[Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
[llvm-core.git] / lib / AsmParser / LLParser.cpp
blob7a269efec754e0a99cb3ad01acbceb608f60d753
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
54 using namespace llvm;
56 static std::string getTypeString(Type *T) {
57 std::string Result;
58 raw_string_ostream Tmp(Result);
59 Tmp << *T;
60 return Tmp.str();
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65 // Prime the lexer.
66 Lex.Lex();
68 if (Context.shouldDiscardValueNames())
69 return Error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
74 ValidateEndOfIndex();
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78 const SlotMapping *Slots) {
79 restoreParsingState(Slots);
80 Lex.Lex();
82 Type *Ty = nullptr;
83 if (ParseType(Ty) || parseConstantValue(Ty, C))
84 return true;
85 if (Lex.getKind() != lltok::Eof)
86 return Error(Lex.getLoc(), "expected end of string");
87 return false;
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91 const SlotMapping *Slots) {
92 restoreParsingState(Slots);
93 Lex.Lex();
95 Read = 0;
96 SMLoc Start = Lex.getLoc();
97 Ty = nullptr;
98 if (ParseType(Ty))
99 return true;
100 SMLoc End = Lex.getLoc();
101 Read = End.getPointer() - Start.getPointer();
103 return false;
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107 if (!Slots)
108 return;
109 NumberedVals = Slots->GlobalValues;
110 NumberedMetadata = Slots->MetadataNodes;
111 for (const auto &I : Slots->NamedTypes)
112 NamedTypes.insert(
113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114 for (const auto &I : Slots->Types)
115 NumberedTypes.insert(
116 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122 if (!M)
123 return false;
124 // Handle any function attribute group forward references.
125 for (const auto &RAG : ForwardRefAttrGroups) {
126 Value *V = RAG.first;
127 const std::vector<unsigned> &Attrs = RAG.second;
128 AttrBuilder B;
130 for (const auto &Attr : Attrs)
131 B.merge(NumberedAttrBuilders[Attr]);
133 if (Function *Fn = dyn_cast<Function>(V)) {
134 AttributeList AS = Fn->getAttributes();
135 AttrBuilder FnAttrs(AS.getFnAttributes());
136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138 FnAttrs.merge(B);
140 // If the alignment was parsed as an attribute, move to the alignment
141 // field.
142 if (FnAttrs.hasAlignmentAttr()) {
143 Fn->setAlignment(MaybeAlign(FnAttrs.getAlignment()));
144 FnAttrs.removeAttribute(Attribute::Alignment);
147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148 AttributeSet::get(Context, FnAttrs));
149 Fn->setAttributes(AS);
150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151 AttributeList AS = CI->getAttributes();
152 AttrBuilder FnAttrs(AS.getFnAttributes());
153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154 FnAttrs.merge(B);
155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156 AttributeSet::get(Context, FnAttrs));
157 CI->setAttributes(AS);
158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159 AttributeList AS = II->getAttributes();
160 AttrBuilder FnAttrs(AS.getFnAttributes());
161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162 FnAttrs.merge(B);
163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164 AttributeSet::get(Context, FnAttrs));
165 II->setAttributes(AS);
166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167 AttributeList AS = CBI->getAttributes();
168 AttrBuilder FnAttrs(AS.getFnAttributes());
169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170 FnAttrs.merge(B);
171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172 AttributeSet::get(Context, FnAttrs));
173 CBI->setAttributes(AS);
174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175 AttrBuilder Attrs(GV->getAttributes());
176 Attrs.merge(B);
177 GV->setAttributes(AttributeSet::get(Context,Attrs));
178 } else {
179 llvm_unreachable("invalid object with forward attribute group reference");
183 // If there are entries in ForwardRefBlockAddresses at this point, the
184 // function was never defined.
185 if (!ForwardRefBlockAddresses.empty())
186 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187 "expected function name in blockaddress");
189 for (const auto &NT : NumberedTypes)
190 if (NT.second.second.isValid())
191 return Error(NT.second.second,
192 "use of undefined type '%" + Twine(NT.first) + "'");
194 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196 if (I->second.second.isValid())
197 return Error(I->second.second,
198 "use of undefined type named '" + I->getKey() + "'");
200 if (!ForwardRefComdats.empty())
201 return Error(ForwardRefComdats.begin()->second,
202 "use of undefined comdat '$" +
203 ForwardRefComdats.begin()->first + "'");
205 if (!ForwardRefVals.empty())
206 return Error(ForwardRefVals.begin()->second.second,
207 "use of undefined value '@" + ForwardRefVals.begin()->first +
208 "'");
210 if (!ForwardRefValIDs.empty())
211 return Error(ForwardRefValIDs.begin()->second.second,
212 "use of undefined value '@" +
213 Twine(ForwardRefValIDs.begin()->first) + "'");
215 if (!ForwardRefMDNodes.empty())
216 return Error(ForwardRefMDNodes.begin()->second.second,
217 "use of undefined metadata '!" +
218 Twine(ForwardRefMDNodes.begin()->first) + "'");
220 // Resolve metadata cycles.
221 for (auto &N : NumberedMetadata) {
222 if (N.second && !N.second->isResolved())
223 N.second->resolveCycles();
226 for (auto *Inst : InstsWithTBAATag) {
227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229 auto *UpgradedMD = UpgradeTBAANode(*MD);
230 if (MD != UpgradedMD)
231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
234 // Look for intrinsic functions and CallInst that need to be upgraded
235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
238 // Some types could be renamed during loading if several modules are
239 // loaded in the same LLVMContext (LTO scenario). In this case we should
240 // remangle intrinsics names as well.
241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242 Function *F = &*FI++;
243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244 F->replaceAllUsesWith(Remangled.getValue());
245 F->eraseFromParent();
249 if (UpgradeDebugInfo)
250 llvm::UpgradeDebugInfo(*M);
252 UpgradeModuleFlags(*M);
253 UpgradeSectionAttributes(*M);
255 if (!Slots)
256 return false;
257 // Initialize the slot mapping.
258 // Because by this point we've parsed and validated everything, we can "steal"
259 // the mapping from LLParser as it doesn't need it anymore.
260 Slots->GlobalValues = std::move(NumberedVals);
261 Slots->MetadataNodes = std::move(NumberedMetadata);
262 for (const auto &I : NamedTypes)
263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264 for (const auto &I : NumberedTypes)
265 Slots->Types.insert(std::make_pair(I.first, I.second.first));
267 return false;
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272 if (!Index)
273 return false;
275 if (!ForwardRefValueInfos.empty())
276 return Error(ForwardRefValueInfos.begin()->second.front().second,
277 "use of undefined summary '^" +
278 Twine(ForwardRefValueInfos.begin()->first) + "'");
280 if (!ForwardRefAliasees.empty())
281 return Error(ForwardRefAliasees.begin()->second.front().second,
282 "use of undefined summary '^" +
283 Twine(ForwardRefAliasees.begin()->first) + "'");
285 if (!ForwardRefTypeIds.empty())
286 return Error(ForwardRefTypeIds.begin()->second.front().second,
287 "use of undefined type id summary '^" +
288 Twine(ForwardRefTypeIds.begin()->first) + "'");
290 return false;
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
297 bool LLParser::ParseTopLevelEntities() {
298 // If there is no Module, then parse just the summary index entries.
299 if (!M) {
300 while (true) {
301 switch (Lex.getKind()) {
302 case lltok::Eof:
303 return false;
304 case lltok::SummaryID:
305 if (ParseSummaryEntry())
306 return true;
307 break;
308 case lltok::kw_source_filename:
309 if (ParseSourceFileName())
310 return true;
311 break;
312 default:
313 // Skip everything else
314 Lex.Lex();
318 while (true) {
319 switch (Lex.getKind()) {
320 default: return TokError("expected top-level entity");
321 case lltok::Eof: return false;
322 case lltok::kw_declare: if (ParseDeclare()) return true; break;
323 case lltok::kw_define: if (ParseDefine()) return true; break;
324 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
326 case lltok::kw_source_filename:
327 if (ParseSourceFileName())
328 return true;
329 break;
330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332 case lltok::LocalVar: if (ParseNamedType()) return true; break;
333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335 case lltok::ComdatVar: if (parseComdat()) return true; break;
336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337 case lltok::SummaryID:
338 if (ParseSummaryEntry())
339 return true;
340 break;
341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344 case lltok::kw_uselistorder_bb:
345 if (ParseUseListOrderBB())
346 return true;
347 break;
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355 assert(Lex.getKind() == lltok::kw_module);
356 Lex.Lex();
358 std::string AsmStr;
359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360 ParseStringConstant(AsmStr)) return true;
362 M->appendModuleInlineAsm(AsmStr);
363 return false;
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370 assert(Lex.getKind() == lltok::kw_target);
371 std::string Str;
372 switch (Lex.Lex()) {
373 default: return TokError("unknown target property");
374 case lltok::kw_triple:
375 Lex.Lex();
376 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377 ParseStringConstant(Str))
378 return true;
379 M->setTargetTriple(Str);
380 return false;
381 case lltok::kw_datalayout:
382 Lex.Lex();
383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384 ParseStringConstant(Str))
385 return true;
386 if (DataLayoutStr.empty())
387 M->setDataLayout(Str);
388 return false;
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395 assert(Lex.getKind() == lltok::kw_source_filename);
396 Lex.Lex();
397 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398 ParseStringConstant(SourceFileName))
399 return true;
400 if (M)
401 M->setSourceFileName(SourceFileName);
402 return false;
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410 assert(Lex.getKind() == lltok::kw_deplibs);
411 Lex.Lex();
412 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414 return true;
416 if (EatIfPresent(lltok::rsquare))
417 return false;
419 do {
420 std::string Str;
421 if (ParseStringConstant(Str)) return true;
422 } while (EatIfPresent(lltok::comma));
424 return ParseToken(lltok::rsquare, "expected ']' at end of list");
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430 LocTy TypeLoc = Lex.getLoc();
431 unsigned TypeID = Lex.getUIntVal();
432 Lex.Lex(); // eat LocalVarID;
434 if (ParseToken(lltok::equal, "expected '=' after name") ||
435 ParseToken(lltok::kw_type, "expected 'type' after '='"))
436 return true;
438 Type *Result = nullptr;
439 if (ParseStructDefinition(TypeLoc, "",
440 NumberedTypes[TypeID], Result)) return true;
442 if (!isa<StructType>(Result)) {
443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444 if (Entry.first)
445 return Error(TypeLoc, "non-struct types may not be recursive");
446 Entry.first = Result;
447 Entry.second = SMLoc();
450 return false;
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456 std::string Name = Lex.getStrVal();
457 LocTy NameLoc = Lex.getLoc();
458 Lex.Lex(); // eat LocalVar.
460 if (ParseToken(lltok::equal, "expected '=' after name") ||
461 ParseToken(lltok::kw_type, "expected 'type' after name"))
462 return true;
464 Type *Result = nullptr;
465 if (ParseStructDefinition(NameLoc, Name,
466 NamedTypes[Name], Result)) return true;
468 if (!isa<StructType>(Result)) {
469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470 if (Entry.first)
471 return Error(NameLoc, "non-struct types may not be recursive");
472 Entry.first = Result;
473 Entry.second = SMLoc();
476 return false;
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482 assert(Lex.getKind() == lltok::kw_declare);
483 Lex.Lex();
485 std::vector<std::pair<unsigned, MDNode *>> MDs;
486 while (Lex.getKind() == lltok::MetadataVar) {
487 unsigned MDK;
488 MDNode *N;
489 if (ParseMetadataAttachment(MDK, N))
490 return true;
491 MDs.push_back({MDK, N});
494 Function *F;
495 if (ParseFunctionHeader(F, false))
496 return true;
497 for (auto &MD : MDs)
498 F->addMetadata(MD.first, *MD.second);
499 return false;
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505 assert(Lex.getKind() == lltok::kw_define);
506 Lex.Lex();
508 Function *F;
509 return ParseFunctionHeader(F, true) ||
510 ParseOptionalFunctionMetadata(*F) ||
511 ParseFunctionBody(*F);
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518 if (Lex.getKind() == lltok::kw_constant)
519 IsConstant = true;
520 else if (Lex.getKind() == lltok::kw_global)
521 IsConstant = false;
522 else {
523 IsConstant = false;
524 return TokError("expected 'global' or 'constant'");
526 Lex.Lex();
527 return false;
530 bool LLParser::ParseOptionalUnnamedAddr(
531 GlobalVariable::UnnamedAddr &UnnamedAddr) {
532 if (EatIfPresent(lltok::kw_unnamed_addr))
533 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536 else
537 UnnamedAddr = GlobalValue::UnnamedAddr::None;
538 return false;
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551 unsigned VarID = NumberedVals.size();
552 std::string Name;
553 LocTy NameLoc = Lex.getLoc();
555 // Handle the GlobalID form.
556 if (Lex.getKind() == lltok::GlobalID) {
557 if (Lex.getUIntVal() != VarID)
558 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559 Twine(VarID) + "'");
560 Lex.Lex(); // eat GlobalID;
562 if (ParseToken(lltok::equal, "expected '=' after name"))
563 return true;
566 bool HasLinkage;
567 unsigned Linkage, Visibility, DLLStorageClass;
568 bool DSOLocal;
569 GlobalVariable::ThreadLocalMode TLM;
570 GlobalVariable::UnnamedAddr UnnamedAddr;
571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572 DSOLocal) ||
573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574 return true;
576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590 assert(Lex.getKind() == lltok::GlobalVar);
591 LocTy NameLoc = Lex.getLoc();
592 std::string Name = Lex.getStrVal();
593 Lex.Lex();
595 bool HasLinkage;
596 unsigned Linkage, Visibility, DLLStorageClass;
597 bool DSOLocal;
598 GlobalVariable::ThreadLocalMode TLM;
599 GlobalVariable::UnnamedAddr UnnamedAddr;
600 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602 DSOLocal) ||
603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604 return true;
606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 bool LLParser::parseComdat() {
615 assert(Lex.getKind() == lltok::ComdatVar);
616 std::string Name = Lex.getStrVal();
617 LocTy NameLoc = Lex.getLoc();
618 Lex.Lex();
620 if (ParseToken(lltok::equal, "expected '=' here"))
621 return true;
623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624 return TokError("expected comdat type");
626 Comdat::SelectionKind SK;
627 switch (Lex.getKind()) {
628 default:
629 return TokError("unknown selection kind");
630 case lltok::kw_any:
631 SK = Comdat::Any;
632 break;
633 case lltok::kw_exactmatch:
634 SK = Comdat::ExactMatch;
635 break;
636 case lltok::kw_largest:
637 SK = Comdat::Largest;
638 break;
639 case lltok::kw_noduplicates:
640 SK = Comdat::NoDuplicates;
641 break;
642 case lltok::kw_samesize:
643 SK = Comdat::SameSize;
644 break;
646 Lex.Lex();
648 // See if the comdat was forward referenced, if so, use the comdat.
649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
654 Comdat *C;
655 if (I != ComdatSymTab.end())
656 C = &I->second;
657 else
658 C = M->getOrInsertComdat(Name);
659 C->setSelectionKind(SK);
661 return false;
664 // MDString:
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667 std::string Str;
668 if (ParseStringConstant(Str)) return true;
669 Result = MDString::get(Context, Str);
670 return false;
673 // MDNode:
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676 // !{ ..., !42, ... }
677 LocTy IDLoc = Lex.getLoc();
678 unsigned MID = 0;
679 if (ParseUInt32(MID))
680 return true;
682 // If not a forward reference, just return it now.
683 if (NumberedMetadata.count(MID)) {
684 Result = NumberedMetadata[MID];
685 return false;
688 // Otherwise, create MDNode forward reference.
