionList.push_back(SI);
4128 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4129 ConstantInt *CaseVal =
4130 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4131 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4132 if (!CaseVal || !DestBB) {
4133 delete SI;
4134 return error("Invalid record");
4136 SI->addCase(CaseVal, DestBB);
4138 I = SI;
4139 break;
4141 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4142 if (Record.size() < 2)
4143 return error("Invalid record");
4144 Type *OpTy = getTypeByID(Record[0]);
4145 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4146 if (!OpTy || !Address)
4147 return error("Invalid record");
4148 unsigned NumDests = Record.size()-2;
4149 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4150 InstructionList.push_back(IBI);
4151 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4152 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4153 IBI->addDestination(DestBB);
4154 } else {
4155 delete IBI;
4156 return error("Invalid record");
4159 I = IBI;
4160 break;
4163 case bitc::FUNC_CODE_INST_INVOKE: {
4164 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4165 if (Record.size() < 4)
4166 return error("Invalid record");
4167 unsigned OpNum = 0;
4168 AttributeList PAL = getAttributes(Record[OpNum++]);
4169 unsigned CCInfo = Record[OpNum++];
4170 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4171 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4173 FunctionType *FTy = nullptr;
4174 if (CCInfo >> 13 & 1 &&
4175 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4176 return error("Explicit invoke type is not a function type");
4178 Value *Callee;
4179 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4180 return error("Invalid record");
4182 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4183 if (!CalleeTy)
4184 return error("Callee is not a pointer");
4185 if (!FTy) {
4186 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4187 if (!FTy)
4188 return error("Callee is not of pointer to function type");
4189 } else if (CalleeTy->getElementType() != FTy)
4190 return error("Explicit invoke type does not match pointee type of "
4191 "callee operand");
4192 if (Record.size() < FTy->getNumParams() + OpNum)
4193 return error("Insufficient operands to call");
4195 SmallVector<Value*, 16> Ops;
4196 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4197 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4198 FTy->getParamType(i)));
4199 if (!Ops.back())
4200 return error("Invalid record");
4203 if (!FTy->isVarArg()) {
4204 if (Record.size() != OpNum)
4205 return error("Invalid record");
4206 } else {
4207 // Read type/value pairs for varargs params.
4208 while (OpNum != Record.size()) {
4209 Value *Op;
4210 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4211 return error("Invalid record");
4212 Ops.push_back(Op);
4216 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4217 OperandBundles);
4218 OperandBundles.clear();
4219 InstructionList.push_back(I);
4220 cast<InvokeInst>(I)->setCallingConv(
4221 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4222 cast<InvokeInst>(I)->setAttributes(PAL);
4223 break;
4225 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4226 unsigned Idx = 0;
4227 Value *Val = nullptr;
4228 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4229 return error("Invalid record");
4230 I = ResumeInst::Create(Val);
4231 InstructionList.push_back(I);
4232 break;
4234 case bitc::FUNC_CODE_INST_CALLBR: {
4235 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4236 unsigned OpNum = 0;
4237 AttributeList PAL = getAttributes(Record[OpNum++]);
4238 unsigned CCInfo = Record[OpNum++];
4240 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4241 unsigned NumIndirectDests = Record[OpNum++];
4242 SmallVector<BasicBlock *, 16> IndirectDests;
4243 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4244 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4246 FunctionType *FTy = nullptr;
4247 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4248 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4249 return error("Explicit call type is not a function type");
4251 Value *Callee;
4252 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4253 return error("Invalid record");
4255 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4256 if (!OpTy)
4257 return error("Callee is not a pointer type");
4258 if (!FTy) {
4259 FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4260 if (!FTy)
4261 return error("Callee is not of pointer to function type");
4262 } else if (OpTy->getElementType() != FTy)
4263 return error("Explicit call type does not match pointee type of "
4264 "callee operand");
4265 if (Record.size() < FTy->getNumParams() + OpNum)
4266 return error("Insufficient operands to call");
4268 SmallVector<Value*, 16> Args;
4269 // Read the fixed params.
4270 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4271 if (FTy->getParamType(i)->isLabelTy())
4272 Args.push_back(getBasicBlock(Record[OpNum]));
4273 else
4274 Args.push_back(getValue(Record, OpNum, NextValueNo,
4275 FTy->getParamType(i)));
4276 if (!Args.back())
4277 return error("Invalid record");
4280 // Read type/value pairs for varargs params.
4281 if (!FTy->isVarArg()) {
4282 if (OpNum != Record.size())
4283 return error("Invalid record");
4284 } else {
4285 while (OpNum != Record.size()) {
4286 Value *Op;
4287 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4288 return error("Invalid record");
4289 Args.push_back(Op);
4293 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4294 OperandBundles);
4295 OperandBundles.clear();
4296 InstructionList.push_back(I);
4297 cast<CallBrInst>(I)->setCallingConv(
4298 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4299 cast<CallBrInst>(I)->setAttributes(PAL);
4300 break;
4302 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4303 I = new UnreachableInst(Context);
4304 InstructionList.push_back(I);
4305 break;
4306 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4307 if (Record.size() < 1 || ((Record.size()-1)&1))
4308 return error("Invalid record");
4309 Type *Ty = getTypeByID(Record[0]);
4310 if (!Ty)
4311 return error("Invalid record");
4313 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4314 InstructionList.push_back(PN);
4316 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4317 Value *V;
4318 // With the new function encoding, it is possible that operands have
4319 // negative IDs (for forward references). Use a signed VBR
4320 // representation to keep the encoding small.
4321 if (UseRelativeIDs)
4322 V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4323 else
4324 V = getValue(Record, 1+i, NextValueNo, Ty);
4325 BasicBlock *BB = getBasicBlock(Record[2+i]);
4326 if (!V || !BB)
4327 return error("Invalid record");
4328 PN->addIncoming(V, BB);
4330 I = PN;
4331 break;
4334 case bitc::FUNC_CODE_INST_LANDINGPAD:
4335 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4336 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4337 unsigned Idx = 0;
4338 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4339 if (Record.size() < 3)
4340 return error("Invalid record");
4341 } else {
4342 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4343 if (Record.size() < 4)
4344 return error("Invalid record");
4346 Type *Ty = getTypeByID(Record[Idx++]);
4347 if (!Ty)
4348 return error("Invalid record");
4349 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4350 Value *PersFn = nullptr;
4351 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4352 return error("Invalid record");
4354 if (!F->hasPersonalityFn())
4355 F->setPersonalityFn(cast<Constant>(PersFn));
4356 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4357 return error("Personality function mismatch");
4360 bool IsCleanup = !!Record[Idx++];
4361 unsigned NumClauses = Record[Idx++];
4362 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4363 LP->setCleanup(IsCleanup);
4364 for (unsigned J = 0; J != NumClauses; ++J) {
4365 LandingPadInst::ClauseType CT =
4366 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4367 Value *Val;
4369 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4370 delete LP;
4371 return error("Invalid record");
4374 assert((CT != LandingPadInst::Catch ||
4375 !isa<ArrayType>(Val->getType())) &&
4376 "Catch clause has a invalid type!");
4377 assert((CT != LandingPadInst::Filter ||
4378 isa<ArrayType>(Val->getType())) &&
4379 "Filter clause has invalid type!");
4380 LP->addClause(cast<Constant>(Val));
4383 I = LP;
4384 InstructionList.push_back(I);
4385 break;
4388 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4389 if (Record.size() != 4)
4390 return error("Invalid record");
4391 uint64_t AlignRecord = Record[3];
4392 const uint64_t InAllocaMask = uint64_t(1) << 5;
4393 const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4394 const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4395 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4396 SwiftErrorMask;
4397 bool InAlloca = AlignRecord & InAllocaMask;
4398 bool SwiftError = AlignRecord & SwiftErrorMask;
4399 Type *Ty = getTypeByID(Record[0]);
4400 if ((AlignRecord & ExplicitTypeMask) == 0) {
4401 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4402 if (!PTy)
4403 return error("Old-style alloca with a non-pointer type");
4404 Ty = PTy->getElementType();
4406 Type *OpTy = getTypeByID(Record[1]);
4407 Value *Size = getFnValueByID(Record[2], OpTy);
4408 unsigned Align;
4409 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4410 return Err;
4412 if (!Ty || !Size)
4413 return error("Invalid record");
4415 // FIXME: Make this an optional field.