689 auto &FwdRef = ForwardRefMDNodes[MID];
690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
692 Result = FwdRef.first.get();
693 NumberedMetadata[MID].reset(Result);
694 return false;
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700 assert(Lex.getKind() == lltok::MetadataVar);
701 std::string Name = Lex.getStrVal();
702 Lex.Lex();
704 if (ParseToken(lltok::equal, "expected '=' here") ||
705 ParseToken(lltok::exclaim, "Expected '!' here") ||
706 ParseToken(lltok::lbrace, "Expected '{' here"))
707 return true;
709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710 if (Lex.getKind() != lltok::rbrace)
711 do {
712 MDNode *N = nullptr;
713 // Parse DIExpressions inline as a special case. They are still MDNodes,
714 // so they can still appear in named metadata. Remove this logic if they
715 // become plain Metadata.
716 if (Lex.getKind() == lltok::MetadataVar &&
717 Lex.getStrVal() == "DIExpression") {
718 if (ParseDIExpression(N, /*IsDistinct=*/false))
719 return true;
720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721 ParseMDNodeID(N)) {
722 return true;
724 NMD->addOperand(N);
725 } while (EatIfPresent(lltok::comma));
727 return ParseToken(lltok::rbrace, "expected end of metadata node");
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733 assert(Lex.getKind() == lltok::exclaim);
734 Lex.Lex();
735 unsigned MetadataID = 0;
737 MDNode *Init;
738 if (ParseUInt32(MetadataID) ||
739 ParseToken(lltok::equal, "expected '=' here"))
740 return true;
742 // Detect common error, from old metadata syntax.
743 if (Lex.getKind() == lltok::Type)
744 return TokError("unexpected type in metadata definition");
746 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747 if (Lex.getKind() == lltok::MetadataVar) {
748 if (ParseSpecializedMDNode(Init, IsDistinct))
749 return true;
750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751 ParseMDTuple(Init, IsDistinct))
752 return true;
754 // See if this was forward referenced, if so, handle it.
755 auto FI = ForwardRefMDNodes.find(MetadataID);
756 if (FI != ForwardRefMDNodes.end()) {
757 FI->second.first->replaceAllUsesWith(Init);
758 ForwardRefMDNodes.erase(FI);
760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761 } else {
762 if (NumberedMetadata.count(MetadataID))
763 return TokError("Metadata id is already used");
764 NumberedMetadata[MetadataID].reset(Init);
767 return false;
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772 // Each module summary entry consists of a tag for the entry
773 // type, followed by a colon, then the fields surrounded by nested sets of
774 // parentheses. The "tag:" looks like a Label. Once parsing support is
775 // in place we will look for the tokens corresponding to the expected tags.
776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777 Lex.getKind() != lltok::kw_typeid)
778 return TokError(
779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780 Lex.Lex();
781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783 return true;
784 // Now walk through the parenthesized entry, until the number of open
785 // parentheses goes back down to 0 (the first '(' was parsed above).
786 unsigned NumOpenParen = 1;
787 do {
788 switch (Lex.getKind()) {
789 case lltok::lparen:
790 NumOpenParen++;
791 break;
792 case lltok::rparen:
793 NumOpenParen--;
794 break;
795 case lltok::Eof:
796 return TokError("found end of file while parsing summary entry");
797 default:
798 // Skip everything in between parentheses.
799 break;
801 Lex.Lex();
802 } while (NumOpenParen > 0);
803 return false;
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809 assert(Lex.getKind() == lltok::SummaryID);
810 unsigned SummaryID = Lex.getUIntVal();
812 // For summary entries, colons should be treated as distinct tokens,
813 // not an indication of the end of a label token.
814 Lex.setIgnoreColonInIdentifiers(true);
816 Lex.Lex();
817 if (ParseToken(lltok::equal, "expected '=' here"))
818 return true;
820 // If we don't have an index object, skip the summary entry.
821 if (!Index)
822 return SkipModuleSummaryEntry();
824 bool result = false;
825 switch (Lex.getKind()) {
826 case lltok::kw_gv:
827 result = ParseGVEntry(SummaryID);
828 break;
829 case lltok::kw_module:
830 result = ParseModuleEntry(SummaryID);
831 break;
832 case lltok::kw_typeid:
833 result = ParseTypeIdEntry(SummaryID);
834 break;
835 case lltok::kw_typeidCompatibleVTable:
836 result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837 break;
838 default:
839 result = Error(Lex.getLoc(), "unexpected summary kind");
840 break;
842 Lex.setIgnoreColonInIdentifiers(false);
843 return result;
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854 if (DSOLocal)
855 GV.setDSOLocal(true);
858 /// parseIndirectSymbol:
859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 /// OptionalVisibility OptionalDLLStorageClass
861 /// OptionalThreadLocal OptionalUnnamedAddr
862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
864 /// IndirectSymbol
865 /// ::= TypeAndValue
867 /// IndirectSymbolAttr
868 /// ::= ',' 'partition' StringConstant
870 /// Everything through OptionalUnnamedAddr has already been parsed.
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873 unsigned L, unsigned Visibility,
874 unsigned DLLStorageClass, bool DSOLocal,
875 GlobalVariable::ThreadLocalMode TLM,
876 GlobalVariable::UnnamedAddr UnnamedAddr) {
877 bool IsAlias;
878 if (Lex.getKind() == lltok::kw_alias)
879 IsAlias = true;
880 else if (Lex.getKind() == lltok::kw_ifunc)
881 IsAlias = false;
882 else
883 llvm_unreachable("Not an alias or ifunc!");
884 Lex.Lex();
886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889 return Error(NameLoc, "invalid linkage type for alias");
891 if (!isValidVisibilityForLinkage(Visibility, L))
892 return Error(NameLoc,
893 "symbol with local linkage must have default visibility");
895 Type *Ty;
896 LocTy ExplicitTypeLoc = Lex.getLoc();
897 if (ParseType(Ty) ||
898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899 return true;
901 Constant *Aliasee;
902 LocTy AliaseeLoc = Lex.getLoc();
903 if (Lex.getKind() != lltok::kw_bitcast &&
904 Lex.getKind() != lltok::kw_getelementptr &&
905 Lex.getKind() != lltok::kw_addrspacecast &&
906 Lex.getKind() != lltok::kw_inttoptr) {
907 if (ParseGlobalTypeAndValue(Aliasee))
908 return true;
909 } else {
910 // The bitcast dest type is not present, it is implied by the dest type.
911 ValID ID;
912 if (ParseValID(ID))
913 return true;
914 if (ID.Kind != ValID::t_Constant)
915 return Error(AliaseeLoc, "invalid aliasee");
916 Aliasee = ID.ConstantVal;
919 Type *AliaseeType = Aliasee->getType();
920 auto *PTy = dyn_cast<PointerType>(AliaseeType);
921 if (!PTy)
922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923 unsigned AddrSpace = PTy->getAddressSpace();
925 if (IsAlias && Ty != PTy->getElementType())
926 return Error(
927 ExplicitTypeLoc,
928 "explicit pointee type doesn't match operand's pointee type");
930 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931 return Error(
932 ExplicitTypeLoc,
933 "explicit pointee type should be a function type");
935 GlobalValue *GVal = nullptr;
937 // See if the alias was forward referenced, if so, prepare to replace the
938 // forward reference.
939 if (!Name.empty()) {
940 GVal = M->getNamedValue(Name);
941 if (GVal) {
942 if (!ForwardRefVals.erase(Name))
943 return Error(NameLoc, "redefinition of global '@" + Name + "'");
945 } else {
946 auto I = ForwardRefValIDs.find(NumberedVals.size());
947 if (I != ForwardRefValIDs.end()) {
948 GVal = I->second.first;
949 ForwardRefValIDs.erase(I);
953 // Okay, create the alias but do not insert it into the module yet.
954 std::unique_ptr<GlobalIndirectSymbol> GA;
955 if (IsAlias)
956 GA.reset(GlobalAlias::create(Ty, AddrSpace,
957 (GlobalValue::LinkageTypes)Linkage, Name,
958 Aliasee, /*Parent*/ nullptr));
959 else
960 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961 (GlobalValue::LinkageTypes)Linkage, Name,
962 Aliasee, /*Parent*/ nullptr));
963 GA->setThreadLocalMode(TLM);
964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966 GA->setUnnamedAddr(UnnamedAddr);
967 maybeSetDSOLocal(DSOLocal, *GA);
969 // At this point we've parsed everything except for the IndirectSymbolAttrs.
970 // Now parse them if there are any.
971 while (Lex.getKind() == lltok::comma) {
972 Lex.Lex();
974 if (Lex.getKind() == lltok::kw_partition) {
975 Lex.Lex();
976 GA->setPartition(Lex.getStrVal());
977 if (ParseToken(lltok::StringConstant, "expected partition string"))
978 return true;
979 } else {
980 return TokError("unknown alias or ifunc property!");
984 if (Name.empty())
985 NumberedVals.push_back(GA.get());
987 if (GVal) {
988 // Verify that types agree.
989 if (GVal->getType() != GA->getType())
990 return Error(
991 ExplicitTypeLoc,
992 "forward reference and definition of alias have different types");
994 // If they agree, just RAUW the old value with the alias and remove the
995 // forward ref info.
996 GVal->replaceAllUsesWith(GA.get());
997 GVal->eraseFromParent();
1000 // Insert into the module, we know its name won't collide now.
1001 if (IsAlias)
1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003 else
1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005 assert(GA->getName() == Name && "Should not be a name conflict!");
1007 // The module owns this now
1008 GA.release();
1010 return false;
1013 /// ParseGlobal
1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 /// OptionalVisibility OptionalDLLStorageClass
1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 /// Const OptionalAttrs
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027 unsigned Linkage, bool HasLinkage,
1028 unsigned Visibility, unsigned DLLStorageClass,
1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030 GlobalVariable::UnnamedAddr UnnamedAddr) {
1031 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032 return Error(NameLoc,
1033 "symbol with local linkage must have default visibility");
1035 unsigned AddrSpace;
1036 bool IsConstant, IsExternallyInitialized;
1037 LocTy IsExternallyInitializedLoc;
1038 LocTy TyLoc;
1040 Type *Ty = nullptr;
1041 if (ParseOptionalAddrSpace(AddrSpace) ||
1042 ParseOptionalToken(lltok::kw_externally_initialized,
1043 IsExternallyInitialized,
1044 &IsExternallyInitializedLoc) ||
1045 ParseGlobalType(IsConstant) ||
1046 ParseType(Ty, TyLoc))
1047 return true;
1049 // If the linkage is specified and is external, then no initializer is
1050 // present.
1051 Constant *Init = nullptr;
1052 if (!HasLinkage ||
1053 !GlobalValue::isValidDeclarationLinkage(
1054 (GlobalValue::LinkageTypes)Linkage)) {
1055 if (ParseGlobalValue(Ty, Init))
1056 return true;
1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060 return Error(TyLoc, "invalid type for global variable");
1062 GlobalValue *GVal = nullptr;
1064 // See if the global was forward referenced, if so, use the global.
1065 if (!Name.empty()) {
1066 GVal = M->getNamedValue(Name);
1067 if (GVal) {
1068 if (!ForwardRefVals.erase(Name))
1069 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1071 } else {
1072 auto I = ForwardRefValIDs.find(NumberedVals.size());
1073 if (I != ForwardRefValIDs.end()) {
1074 GVal = I->second.first;
1075 ForwardRefValIDs.erase(I);
1079 GlobalVariable *GV;
1080 if (!GVal) {
1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082 Name, nullptr, GlobalVariable::NotThreadLocal,
1083 AddrSpace);
1084 } else {
1085 if (GVal->getValueType() != Ty)
1086 return Error(TyLoc,
1087 "forward reference and definition of global have different types");
1089 GV = cast<GlobalVariable>(GVal);
1091 // Move the forward-reference to the correct spot in the module.
1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1095 if (Name.empty())
1096 NumberedVals.push_back(GV);
1098 // Set the parsed properties on the global.
1099 if (Init)
1100 GV->setInitializer(Init);
1101 GV->setConstant(IsConstant);
1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103 maybeSetDSOLocal(DSOLocal, *GV);
1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106 GV->setExternallyInitialized(IsExternallyInitialized);
1107 GV->setThreadLocalMode(TLM);
1108 GV->setUnnamedAddr(UnnamedAddr);
1110 // Parse attributes on the global.
1111 while (Lex.getKind() == lltok::comma) {
1112 Lex.Lex();
1114 if (Lex.getKind() == lltok::kw_section) {
1115 Lex.Lex();
1116 GV->setSection(Lex.getStrVal());
1117 if (ParseToken(lltok::StringConstant, "expected global section string"))
1118 return true;
1119 } else if (Lex.getKind() == lltok::kw_partition) {
1120 Lex.Lex();
1121 GV->setPartition(Lex.getStrVal());
1122 if (ParseToken(lltok::StringConstant, "expected partition string"))
1123 return true;
1124 } else if (Lex.getKind() == lltok::kw_align) {
1125 unsigned Alignment;
1126 if (ParseOptionalAlignment(Alignment)) return true;
1127 GV->setAlignment(MaybeAlign(Alignment));
1128 } else if (Lex.getKind() == lltok::MetadataVar) {
1129 if (ParseGlobalObjectMetadataAttachment(*GV))
1130 return true;
1131 } else {
1132 Comdat *C;
1133 if (parseOptionalComdat(Name, C))
1134 return true;
1135 if (C)
1136 GV->setComdat(C);
1137 else
1138 return TokError("unknown global variable property!");
1142 AttrBuilder Attrs;
1143 LocTy BuiltinLoc;
1144 std::vector<unsigned> FwdRefAttrGrps;
1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146 return true;
1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148 GV->setAttributes(AttributeSet::get(Context, Attrs));
1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1152 return false;
1155 /// ParseUnnamedAttrGrp
1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158 assert(Lex.getKind() == lltok::kw_attributes);
1159 LocTy AttrGrpLoc = Lex.getLoc();
1160 Lex.Lex();
1162 if (Lex.getKind() != lltok::AttrGrpID)
1163 return TokError("expected attribute group id");
1165 unsigned VarID = Lex.getUIntVal();
1166 std::vector<unsigned> unused;
1167 LocTy BuiltinLoc;
1168 Lex.Lex();
1170 if (ParseToken(lltok::equal, "expected '=' here") ||
1171 ParseToken(lltok::lbrace, "expected '{' here") ||
1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173 BuiltinLoc) ||
1174 ParseToken(lltok::rbrace, "expected end of attribute group"))
1175 return true;
1177 if (!NumberedAttrBuilders[VarID].hasAttributes())
1178 return Error(AttrGrpLoc, "attribute group has no attributes");
1180 return false;
1183 /// ParseFnAttributeValuePairs
1184 /// ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186 std::vector<unsigned> &FwdRefAttrGrps,
1187 bool inAttrGrp, LocTy &BuiltinLoc) {
1188 bool HaveError = false;
1190 B.clear();
1192 while (true) {
1193 lltok::Kind Token = Lex.getKind();
1194 if (Token == lltok::kw_builtin)
1195 BuiltinLoc = Lex.getLoc();
1196 switch (Token) {
1197 default:
1198 if (!inAttrGrp) return HaveError;
1199 return Error(Lex.getLoc(), "unterminated attribute group");
1200 case lltok::rbrace:
1201 // Finished.
1202 return false;
1204 case lltok::AttrGrpID: {
1205 // Allow a function to reference an attribute group:
1207 // define void @foo() #1 { ... }
1208 if (inAttrGrp)
1209 HaveError |=
1210 Error(Lex.getLoc(),
1211 "cannot have an attribute group reference in an attribute group");
1213 unsigned AttrGrpNum = Lex.getUIntVal();
1214 if (inAttrGrp) break;
1216 // Save the reference to the attribute group. We'll fill it in later.