4416 const DataLayout &DL = TheModule->getDataLayout();
4417 unsigned AS = DL.getAllocaAddrSpace();
4419 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4420 AI->setUsedWithInAlloca(InAlloca);
4421 AI->setSwiftError(SwiftError);
4422 I = AI;
4423 InstructionList.push_back(I);
4424 break;
4426 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4427 unsigned OpNum = 0;
4428 Value *Op;
4429 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4430 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4431 return error("Invalid record");
4433 Type *Ty = nullptr;
4434 if (OpNum + 3 == Record.size())
4435 Ty = getTypeByID(Record[OpNum++]);
4436 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4437 return Err;
4438 if (!Ty)
4439 Ty = cast<PointerType>(Op->getType())->getElementType();
4441 unsigned Align;
4442 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4443 return Err;
4444 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4446 InstructionList.push_back(I);
4447 break;
4449 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4450 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4451 unsigned OpNum = 0;
4452 Value *Op;
4453 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4454 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4455 return error("Invalid record");
4457 Type *Ty = nullptr;
4458 if (OpNum + 5 == Record.size())
4459 Ty = getTypeByID(Record[OpNum++]);
4460 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4461 return Err;
4462 if (!Ty)
4463 Ty = cast<PointerType>(Op->getType())->getElementType();
4465 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4466 if (Ordering == AtomicOrdering::NotAtomic ||
4467 Ordering == AtomicOrdering::Release ||
4468 Ordering == AtomicOrdering::AcquireRelease)
4469 return error("Invalid record");
4470 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4471 return error("Invalid record");
4472 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4474 unsigned Align;
4475 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4476 return Err;
4477 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4479 InstructionList.push_back(I);
4480 break;
4482 case bitc::FUNC_CODE_INST_STORE:
4483 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4484 unsigned OpNum = 0;
4485 Value *Val, *Ptr;
4486 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4487 (BitCode == bitc::FUNC_CODE_INST_STORE
4488 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4489 : popValue(Record, OpNum, NextValueNo,
4490 cast<PointerType>(Ptr->getType())->getElementType(),
4491 Val)) ||
4492 OpNum + 2 != Record.size())
4493 return error("Invalid record");
4495 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4496 return Err;
4497 unsigned Align;
4498 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4499 return Err;
4500 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4501 InstructionList.push_back(I);
4502 break;
4504 case bitc::FUNC_CODE_INST_STOREATOMIC:
4505 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4506 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4507 unsigned OpNum = 0;
4508 Value *Val, *Ptr;
4509 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4510 !isa<PointerType>(Ptr->getType()) ||
4511 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4512 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4513 : popValue(Record, OpNum, NextValueNo,
4514 cast<PointerType>(Ptr->getType())->getElementType(),
4515 Val)) ||
4516 OpNum + 4 != Record.size())
4517 return error("Invalid record");
4519 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4520 return Err;
4521 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4522 if (Ordering == AtomicOrdering::NotAtomic ||
4523 Ordering == AtomicOrdering::Acquire ||
4524 Ordering == AtomicOrdering::AcquireRelease)
4525 return error("Invalid record");
4526 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4527 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4528 return error("Invalid record");
4530 unsigned Align;
4531 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4532 return Err;
4533 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4534 InstructionList.push_back(I);
4535 break;
4537 case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4538 case bitc::FUNC_CODE_INST_CMPXCHG: {
4539 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4540 // failureordering?, isweak?]
4541 unsigned OpNum = 0;
4542 Value *Ptr, *Cmp, *New;
4543 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4544 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4545 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4546 : popValue(Record, OpNum, NextValueNo,
4547 cast<PointerType>(Ptr->getType())->getElementType(),
4548 Cmp)) ||
4549 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4550 Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4551 return error("Invalid record");
4552 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4553 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4554 SuccessOrdering == AtomicOrdering::Unordered)
4555 return error("Invalid record");
4556 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4558 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4559 return Err;
4560 AtomicOrdering FailureOrdering;
4561 if (Record.size() < 7)
4562 FailureOrdering =
4563 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4564 else
4565 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4567 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4568 SSID);
4569 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4571 if (Record.size() < 8) {
4572 // Before weak cmpxchgs existed, the instruction simply returned the
4573 // value loaded from memory, so bitcode files from that era will be
4574 // expecting the first component of a modern cmpxchg.
4575 CurBB->getInstList().push_back(I);
4576 I = ExtractValueInst::Create(I, 0);
4577 } else {
4578 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4581 InstructionList.push_back(I);
4582 break;
4584 case bitc::FUNC_CODE_INST_ATOMICRMW: {
4585 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4586 unsigned OpNum = 0;
4587 Value *Ptr, *Val;
4588 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4589 !isa<PointerType>(Ptr->getType()) ||
4590 popValue(Record, OpNum, NextValueNo,
4591 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4592 OpNum+4 != Record.size())
4593 return error("Invalid record");
4594 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4595 if (Operation < AtomicRMWInst::FIRST_BINOP ||
4596 Operation > AtomicRMWInst::LAST_BINOP)
4597 return error("Invalid record");
4598 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4599 if (Ordering == AtomicOrdering::NotAtomic ||
4600 Ordering == AtomicOrdering::Unordered)
4601 return error("Invalid record");
4602 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4603 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4604 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4605 InstructionList.push_back(I);
4606 break;
4608 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4609 if (2 != Record.size())
4610 return error("Invalid record");
4611 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4612 if (Ordering == AtomicOrdering::NotAtomic ||
4613 Ordering == AtomicOrdering::Unordered ||
4614 Ordering == AtomicOrdering::Monotonic)
4615 return error("Invalid record");
4616 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4617 I = new FenceInst(Context, Ordering, SSID);
4618 InstructionList.push_back(I);
4619 break;
4621 case bitc::FUNC_CODE_INST_CALL: {
4622 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4623 if (Record.size() < 3)
4624 return error("Invalid record");
4626 unsigned OpNum = 0;
4627 AttributeList PAL = getAttributes(Record[OpNum++]);
4628 unsigned CCInfo = Record[OpNum++];
4630 FastMathFlags FMF;
4631 if ((CCInfo >> bitc::CALL_FMF) & 1) {
4632 FMF = getDecodedFastMathFlags(Record[OpNum++]);
4633 if (!FMF.any())
4634 return error("Fast math flags indicator set for call with no FMF");
4637 FunctionType *FTy = nullptr;
4638 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4639 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4640 return error("Explicit call type is not a function type");
4642 Value *Callee;
4643 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4644 return error("Invalid record");
4646 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4647 if (!OpTy)
4648 return error("Callee is not a pointer type");
4649 if (!FTy) {
4650 FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4651 if (!FTy)
4652 return error("Callee is not of pointer to function type");
4653 } else if (OpTy->getElementType() != FTy)
4654 return error("Explicit call type does not match pointee type of "
4655 "callee operand");
4656 if (Record.size() < FTy->getNumParams() + OpNum)
4657 return error("Insufficient operands to call");
4659 SmallVector<Value*, 16> Args;
4660 // Read the fixed params.
4661 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4662 if (FTy->getParamType(i)->isLabelTy())
4663 Args.push_back(getBasicBlock(Record[OpNum]));
4664 else
4665 Args.push_back(getValue(Record, OpNum, NextValueNo,
4666 FTy->getParamType(i)));
4667 if (!Args.back())
4668 return error("Invalid record");
4671 // Read type/value pairs for varargs params.