1217 FwdRefAttrGrps.push_back(AttrGrpNum);
1218 break;
1220 // Target-dependent attributes:
1221 case lltok::StringConstant: {
1222 if (ParseStringAttribute(B))
1223 return true;
1224 continue;
1227 // Target-independent attributes:
1228 case lltok::kw_align: {
1229 // As a hack, we allow function alignment to be initially parsed as an
1230 // attribute on a function declaration/definition or added to an attribute
1231 // group and later moved to the alignment field.
1232 unsigned Alignment;
1233 if (inAttrGrp) {
1234 Lex.Lex();
1235 if (ParseToken(lltok::equal, "expected '=' here") ||
1236 ParseUInt32(Alignment))
1237 return true;
1238 } else {
1239 if (ParseOptionalAlignment(Alignment))
1240 return true;
1242 B.addAlignmentAttr(Alignment);
1243 continue;
1245 case lltok::kw_alignstack: {
1246 unsigned Alignment;
1247 if (inAttrGrp) {
1248 Lex.Lex();
1249 if (ParseToken(lltok::equal, "expected '=' here") ||
1250 ParseUInt32(Alignment))
1251 return true;
1252 } else {
1253 if (ParseOptionalStackAlignment(Alignment))
1254 return true;
1256 B.addStackAlignmentAttr(Alignment);
1257 continue;
1259 case lltok::kw_allocsize: {
1260 unsigned ElemSizeArg;
1261 Optional<unsigned> NumElemsArg;
1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1264 return true;
1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1266 continue;
1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1273 case lltok::kw_inaccessiblememonly:
1274 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1275 case lltok::kw_inaccessiblemem_or_argmemonly:
1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1283 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1284 case lltok::kw_noimplicitfloat:
1285 B.addAttribute(Attribute::NoImplicitFloat); break;
1286 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1287 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1288 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1289 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1290 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1291 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1292 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1293 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1294 case lltok::kw_optforfuzzing:
1295 B.addAttribute(Attribute::OptForFuzzing); break;
1296 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1297 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1298 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1299 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1300 case lltok::kw_returns_twice:
1301 B.addAttribute(Attribute::ReturnsTwice); break;
1302 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1303 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1304 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1305 case lltok::kw_sspstrong:
1306 B.addAttribute(Attribute::StackProtectStrong); break;
1307 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1308 case lltok::kw_shadowcallstack:
1309 B.addAttribute(Attribute::ShadowCallStack); break;
1310 case lltok::kw_sanitize_address:
1311 B.addAttribute(Attribute::SanitizeAddress); break;
1312 case lltok::kw_sanitize_hwaddress:
1313 B.addAttribute(Attribute::SanitizeHWAddress); break;
1314 case lltok::kw_sanitize_memtag:
1315 B.addAttribute(Attribute::SanitizeMemTag); break;
1316 case lltok::kw_sanitize_thread:
1317 B.addAttribute(Attribute::SanitizeThread); break;
1318 case lltok::kw_sanitize_memory:
1319 B.addAttribute(Attribute::SanitizeMemory); break;
1320 case lltok::kw_speculative_load_hardening:
1321 B.addAttribute(Attribute::SpeculativeLoadHardening);
1322 break;
1323 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1324 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1325 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1326 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1328 // Error handling.
1329 case lltok::kw_inreg:
1330 case lltok::kw_signext:
1331 case lltok::kw_zeroext:
1332 HaveError |=
1333 Error(Lex.getLoc(),
1334 "invalid use of attribute on a function");
1335 break;
1336 case lltok::kw_byval:
1337 case lltok::kw_dereferenceable:
1338 case lltok::kw_dereferenceable_or_null:
1339 case lltok::kw_inalloca:
1340 case lltok::kw_nest:
1341 case lltok::kw_noalias:
1342 case lltok::kw_nocapture:
1343 case lltok::kw_nonnull:
1344 case lltok::kw_returned:
1345 case lltok::kw_sret:
1346 case lltok::kw_swifterror:
1347 case lltok::kw_swiftself:
1348 case lltok::kw_immarg:
1349 HaveError |=
1350 Error(Lex.getLoc(),
1351 "invalid use of parameter-only attribute on a function");
1352 break;
1355 Lex.Lex();
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1364 const std::string &Name) {
1365 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1366 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1367 PTy->getAddressSpace(), Name, M);
1368 else
1369 return new GlobalVariable(*M, PTy->getElementType(), false,
1370 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1371 nullptr, GlobalVariable::NotThreadLocal,
1372 PTy->getAddressSpace());
1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1376 Value *Val, bool IsCall) {
1377 if (Val->getType() == Ty)
1378 return Val;
1379 // For calls we also accept variables in the program address space.
1380 Type *SuggestedTy = Ty;
1381 if (IsCall && isa<PointerType>(Ty)) {
1382 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1383 M->getDataLayout().getProgramAddressSpace());
1384 SuggestedTy = TyInProgAS;
1385 if (Val->getType() == TyInProgAS)
1386 return Val;
1388 if (Ty->isLabelTy())
1389 Error(Loc, "'" + Name + "' is not a basic block");
1390 else
1391 Error(Loc, "'" + Name + "' defined with type '" +
1392 getTypeString(Val->getType()) + "' but expected '" +
1393 getTypeString(SuggestedTy) + "'");
1394 return nullptr;
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed. This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1401 LocTy Loc, bool IsCall) {
1402 PointerType *PTy = dyn_cast<PointerType>(Ty);
1403 if (!PTy) {
1404 Error(Loc, "global variable reference must have pointer type");
1405 return nullptr;
1408 // Look this name up in the normal function symbol table.
1409 GlobalValue *Val =
1410 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1412 // If this is a forward reference for the value, see if we already created a
1413 // forward ref record.
1414 if (!Val) {
1415 auto I = ForwardRefVals.find(Name);
1416 if (I != ForwardRefVals.end())
1417 Val = I->second.first;
1420 // If we have the value in the symbol table or fwd-ref table, return it.
1421 if (Val)
1422 return cast_or_null<GlobalValue>(
1423 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1425 // Otherwise, create a new forward reference for this value and remember it.
1426 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1427 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1428 return FwdVal;
1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1432 bool IsCall) {
1433 PointerType *PTy = dyn_cast<PointerType>(Ty);
1434 if (!PTy) {
1435 Error(Loc, "global variable reference must have pointer type");
1436 return nullptr;
1439 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1441 // If this is a forward reference for the value, see if we already created a
1442 // forward ref record.
1443 if (!Val) {
1444 auto I = ForwardRefValIDs.find(ID);
1445 if (I != ForwardRefValIDs.end())
1446 Val = I->second.first;
1449 // If we have the value in the symbol table or fwd-ref table, return it.
1450 if (Val)
1451 return cast_or_null<GlobalValue>(
1452 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1454 // Otherwise, create a new forward reference for this value and remember it.
1455 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1456 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1457 return FwdVal;
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1465 // Look this name up in the comdat symbol table.
1466 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1467 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1468 if (I != ComdatSymTab.end())
1469 return &I->second;
1471 // Otherwise, create a new forward reference for this value and remember it.
1472 Comdat *C = M->getOrInsertComdat(Name);
1473 ForwardRefComdats[Name] = Loc;
1474 return C;
1477 //===----------------------------------------------------------------------===//
1478 // Helper Routines.
1479 //===----------------------------------------------------------------------===//
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success. Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1484 if (Lex.getKind() != T)
1485 return TokError(ErrMsg);
1486 Lex.Lex();
1487 return false;
1490 /// ParseStringConstant
1491 /// ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string &Result) {
1493 if (Lex.getKind() != lltok::StringConstant)
1494 return TokError("expected string constant");
1495 Result = Lex.getStrVal();
1496 Lex.Lex();
1497 return false;
1500 /// ParseUInt32
1501 /// ::= uint32
1502 bool LLParser::ParseUInt32(uint32_t &Val) {
1503 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1504 return TokError("expected integer");
1505 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1506 if (Val64 != unsigned(Val64))
1507 return TokError("expected 32-bit integer (too large)");
1508 Val = Val64;
1509 Lex.Lex();
1510 return false;
1513 /// ParseUInt64
1514 /// ::= uint64
1515 bool LLParser::ParseUInt64(uint64_t &Val) {
1516 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1517 return TokError("expected integer");
1518 Val = Lex.getAPSIntVal().getLimitedValue();
1519 Lex.Lex();
1520 return false;
1523 /// ParseTLSModel
1524 /// := 'localdynamic'
1525 /// := 'initialexec'
1526 /// := 'localexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1528 switch (Lex.getKind()) {
1529 default:
1530 return TokError("expected localdynamic, initialexec or localexec");
1531 case lltok::kw_localdynamic:
1532 TLM = GlobalVariable::LocalDynamicTLSModel;
1533 break;
1534 case lltok::kw_initialexec:
1535 TLM = GlobalVariable::InitialExecTLSModel;
1536 break;
1537 case lltok::kw_localexec:
1538 TLM = GlobalVariable::LocalExecTLSModel;
1539 break;
1542 Lex.Lex();
1543 return false;
1546 /// ParseOptionalThreadLocal
1547 /// := /*empty*/
1548 /// := 'thread_local'
1549 /// := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1551 TLM = GlobalVariable::NotThreadLocal;
1552 if (!EatIfPresent(lltok::kw_thread_local))
1553 return false;
1555 TLM = GlobalVariable::GeneralDynamicTLSModel;
1556 if (Lex.getKind() == lltok::lparen) {
1557 Lex.Lex();
1558 return ParseTLSModel(TLM) ||
1559 ParseToken(lltok::rparen, "expected ')' after thread local model");
1561 return false;
1564 /// ParseOptionalAddrSpace
1565 /// := /*empty*/
1566 /// := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1568 AddrSpace = DefaultAS;
1569 if (!EatIfPresent(lltok::kw_addrspace))
1570 return false;
1571 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1572 ParseUInt32(AddrSpace) ||
1573 ParseToken(lltok::rparen, "expected ')' in address space");
1576 /// ParseStringAttribute
1577 /// := StringConstant
1578 /// := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1580 std::string Attr = Lex.getStrVal();
1581 Lex.Lex();
1582 std::string Val;
1583 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1584 return true;
1585 B.addAttribute(Attr, Val);
1586 return false;
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1591 bool HaveError = false;
1593 B.clear();
1595 while (true) {
1596 lltok::Kind Token = Lex.getKind();
1597 switch (Token) {
1598 default: // End of attributes.
1599 return HaveError;
1600 case lltok::StringConstant: {
1601 if (ParseStringAttribute(B))
1602 return true;
1603 continue;
1605 case lltok::kw_align: {
1606 unsigned Alignment;
1607 if (ParseOptionalAlignment(Alignment))
1608 return true;
1609 B.addAlignmentAttr(Alignment);
1610 continue;
1612 case lltok::kw_byval: {
1613 Type *Ty;
1614 if (ParseByValWithOptionalType(Ty))
1615 return true;
1616 B.addByValAttr(Ty);
1617 continue;
1619 case lltok::kw_dereferenceable: {
1620 uint64_t Bytes;
1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1622 return true;
1623 B.addDereferenceableAttr(Bytes);
1624 continue;
1626 case lltok::kw_dereferenceable_or_null: {
1627 uint64_t Bytes;
1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1629 return true;
1630 B.addDereferenceableOrNullAttr(Bytes);
1631 continue;
1633 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1634 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1635 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1636 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1637 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1638 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1639 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1640 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1641 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1642 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1643 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1644 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1645 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1646 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1647 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1648 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1650 case lltok::kw_alignstack:
1651 case lltok::kw_alwaysinline:
1652 case lltok::kw_argmemonly:
1653 case lltok::kw_builtin:
1654 case lltok::kw_inlinehint:
1655 case lltok::kw_jumptable:
1656 case lltok::kw_minsize:
1657 case lltok::kw_naked:
1658 case lltok::kw_nobuiltin:
1659 case lltok::kw_noduplicate:
1660 case lltok::kw_noimplicitfloat:
1661 case lltok::kw_noinline:
1662 case lltok::kw_nonlazybind:
1663 case lltok::kw_noredzone:
1664 case lltok::kw_noreturn:
1665 case lltok::kw_nocf_check:
1666 case lltok::kw_nounwind:
1667 case lltok::kw_optforfuzzing:
1668 case lltok::kw_optnone:
1669 case lltok::kw_optsize:
1670 case lltok::kw_returns_twice:
1671 case lltok::kw_sanitize_address:
1672 case lltok::kw_sanitize_hwaddress:
1673 case lltok::kw_sanitize_memtag:
1674 case lltok::kw_sanitize_memory:
1675 case lltok::kw_sanitize_thread:
1676 case lltok::kw_speculative_load_hardening:
1677 case lltok::kw_ssp:
1678 case lltok::kw_sspreq:
1679 case lltok::kw_sspstrong:
1680 case lltok::kw_safestack:
1681 case lltok::kw_shadowcallstack:
1682 case lltok::kw_strictfp:
1683 case lltok::kw_uwtable:
1684 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1685 break;
1688 Lex.Lex();
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1694 bool HaveError = false;
1696 B.clear();
1698 while (true) {
1699 lltok::Kind Token = Lex.getKind();
1700 switch (Token) {
1701 default: // End of attributes.
1702 return HaveError;
1703 case lltok::StringConstant: {
1704 if (ParseStringAttribute(B))
1705 return true;
1706 continue;
1708 case lltok::kw_dereferenceable: {
1709 uint64_t Bytes;
1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1711 return true;
1712 B.addDereferenceableAttr(Bytes);
1713 continue;
1715 case lltok::kw_dereferenceable_or_null: {
1716 uint64_t Bytes;
1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1718 return true;
1719 B.addDereferenceableOrNullAttr(Bytes);
1720 continue;
1722 case lltok::kw_align: {
1723 unsigned Alignment;
1724 if (ParseOptionalAlignment(Alignment))
1725 return true;
1726 B.addAlignmentAttr(Alignment);
1727 continue;
1729 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1730 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1731 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1732 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1733 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1735 // Error handling.