4672 if (!FTy->isVarArg()) {
4673 if (OpNum != Record.size())
4674 return error("Invalid record");
4675 } else {
4676 while (OpNum != Record.size()) {
4677 Value *Op;
4678 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4679 return error("Invalid record");
4680 Args.push_back(Op);
4684 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4685 OperandBundles.clear();
4686 InstructionList.push_back(I);
4687 cast<CallInst>(I)->setCallingConv(
4688 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4689 CallInst::TailCallKind TCK = CallInst::TCK_None;
4690 if (CCInfo & 1 << bitc::CALL_TAIL)
4691 TCK = CallInst::TCK_Tail;
4692 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4693 TCK = CallInst::TCK_MustTail;
4694 if (CCInfo & (1 << bitc::CALL_NOTAIL))
4695 TCK = CallInst::TCK_NoTail;
4696 cast<CallInst>(I)->setTailCallKind(TCK);
4697 cast<CallInst>(I)->setAttributes(PAL);
4698 if (FMF.any()) {
4699 if (!isa<FPMathOperator>(I))
4700 return error("Fast-math-flags specified for call without "
4701 "floating-point scalar or vector return type");
4702 I->setFastMathFlags(FMF);
4704 break;
4706 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4707 if (Record.size() < 3)
4708 return error("Invalid record");
4709 Type *OpTy = getTypeByID(Record[0]);
4710 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4711 Type *ResTy = getTypeByID(Record[2]);
4712 if (!OpTy || !Op || !ResTy)
4713 return error("Invalid record");
4714 I = new VAArgInst(Op, ResTy);
4715 InstructionList.push_back(I);
4716 break;
4719 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4720 // A call or an invoke can be optionally prefixed with some variable
4721 // number of operand bundle blocks. These blocks are read into
4722 // OperandBundles and consumed at the next call or invoke instruction.
4724 if (Record.size() < 1 || Record[0] >= BundleTags.size())
4725 return error("Invalid record");
4727 std::vector<Value *> Inputs;
4729 unsigned OpNum = 1;
4730 while (OpNum != Record.size()) {
4731 Value *Op;
4732 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4733 return error("Invalid record");
4734 Inputs.push_back(Op);
4737 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4738 continue;
4742 // Add instruction to end of current BB. If there is no current BB, reject
4743 // this file.
4744 if (!CurBB) {
4745 I->deleteValue();
4746 return error("Invalid instruction with no BB");
4748 if (!OperandBundles.empty()) {
4749 I->deleteValue();
4750 return error("Operand bundles found with no consumer");
4752 CurBB->getInstList().push_back(I);
4754 // If this was a terminator instruction, move to the next block.
4755 if (I->isTerminator()) {
4756 ++CurBBNo;
4757 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4760 // Non-void values get registered in the value table for future use.
4761 if (I && !I->getType()->isVoidTy())
4762 ValueList.assignValue(I, NextValueNo++);
4765 OutOfRecordLoop:
4767 if (!OperandBundles.empty())
4768 return error("Operand bundles found with no consumer");
4770 // Check the function list for unresolved values.
4771 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4772 if (!A->getParent()) {
4773 // We found at least one unresolved value. Nuke them all to avoid leaks.
4774 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4775 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4776 A->replaceAllUsesWith(UndefValue::get(A->getType()));
4777 delete A;
4780 return error("Never resolved value found in function");
4784 // Unexpected unresolved metadata about to be dropped.
4785 if (MDLoader->hasFwdRefs())
4786 return error("Invalid function metadata: outgoing forward refs");
4788 // Trim the value list down to the size it was before we parsed this function.
4789 ValueList.shrinkTo(ModuleValueListSize);
4790 MDLoader->shrinkTo(ModuleMDLoaderSize);
4791 std::vector<BasicBlock*>().swap(FunctionBBs);
4792 return Error::success();
4795 /// Find the function body in the bitcode stream
4796 Error BitcodeReader::findFunctionInStream(
4797 Function *F,
4798 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4799 while (DeferredFunctionInfoIterator->second == 0) {
4800 // This is the fallback handling for the old format bitcode that
4801 // didn't contain the function index in the VST, or when we have
4802 // an anonymous function which would not have a VST entry.
4803 // Assert that we have one of those two cases.
4804 assert(VSTOffset == 0 || !F->hasName());
4805 // Parse the next body in the stream and set its position in the
4806 // DeferredFunctionInfo map.
4807 if (Error Err = rememberAndSkipFunctionBodies())
4808 return Err;
4810 return Error::success();
4813 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4814 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4815 return SyncScope::ID(Val);
4816 if (Val >= SSIDs.size())
4817 return SyncScope::System; // Map unknown synchronization scopes to system.
4818 return SSIDs[Val];
4821 //===----------------------------------------------------------------------===//
4822 // GVMaterializer implementation
4823 //===----------------------------------------------------------------------===//
4825 Error BitcodeReader::materialize(GlobalValue *GV) {
4826 Function *F = dyn_cast<Function>(GV);
4827 // If it's not a function or is already material, ignore the request.
4828 if (!F || !F->isMaterializable())
4829 return Error::success();
4831 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4832 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4833 // If its position is recorded as 0, its body is somewhere in the stream
4834 // but we haven't seen it yet.
4835 if (DFII->second == 0)
4836 if (Error Err = findFunctionInStream(F, DFII))
4837 return Err;
4839 // Materialize metadata before parsing any function bodies.
4840 if (Error Err = materializeMetadata())
4841 return Err;
4843 // Move the bit stream to the saved position of the deferred function body.
4844 Stream.JumpToBit(DFII->second);
4846 if (Error Err = parseFunctionBody(F))
4847 return Err;
4848 F->setIsMaterializable(false);
4850 if (StripDebugInfo)
4851 stripDebugInfo(*F);
4853 // Upgrade any old intrinsic calls in the function.
4854 for (auto &I : UpgradedIntrinsics) {
4855 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4856 UI != UE;) {
4857 User *U = *UI;
4858 ++UI;
4859 if (CallInst *CI = dyn_cast<CallInst>(U))
4860 UpgradeIntrinsicCall(CI, I.second);
4864 // Update calls to the remangled intrinsics
4865 for (auto &I : RemangledIntrinsics)
4866 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4867 UI != UE;)
4868 // Don't expect any other users than call sites
4869 CallSite(*UI++).setCalledFunction(I.second);
4871 // Finish fn->subprogram upgrade for materialized functions.
4872 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4873 F->setSubprogram(SP);
4875 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4876 if (!MDLoader->isStrippingTBAA()) {
4877 for (auto &I : instructions(F)) {
4878 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4879 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4880 continue;
4881 MDLoader->setStripTBAA(true);
4882 stripTBAA(F->getParent());
4886 // Bring in any functions that this function forward-referenced via
4887 // blockaddresses.
4888 return materializeForwardReferencedFunctions();
4891 Error BitcodeReader::materializeModule() {
4892 if (Error Err = materializeMetadata())
4893 return Err;
4895 // Promise to materialize all forward references.
4896 WillMaterializeAllForwardRefs = true;
4898 // Iterate over the module, deserializing any functions that are still on
4899 // disk.
4900 for (Function &F : *TheModule) {
4901 if (Error Err = materialize(&F))
4902 return Err;
4904 // At this point, if there are any function bodies, parse the rest of
4905 // the bits in the module past the last function block we have recorded
4906 // through either lazy scanning or the VST.
4907 if (LastFunctionBlockBit || NextUnreadBit)
4908 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4909 ? LastFunctionBlockBit
4910 : NextUnreadBit))
4911 return Err;
4913 // Check that all block address forward references got resolved (as we
4914 // promised above).
4915 if (!BasicBlockFwdRefs.empty())
4916 return error("Never resolved function from blockaddress");
4918 // Upgrade any intrinsic calls that slipped through (should not happen!) and
4919 // delete the old functions to clean up. We can't do this unless the entire
4920 // module is materialized because there could always be another function body
4921 // with calls to the old function.
4922 for (auto &I : UpgradedIntrinsics) {
4923 for (auto *U : I.first->users()) {
4924 if (CallInst *CI = dyn_cast<CallInst>(U))
4925 UpgradeIntrinsicCall(CI, I.second);
4927 if (!I.first->use_empty())
4928 I.first->replaceAllUsesWith(I.second);
4929 I.first->eraseFromParent();
4931 UpgradedIntrinsics.clear();
4932 // Do the same for remangled intrinsics
4933 for (auto &I : RemangledIntrinsics) {
4934 I.first->replaceAllUsesWith(I.second);
4935 I.first->eraseFromParent();
4937 RemangledIntrinsics.clear();
4939 UpgradeDebugInfo(*TheModule);
4941 UpgradeModuleFlags(*TheModule);
4943 UpgradeRetainReleaseMarker(*TheModule);
4945 return Error::success();
4948 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4949 return IdentifiedStructTypes;
4952 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4953 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4954 StringRef ModulePath, unsigned ModuleId)
4955 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4956 ModulePath(ModulePath), ModuleId(ModuleId) {}
4958 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4959 TheIndex.addModule(ModulePath, ModuleId);
4962 ModuleSummaryIndex::ModuleInfo *
4963 ModuleSummaryIndexBitcodeReader::getThisModule() {
4964 return TheIndex.getModule(ModulePath);
4967 std::pair<ValueInfo, GlobalValue::GUID>
4968 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4969 auto VGI = ValueIdToValueInfoMap[ValueId];
4970 assert(VGI.first);
4971 return VGI;
4974 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4975 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4976 StringRef SourceFileName) {
4977 std::string GlobalId =
4978 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4979 auto ValueGUID = GlobalValue::getGUID(GlobalId);
4980 auto OriginalNameID = ValueGUID;
4981 if (GlobalValue::isLocalLinkage(Linkage))
4982 OriginalNameID = GlobalValue::getGUID(ValueName);
4983 if (PrintSummaryGUIDs)
4984 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4985 << ValueName << "\n";
4987 // UseStrtab is false for legacy summary formats and value names are
4988 // created on stack. In that case we save the name in a string saver in
4989 // the index so that the value name can be recorded.
4990 ValueIdToValueInfoMap[ValueID] = std::make_pair(
4991 TheIndex.getOrInsertValueInfo(
4992 ValueGUID,
4993 UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
4994 OriginalNameID);
4997 // Specialized value symbol table parser used when reading module index
4998 // blocks where we don't actually create global values. The parsed information
4999 // is saved in the bitcode reader for use when later parsing summaries.
5000 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5001 uint64_t Offset,
5002 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5003 // With a strtab the VST is not required to parse the summary.
5004 if (UseStrtab)
5005 return Error::success();
5007 assert(Offset > 0 && "Expected non-zero VST offset");
5008 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5010 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5011 return error("Invalid record");
5013 SmallVector<uint64_t, 64> Record;
5015 // Read all the records for this value table.
5016 SmallString<128> ValueName;
5018 while (true) {
5019 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5021 switch (Entry.Kind) {
5022 case BitstreamEntry::SubBlock: // Handled for us already.
5023 case BitstreamEntry::Error:
5024 return error("Malformed block");
5025 case BitstreamEntry::EndBlock:
5026 // Done parsing VST, jump back to wherever we came from.
5027 Stream.JumpToBit(CurrentBit);
5028 return Error::success();
5029 case BitstreamEntry::Record:
5030 // The interesting case.
5031 break;
5034 // Read a record.
5035 Record.clear();
5036 switch (Stream.readRecord(Entry.ID, Record)) {
5037 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5038 break;
5039 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5040 if (convertToString(Record, 1, ValueName))
5041 return error("Invalid record");
5042 unsigned ValueID = Record[0];
5043 assert(!SourceFileName.empty());
5044 auto VLI = ValueIdToLinkageMap.find(ValueID);
5045 assert(VLI != ValueIdToLinkageMap.end() &&
5046 "No linkage found for VST entry?");
5047 auto Linkage = VLI->second;
5048 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5049 ValueName.clear();
5050 break;
5052 case bitc::VST_CODE_FNENTRY: {
5053 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5054 if (convertToString(Record, 2, ValueName))
5055 return error("Invalid record");
5056 unsigned ValueID = Record[0];
5057 assert(!SourceFileName.empty());
5058 auto VLI = ValueIdToLinkageMap.find(ValueID);
5059 assert(VLI != ValueIdToLinkageMap.end() &&
5060 "No linkage found for VST entry?");
5061 auto Linkage = VLI->second;
5062 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5063 ValueName.clear();
5064 break;
5066 case bitc::VST_CODE_COMBINED_ENTRY: {
5067 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5068 unsigned ValueID = Record[0];
5069 GlobalValue::GUID RefGUID = Record[1];
5070 // The "original name", which is the second value of the pair will be
5071 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5072 ValueIdToValueInfoMap[ValueID] =
5073 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5074 break;
5080 // Parse just the blocks needed for building the index out of the module.
5081 // At the end of this routine the module Index is populated with a map
5082 // from global value id to GlobalValueSummary objects.
5083 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5084 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5085 return error("Invalid record");
5087 SmallVector<uint64_t, 64> Record;
5088 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5089 unsigned ValueId = 0;
5091 // Read the index for this module.
5092 while (true) {
5093 BitstreamEntry Entry = Stream.advance();
5095 switch (Entry.Kind) {
5096 case BitstreamEntry::Error:
5097 return error("Malformed block");
5098 case BitstreamEntry::EndBlock:
5099 return Error::success();
5101 case BitstreamEntry::SubBlock:
5102 switch (Entry.ID) {
5103 default: // Skip unknown content.
5104 if (Stream.SkipBlock())
5105 return error("Invalid record");
5106 break;
5107 case bitc::BLOCKINFO_BLOCK_ID:
5108 // Need to parse these to get abbrev ids (e.g. for VST)
5109 if (readBlockInfo())
5110 return error("Malformed block");
5111 break;
5112 case bitc::VALUE_SYMTAB_BLOCK_ID:
5113 // Should have been parsed earlier via VSTOffset, unless there
5114 // is no summary section.
5115 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5116 !SeenGlobalValSummary) &&
5117 "Expected early VST parse via VSTOffset record");
5118 if (Stream.SkipBlock())
5119 return error("Invalid record");
5120 break;
5121 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5122 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5123 // Add the module if it is a per-module index (has a source file name).
5124 if (!SourceFileName.empty())
5125 addThisModule();
5126 assert(!SeenValueSymbolTable &&
5127 "Already read VST when parsing summary block?");
5128 // We might not have a VST if there were no values in the
5129 // summary. An empty summary block generated when we are
5130 // performing ThinLTO compiles so we don't later invoke
5131 // the regular LTO process on them.
5132 if (VSTOffset > 0) {
5133 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5134 return Err;
5135 SeenValueSymbolTable = true;
5137 SeenGlobalValSummary = true;
5138 if (Error Err = parseEntireSummary(Entry.ID))
5139 return Err;
5140 break;
5141 case bitc::MODULE_STRTAB_BLOCK_ID:
5142 if (Error Err = parseModuleStringTable())
5143 return Err;
5144 break;
5146 continue;
5148 case BitstreamEntry::Record: {
5149 Record.clear();
5150 auto BitCode = Stream.readRecord(Entry.ID, Record);
5151 switch (BitCode) {
5152 default:
5153 break; // Default behavior, ignore unknown content.
5154 case bitc::MODULE_CODE_VERSION: {
5155 if (Error Err = parseVersionRecord(Record).takeError())
5156 return Err;
5157 break;
5159 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5160 case bitc::MODULE_CODE_SOURCE_FILENAME: {
5161 SmallString<128> ValueName;
5162 if (convertToString(Record, 0, ValueName))
5163 return error("Invalid record");
5164 SourceFileName = ValueName.c_str();
5165 break;
5167 /// MODULE_CODE_HASH: [5*i32]
5168 case bitc::MODULE_CODE_HASH: {
5169 if (Record.size() != 5)
5170 return error("Invalid hash length " + Twine(Record.size()).str());
5171 auto &Hash = getThisModule()->second.second;
5172 int Pos = 0;
5173 for (auto &Val : Record) {
5174 assert(!(Val >> 32) && "Unexpected high bits set");
5175 Hash[Pos++] = Val;
5177 break;
5179 /// MODULE_CODE_VSTOFFSET: [offset]
5180 case bitc::MODULE_CODE_VSTOFFSET:
5181 if (Record.size() < 1)
5182 return error("Invalid record");
5183 // Note that we subtract 1 here because the offset is relative to one
5184 // word before the start of the identification or module block, which
5185 // was historically always the start of the regular bitcode header.