1736 case lltok::kw_byval:
1737 case lltok::kw_inalloca:
1738 case lltok::kw_nest:
1739 case lltok::kw_nocapture:
1740 case lltok::kw_returned:
1741 case lltok::kw_sret:
1742 case lltok::kw_swifterror:
1743 case lltok::kw_swiftself:
1744 case lltok::kw_immarg:
1745 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1746 break;
1748 case lltok::kw_alignstack:
1749 case lltok::kw_alwaysinline:
1750 case lltok::kw_argmemonly:
1751 case lltok::kw_builtin:
1752 case lltok::kw_cold:
1753 case lltok::kw_inlinehint:
1754 case lltok::kw_jumptable:
1755 case lltok::kw_minsize:
1756 case lltok::kw_naked:
1757 case lltok::kw_nobuiltin:
1758 case lltok::kw_noduplicate:
1759 case lltok::kw_noimplicitfloat:
1760 case lltok::kw_noinline:
1761 case lltok::kw_nonlazybind:
1762 case lltok::kw_noredzone:
1763 case lltok::kw_noreturn:
1764 case lltok::kw_nocf_check:
1765 case lltok::kw_nounwind:
1766 case lltok::kw_optforfuzzing:
1767 case lltok::kw_optnone:
1768 case lltok::kw_optsize:
1769 case lltok::kw_returns_twice:
1770 case lltok::kw_sanitize_address:
1771 case lltok::kw_sanitize_hwaddress:
1772 case lltok::kw_sanitize_memtag:
1773 case lltok::kw_sanitize_memory:
1774 case lltok::kw_sanitize_thread:
1775 case lltok::kw_speculative_load_hardening:
1776 case lltok::kw_ssp:
1777 case lltok::kw_sspreq:
1778 case lltok::kw_sspstrong:
1779 case lltok::kw_safestack:
1780 case lltok::kw_shadowcallstack:
1781 case lltok::kw_strictfp:
1782 case lltok::kw_uwtable:
1783 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1784 break;
1786 case lltok::kw_readnone:
1787 case lltok::kw_readonly:
1788 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1791 Lex.Lex();
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1796 HasLinkage = true;
1797 switch (Kind) {
1798 default:
1799 HasLinkage = false;
1800 return GlobalValue::ExternalLinkage;
1801 case lltok::kw_private:
1802 return GlobalValue::PrivateLinkage;
1803 case lltok::kw_internal:
1804 return GlobalValue::InternalLinkage;
1805 case lltok::kw_weak:
1806 return GlobalValue::WeakAnyLinkage;
1807 case lltok::kw_weak_odr:
1808 return GlobalValue::WeakODRLinkage;
1809 case lltok::kw_linkonce:
1810 return GlobalValue::LinkOnceAnyLinkage;
1811 case lltok::kw_linkonce_odr:
1812 return GlobalValue::LinkOnceODRLinkage;
1813 case lltok::kw_available_externally:
1814 return GlobalValue::AvailableExternallyLinkage;
1815 case lltok::kw_appending:
1816 return GlobalValue::AppendingLinkage;
1817 case lltok::kw_common:
1818 return GlobalValue::CommonLinkage;
1819 case lltok::kw_extern_weak:
1820 return GlobalValue::ExternalWeakLinkage;
1821 case lltok::kw_external:
1822 return GlobalValue::ExternalLinkage;
1826 /// ParseOptionalLinkage
1827 /// ::= /*empty*/
1828 /// ::= 'private'
1829 /// ::= 'internal'
1830 /// ::= 'weak'
1831 /// ::= 'weak_odr'
1832 /// ::= 'linkonce'
1833 /// ::= 'linkonce_odr'
1834 /// ::= 'available_externally'
1835 /// ::= 'appending'
1836 /// ::= 'common'
1837 /// ::= 'extern_weak'
1838 /// ::= 'external'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1840 unsigned &Visibility,
1841 unsigned &DLLStorageClass,
1842 bool &DSOLocal) {
1843 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1844 if (HasLinkage)
1845 Lex.Lex();
1846 ParseOptionalDSOLocal(DSOLocal);
1847 ParseOptionalVisibility(Visibility);
1848 ParseOptionalDLLStorageClass(DLLStorageClass);
1850 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1851 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1854 return false;
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1858 switch (Lex.getKind()) {
1859 default:
1860 DSOLocal = false;
1861 break;
1862 case lltok::kw_dso_local:
1863 DSOLocal = true;
1864 Lex.Lex();
1865 break;
1866 case lltok::kw_dso_preemptable:
1867 DSOLocal = false;
1868 Lex.Lex();
1869 break;
1873 /// ParseOptionalVisibility
1874 /// ::= /*empty*/
1875 /// ::= 'default'
1876 /// ::= 'hidden'
1877 /// ::= 'protected'
1879 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1880 switch (Lex.getKind()) {
1881 default:
1882 Res = GlobalValue::DefaultVisibility;
1883 return;
1884 case lltok::kw_default:
1885 Res = GlobalValue::DefaultVisibility;
1886 break;
1887 case lltok::kw_hidden:
1888 Res = GlobalValue::HiddenVisibility;
1889 break;
1890 case lltok::kw_protected:
1891 Res = GlobalValue::ProtectedVisibility;
1892 break;
1894 Lex.Lex();
1897 /// ParseOptionalDLLStorageClass
1898 /// ::= /*empty*/
1899 /// ::= 'dllimport'
1900 /// ::= 'dllexport'
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1903 switch (Lex.getKind()) {
1904 default:
1905 Res = GlobalValue::DefaultStorageClass;
1906 return;
1907 case lltok::kw_dllimport:
1908 Res = GlobalValue::DLLImportStorageClass;
1909 break;
1910 case lltok::kw_dllexport:
1911 Res = GlobalValue::DLLExportStorageClass;
1912 break;
1914 Lex.Lex();
1917 /// ParseOptionalCallingConv
1918 /// ::= /*empty*/
1919 /// ::= 'ccc'
1920 /// ::= 'fastcc'
1921 /// ::= 'intel_ocl_bicc'
1922 /// ::= 'coldcc'
1923 /// ::= 'x86_stdcallcc'
1924 /// ::= 'x86_fastcallcc'
1925 /// ::= 'x86_thiscallcc'
1926 /// ::= 'x86_vectorcallcc'
1927 /// ::= 'arm_apcscc'
1928 /// ::= 'arm_aapcscc'
1929 /// ::= 'arm_aapcs_vfpcc'
1930 /// ::= 'aarch64_vector_pcs'
1931 /// ::= 'msp430_intrcc'
1932 /// ::= 'avr_intrcc'
1933 /// ::= 'avr_signalcc'
1934 /// ::= 'ptx_kernel'
1935 /// ::= 'ptx_device'
1936 /// ::= 'spir_func'
1937 /// ::= 'spir_kernel'
1938 /// ::= 'x86_64_sysvcc'
1939 /// ::= 'win64cc'
1940 /// ::= 'webkit_jscc'
1941 /// ::= 'anyregcc'
1942 /// ::= 'preserve_mostcc'
1943 /// ::= 'preserve_allcc'
1944 /// ::= 'ghccc'
1945 /// ::= 'swiftcc'
1946 /// ::= 'x86_intrcc'
1947 /// ::= 'hhvmcc'
1948 /// ::= 'hhvm_ccc'
1949 /// ::= 'cxx_fast_tlscc'
1950 /// ::= 'amdgpu_vs'
1951 /// ::= 'amdgpu_ls'
1952 /// ::= 'amdgpu_hs'
1953 /// ::= 'amdgpu_es'
1954 /// ::= 'amdgpu_gs'
1955 /// ::= 'amdgpu_ps'
1956 /// ::= 'amdgpu_cs'
1957 /// ::= 'amdgpu_kernel'
1958 /// ::= 'tailcc'
1959 /// ::= 'cc' UINT
1961 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1962 switch (Lex.getKind()) {
1963 default: CC = CallingConv::C; return false;
1964 case lltok::kw_ccc: CC = CallingConv::C; break;
1965 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1966 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1967 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1968 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1969 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1970 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1971 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1972 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1973 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1974 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1975 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1976 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1977 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1978 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1979 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1980 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1981 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1982 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1983 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1984 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1985 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1986 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1987 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1988 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1989 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1990 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1991 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1992 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1993 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1994 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1995 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1996 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1997 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1998 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1999 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2000 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2001 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2002 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2003 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2004 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2005 case lltok::kw_cc: {
2006 Lex.Lex();
2007 return ParseUInt32(CC);
2011 Lex.Lex();
2012 return false;
2015 /// ParseMetadataAttachment
2016 /// ::= !dbg !42
2017 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2018 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2020 std::string Name = Lex.getStrVal();
2021 Kind = M->getMDKindID(Name);
2022 Lex.Lex();
2024 return ParseMDNode(MD);
2027 /// ParseInstructionMetadata
2028 /// ::= !dbg !42 (',' !dbg !57)*
2029 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2030 do {
2031 if (Lex.getKind() != lltok::MetadataVar)
2032 return TokError("expected metadata after comma");
2034 unsigned MDK;
2035 MDNode *N;
2036 if (ParseMetadataAttachment(MDK, N))
2037 return true;
2039 Inst.setMetadata(MDK, N);
2040 if (MDK == LLVMContext::MD_tbaa)
2041 InstsWithTBAATag.push_back(&Inst);
2043 // If this is the end of the list, we're done.
2044 } while (EatIfPresent(lltok::comma));
2045 return false;
2048 /// ParseGlobalObjectMetadataAttachment
2049 /// ::= !dbg !57
2050 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2051 unsigned MDK;
2052 MDNode *N;
2053 if (ParseMetadataAttachment(MDK, N))
2054 return true;
2056 GO.addMetadata(MDK, *N);
2057 return false;
2060 /// ParseOptionalFunctionMetadata
2061 /// ::= (!dbg !57)*
2062 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2063 while (Lex.getKind() == lltok::MetadataVar)
2064 if (ParseGlobalObjectMetadataAttachment(F))
2065 return true;
2066 return false;
2069 /// ParseOptionalAlignment
2070 /// ::= /* empty */
2071 /// ::= 'align' 4
2072 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2073 Alignment = 0;
2074 if (!EatIfPresent(lltok::kw_align))
2075 return false;
2076 LocTy AlignLoc = Lex.getLoc();
2077 if (ParseUInt32(Alignment)) return true;
2078 if (!isPowerOf2_32(Alignment))
2079 return Error(AlignLoc, "alignment is not a power of two");
2080 if (Alignment > Value::MaximumAlignment)
2081 return Error(AlignLoc, "huge alignments are not supported yet");
2082 return false;
2085 /// ParseOptionalDerefAttrBytes
2086 /// ::= /* empty */
2087 /// ::= AttrKind '(' 4 ')'
2089 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2090 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2091 uint64_t &Bytes) {
2092 assert((AttrKind == lltok::kw_dereferenceable ||
2093 AttrKind == lltok::kw_dereferenceable_or_null) &&
2094 "contract!");
2096 Bytes = 0;
2097 if (!EatIfPresent(AttrKind))
2098 return false;
2099 LocTy ParenLoc = Lex.getLoc();
2100 if (!EatIfPresent(lltok::lparen))
2101 return Error(ParenLoc, "expected '('");
2102 LocTy DerefLoc = Lex.getLoc();
2103 if (ParseUInt64(Bytes)) return true;
2104 ParenLoc = Lex.getLoc();
2105 if (!EatIfPresent(lltok::rparen))
2106 return Error(ParenLoc, "expected ')'");
2107 if (!Bytes)
2108 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2109 return false;
2112 /// ParseOptionalCommaAlign
2113 /// ::=
2114 /// ::= ',' align 4
2116 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2117 /// end.
2118 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2119 bool &AteExtraComma) {
2120 AteExtraComma = false;
2121 while (EatIfPresent(lltok::comma)) {
2122 // Metadata at the end is an early exit.
2123 if (Lex.getKind() == lltok::MetadataVar) {
2124 AteExtraComma = true;
2125 return false;
2128 if (Lex.getKind() != lltok::kw_align)
2129 return Error(Lex.getLoc(), "expected metadata or 'align'");
2131 if (ParseOptionalAlignment(Alignment)) return true;
2134 return false;
2137 /// ParseOptionalCommaAddrSpace
2138 /// ::=
2139 /// ::= ',' addrspace(1)
2141 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2142 /// end.
2143 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2144 LocTy &Loc,
2145 bool &AteExtraComma) {
2146 AteExtraComma = false;
2147 while (EatIfPresent(lltok::comma)) {
2148 // Metadata at the end is an early exit.
2149 if (Lex.getKind() == lltok::MetadataVar) {
2150 AteExtraComma = true;
2151 return false;
2154 Loc = Lex.getLoc();
2155 if (Lex.getKind() != lltok::kw_addrspace)
2156 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2158 if (ParseOptionalAddrSpace(AddrSpace))
2159 return true;
2162 return false;
2165 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2166 Optional<unsigned> &HowManyArg) {
2167 Lex.Lex();
2169 auto StartParen = Lex.getLoc();
2170 if (!EatIfPresent(lltok::lparen))
2171 return Error(StartParen, "expected '('");
2173 if (ParseUInt32(BaseSizeArg))
2174 return true;
2176 if (EatIfPresent(lltok::comma)) {
2177 auto HowManyAt = Lex.getLoc();
2178 unsigned HowMany;
2179 if (ParseUInt32(HowMany))
2180 return true;
2181 if (HowMany == BaseSizeArg)
2182 return Error(HowManyAt,
2183 "'allocsize' indices can't refer to the same parameter");
2184 HowManyArg = HowMany;
2185 } else
2186 HowManyArg = None;
2188 auto EndParen = Lex.getLoc();
2189 if (!EatIfPresent(lltok::rparen))
2190 return Error(EndParen, "expected ')'");
2191 return false;
2194 /// ParseScopeAndOrdering
2195 /// if isAtomic: ::= SyncScope? AtomicOrdering
2196 /// else: ::=
2198 /// This sets Scope and Ordering to the parsed values.
2199 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2200 AtomicOrdering &Ordering) {
2201 if (!isAtomic)
2202 return false;
2204 return ParseScope(SSID) || ParseOrdering(Ordering);
2207 /// ParseScope
2208 /// ::= syncscope("singlethread" | "<target scope>")?
2210 /// This sets synchronization scope ID to the ID of the parsed value.
2211 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2212 SSID = SyncScope::System;
2213 if (EatIfPresent(lltok::kw_syncscope)) {
2214 auto StartParenAt = Lex.getLoc();
2215 if (!EatIfPresent(lltok::lparen))
2216 return Error(StartParenAt, "Expected '(' in syncscope");
2218 std::string SSN;
2219 auto SSNAt = Lex.getLoc();
2220 if (ParseStringConstant(SSN))
2221 return Error(SSNAt, "Expected synchronization scope name");
2223 auto EndParenAt = Lex.getLoc();
2224 if (!EatIfPresent(lltok::rparen))
2225 return Error(EndParenAt, "Expected ')' in syncscope");
2227 SSID = Context.getOrInsertSyncScopeID(SSN);
2230 return false;
2233 /// ParseOrdering
2234 /// ::= AtomicOrdering
2236 /// This sets Ordering to the parsed value.
2237 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2238 switch (Lex.getKind()) {
2239 default: return TokError("Expected ordering on atomic instruction");
2240 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2241 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2242 // Not specified yet:
2243 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2244 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2245 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2246 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2247 case lltok::kw_seq_cst:
2248 Ordering = AtomicOrdering::SequentiallyConsistent;
2249 break;
2251 Lex.Lex();
2252 return false;
2255 /// ParseOptionalStackAlignment
2256 /// ::= /* empty */
2257 /// ::= 'alignstack' '(' 4 ')'
2258 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2259 Alignment = 0;
2260 if (!EatIfPresent(lltok::kw_alignstack))
2261 return false;
2262 LocTy ParenLoc = Lex.getLoc();
2263 if (!EatIfPresent(lltok::lparen))
2264 return Error(ParenLoc, "expected '('");
2265 LocTy AlignLoc = Lex.getLoc();
2266 if (ParseUInt32(Alignment)) return true;
2267 ParenLoc = Lex.getLoc();
2268 if (!EatIfPresent(lltok::rparen))
2269 return Error(ParenLoc, "expected ')'");
2270 if (!isPowerOf2_32(Alignment))
2271 return Error(AlignLoc, "stack alignment is not a power of two");
2272 return false;
2275 /// ParseIndexList - This parses the index list for an insert/extractvalue
2276 /// instruction. This sets AteExtraComma in the case where we eat an extra
2277 /// comma at the end of the line and find that it is followed by metadata.
2278 /// Clients that don't allow metadata can call the version of this function that
2279 /// only takes one argument.
2281 /// ParseIndexList
2282 /// ::= (',' uint32)+
2284 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2285 bool &AteExtraComma) {
2286 AteExtraComma = false;
2288 if (Lex.getKind() != lltok::comma)
2289 return TokError("expected ',' as start of index list");
2291 while (EatIfPresent(lltok::comma)) {
2292 if (Lex.getKind() == lltok::MetadataVar) {
2293 if (Indices.empty()) return TokError("expected index");
2294 AteExtraComma = true;
2295 return false;
2297 unsigned Idx = 0;
2298 if (ParseUInt32(Idx)) return true;
2299 Indices.push_back(Idx);
2302 return false;
2305 //===----------------------------------------------------------------------===//
2306 // Type Parsing.
2307 //===----------------------------------------------------------------------===//
2309 /// ParseType - Parse a type.