5186 VSTOffset = Record[0] - 1;
5187 break;
5188 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5189 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5190 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5191 // v2: [strtab offset, strtab size, v1]
5192 case bitc::MODULE_CODE_GLOBALVAR:
5193 case bitc::MODULE_CODE_FUNCTION:
5194 case bitc::MODULE_CODE_ALIAS: {
5195 StringRef Name;
5196 ArrayRef<uint64_t> GVRecord;
5197 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5198 if (GVRecord.size() <= 3)
5199 return error("Invalid record");
5200 uint64_t RawLinkage = GVRecord[3];
5201 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5202 if (!UseStrtab) {
5203 ValueIdToLinkageMap[ValueId++] = Linkage;
5204 break;
5207 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5208 break;
5212 continue;
5217 std::vector<ValueInfo>
5218 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5219 std::vector<ValueInfo> Ret;
5220 Ret.reserve(Record.size());
5221 for (uint64_t RefValueId : Record)
5222 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5223 return Ret;
5226 std::vector<FunctionSummary::EdgeTy>
5227 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5228 bool IsOldProfileFormat,
5229 bool HasProfile, bool HasRelBF) {
5230 std::vector<FunctionSummary::EdgeTy> Ret;
5231 Ret.reserve(Record.size());
5232 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5233 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5234 uint64_t RelBF = 0;
5235 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5236 if (IsOldProfileFormat) {
5237 I += 1; // Skip old callsitecount field
5238 if (HasProfile)
5239 I += 1; // Skip old profilecount field
5240 } else if (HasProfile)
5241 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5242 else if (HasRelBF)
5243 RelBF = Record[++I];
5244 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5246 return Ret;
5249 static void
5250 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5251 WholeProgramDevirtResolution &Wpd) {
5252 uint64_t ArgNum = Record[Slot++];
5253 WholeProgramDevirtResolution::ByArg &B =
5254 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5255 Slot += ArgNum;
5257 B.TheKind =
5258 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5259 B.Info = Record[Slot++];
5260 B.Byte = Record[Slot++];
5261 B.Bit = Record[Slot++];
5264 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5265 StringRef Strtab, size_t &Slot,
5266 TypeIdSummary &TypeId) {
5267 uint64_t Id = Record[Slot++];
5268 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5270 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5271 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5272 static_cast<size_t>(Record[Slot + 1])};
5273 Slot += 2;
5275 uint64_t ResByArgNum = Record[Slot++];
5276 for (uint64_t I = 0; I != ResByArgNum; ++I)
5277 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5280 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5281 StringRef Strtab,
5282 ModuleSummaryIndex &TheIndex) {
5283 size_t Slot = 0;
5284 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5285 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5286 Slot += 2;
5288 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5289 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5290 TypeId.TTRes.AlignLog2 = Record[Slot++];
5291 TypeId.TTRes.SizeM1 = Record[Slot++];
5292 TypeId.TTRes.BitMask = Record[Slot++];
5293 TypeId.TTRes.InlineBits = Record[Slot++];
5295 while (Slot < Record.size())
5296 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5299 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5300 // Read-only refs are in the end of the refs list.
5301 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5302 Refs[RefNo].setReadOnly();
5305 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5306 // objects in the index.
5307 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5308 if (Stream.EnterSubBlock(ID))
5309 return error("Invalid record");
5310 SmallVector<uint64_t, 64> Record;
5312 // Parse version
5314 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5315 if (Entry.Kind != BitstreamEntry::Record)
5316 return error("Invalid Summary Block: record for version expected");
5317 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5318 return error("Invalid Summary Block: version expected");
5320 const uint64_t Version = Record[0];
5321 const bool IsOldProfileFormat = Version == 1;
5322 if (Version < 1 || Version > 6)
5323 return error("Invalid summary version " + Twine(Version) +
5324 ". Version should be in the range [1-6].");
5325 Record.clear();
5327 // Keep around the last seen summary to be used when we see an optional
5328 // "OriginalName" attachement.
5329 GlobalValueSummary *LastSeenSummary = nullptr;
5330 GlobalValue::GUID LastSeenGUID = 0;
5332 // We can expect to see any number of type ID information records before
5333 // each function summary records; these variables store the information
5334 // collected so far so that it can be used to create the summary object.
5335 std::vector<GlobalValue::GUID> PendingTypeTests;
5336 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5337 PendingTypeCheckedLoadVCalls;
5338 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5339 PendingTypeCheckedLoadConstVCalls;
5341 while (true) {
5342 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5344 switch (Entry.Kind) {
5345 case BitstreamEntry::SubBlock: // Handled for us already.
5346 case BitstreamEntry::Error:
5347 return error("Malformed block");
5348 case BitstreamEntry::EndBlock:
5349 return Error::success();
5350 case BitstreamEntry::Record:
5351 // The interesting case.
5352 break;
5355 // Read a record. The record format depends on whether this
5356 // is a per-module index or a combined index file. In the per-module
5357 // case the records contain the associated value's ID for correlation
5358 // with VST entries. In the combined index the correlation is done
5359 // via the bitcode offset of the summary records (which were saved
5360 // in the combined index VST entries). The records also contain
5361 // information used for ThinLTO renaming and importing.
5362 Record.clear();
5363 auto BitCode = Stream.readRecord(Entry.ID, Record);
5364 switch (BitCode) {
5365 default: // Default behavior: ignore.
5366 break;
5367 case bitc::FS_FLAGS: { // [flags]
5368 uint64_t Flags = Record[0];
5369 // Scan flags.
5370 assert(Flags <= 0x1f && "Unexpected bits in flag");
5372 // 1 bit: WithGlobalValueDeadStripping flag.
5373 // Set on combined index only.
5374 if (Flags & 0x1)
5375 TheIndex.setWithGlobalValueDeadStripping();
5376 // 1 bit: SkipModuleByDistributedBackend flag.
5377 // Set on combined index only.
5378 if (Flags & 0x2)
5379 TheIndex.setSkipModuleByDistributedBackend();
5380 // 1 bit: HasSyntheticEntryCounts flag.
5381 // Set on combined index only.
5382 if (Flags & 0x4)
5383 TheIndex.setHasSyntheticEntryCounts();
5384 // 1 bit: DisableSplitLTOUnit flag.
5385 // Set on per module indexes. It is up to the client to validate
5386 // the consistency of this flag across modules being linked.
5387 if (Flags & 0x8)
5388 TheIndex.setEnableSplitLTOUnit();
5389 // 1 bit: PartiallySplitLTOUnits flag.
5390 // Set on combined index only.
5391 if (Flags & 0x10)
5392 TheIndex.setPartiallySplitLTOUnits();
5393 break;
5395 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5396 uint64_t ValueID = Record[0];
5397 GlobalValue::GUID RefGUID = Record[1];
5398 ValueIdToValueInfoMap[ValueID] =
5399 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5400 break;
5402 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5403 // numrefs x valueid, n x (valueid)]
5404 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5405 // numrefs x valueid,
5406 // n x (valueid, hotness)]
5407 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5408 // numrefs x valueid,
5409 // n x (valueid, relblockfreq)]
5410 case bitc::FS_PERMODULE:
5411 case bitc::FS_PERMODULE_RELBF:
5412 case bitc::FS_PERMODULE_PROFILE: {
5413 unsigned ValueID = Record[0];
5414 uint64_t RawFlags = Record[1];
5415 unsigned InstCount = Record[2];
5416 uint64_t RawFunFlags = 0;
5417 unsigned NumRefs = Record[3];
5418 unsigned NumImmutableRefs = 0;
5419 int RefListStartIndex = 4;
5420 if (Version >= 4) {
5421 RawFunFlags = Record[3];
5422 NumRefs = Record[4];
5423 RefListStartIndex = 5;
5424 if (Version >= 5) {
5425 NumImmutableRefs = Record[5];
5426 RefListStartIndex = 6;
5430 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5431 // The module path string ref set in the summary must be owned by the
5432 // index's module string table. Since we don't have a module path
5433 // string table section in the per-module index, we create a single
5434 // module path string table entry with an empty (0) ID to take
5435 // ownership.
5436 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5437 assert(Record.size() >= RefListStartIndex + NumRefs &&
5438 "Record size inconsistent with number of references");
5439 std::vector<ValueInfo> Refs = makeRefList(
5440 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5441 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5442 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5443 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5444 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5445 IsOldProfileFormat, HasProfile, HasRelBF);
5446 setImmutableRefs(Refs, NumImmutableRefs);
5447 auto FS = llvm::make_unique<FunctionSummary>(
5448 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5449 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5450 std::move(PendingTypeTestAssumeVCalls),
5451 std::move(PendingTypeCheckedLoadVCalls),
5452 std::move(PendingTypeTestAssumeConstVCalls),
5453 std::move(PendingTypeCheckedLoadConstVCalls));
5454 PendingTypeTests.clear();
5455 PendingTypeTestAssumeVCalls.clear();
5456 PendingTypeCheckedLoadVCalls.clear();
5457 PendingTypeTestAssumeConstVCalls.clear();
5458 PendingTypeCheckedLoadConstVCalls.clear();
5459 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5460 FS->setModulePath(getThisModule()->first());
5461 FS->setOriginalName(VIAndOriginalGUID.second);
5462 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5463 break;
5465 // FS_ALIAS: [valueid, flags, valueid]
5466 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5467 // they expect all aliasee summaries to be available.
5468 case bitc::FS_ALIAS: {
5469 unsigned ValueID = Record[0];
5470 uint64_t RawFlags = Record[1];
5471 unsigned AliaseeID = Record[2];
5472 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5473 auto AS = llvm::make_unique<AliasSummary>(Flags);
5474 // The module path string ref set in the summary must be owned by the
5475 // index's module string table. Since we don't have a module path
5476 // string table section in the per-module index, we create a single
5477 // module path string table entry with an empty (0) ID to take
5478 // ownership.
5479 AS->setModulePath(getThisModule()->first());
5481 GlobalValue::GUID AliaseeGUID =
5482 getValueInfoFromValueId(AliaseeID).first.getGUID();
5483 auto AliaseeInModule =
5484 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5485 if (!AliaseeInModule)
5486 return error("Alias expects aliasee summary to be parsed");
5487 AS->setAliasee(AliaseeInModule);
5488 AS->setAliaseeGUID(AliaseeGUID);
5490 auto GUID = getValueInfoFromValueId(ValueID);
5491 AS->setOriginalName(GUID.second);
5492 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5493 break;
5495 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5496 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5497 unsigned ValueID = Record[0];
5498 uint64_t RawFlags = Record[1];
5499 unsigned RefArrayStart = 2;
5500 GlobalVarSummary::GVarFlags GVF;
5501 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5502 if (Version >= 5) {
5503 GVF = getDecodedGVarFlags(Record[2]);
5504 RefArrayStart = 3;
5506 std::vector<ValueInfo> Refs =
5507 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5508 auto FS =
5509 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5510 FS->setModulePath(getThisModule()->first());
5511 auto GUID = getValueInfoFromValueId(ValueID);
5512 FS->setOriginalName(GUID.second);
5513 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5514 break;
5516 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5517 // numrefs x valueid, n x (valueid)]
5518 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5519 // numrefs x valueid, n x (valueid, hotness)]
5520 case bitc::FS_COMBINED:
5521 case bitc::FS_COMBINED_PROFILE: {
5522 unsigned ValueID = Record[0];
5523 uint64_t ModuleId = Record[1];
5524 uint64_t RawFlags = Record[2];
5525 unsigned InstCount = Record[3];
5526 uint64_t RawFunFlags = 0;
5527 uint64_t EntryCount = 0;
5528 unsigned NumRefs = Record[4];
5529 unsigned NumImmutableRefs = 0;
5530 int RefListStartIndex = 5;
5532 if (Version >= 4) {
5533 RawFunFlags = Record[4];
5534 RefListStartIndex = 6;
5535 size_t NumRefsIndex = 5;
5536 if (Version >= 5) {
5537 RefListStartIndex = 7;
5538 if (Version >= 6) {
5539 NumRefsIndex = 6;
5540 EntryCount = Record[5];
5541 RefListStartIndex = 8;
5543 NumImmutableRefs = Record[RefListStartIndex - 1];
5545 NumRefs = Record[NumRefsIndex];
5548 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5549 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5550 assert(Record.size() >= RefListStartIndex + NumRefs &&
5551 "Record size inconsistent with number of references");
5552 std::vector<ValueInfo> Refs = makeRefList(
5553 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5554 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5555 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5556 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5557 IsOldProfileFormat, HasProfile, false);
5558 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5559 setImmutableRefs(Refs, NumImmutableRefs);
5560 auto FS = llvm::make_unique<FunctionSummary>(
5561 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5562 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5563 std::move(PendingTypeTestAssumeVCalls),
5564 std::move(PendingTypeCheckedLoadVCalls),
5565 std::move(PendingTypeTestAssumeConstVCalls),
5566 std::move(PendingTypeCheckedLoadConstVCalls));
5567 PendingTypeTests.clear();
5568 PendingTypeTestAssumeVCalls.clear();
5569 PendingTypeCheckedLoadVCalls.clear();
5570 PendingTypeTestAssumeConstVCalls.clear();
5571 PendingTypeCheckedLoadConstVCalls.clear();
5572 LastSeenSummary = FS.get();
5573 LastSeenGUID = VI.getGUID();
5574 FS->setModulePath(ModuleIdMap[ModuleId]);
5575 TheIndex.addGlobalValueSummary(VI, std::move(FS));
5576 break;
5578 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5579 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5580 // they expect all aliasee summaries to be available.