2310 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2311 SMLoc TypeLoc = Lex.getLoc();
2312 switch (Lex.getKind()) {
2313 default:
2314 return TokError(Msg);
2315 case lltok::Type:
2316 // Type ::= 'float' | 'void' (etc)
2317 Result = Lex.getTyVal();
2318 Lex.Lex();
2319 break;
2320 case lltok::lbrace:
2321 // Type ::= StructType
2322 if (ParseAnonStructType(Result, false))
2323 return true;
2324 break;
2325 case lltok::lsquare:
2326 // Type ::= '[' ... ']'
2327 Lex.Lex(); // eat the lsquare.
2328 if (ParseArrayVectorType(Result, false))
2329 return true;
2330 break;
2331 case lltok::less: // Either vector or packed struct.
2332 // Type ::= '<' ... '>'
2333 Lex.Lex();
2334 if (Lex.getKind() == lltok::lbrace) {
2335 if (ParseAnonStructType(Result, true) ||
2336 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2337 return true;
2338 } else if (ParseArrayVectorType(Result, true))
2339 return true;
2340 break;
2341 case lltok::LocalVar: {
2342 // Type ::= %foo
2343 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2345 // If the type hasn't been defined yet, create a forward definition and
2346 // remember where that forward def'n was seen (in case it never is defined).
2347 if (!Entry.first) {
2348 Entry.first = StructType::create(Context, Lex.getStrVal());
2349 Entry.second = Lex.getLoc();
2351 Result = Entry.first;
2352 Lex.Lex();
2353 break;
2356 case lltok::LocalVarID: {
2357 // Type ::= %4
2358 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2360 // If the type hasn't been defined yet, create a forward definition and
2361 // remember where that forward def'n was seen (in case it never is defined).
2362 if (!Entry.first) {
2363 Entry.first = StructType::create(Context);
2364 Entry.second = Lex.getLoc();
2366 Result = Entry.first;
2367 Lex.Lex();
2368 break;
2372 // Parse the type suffixes.
2373 while (true) {
2374 switch (Lex.getKind()) {
2375 // End of type.
2376 default:
2377 if (!AllowVoid && Result->isVoidTy())
2378 return Error(TypeLoc, "void type only allowed for function results");
2379 return false;
2381 // Type ::= Type '*'
2382 case lltok::star:
2383 if (Result->isLabelTy())
2384 return TokError("basic block pointers are invalid");
2385 if (Result->isVoidTy())
2386 return TokError("pointers to void are invalid - use i8* instead");
2387 if (!PointerType::isValidElementType(Result))
2388 return TokError("pointer to this type is invalid");
2389 Result = PointerType::getUnqual(Result);
2390 Lex.Lex();
2391 break;
2393 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2394 case lltok::kw_addrspace: {
2395 if (Result->isLabelTy())
2396 return TokError("basic block pointers are invalid");
2397 if (Result->isVoidTy())
2398 return TokError("pointers to void are invalid; use i8* instead");
2399 if (!PointerType::isValidElementType(Result))
2400 return TokError("pointer to this type is invalid");
2401 unsigned AddrSpace;
2402 if (ParseOptionalAddrSpace(AddrSpace) ||
2403 ParseToken(lltok::star, "expected '*' in address space"))
2404 return true;
2406 Result = PointerType::get(Result, AddrSpace);
2407 break;
2410 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2411 case lltok::lparen:
2412 if (ParseFunctionType(Result))
2413 return true;
2414 break;
2419 /// ParseParameterList
2420 /// ::= '(' ')'
2421 /// ::= '(' Arg (',' Arg)* ')'
2422 /// Arg
2423 /// ::= Type OptionalAttributes Value OptionalAttributes
2424 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2425 PerFunctionState &PFS, bool IsMustTailCall,
2426 bool InVarArgsFunc) {
2427 if (ParseToken(lltok::lparen, "expected '(' in call"))
2428 return true;
2430 while (Lex.getKind() != lltok::rparen) {
2431 // If this isn't the first argument, we need a comma.
2432 if (!ArgList.empty() &&
2433 ParseToken(lltok::comma, "expected ',' in argument list"))
2434 return true;
2436 // Parse an ellipsis if this is a musttail call in a variadic function.
2437 if (Lex.getKind() == lltok::dotdotdot) {
2438 const char *Msg = "unexpected ellipsis in argument list for ";
2439 if (!IsMustTailCall)
2440 return TokError(Twine(Msg) + "non-musttail call");
2441 if (!InVarArgsFunc)
2442 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2443 Lex.Lex(); // Lex the '...', it is purely for readability.
2444 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2447 // Parse the argument.
2448 LocTy ArgLoc;
2449 Type *ArgTy = nullptr;
2450 AttrBuilder ArgAttrs;
2451 Value *V;
2452 if (ParseType(ArgTy, ArgLoc))
2453 return true;
2455 if (ArgTy->isMetadataTy()) {
2456 if (ParseMetadataAsValue(V, PFS))
2457 return true;
2458 } else {
2459 // Otherwise, handle normal operands.
2460 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2461 return true;
2463 ArgList.push_back(ParamInfo(
2464 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2467 if (IsMustTailCall && InVarArgsFunc)
2468 return TokError("expected '...' at end of argument list for musttail call "
2469 "in varargs function");
2471 Lex.Lex(); // Lex the ')'.
2472 return false;
2475 /// ParseByValWithOptionalType
2476 /// ::= byval
2477 /// ::= byval(<ty>)
2478 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2479 Result = nullptr;
2480 if (!EatIfPresent(lltok::kw_byval))
2481 return true;
2482 if (!EatIfPresent(lltok::lparen))
2483 return false;
2484 if (ParseType(Result))
2485 return true;
2486 if (!EatIfPresent(lltok::rparen))
2487 return Error(Lex.getLoc(), "expected ')'");
2488 return false;
2491 /// ParseOptionalOperandBundles
2492 /// ::= /*empty*/
2493 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2495 /// OperandBundle
2496 /// ::= bundle-tag '(' ')'
2497 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2499 /// bundle-tag ::= String Constant
2500 bool LLParser::ParseOptionalOperandBundles(
2501 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2502 LocTy BeginLoc = Lex.getLoc();
2503 if (!EatIfPresent(lltok::lsquare))
2504 return false;
2506 while (Lex.getKind() != lltok::rsquare) {
2507 // If this isn't the first operand bundle, we need a comma.
2508 if (!BundleList.empty() &&
2509 ParseToken(lltok::comma, "expected ',' in input list"))
2510 return true;
2512 std::string Tag;
2513 if (ParseStringConstant(Tag))
2514 return true;
2516 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2517 return true;
2519 std::vector<Value *> Inputs;
2520 while (Lex.getKind() != lltok::rparen) {
2521 // If this isn't the first input, we need a comma.
2522 if (!Inputs.empty() &&
2523 ParseToken(lltok::comma, "expected ',' in input list"))
2524 return true;
2526 Type *Ty = nullptr;
2527 Value *Input = nullptr;
2528 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2529 return true;
2530 Inputs.push_back(Input);
2533 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2535 Lex.Lex(); // Lex the ')'.
2538 if (BundleList.empty())
2539 return Error(BeginLoc, "operand bundle set must not be empty");
2541 Lex.Lex(); // Lex the ']'.
2542 return false;
2545 /// ParseArgumentList - Parse the argument list for a function type or function
2546 /// prototype.
2547 /// ::= '(' ArgTypeListI ')'
2548 /// ArgTypeListI
2549 /// ::= /*empty*/
2550 /// ::= '...'
2551 /// ::= ArgTypeList ',' '...'
2552 /// ::= ArgType (',' ArgType)*
2554 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2555 bool &isVarArg){
2556 unsigned CurValID = 0;
2557 isVarArg = false;
2558 assert(Lex.getKind() == lltok::lparen);
2559 Lex.Lex(); // eat the (.
2561 if (Lex.getKind() == lltok::rparen) {
2562 // empty
2563 } else if (Lex.getKind() == lltok::dotdotdot) {
2564 isVarArg = true;
2565 Lex.Lex();
2566 } else {
2567 LocTy TypeLoc = Lex.getLoc();
2568 Type *ArgTy = nullptr;
2569 AttrBuilder Attrs;
2570 std::string Name;
2572 if (ParseType(ArgTy) ||
2573 ParseOptionalParamAttrs(Attrs)) return true;
2575 if (ArgTy->isVoidTy())
2576 return Error(TypeLoc, "argument can not have void type");
2578 if (Lex.getKind() == lltok::LocalVar) {
2579 Name = Lex.getStrVal();
2580 Lex.Lex();
2581 } else if (Lex.getKind() == lltok::LocalVarID) {
2582 if (Lex.getUIntVal() != CurValID)
2583 return Error(TypeLoc, "argument expected to be numbered '%" +
2584 Twine(CurValID) + "'");
2585 ++CurValID;
2586 Lex.Lex();
2589 if (!FunctionType::isValidArgumentType(ArgTy))
2590 return Error(TypeLoc, "invalid type for function argument");
2592 ArgList.emplace_back(TypeLoc, ArgTy,
2593 AttributeSet::get(ArgTy->getContext(), Attrs),
2594 std::move(Name));
2596 while (EatIfPresent(lltok::comma)) {
2597 // Handle ... at end of arg list.
2598 if (EatIfPresent(lltok::dotdotdot)) {
2599 isVarArg = true;
2600 break;
2603 // Otherwise must be an argument type.
2604 TypeLoc = Lex.getLoc();
2605 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2607 if (ArgTy->isVoidTy())
2608 return Error(TypeLoc, "argument can not have void type");
2610 if (Lex.getKind() == lltok::LocalVar) {
2611 Name = Lex.getStrVal();
2612 Lex.Lex();
2613 } else {
2614 if (Lex.getKind() == lltok::LocalVarID) {
2615 if (Lex.getUIntVal() != CurValID)
2616 return Error(TypeLoc, "argument expected to be numbered '%" +
2617 Twine(CurValID) + "'");
2618 Lex.Lex();
2620 ++CurValID;
2621 Name = "";
2624 if (!ArgTy->isFirstClassType())
2625 return Error(TypeLoc, "invalid type for function argument");
2627 ArgList.emplace_back(TypeLoc, ArgTy,
2628 AttributeSet::get(ArgTy->getContext(), Attrs),
2629 std::move(Name));
2633 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2636 /// ParseFunctionType
2637 /// ::= Type ArgumentList OptionalAttrs
2638 bool LLParser::ParseFunctionType(Type *&Result) {
2639 assert(Lex.getKind() == lltok::lparen);
2641 if (!FunctionType::isValidReturnType(Result))
2642 return TokError("invalid function return type");
2644 SmallVector<ArgInfo, 8> ArgList;
2645 bool isVarArg;
2646 if (ParseArgumentList(ArgList, isVarArg))
2647 return true;
2649 // Reject names on the arguments lists.
2650 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2651 if (!ArgList[i].Name.empty())
2652 return Error(ArgList[i].Loc, "argument name invalid in function type");
2653 if (ArgList[i].Attrs.hasAttributes())
2654 return Error(ArgList[i].Loc,
2655 "argument attributes invalid in function type");
2658 SmallVector<Type*, 16> ArgListTy;
2659 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2660 ArgListTy.push_back(ArgList[i].Ty);
2662 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2663 return false;
2666 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2667 /// other structs.
2668 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2669 SmallVector<Type*, 8> Elts;
2670 if (ParseStructBody(Elts)) return true;
2672 Result = StructType::get(Context, Elts, Packed);
2673 return false;
2676 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2677 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2678 std::pair<Type*, LocTy> &Entry,
2679 Type *&ResultTy) {
2680 // If the type was already defined, diagnose the redefinition.
2681 if (Entry.first && !Entry.second.isValid())
2682 return Error(TypeLoc, "redefinition of type");
2684 // If we have opaque, just return without filling in the definition for the
2685 // struct. This counts as a definition as far as the .ll file goes.
2686 if (EatIfPresent(lltok::kw_opaque)) {
2687 // This type is being defined, so clear the location to indicate this.
2688 Entry.second = SMLoc();
2690 // If this type number has never been uttered, create it.
2691 if (!Entry.first)
2692 Entry.first = StructType::create(Context, Name);
2693 ResultTy = Entry.first;
2694 return false;
2697 // If the type starts with '<', then it is either a packed struct or a vector.
2698 bool isPacked = EatIfPresent(lltok::less);
2700 // If we don't have a struct, then we have a random type alias, which we
2701 // accept for compatibility with old files. These types are not allowed to be
2702 // forward referenced and not allowed to be recursive.
2703 if (Lex.getKind() != lltok::lbrace) {
2704 if (Entry.first)
2705 return Error(TypeLoc, "forward references to non-struct type");
2707 ResultTy = nullptr;
2708 if (isPacked)
2709 return ParseArrayVectorType(ResultTy, true);
2710 return ParseType(ResultTy);
2713 // This type is being defined, so clear the location to indicate this.
2714 Entry.second = SMLoc();
2716 // If this type number has never been uttered, create it.
2717 if (!Entry.first)
2718 Entry.first = StructType::create(Context, Name);
2720 StructType *STy = cast<StructType>(Entry.first);
2722 SmallVector<Type*, 8> Body;
2723 if (ParseStructBody(Body) ||
2724 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2725 return true;
2727 STy->setBody(Body, isPacked);
2728 ResultTy = STy;
2729 return false;
2732 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2733 /// StructType
2734 /// ::= '{' '}'
2735 /// ::= '{' Type (',' Type)* '}'
2736 /// ::= '<' '{' '}' '>'
2737 /// ::= '<' '{' Type (',' Type)* '}' '>'
2738 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2739 assert(Lex.getKind() == lltok::lbrace);
2740 Lex.Lex(); // Consume the '{'
2742 // Handle the empty struct.
2743 if (EatIfPresent(lltok::rbrace))
2744 return false;
2746 LocTy EltTyLoc = Lex.getLoc();
2747 Type *Ty = nullptr;
2748 if (ParseType(Ty)) return true;
2749 Body.push_back(Ty);
2751 if (!StructType::isValidElementType(Ty))
2752 return Error(EltTyLoc, "invalid element type for struct");
2754 while (EatIfPresent(lltok::comma)) {
2755 EltTyLoc = Lex.getLoc();
2756 if (ParseType(Ty)) return true;
2758 if (!StructType::isValidElementType(Ty))
2759 return Error(EltTyLoc, "invalid element type for struct");
2761 Body.push_back(Ty);
2764 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2767 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2768 /// token has already been consumed.
2769 /// Type
2770 /// ::= '[' APSINTVAL 'x' Types ']'
2771 /// ::= '<' APSINTVAL 'x' Types '>'
2772 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2773 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2774 bool Scalable = false;
2776 if (isVector && Lex.getKind() == lltok::kw_vscale) {
2777 Lex.Lex(); // consume the 'vscale'
2778 if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2779 return true;
2781 Scalable = true;
2784 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2785 Lex.getAPSIntVal().getBitWidth() > 64)
2786 return TokError("expected number in address space");
2788 LocTy SizeLoc = Lex.getLoc();
2789 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2790 Lex.Lex();
2792 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2793 return true;
2795 LocTy TypeLoc = Lex.getLoc();
2796 Type *EltTy = nullptr;
2797 if (ParseType(EltTy)) return true;
2799 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2800 "expected end of sequential type"))
2801 return true;
2803 if (isVector) {
2804 if (Size == 0)
2805 return Error(SizeLoc, "zero element vector is illegal");
2806 if ((unsigned)Size != Size)
2807 return Error(SizeLoc, "size too large for vector");
2808 if (!VectorType::isValidElementType(EltTy))
2809 return Error(TypeLoc, "invalid vector element type");
2810 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2811 } else {
2812 if (!ArrayType::isValidElementType(EltTy))
2813 return Error(TypeLoc, "invalid array element type");
2814 Result = ArrayType::get(EltTy, Size);
2816 return false;
2819 //===----------------------------------------------------------------------===//
2820 // Function Semantic Analysis.
2821 //===----------------------------------------------------------------------===//
2823 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2824 int functionNumber)
2825 : P(p), F(f), FunctionNumber(functionNumber) {
2827 // Insert unnamed arguments into the NumberedVals list.