5581 case bitc::FS_COMBINED_ALIAS: {
5582 unsigned ValueID = Record[0];
5583 uint64_t ModuleId = Record[1];
5584 uint64_t RawFlags = Record[2];
5585 unsigned AliaseeValueId = Record[3];
5586 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5587 auto AS = llvm::make_unique<AliasSummary>(Flags);
5588 LastSeenSummary = AS.get();
5589 AS->setModulePath(ModuleIdMap[ModuleId]);
5591 auto AliaseeGUID =
5592 getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5593 auto AliaseeInModule =
5594 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5595 AS->setAliasee(AliaseeInModule);
5596 AS->setAliaseeGUID(AliaseeGUID);
5598 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5599 LastSeenGUID = VI.getGUID();
5600 TheIndex.addGlobalValueSummary(VI, std::move(AS));
5601 break;
5603 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5604 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5605 unsigned ValueID = Record[0];
5606 uint64_t ModuleId = Record[1];
5607 uint64_t RawFlags = Record[2];
5608 unsigned RefArrayStart = 3;
5609 GlobalVarSummary::GVarFlags GVF;
5610 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5611 if (Version >= 5) {
5612 GVF = getDecodedGVarFlags(Record[3]);
5613 RefArrayStart = 4;
5615 std::vector<ValueInfo> Refs =
5616 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5617 auto FS =
5618 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5619 LastSeenSummary = FS.get();
5620 FS->setModulePath(ModuleIdMap[ModuleId]);
5621 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5622 LastSeenGUID = VI.getGUID();
5623 TheIndex.addGlobalValueSummary(VI, std::move(FS));
5624 break;
5626 // FS_COMBINED_ORIGINAL_NAME: [original_name]
5627 case bitc::FS_COMBINED_ORIGINAL_NAME: {
5628 uint64_t OriginalName = Record[0];
5629 if (!LastSeenSummary)
5630 return error("Name attachment that does not follow a combined record");
5631 LastSeenSummary->setOriginalName(OriginalName);
5632 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5633 // Reset the LastSeenSummary
5634 LastSeenSummary = nullptr;
5635 LastSeenGUID = 0;
5636 break;
5638 case bitc::FS_TYPE_TESTS:
5639 assert(PendingTypeTests.empty());
5640 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5641 Record.end());
5642 break;
5644 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5645 assert(PendingTypeTestAssumeVCalls.empty());
5646 for (unsigned I = 0; I != Record.size(); I += 2)
5647 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5648 break;
5650 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5651 assert(PendingTypeCheckedLoadVCalls.empty());
5652 for (unsigned I = 0; I != Record.size(); I += 2)
5653 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5654 break;
5656 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5657 PendingTypeTestAssumeConstVCalls.push_back(
5658 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5659 break;
5661 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5662 PendingTypeCheckedLoadConstVCalls.push_back(
5663 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5664 break;
5666 case bitc::FS_CFI_FUNCTION_DEFS: {
5667 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5668 for (unsigned I = 0; I != Record.size(); I += 2)
5669 CfiFunctionDefs.insert(
5670 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5671 break;
5674 case bitc::FS_CFI_FUNCTION_DECLS: {
5675 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5676 for (unsigned I = 0; I != Record.size(); I += 2)
5677 CfiFunctionDecls.insert(
5678 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5679 break;
5682 case bitc::FS_TYPE_ID:
5683 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5684 break;
5687 llvm_unreachable("Exit infinite loop");
5690 // Parse the module string table block into the Index.
5691 // This populates the ModulePathStringTable map in the index.
5692 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5693 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5694 return error("Invalid record");
5696 SmallVector<uint64_t, 64> Record;
5698 SmallString<128> ModulePath;
5699 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5701 while (true) {
5702 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5704 switch (Entry.Kind) {
5705 case BitstreamEntry::SubBlock: // Handled for us already.
5706 case BitstreamEntry::Error:
5707 return error("Malformed block");
5708 case BitstreamEntry::EndBlock:
5709 return Error::success();
5710 case BitstreamEntry::Record:
5711 // The interesting case.
5712 break;
5715 Record.clear();
5716 switch (Stream.readRecord(Entry.ID, Record)) {
5717 default: // Default behavior: ignore.
5718 break;
5719 case bitc::MST_CODE_ENTRY: {
5720 // MST_ENTRY: [modid, namechar x N]
5721 uint64_t ModuleId = Record[0];
5723 if (convertToString(Record, 1, ModulePath))
5724 return error("Invalid record");
5726 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5727 ModuleIdMap[ModuleId] = LastSeenModule->first();
5729 ModulePath.clear();
5730 break;
5732 /// MST_CODE_HASH: [5*i32]
5733 case bitc::MST_CODE_HASH: {
5734 if (Record.size() != 5)
5735 return error("Invalid hash length " + Twine(Record.size()).str());
5736 if (!LastSeenModule)
5737 return error("Invalid hash that does not follow a module path");
5738 int Pos = 0;
5739 for (auto &Val : Record) {
5740 assert(!(Val >> 32) && "Unexpected high bits set");
5741 LastSeenModule->second.second[Pos++] = Val;
5743 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5744 LastSeenModule = nullptr;
5745 break;
5749 llvm_unreachable("Exit infinite loop");
5752 namespace {
5754 // FIXME: This class is only here to support the transition to llvm::Error. It
5755 // will be removed once this transition is complete. Clients should prefer to
5756 // deal with the Error value directly, rather than converting to error_code.
5757 class BitcodeErrorCategoryType : public std::error_category {
5758 const char *name() const noexcept override {
5759 return "llvm.bitcode";
5762 std::string message(int IE) const override {
5763 BitcodeError E = static_cast<BitcodeError>(IE);
5764 switch (E) {
5765 case BitcodeError::CorruptedBitcode:
5766 return "Corrupted bitcode";
5768 llvm_unreachable("Unknown error type!");
5772 } // end anonymous namespace
5774 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5776 const std::error_category &llvm::BitcodeErrorCategory() {
5777 return *ErrorCategory;
5780 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5781 unsigned Block, unsigned RecordID) {
5782 if (Stream.EnterSubBlock(Block))
5783 return error("Invalid record");
5785 StringRef Strtab;
5786 while (true) {
5787 BitstreamEntry Entry = Stream.advance();
5788 switch (Entry.Kind) {
5789 case BitstreamEntry::EndBlock:
5790 return Strtab;
5792 case BitstreamEntry::Error:
5793 return error("Malformed block");
5795 case BitstreamEntry::SubBlock:
5796 if (Stream.SkipBlock())
5797 return error("Malformed block");
5798 break;
5800 case BitstreamEntry::Record:
5801 StringRef Blob;
5802 SmallVector<uint64_t, 1> Record;
5803 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5804 Strtab = Blob;
5805 break;
5810 //===----------------------------------------------------------------------===//
5811 // External interface
5812 //===----------------------------------------------------------------------===//
5814 Expected<std::vector<BitcodeModule>>
5815 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5816 auto FOrErr = getBitcodeFileContents(Buffer);
5817 if (!FOrErr)
5818 return FOrErr.takeError();
5819 return std::move(FOrErr->Mods);
5822 Expected<BitcodeFileContents>
5823 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5824 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5825 if (!StreamOrErr)
5826 return StreamOrErr.takeError();
5827 BitstreamCursor &Stream = *StreamOrErr;
5829 BitcodeFileContents F;
5830 while (true) {
5831 uint64_t BCBegin = Stream.getCurrentByteNo();
5833 // We may be consuming bitcode from a client that leaves garbage at the end
5834 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5835 // the end that there cannot possibly be another module, stop looking.
5836 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5837 return F;
5839 BitstreamEntry Entry = Stream.advance();
5840 switch (Entry.Kind) {
5841 case BitstreamEntry::EndBlock:
5842 case BitstreamEntry::Error:
5843 return error("Malformed block");
5845 case BitstreamEntry::SubBlock: {
5846 uint64_t IdentificationBit = -1ull;
5847 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5848 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5849 if (Stream.SkipBlock())
5850 return error("Malformed block");
5852 Entry = Stream.advance();
5853 if (Entry.Kind != BitstreamEntry::SubBlock ||
5854 Entry.ID != bitc::MODULE_BLOCK_ID)
5855 return error("Malformed block");
5858 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5859 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5860 if (Stream.SkipBlock())
5861 return error("Malformed block");
5863 F.Mods.push_back({Stream.getBitcodeBytes().slice(
5864 BCBegin, Stream.getCurrentByteNo() - BCBegin),
5865 Buffer.getBufferIdentifier(), IdentificationBit,
5866 ModuleBit});
5867 continue;
5870 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5871 Expected<StringRef> Strtab =
5872 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5873 if (!Strtab)
5874 return Strtab.takeError();
5875 // This string table is used by every preceding bitcode module that does
5876 // not have its own string table. A bitcode file may have multiple
5877 // string tables if it was created by binary concatenation, for example
5878 // with "llvm-cat -b".
5879 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5880 if (!I->Strtab.empty())
5881 break;
5882 I->Strtab = *Strtab;
5884 // Similarly, the string table is used by every preceding symbol table;
5885 // normally there will be just one unless the bitcode file was created
5886 // by binary concatenation.
5887 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5888 F.StrtabForSymtab = *Strtab;
5889 continue;
5892 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5893 Expected<StringRef> SymtabOrErr =
5894 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5895 if (!SymtabOrErr)
5896 return SymtabOrErr.takeError();
5898 // We can expect the bitcode file to have multiple symbol tables if it
5899 // was created by binary concatenation. In that case we silently
5900 // ignore any subsequent symbol tables, which is fine because this is a
5901 // low level function. The client is expected to notice that the number
5902 // of modules in the symbol table does not match the number of modules
5903 // in the input file and regenerate the symbol table.