2828 for (Argument &A : F.args())
2829 if (!A.hasName())
2830 NumberedVals.push_back(&A);
2833 LLParser::PerFunctionState::~PerFunctionState() {
2834 // If there were any forward referenced non-basicblock values, delete them.
2836 for (const auto &P : ForwardRefVals) {
2837 if (isa<BasicBlock>(P.second.first))
2838 continue;
2839 P.second.first->replaceAllUsesWith(
2840 UndefValue::get(P.second.first->getType()));
2841 P.second.first->deleteValue();
2844 for (const auto &P : ForwardRefValIDs) {
2845 if (isa<BasicBlock>(P.second.first))
2846 continue;
2847 P.second.first->replaceAllUsesWith(
2848 UndefValue::get(P.second.first->getType()));
2849 P.second.first->deleteValue();
2853 bool LLParser::PerFunctionState::FinishFunction() {
2854 if (!ForwardRefVals.empty())
2855 return P.Error(ForwardRefVals.begin()->second.second,
2856 "use of undefined value '%" + ForwardRefVals.begin()->first +
2857 "'");
2858 if (!ForwardRefValIDs.empty())
2859 return P.Error(ForwardRefValIDs.begin()->second.second,
2860 "use of undefined value '%" +
2861 Twine(ForwardRefValIDs.begin()->first) + "'");
2862 return false;
2865 /// GetVal - Get a value with the specified name or ID, creating a
2866 /// forward reference record if needed. This can return null if the value
2867 /// exists but does not have the right type.
2868 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2869 LocTy Loc, bool IsCall) {
2870 // Look this name up in the normal function symbol table.
2871 Value *Val = F.getValueSymbolTable()->lookup(Name);
2873 // If this is a forward reference for the value, see if we already created a
2874 // forward ref record.
2875 if (!Val) {
2876 auto I = ForwardRefVals.find(Name);
2877 if (I != ForwardRefVals.end())
2878 Val = I->second.first;
2881 // If we have the value in the symbol table or fwd-ref table, return it.
2882 if (Val)
2883 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2885 // Don't make placeholders with invalid type.
2886 if (!Ty->isFirstClassType()) {
2887 P.Error(Loc, "invalid use of a non-first-class type");
2888 return nullptr;
2891 // Otherwise, create a new forward reference for this value and remember it.
2892 Value *FwdVal;
2893 if (Ty->isLabelTy()) {
2894 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2895 } else {
2896 FwdVal = new Argument(Ty, Name);
2899 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2900 return FwdVal;
2903 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2904 bool IsCall) {
2905 // Look this name up in the normal function symbol table.
2906 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2908 // If this is a forward reference for the value, see if we already created a
2909 // forward ref record.
2910 if (!Val) {
2911 auto I = ForwardRefValIDs.find(ID);
2912 if (I != ForwardRefValIDs.end())
2913 Val = I->second.first;
2916 // If we have the value in the symbol table or fwd-ref table, return it.
2917 if (Val)
2918 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2920 if (!Ty->isFirstClassType()) {
2921 P.Error(Loc, "invalid use of a non-first-class type");
2922 return nullptr;
2925 // Otherwise, create a new forward reference for this value and remember it.
2926 Value *FwdVal;
2927 if (Ty->isLabelTy()) {
2928 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2929 } else {
2930 FwdVal = new Argument(Ty);
2933 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2934 return FwdVal;
2937 /// SetInstName - After an instruction is parsed and inserted into its
2938 /// basic block, this installs its name.
2939 bool LLParser::PerFunctionState::SetInstName(int NameID,
2940 const std::string &NameStr,
2941 LocTy NameLoc, Instruction *Inst) {
2942 // If this instruction has void type, it cannot have a name or ID specified.
2943 if (Inst->getType()->isVoidTy()) {
2944 if (NameID != -1 || !NameStr.empty())
2945 return P.Error(NameLoc, "instructions returning void cannot have a name");
2946 return false;
2949 // If this was a numbered instruction, verify that the instruction is the
2950 // expected value and resolve any forward references.
2951 if (NameStr.empty()) {
2952 // If neither a name nor an ID was specified, just use the next ID.
2953 if (NameID == -1)
2954 NameID = NumberedVals.size();
2956 if (unsigned(NameID) != NumberedVals.size())
2957 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2958 Twine(NumberedVals.size()) + "'");
2960 auto FI = ForwardRefValIDs.find(NameID);
2961 if (FI != ForwardRefValIDs.end()) {
2962 Value *Sentinel = FI->second.first;
2963 if (Sentinel->getType() != Inst->getType())
2964 return P.Error(NameLoc, "instruction forward referenced with type '" +
2965 getTypeString(FI->second.first->getType()) + "'");
2967 Sentinel->replaceAllUsesWith(Inst);
2968 Sentinel->deleteValue();
2969 ForwardRefValIDs.erase(FI);
2972 NumberedVals.push_back(Inst);
2973 return false;
2976 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2977 auto FI = ForwardRefVals.find(NameStr);
2978 if (FI != ForwardRefVals.end()) {
2979 Value *Sentinel = FI->second.first;
2980 if (Sentinel->getType() != Inst->getType())
2981 return P.Error(NameLoc, "instruction forward referenced with type '" +
2982 getTypeString(FI->second.first->getType()) + "'");
2984 Sentinel->replaceAllUsesWith(Inst);
2985 Sentinel->deleteValue();
2986 ForwardRefVals.erase(FI);
2989 // Set the name on the instruction.
2990 Inst->setName(NameStr);
2992 if (Inst->getName() != NameStr)
2993 return P.Error(NameLoc, "multiple definition of local value named '" +
2994 NameStr + "'");
2995 return false;
2998 /// GetBB - Get a basic block with the specified name or ID, creating a
2999 /// forward reference record if needed.
3000 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3001 LocTy Loc) {
3002 return dyn_cast_or_null<BasicBlock>(
3003 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3006 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3007 return dyn_cast_or_null<BasicBlock>(
3008 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3011 /// DefineBB - Define the specified basic block, which is either named or
3012 /// unnamed. If there is an error, this returns null otherwise it returns
3013 /// the block being defined.
3014 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3015 int NameID, LocTy Loc) {
3016 BasicBlock *BB;
3017 if (Name.empty()) {
3018 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3019 P.Error(Loc, "label expected to be numbered '" +
3020 Twine(NumberedVals.size()) + "'");
3021 return nullptr;
3023 BB = GetBB(NumberedVals.size(), Loc);
3024 if (!BB) {
3025 P.Error(Loc, "unable to create block numbered '" +
3026 Twine(NumberedVals.size()) + "'");
3027 return nullptr;
3029 } else {
3030 BB = GetBB(Name, Loc);
3031 if (!BB) {
3032 P.Error(Loc, "unable to create block named '" + Name + "'");
3033 return nullptr;
3037 // Move the block to the end of the function. Forward ref'd blocks are
3038 // inserted wherever they happen to be referenced.
3039 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3041 // Remove the block from forward ref sets.
3042 if (Name.empty()) {
3043 ForwardRefValIDs.erase(NumberedVals.size());
3044 NumberedVals.push_back(BB);
3045 } else {
3046 // BB forward references are already in the function symbol table.
3047 ForwardRefVals.erase(Name);
3050 return BB;
3053 //===----------------------------------------------------------------------===//
3054 // Constants.
3055 //===----------------------------------------------------------------------===//
3057 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3058 /// type implied. For example, if we parse "4" we don't know what integer type
3059 /// it has. The value will later be combined with its type and checked for
3060 /// sanity. PFS is used to convert function-local operands of metadata (since
3061 /// metadata operands are not just parsed here but also converted to values).
3062 /// PFS can be null when we are not parsing metadata values inside a function.
3063 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3064 ID.Loc = Lex.getLoc();
3065 switch (Lex.getKind()) {
3066 default: return TokError("expected value token");
3067 case lltok::GlobalID: // @42
3068 ID.UIntVal = Lex.getUIntVal();
3069 ID.Kind = ValID::t_GlobalID;
3070 break;
3071 case lltok::GlobalVar: // @foo
3072 ID.StrVal = Lex.getStrVal();
3073 ID.Kind = ValID::t_GlobalName;
3074 break;
3075 case lltok::LocalVarID: // %42
3076 ID.UIntVal = Lex.getUIntVal();
3077 ID.Kind = ValID::t_LocalID;
3078 break;
3079 case lltok::LocalVar: // %foo
3080 ID.StrVal = Lex.getStrVal();
3081 ID.Kind = ValID::t_LocalName;
3082 break;
3083 case lltok::APSInt:
3084 ID.APSIntVal = Lex.getAPSIntVal();
3085 ID.Kind = ValID::t_APSInt;
3086 break;
3087 case lltok::APFloat:
3088 ID.APFloatVal = Lex.getAPFloatVal();
3089 ID.Kind = ValID::t_APFloat;
3090 break;
3091 case lltok::kw_true:
3092 ID.ConstantVal = ConstantInt::getTrue(Context);
3093 ID.Kind = ValID::t_Constant;
3094 break;
3095 case lltok::kw_false:
3096 ID.ConstantVal = ConstantInt::getFalse(Context);
3097 ID.Kind = ValID::t_Constant;
3098 break;
3099 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3100 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3101 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3102 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3104 case lltok::lbrace: {
3105 // ValID ::= '{' ConstVector '}'
3106 Lex.Lex();
3107 SmallVector<Constant*, 16> Elts;
3108 if (ParseGlobalValueVector(Elts) ||
3109 ParseToken(lltok::rbrace, "expected end of struct constant"))
3110 return true;
3112 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3113 ID.UIntVal = Elts.size();
3114 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3115 Elts.size() * sizeof(Elts[0]));
3116 ID.Kind = ValID::t_ConstantStruct;
3117 return false;
3119 case lltok::less: {
3120 // ValID ::= '<' ConstVector '>' --> Vector.
3121 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3122 Lex.Lex();
3123 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3125 SmallVector<Constant*, 16> Elts;
3126 LocTy FirstEltLoc = Lex.getLoc();
3127 if (ParseGlobalValueVector(Elts) ||
3128 (isPackedStruct &&
3129 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3130 ParseToken(lltok::greater, "expected end of constant"))
3131 return true;
3133 if (isPackedStruct) {
3134 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3135 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3136 Elts.size() * sizeof(Elts[0]));
3137 ID.UIntVal = Elts.size();
3138 ID.Kind = ValID::t_PackedConstantStruct;
3139 return false;
3142 if (Elts.empty())
3143 return Error(ID.Loc, "constant vector must not be empty");
3145 if (!Elts[0]->getType()->isIntegerTy() &&
3146 !Elts[0]->getType()->isFloatingPointTy() &&
3147 !Elts[0]->getType()->isPointerTy())
3148 return Error(FirstEltLoc,
3149 "vector elements must have integer, pointer or floating point type");
3151 // Verify that all the vector elements have the same type.
3152 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3153 if (Elts[i]->getType() != Elts[0]->getType())
3154 return Error(FirstEltLoc,
3155 "vector element #" + Twine(i) +
3156 " is not of type '" + getTypeString(Elts[0]->getType()));
3158 ID.ConstantVal = ConstantVector::get(Elts);
3159 ID.Kind = ValID::t_Constant;
3160 return false;
3162 case lltok::lsquare: { // Array Constant
3163 Lex.Lex();
3164 SmallVector<Constant*, 16> Elts;
3165 LocTy FirstEltLoc = Lex.getLoc();
3166 if (ParseGlobalValueVector(Elts) ||
3167 ParseToken(lltok::rsquare, "expected end of array constant"))
3168 return true;
3170 // Handle empty element.
3171 if (Elts.empty()) {
3172 // Use undef instead of an array because it's inconvenient to determine
3173 // the element type at this point, there being no elements to examine.
3174 ID.Kind = ValID::t_EmptyArray;
3175 return false;
3178 if (!Elts[0]->getType()->isFirstClassType())
3179 return Error(FirstEltLoc, "invalid array element type: " +
3180 getTypeString(Elts[0]->getType()));
3182 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3184 // Verify all elements are correct type!
3185 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3186 if (Elts[i]->getType() != Elts[0]->getType())
3187 return Error(FirstEltLoc,
3188 "array element #" + Twine(i) +
3189 " is not of type '" + getTypeString(Elts[0]->getType()));
3192 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3193 ID.Kind = ValID::t_Constant;
3194 return false;
3196 case lltok::kw_c: // c "foo"
3197 Lex.Lex();
3198 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3199 false);
3200 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3201 ID.Kind = ValID::t_Constant;
3202 return false;
3204 case lltok::kw_asm: {
3205 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3206 // STRINGCONSTANT
3207 bool HasSideEffect, AlignStack, AsmDialect;
3208 Lex.Lex();
3209 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3210 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3211 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3212 ParseStringConstant(ID.StrVal) ||
3213 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3214 ParseToken(lltok::StringConstant, "expected constraint string"))
3215 return true;
3216 ID.StrVal2 = Lex.getStrVal();
3217 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3218 (unsigned(AsmDialect)<<2);
3219 ID.Kind = ValID::t_InlineAsm;
3220 return false;
3223 case lltok::kw_blockaddress: {
3224 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3225 Lex.Lex();
3227 ValID Fn, Label;
3229 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3230 ParseValID(Fn) ||
3231 ParseToken(lltok::comma, "expected comma in block address expression")||
3232 ParseValID(Label) ||
3233 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3234 return true;
3236 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3237 return Error(Fn.Loc, "expected function name in blockaddress");
3238 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3239 return Error(Label.Loc, "expected basic block name in blockaddress");
3241 // Try to find the function (but skip it if it's forward-referenced).
3242 GlobalValue *GV = nullptr;
3243 if (Fn.Kind == ValID::t_GlobalID) {
3244 if (Fn.UIntVal < NumberedVals.size())
3245 GV = NumberedVals[Fn.UIntVal];
3246 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3247 GV = M->getNamedValue(Fn.StrVal);
3249 Function *F = nullptr;
3250 if (GV) {
3251 // Confirm that it's actually a function with a definition.
3252 if (!isa<Function>(GV))
3253 return Error(Fn.Loc, "expected function name in blockaddress");
3254 F = cast<Function>(GV);
3255 if (F->isDeclaration())
3256 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3259 if (!F) {
3260 // Make a global variable as a placeholder for this reference.
3261 GlobalValue *&FwdRef =
3262 ForwardRefBlockAddresses.insert(std::make_pair(
3263 std::move(Fn),
3264 std::map<ValID, GlobalValue *>()))
3265 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3266 .first->second;
3267 if (!FwdRef)
3268 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3269 GlobalValue::InternalLinkage, nullptr, "");
3270 ID.ConstantVal = FwdRef;
3271 ID.Kind = ValID::t_Constant;
3272 return false;
3275 // We found the function; now find the basic block. Don't use PFS, since we
3276 // might be inside a constant expression.