5904 if (F.Symtab.empty())
5905 F.Symtab = *SymtabOrErr;
5906 continue;
5909 if (Stream.SkipBlock())
5910 return error("Malformed block");
5911 continue;
5913 case BitstreamEntry::Record:
5914 Stream.skipRecord(Entry.ID);
5915 continue;
5920 /// Get a lazy one-at-time loading module from bitcode.
5922 /// This isn't always used in a lazy context. In particular, it's also used by
5923 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
5924 /// in forward-referenced functions from block address references.
5926 /// \param[in] MaterializeAll Set to \c true if we should materialize
5927 /// everything.
5928 Expected<std::unique_ptr<Module>>
5929 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5930 bool ShouldLazyLoadMetadata, bool IsImporting) {
5931 BitstreamCursor Stream(Buffer);
5933 std::string ProducerIdentification;
5934 if (IdentificationBit != -1ull) {
5935 Stream.JumpToBit(IdentificationBit);
5936 Expected<std::string> ProducerIdentificationOrErr =
5937 readIdentificationBlock(Stream);
5938 if (!ProducerIdentificationOrErr)
5939 return ProducerIdentificationOrErr.takeError();
5941 ProducerIdentification = *ProducerIdentificationOrErr;
5944 Stream.JumpToBit(ModuleBit);
5945 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5946 Context);
5948 std::unique_ptr<Module> M =
5949 llvm::make_unique<Module>(ModuleIdentifier, Context);
5950 M->setMaterializer(R);
5952 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5953 if (Error Err =
5954 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5955 return std::move(Err);
5957 if (MaterializeAll) {
5958 // Read in the entire module, and destroy the BitcodeReader.
5959 if (Error Err = M->materializeAll())
5960 return std::move(Err);
5961 } else {
5962 // Resolve forward references from blockaddresses.
5963 if (Error Err = R->materializeForwardReferencedFunctions())
5964 return std::move(Err);
5966 return std::move(M);
5969 Expected<std::unique_ptr<Module>>
5970 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5971 bool IsImporting) {
5972 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5975 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5976 // We don't use ModuleIdentifier here because the client may need to control the
5977 // module path used in the combined summary (e.g. when reading summaries for
5978 // regular LTO modules).
5979 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5980 StringRef ModulePath, uint64_t ModuleId) {
5981 BitstreamCursor Stream(Buffer);
5982 Stream.JumpToBit(ModuleBit);
5984 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5985 ModulePath, ModuleId);
5986 return R.parseModule();
5989 // Parse the specified bitcode buffer, returning the function info index.
5990 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5991 BitstreamCursor Stream(Buffer);
5992 Stream.JumpToBit(ModuleBit);
5994 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5995 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5996 ModuleIdentifier, 0);
5998 if (Error Err = R.parseModule())
5999 return std::move(Err);
6001 return std::move(Index);
6004 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6005 unsigned ID) {
6006 if (Stream.EnterSubBlock(ID))
6007 return error("Invalid record");
6008 SmallVector<uint64_t, 64> Record;
6010 while (true) {
6011 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6013 switch (Entry.Kind) {
6014 case BitstreamEntry::SubBlock: // Handled for us already.
6015 case BitstreamEntry::Error:
6016 return error("Malformed block");
6017 case BitstreamEntry::EndBlock:
6018 // If no flags record found, conservatively return true to mimic
6019 // behavior before this flag was added.
6020 return true;
6021 case BitstreamEntry::Record:
6022 // The interesting case.
6023 break;
6026 // Look for the FS_FLAGS record.
6027 Record.clear();
6028 auto BitCode = Stream.readRecord(Entry.ID, Record);
6029 switch (BitCode) {
6030 default: // Default behavior: ignore.
6031 break;
6032 case bitc::FS_FLAGS: { // [flags]
6033 uint64_t Flags = Record[0];
6034 // Scan flags.
6035 assert(Flags <= 0x1f && "Unexpected bits in flag");
6037 return Flags & 0x8;
6041 llvm_unreachable("Exit infinite loop");
6044 // Check if the given bitcode buffer contains a global value summary block.
6045 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6046 BitstreamCursor Stream(Buffer);
6047 Stream.JumpToBit(ModuleBit);
6049 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6050 return error("Invalid record");
6052 while (true) {
6053 BitstreamEntry Entry = Stream.advance();
6055 switch (Entry.Kind) {
6056 case BitstreamEntry::Error:
6057 return error("Malformed block");
6058 case BitstreamEntry::EndBlock:
6059 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6060 /*EnableSplitLTOUnit=*/false};
6062 case BitstreamEntry::SubBlock:
6063 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6064 Expected<bool> EnableSplitLTOUnit =
6065 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6066 if (!EnableSplitLTOUnit)
6067 return EnableSplitLTOUnit.takeError();
6068 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6069 *EnableSplitLTOUnit};
6072 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6073 Expected<bool> EnableSplitLTOUnit =
6074 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6075 if (!EnableSplitLTOUnit)
6076 return EnableSplitLTOUnit.takeError();
6077 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6078 *EnableSplitLTOUnit};
6081 // Ignore other sub-blocks.
6082 if (Stream.SkipBlock())
6083 return error("Malformed block");
6084 continue;
6086 case BitstreamEntry::Record:
6087 Stream.skipRecord(Entry.ID);
6088 continue;
6093 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6094 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6095 if (!MsOrErr)
6096 return MsOrErr.takeError();
6098 if (MsOrErr->size() != 1)
6099 return error("Expected a single module");
6101 return (*MsOrErr)[0];
6104 Expected<std::unique_ptr<Module>>
6105 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6106 bool ShouldLazyLoadMetadata, bool IsImporting) {
6107 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6108 if (!BM)
6109 return BM.takeError();
6111 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6114 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6115 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6116 bool ShouldLazyLoadMetadata, bool IsImporting) {
6117 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6118 IsImporting);
6119 if (MOrErr)
6120 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6121 return MOrErr;
6124 Expected<std::unique_ptr<Module>>
6125 BitcodeModule::parseModule(LLVMContext &Context) {
6126 return getModuleImpl(Context, true, false, false);
6127 // TODO: Restore the use-lists to the in-memory state when the bitcode was
6128 // written. We must defer until the Module has been fully materialized.
6131 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6132 LLVMContext &Context) {
6133 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6134 if (!BM)
6135 return BM.takeError();
6137 return BM->parseModule(Context);
6140 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6141 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6142 if (!StreamOrErr)
6143 return StreamOrErr.takeError();
6145 return readTriple(*StreamOrErr);
6148 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6149 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6150 if (!StreamOrErr)
6151 return StreamOrErr.takeError();
6153 return hasObjCCategory(*StreamOrErr);
6156 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6157 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6158 if (!StreamOrErr)
6159 return StreamOrErr.takeError();
6161 return readIdentificationCode(*StreamOrErr);
6164 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6165 ModuleSummaryIndex &CombinedIndex,
6166 uint64_t ModuleId) {
6167 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6168 if (!BM)
6169 return BM.takeError();
6171 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6174 Expected<std::unique_ptr<ModuleSummaryIndex>>
6175 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6176 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6177 if (!BM)
6178 return BM.takeError();
6180 return BM->getSummary();
6183 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6184 Expected<BitcodeModule> BM = getSingleModule(Buffer);
6185 if (!BM)
6186 return BM.takeError();
6188 return BM->getLTOInfo();
6191 Expected<std::unique_ptr<ModuleSummaryIndex>>
6192 llvm::getModuleSummaryIndexForFile(StringRef Path,
6193 bool IgnoreEmptyThinLTOIndexFile) {
6194 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6195 MemoryBuffer::getFileOrSTDIN(Path);
6196 if (!FileOrErr)
6197 return errorCodeToError(FileOrErr.getError());
6198 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6199 return nullptr;
6200 return getModuleSummaryIndex(**FileOrErr);