3277 BasicBlock *BB;
3278 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3279 if (Label.Kind == ValID::t_LocalID)
3280 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3281 else
3282 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3283 if (!BB)
3284 return Error(Label.Loc, "referenced value is not a basic block");
3285 } else {
3286 if (Label.Kind == ValID::t_LocalID)
3287 return Error(Label.Loc, "cannot take address of numeric label after "
3288 "the function is defined");
3289 BB = dyn_cast_or_null<BasicBlock>(
3290 F->getValueSymbolTable()->lookup(Label.StrVal));
3291 if (!BB)
3292 return Error(Label.Loc, "referenced value is not a basic block");
3295 ID.ConstantVal = BlockAddress::get(F, BB);
3296 ID.Kind = ValID::t_Constant;
3297 return false;
3300 case lltok::kw_trunc:
3301 case lltok::kw_zext:
3302 case lltok::kw_sext:
3303 case lltok::kw_fptrunc:
3304 case lltok::kw_fpext:
3305 case lltok::kw_bitcast:
3306 case lltok::kw_addrspacecast:
3307 case lltok::kw_uitofp:
3308 case lltok::kw_sitofp:
3309 case lltok::kw_fptoui:
3310 case lltok::kw_fptosi:
3311 case lltok::kw_inttoptr:
3312 case lltok::kw_ptrtoint: {
3313 unsigned Opc = Lex.getUIntVal();
3314 Type *DestTy = nullptr;
3315 Constant *SrcVal;
3316 Lex.Lex();
3317 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3318 ParseGlobalTypeAndValue(SrcVal) ||
3319 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3320 ParseType(DestTy) ||
3321 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3322 return true;
3323 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3324 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3325 getTypeString(SrcVal->getType()) + "' to '" +
3326 getTypeString(DestTy) + "'");
3327 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3328 SrcVal, DestTy);
3329 ID.Kind = ValID::t_Constant;
3330 return false;
3332 case lltok::kw_extractvalue: {
3333 Lex.Lex();
3334 Constant *Val;
3335 SmallVector<unsigned, 4> Indices;
3336 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3337 ParseGlobalTypeAndValue(Val) ||
3338 ParseIndexList(Indices) ||
3339 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3340 return true;
3342 if (!Val->getType()->isAggregateType())
3343 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3344 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3345 return Error(ID.Loc, "invalid indices for extractvalue");
3346 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3347 ID.Kind = ValID::t_Constant;
3348 return false;
3350 case lltok::kw_insertvalue: {
3351 Lex.Lex();
3352 Constant *Val0, *Val1;
3353 SmallVector<unsigned, 4> Indices;
3354 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3355 ParseGlobalTypeAndValue(Val0) ||
3356 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3357 ParseGlobalTypeAndValue(Val1) ||
3358 ParseIndexList(Indices) ||
3359 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3360 return true;
3361 if (!Val0->getType()->isAggregateType())
3362 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3363 Type *IndexedType =
3364 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3365 if (!IndexedType)
3366 return Error(ID.Loc, "invalid indices for insertvalue");
3367 if (IndexedType != Val1->getType())
3368 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3369 getTypeString(Val1->getType()) +
3370 "' instead of '" + getTypeString(IndexedType) +
3371 "'");
3372 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3373 ID.Kind = ValID::t_Constant;
3374 return false;
3376 case lltok::kw_icmp:
3377 case lltok::kw_fcmp: {
3378 unsigned PredVal, Opc = Lex.getUIntVal();
3379 Constant *Val0, *Val1;
3380 Lex.Lex();
3381 if (ParseCmpPredicate(PredVal, Opc) ||
3382 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3383 ParseGlobalTypeAndValue(Val0) ||
3384 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3385 ParseGlobalTypeAndValue(Val1) ||
3386 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3387 return true;
3389 if (Val0->getType() != Val1->getType())
3390 return Error(ID.Loc, "compare operands must have the same type");
3392 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3394 if (Opc == Instruction::FCmp) {
3395 if (!Val0->getType()->isFPOrFPVectorTy())
3396 return Error(ID.Loc, "fcmp requires floating point operands");
3397 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3398 } else {
3399 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3400 if (!Val0->getType()->isIntOrIntVectorTy() &&
3401 !Val0->getType()->isPtrOrPtrVectorTy())
3402 return Error(ID.Loc, "icmp requires pointer or integer operands");
3403 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3405 ID.Kind = ValID::t_Constant;
3406 return false;
3409 // Unary Operators.
3410 case lltok::kw_fneg: {
3411 unsigned Opc = Lex.getUIntVal();
3412 Constant *Val;
3413 Lex.Lex();
3414 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3415 ParseGlobalTypeAndValue(Val) ||
3416 ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3417 return true;
3419 // Check that the type is valid for the operator.
3420 switch (Opc) {
3421 case Instruction::FNeg:
3422 if (!Val->getType()->isFPOrFPVectorTy())
3423 return Error(ID.Loc, "constexpr requires fp operands");
3424 break;
3425 default: llvm_unreachable("Unknown unary operator!");
3427 unsigned Flags = 0;
3428 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3429 ID.ConstantVal = C;
3430 ID.Kind = ValID::t_Constant;
3431 return false;
3433 // Binary Operators.
3434 case lltok::kw_add:
3435 case lltok::kw_fadd:
3436 case lltok::kw_sub:
3437 case lltok::kw_fsub:
3438 case lltok::kw_mul:
3439 case lltok::kw_fmul:
3440 case lltok::kw_udiv:
3441 case lltok::kw_sdiv:
3442 case lltok::kw_fdiv:
3443 case lltok::kw_urem:
3444 case lltok::kw_srem:
3445 case lltok::kw_frem:
3446 case lltok::kw_shl:
3447 case lltok::kw_lshr:
3448 case lltok::kw_ashr: {
3449 bool NUW = false;
3450 bool NSW = false;
3451 bool Exact = false;
3452 unsigned Opc = Lex.getUIntVal();
3453 Constant *Val0, *Val1;
3454 Lex.Lex();
3455 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3456 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3457 if (EatIfPresent(lltok::kw_nuw))
3458 NUW = true;
3459 if (EatIfPresent(lltok::kw_nsw)) {
3460 NSW = true;
3461 if (EatIfPresent(lltok::kw_nuw))
3462 NUW = true;
3464 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3465 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3466 if (EatIfPresent(lltok::kw_exact))
3467 Exact = true;
3469 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3470 ParseGlobalTypeAndValue(Val0) ||
3471 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3472 ParseGlobalTypeAndValue(Val1) ||
3473 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3474 return true;
3475 if (Val0->getType() != Val1->getType())
3476 return Error(ID.Loc, "operands of constexpr must have same type");
3477 // Check that the type is valid for the operator.
3478 switch (Opc) {
3479 case Instruction::Add:
3480 case Instruction::Sub:
3481 case Instruction::Mul:
3482 case Instruction::UDiv:
3483 case Instruction::SDiv:
3484 case Instruction::URem:
3485 case Instruction::SRem:
3486 case Instruction::Shl:
3487 case Instruction::AShr:
3488 case Instruction::LShr:
3489 if (!Val0->getType()->isIntOrIntVectorTy())
3490 return Error(ID.Loc, "constexpr requires integer operands");
3491 break;
3492 case Instruction::FAdd:
3493 case Instruction::FSub:
3494 case Instruction::FMul:
3495 case Instruction::FDiv:
3496 case Instruction::FRem:
3497 if (!Val0->getType()->isFPOrFPVectorTy())
3498 return Error(ID.Loc, "constexpr requires fp operands");
3499 break;
3500 default: llvm_unreachable("Unknown binary operator!");
3502 unsigned Flags = 0;
3503 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3504 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3505 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3506 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3507 ID.ConstantVal = C;
3508 ID.Kind = ValID::t_Constant;
3509 return false;
3512 // Logical Operations
3513 case lltok::kw_and:
3514 case lltok::kw_or:
3515 case lltok::kw_xor: {
3516 unsigned Opc = Lex.getUIntVal();
3517 Constant *Val0, *Val1;
3518 Lex.Lex();
3519 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3520 ParseGlobalTypeAndValue(Val0) ||
3521 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3522 ParseGlobalTypeAndValue(Val1) ||
3523 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3524 return true;
3525 if (Val0->getType() != Val1->getType())
3526 return Error(ID.Loc, "operands of constexpr must have same type");
3527 if (!Val0->getType()->isIntOrIntVectorTy())
3528 return Error(ID.Loc,
3529 "constexpr requires integer or integer vector operands");
3530 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3531 ID.Kind = ValID::t_Constant;
3532 return false;
3535 case lltok::kw_getelementptr:
3536 case lltok::kw_shufflevector:
3537 case lltok::kw_insertelement:
3538 case lltok::kw_extractelement:
3539 case lltok::kw_select: {
3540 unsigned Opc = Lex.getUIntVal();
3541 SmallVector<Constant*, 16> Elts;
3542 bool InBounds = false;
3543 Type *Ty;
3544 Lex.Lex();
3546 if (Opc == Instruction::GetElementPtr)
3547 InBounds = EatIfPresent(lltok::kw_inbounds);
3549 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3550 return true;
3552 LocTy ExplicitTypeLoc = Lex.getLoc();
3553 if (Opc == Instruction::GetElementPtr) {
3554 if (ParseType(Ty) ||
3555 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3556 return true;
3559 Optional<unsigned> InRangeOp;
3560 if (ParseGlobalValueVector(
3561 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3562 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3563 return true;
3565 if (Opc == Instruction::GetElementPtr) {
3566 if (Elts.size() == 0 ||
3567 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3568 return Error(ID.Loc, "base of getelementptr must be a pointer");
3570 Type *BaseType = Elts[0]->getType();
3571 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3572 if (Ty != BasePointerType->getElementType())
3573 return Error(
3574 ExplicitTypeLoc,
3575 "explicit pointee type doesn't match operand's pointee type");
3577 unsigned GEPWidth =
3578 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3580 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3581 for (Constant *Val : Indices) {
3582 Type *ValTy = Val->getType();
3583 if (!ValTy->isIntOrIntVectorTy())
3584 return Error(ID.Loc, "getelementptr index must be an integer");
3585 if (ValTy->isVectorTy()) {
3586 unsigned ValNumEl = ValTy->getVectorNumElements();
3587 if (GEPWidth && (ValNumEl != GEPWidth))
3588 return Error(
3589 ID.Loc,
3590 "getelementptr vector index has a wrong number of elements");
3591 // GEPWidth may have been unknown because the base is a scalar,
3592 // but it is known now.
3593 GEPWidth = ValNumEl;
3597 SmallPtrSet<Type*, 4> Visited;
3598 if (!Indices.empty() && !Ty->isSized(&Visited))
3599 return Error(ID.Loc, "base element of getelementptr must be sized");
3601 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3602 return Error(ID.Loc, "invalid getelementptr indices");
3604 if (InRangeOp) {
3605 if (*InRangeOp == 0)
3606 return Error(ID.Loc,
3607 "inrange keyword may not appear on pointer operand");
3608 --*InRangeOp;
3611 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3612 InBounds, InRangeOp);
3613 } else if (Opc == Instruction::Select) {
3614 if (Elts.size() != 3)
3615 return Error(ID.Loc, "expected three operands to select");
3616 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3617 Elts[2]))
3618 return Error(ID.Loc, Reason);
3619 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3620 } else if (Opc == Instruction::ShuffleVector) {
3621 if (Elts.size() != 3)
3622 return Error(ID.Loc, "expected three operands to shufflevector");
3623 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3624 return Error(ID.Loc, "invalid operands to shufflevector");
3625 ID.ConstantVal =
3626 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3627 } else if (Opc == Instruction::ExtractElement) {
3628 if (Elts.size() != 2)
3629 return Error(ID.Loc, "expected two operands to extractelement");
3630 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3631 return Error(ID.Loc, "invalid extractelement operands");
3632 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3633 } else {
3634 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3635 if (Elts.size() != 3)
3636 return Error(ID.Loc, "expected three operands to insertelement");
3637 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3638 return Error(ID.Loc, "invalid insertelement operands");
3639 ID.ConstantVal =
3640 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3643 ID.Kind = ValID::t_Constant;
3644 return false;
3648 Lex.Lex();
3649 return false;
3652 /// ParseGlobalValue - Parse a global value with the specified type.
3653 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3654 C = nullptr;
3655 ValID ID;
3656 Value *V = nullptr;
3657 bool Parsed = ParseValID(ID) ||
3658 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3659 if (V && !(C = dyn_cast<Constant>(V)))
3660 return Error(ID.Loc, "global values must be constants");
3661 return Parsed;
3664 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3665 Type *Ty = nullptr;
3666 return ParseType(Ty) ||
3667 ParseGlobalValue(Ty, V);
3670 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3671 C = nullptr;
3673 LocTy KwLoc = Lex.getLoc();
3674 if (!EatIfPresent(lltok::kw_comdat))
3675 return false;
3677 if (EatIfPresent(lltok::lparen)) {
3678 if (Lex.getKind() != lltok::ComdatVar)
3679 return TokError("expected comdat variable");
3680 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3681 Lex.Lex();
3682 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3683 return true;
3684 } else {
3685 if (GlobalName.empty())
3686 return TokError("comdat cannot be unnamed");
3687 C = getComdat(GlobalName, KwLoc);
3690 return false;
3693 /// ParseGlobalValueVector
3694 /// ::= /*empty*/
3695 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3696 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3697 Optional<unsigned> *InRangeOp) {
3698 // Empty list.
3699 if (Lex.getKind() == lltok::rbrace ||
3700 Lex.getKind() == lltok::rsquare ||
3701 Lex.getKind() == lltok::greater ||
3702 Lex.getKind() == lltok::rparen)
3703 return false;
3705 do {
3706 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3707 *InRangeOp = Elts.size();
3709 Constant *C;
3710 if (ParseGlobalTypeAndValue(C)) return true;
3711 Elts.push_back(C);
3712 } while (EatIfPresent(lltok::comma));
3714 return false;
3717 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3718 SmallVector<Metadata *, 16> Elts;
3719 if (ParseMDNodeVector(Elts))
3720 return true;
3722 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3723 return false;
3726 /// MDNode:
3727 /// ::= !{ ... }
3728 /// ::= !7
3729 /// ::= !DILocation(...)
3730 bool LLParser::ParseMDNode(MDNode *&N) {
3731 if (Lex.getKind() == lltok::MetadataVar)
3732 return ParseSpecializedMDNode(N);
3734 return ParseToken(lltok::exclaim, "expected '!' here") ||
3735 ParseMDNodeTail(N);
3738 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3739 // !{ ... }
3740 if (Lex.getKind() == lltok::lbrace)
3741 return ParseMDTuple(N);
3743 // !42
3744 return ParseMDNodeID(N);
3747 namespace {
3749 /// Structure to represent an optional metadata field.
3750 template <class FieldTy> struct MDFieldImpl {
3751 typedef MDFieldImpl ImplTy;
3752 FieldTy Val;
3753 bool Seen;
3755 void assign(FieldTy Val) {
3756 Seen = true;
3757 this->Val = std::move(Val);
3760 explicit MDFieldImpl(FieldTy Default)
3761 : Val(std::move(Default)), Seen(false) {}
3764 /// Structure to represent an optional metadata field that
3765 /// can be of either type (A or B) and encapsulates the
3766 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3767 /// to reimplement the specifics for representing each Field.
3768 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3769 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3770 FieldTypeA A;
3771 FieldTypeB B;
3772 bool Seen;
3774 enum {
3775 IsInvalid = 0,
3776 IsTypeA = 1,
3777 IsTypeB = 2
3778 } WhatIs;
3780 void assign(FieldTypeA A) {
3781 Seen = true;
3782 this->A = std::move(A);
3783 WhatIs = IsTypeA;
3786 void assign(FieldTypeB B) {
3787 Seen = true;
3788 this->B = std::move(B);
3789 WhatIs = IsTypeB;
3792 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3793 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3794 WhatIs(IsInvalid) {}
3797 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3798 uint64_t Max;
3800 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3801 : ImplTy(Default), Max(Max) {}
3804 struct LineField : public MDUnsignedField {
3805 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3808 struct ColumnField : public MDUnsignedField {
3809 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3812 struct DwarfTagField : public MDUnsignedField {
3813 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3814 DwarfTagField(dwarf::Tag DefaultTag)
3815 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3818 struct DwarfMacinfoTypeField : public MDUnsignedField {
3819 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3820 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3821 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3824 struct DwarfAttEncodingField : public MDUnsignedField {
3825 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3828 struct DwarfVirtualityField : public MDUnsignedField {
3829 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3832 struct DwarfLangField : public MDUnsignedField {
3833 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3836 struct DwarfCCField : public MDUnsignedField {
3837 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3840 struct EmissionKindField : public MDUnsignedField {
3841 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3844 struct NameTableKindField : public MDUnsignedField {
3845 NameTableKindField()
3846 : MDUnsignedField(
3847 0, (unsigned)
3848 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3851 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3852 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3855 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3856 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3859 struct MDSignedField : public MDFieldImpl<int64_t> {
3860 int64_t Min;
3861 int64_t Max;
3863 MDSignedField(int64_t Default = 0)
3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3866 : ImplTy(Default), Min(Min), Max(Max) {}
3869 struct MDBoolField : public MDFieldImpl<bool> {
3870 MDBoolField(bool Default = false) : ImplTy(Default) {}
3873 struct MDField : public MDFieldImpl<Metadata *> {
3874 bool AllowNull;
3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3880 MDConstant() : ImplTy(nullptr) {}
3883 struct MDStringField : public MDFieldImpl<MDString *> {
3884 bool AllowEmpty;
3885 MDStringField(bool AllowEmpty = true)
3886 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3890 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3894 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3898 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3899 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3901 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3902 bool AllowNull = true)
3903 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3905 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3906 bool isMDField() const { return WhatIs == IsTypeB; }
3907 int64_t getMDSignedValue() const {
3908 assert(isMDSignedField() && "Wrong field type");
3909 return A.Val;
3911 Metadata *getMDFieldValue() const {
3912 assert(isMDField() && "Wrong field type");
3913 return B.Val;
3917 struct MDSignedOrUnsignedField
3918 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3919 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3921 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3922 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3923 int64_t getMDSignedValue() const {
3924 assert(isMDSignedField() && "Wrong field type");
3925 return A.Val;
3927 uint64_t getMDUnsignedValue() const {
3928 assert(isMDUnsignedField() && "Wrong field type");
3929 return B.Val;
3933 } // end anonymous namespace
3935 namespace llvm {
3937 template <>
3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3939 MDUnsignedField &Result) {
3940 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3941 return TokError("expected unsigned integer");
3943 auto &U = Lex.getAPSIntVal();
3944 if (U.ugt(Result.Max))
3945 return TokError("value for '" + Name + "' too large, limit is " +
3946 Twine(Result.Max));
3947 Result.assign(U.getZExtValue());
3948 assert(Result.Val <= Result.Max && "Expected value in range");
3949 Lex.Lex();
3950 return false;
3953 template <>
3954 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3955 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3957 template <>
3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3959 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3964 if (Lex.getKind() == lltok::APSInt)
3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3967 if (Lex.getKind() != lltok::DwarfTag)
3968 return TokError("expected DWARF tag");
3970 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3971 if (Tag == dwarf::DW_TAG_invalid)
3972 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3973 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3975 Result.assign(Tag);
3976 Lex.Lex();
3977 return false;
3980 template <>
3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3982 DwarfMacinfoTypeField &Result) {
3983 if (Lex.getKind() == lltok::APSInt)
3984 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3986 if (Lex.getKind() != lltok::DwarfMacinfo)
3987 return TokError("expected DWARF macinfo type");
3989 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3990 if (Macinfo == dwarf::DW_MACINFO_invalid)
3991 return TokError(
3992 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3993 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3995 Result.assign(Macinfo);
3996 Lex.Lex();
3997 return false;
4000 template <>
4001 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4002 DwarfVirtualityField &Result) {
4003 if (Lex.getKind() == lltok::APSInt)
4004 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4006 if (Lex.getKind() != lltok::DwarfVirtuality)
4007 return TokError("expected DWARF virtuality code");
4009 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4010 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4011 return TokError("invalid DWARF virtuality code" + Twine(" '") +
4012 Lex.getStrVal() + "'");
4013 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4014 Result.assign(Virtuality);
4015 Lex.Lex();
4016 return false;
4019 template <>
4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4021 if (Lex.getKind() == lltok::APSInt)
4022 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4024 if (Lex.getKind() != lltok::DwarfLang)
4025 return TokError("expected DWARF language");
4027 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4028 if (!Lang)
4029 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4030 "'");
4031 assert(Lang <= Result.Max && "Expected valid DWARF language");
4032 Result.assign(Lang);
4033 Lex.Lex();
4034 return false;
4037 template <>
4038 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4039 if (Lex.getKind() == lltok::APSInt)
4040 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4042 if (Lex.getKind() != lltok::DwarfCC)
4043 return TokError("expected DWARF calling convention");
4045 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4046 if (!CC)
4047 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4048 "'");
4049 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4050 Result.assign(CC);
4051 Lex.Lex();
4052 return false;
4055 template <>
4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4057 if (Lex.getKind() == lltok::APSInt)
4058 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4060 if (Lex.getKind() != lltok::EmissionKind)
4061 return TokError("expected emission kind");
4063 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4064 if (!Kind)
4065 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4066 "'");
4067 assert(*Kind <= Result.Max && "Expected valid emission kind");
4068 Result.assign(*Kind);
4069 Lex.Lex();
4070 return false;
4073 template <>
4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4075 NameTableKindField &Result) {
4076 if (Lex.getKind() == lltok::APSInt)
4077 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4079 if (Lex.getKind() != lltok::NameTableKind)
4080 return TokError("expected nameTable kind");
4082 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4083 if (!Kind)
4084 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4085 "'");
4086 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4087 Result.assign((unsigned)*Kind);
4088 Lex.Lex();
4089 return false;
4092 template <>
4093 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4094 DwarfAttEncodingField &Result) {
4095 if (Lex.getKind() == lltok::APSInt)
4096 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4098 if (Lex.getKind() != lltok::DwarfAttEncoding)
4099 return TokError("expected DWARF type attribute encoding");
4101 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4102 if (!Encoding)
4103 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4104 Lex.getStrVal() + "'");
4105 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4106 Result.assign(Encoding);
4107 Lex.Lex();
4108 return false;
4111 /// DIFlagField
4112 /// ::= uint32
4113 /// ::= DIFlagVector
4114 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4115 template <>
4116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4118 // Parser for a single flag.
4119 auto parseFlag = [&](DINode::DIFlags &Val) {
4120 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4121 uint32_t TempVal = static_cast<uint32_t>(Val);
4122 bool Res = ParseUInt32(TempVal);
4123 Val = static_cast<DINode::DIFlags>(TempVal);
4124 return Res;
4127 if (Lex.getKind() != lltok::DIFlag)
4128 return TokError("expected debug info flag");
4130 Val = DINode::getFlag(Lex.getStrVal());
4131 if (!Val)
4132 return TokError(Twine("invalid debug info flag flag '") +
4133 Lex.getStrVal() + "'");
4134 Lex.Lex();
4135 return false;
4138 // Parse the flags and combine them together.
4139 DINode::DIFlags Combined = DINode::FlagZero;
4140 do {
4141 DINode::DIFlags Val;
4142 if (parseFlag(Val))
4143 return true;
4144 Combined |= Val;
4145 } while (EatIfPresent(lltok::bar));
4147 Result.assign(Combined);
4148 return false;
4151 /// DISPFlagField
4152 /// ::= uint32
4153 /// ::= DISPFlagVector
4154 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4155 template <>
4156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4158 // Parser for a single flag.
4159 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4160 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4161 uint32_t TempVal = static_cast<uint32_t>(Val);
4162 bool Res = ParseUInt32(TempVal);
4163 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4164 return Res;
4167 if (Lex.getKind() != lltok::DISPFlag)
4168 return TokError("expected debug info flag");
4170 Val = DISubprogram::getFlag(Lex.getStrVal());
4171 if (!Val)
4172 return TokError(Twine("invalid subprogram debug info flag '") +
4173 Lex.getStrVal() + "'");
4174 Lex.Lex();
4175 return false;
4178 // Parse the flags and combine them together.
4179 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4180 do {
4181 DISubprogram::DISPFlags Val;
4182 if (parseFlag(Val))
4183 return true;
4184 Combined |= Val;
4185 } while (EatIfPresent(lltok::bar));
4187 Result.assign(Combined);
4188 return false;
4191 template <>
4192 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4193 MDSignedField &Result) {
4194 if (Lex.getKind() != lltok::APSInt)
4195 return TokError("expected signed integer");
4197 auto &S = Lex.getAPSIntVal();
4198 if (S < Result.Min)
4199 return TokError("value for '" + Name + "' too small, limit is " +
4200 Twine(Result.Min));
4201 if (S > Result.Max)
4202 return TokError("value for '" + Name + "' too large, limit is " +
4203 Twine(Result.Max));
4204 Result.assign(S.getExtValue());
4205 assert(Result.Val >= Result.Min && "Expected value in range");
4206 assert(Result.Val <= Result.Max && "Expected value in range");
4207 Lex.Lex();
4208 return false;
4211 template <>
4212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4213 switch (Lex.getKind()) {
4214 default:
4215 return TokError("expected 'true' or 'false'");
4216 case lltok::kw_true:
4217 Result.assign(true);
4218 break;
4219 case lltok::kw_false:
4220 Result.assign(false);
4221 break;
4223 Lex.Lex();
4224 return false;
4227 template <>
4228 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4229 if (Lex.getKind() == lltok::kw_null) {
4230 if (!Result.AllowNull)
4231 return TokError("'" + Name + "' cannot be null");
4232 Lex.Lex();
4233 Result.assign(nullptr);
4234 return false;
4237 Metadata *MD;
4238 if (ParseMetadata(MD, nullptr))
4239 return true;
4241 Result.assign(MD);
4242 return false;
4245 template <>
4246 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4247 MDSignedOrMDField &Result) {
4248 // Try to parse a signed int.
4249 if (Lex.getKind() == lltok::APSInt) {
4250 MDSignedField Res = Result.A;
4251 if (!ParseMDField(Loc, Name, Res)) {
4252 Result.assign(Res);
4253 return false;
4255 return true;
4258 // Otherwise, try to parse as an MDField.
4259 MDField Res = Result.B;
4260 if (!ParseMDField(Loc, Name, Res)) {
4261 Result.assign(Res);
4262 return false;
4265 return true;
4268 template <>
4269 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4270 MDSignedOrUnsignedField &Result) {
4271 if (Lex.getKind() != lltok::APSInt)
4272 return false;
4274 if (Lex.getAPSIntVal().isSigned()) {
4275 MDSignedField Res = Result.A;
4276 if (ParseMDField(Loc, Name, Res))
4277 return true;
4278 Result.assign(Res);
4279 return false;
4282 MDUnsignedField Res = Result.B;
4283 if (ParseMDField(Loc, Name, Res))
4284 return true;
4285 Result.assign(Res);
4286 return false;
4289 template <>
4290 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4291 LocTy ValueLoc = Lex.getLoc();
4292 std::string S;
4293 if (ParseStringConstant(S))
4294 return true;
4296 if (!Result.AllowEmpty && S.empty())
4297 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4299 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4300 return false;
4303 template <>
4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4305 SmallVector<Metadata *, 4> MDs;
4306 if (ParseMDNodeVector(MDs))
4307 return true;
4309 Result.assign(std::move(MDs));
4310 return false;
4313 template <>
4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4315 ChecksumKindField &Result) {
4316 Optional<DIFile::ChecksumKind> CSKind =
4317 DIFile::getChecksumKind(Lex.getStrVal());
4319 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4320 return TokError(
4321 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4323 Result.assign(*CSKind);
4324 Lex.Lex();
4325 return false;
4328 } // end namespace llvm
4330 template <class ParserTy>
4331 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4332 do {
4333 if (Lex.getKind() != lltok::LabelStr)
4334 return TokError("expected field label here");
4336 if (parseField())
4337 return true;
4338 } while (EatIfPresent(lltok::comma));
4340 return false;
4343 template <class ParserTy>
4344 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4345 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4346 Lex.Lex();
4348 if (ParseToken(lltok::lparen, "expected '(' here"))
4349 return true;
4350 if (Lex.getKind() != lltok::rparen)
4351 if (ParseMDFieldsImplBody(parseField))
4352 return true;
4354 ClosingLoc = Lex.getLoc();
4355 return ParseToken(lltok::rparen, "expected ')' here");
4358 template <class FieldTy>
4359 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4360 if (Result.Seen)
4361 return TokError("field '" + Name + "' cannot be specified more than once");
4363 LocTy Loc = Lex.getLoc();
4364 Lex.Lex();
4365 return ParseMDField(Loc, Name, Result);
4368 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4369 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4372 if (Lex.getStrVal() == #CLASS) \
4373 return Parse##CLASS(N, IsDistinct);
4374 #include "llvm/IR/Metadata.def"
4376 return TokError("expected metadata type");
4379 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4380 #define NOP_FIELD(NAME, TYPE, INIT)
4381 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4382 if (!NAME.Seen) \
4383 return Error(ClosingLoc, "missing required field '" #NAME "'");
4384 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4385 if (Lex.getStrVal() == #NAME) \
4386 return ParseMDField(#NAME, NAME);
4387 #define PARSE_MD_FIELDS() \
4388 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4389 do { \
4390 LocTy ClosingLoc; \
4391 if (ParseMDFieldsImpl([&]() -> bool { \
4392 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4393 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4394 }, ClosingLoc)) \
4395 return true; \
4396 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4397 } while (false)
4398 #define GET_OR_DISTINCT(CLASS, ARGS) \
4399 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4401 /// ParseDILocationFields:
4402 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4403 /// isImplicitCode: true)
4404 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4406 OPTIONAL(line, LineField, ); \
4407 OPTIONAL(column, ColumnField, ); \
4408 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4409 OPTIONAL(inlinedAt, MDField, ); \
4410 OPTIONAL(isImplicitCode, MDBoolField, (false));
4411 PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4414 Result =
4415 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4416 inlinedAt.Val, isImplicitCode.Val));
4417 return false;
4420 /// ParseGenericDINode:
4421 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4422 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4424 REQUIRED(tag, DwarfTagField, ); \
4425 OPTIONAL(header, MDStringField, ); \
4426 OPTIONAL(operands, MDFieldList, );
4427 PARSE_MD_FIELDS();
4428 #undef VISIT_MD_FIELDS
4430 Result = GET_OR_DISTINCT(GenericDINode,
4431 (Context, tag.Val, header.Val, operands.Val));
4432 return false;
4435 /// ParseDISubrange:
4436 /// ::= !DISubrange(count: 30, lowerBound: 2)
4437 /// ::= !DISubrange(count: !node, lowerBound: 2)
4438 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4440 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4441 OPTIONAL(lowerBound, MDSignedField, );
4442 PARSE_MD_FIELDS();
4443 #undef VISIT_MD_FIELDS
4445 if (count.isMDSignedField())
4446 Result = GET_OR_DISTINCT(
4447 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4448 else if (count.isMDField())
4449 Result = GET_OR_DISTINCT(
4450 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4451 else
4452 return true;
4454 return false;
4457 /// ParseDIEnumerator:
4458 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4459 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4461 REQUIRED(name, MDStringField, ); \
4462 REQUIRED(value, MDSignedOrUnsignedField, ); \
4463 OPTIONAL(isUnsigned, MDBoolField, (false));
4464 PARSE_MD_FIELDS();
4465 #undef VISIT_MD_FIELDS
4467 if (isUnsigned.Val && value.isMDSignedField())
4468 return TokError("unsigned enumerator with negative value");
4470 int64_t Value = value.isMDSignedField()
4471 ? value.getMDSignedValue()
4472 : static_cast<int64_t>(value.getMDUnsignedValue());
4473 Result =
4474 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4476 return false;
4479 /// ParseDIBasicType:
4480 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4481 /// encoding: DW_ATE_encoding, flags: 0)
4482 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4484 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4485 OPTIONAL(name, MDStringField, ); \
4486 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4487 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4488 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4489 OPTIONAL(flags, DIFlagField, );
4490 PARSE_MD_FIELDS();
4491 #undef VISIT_MD_FIELDS
4493 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4494 align.Val, encoding.Val, flags.Val));
4495 return false;
4498 /// ParseDIDerivedType:
4499 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4500 /// line: 7, scope: !1, baseType: !2, size: 32,
4501 /// align: 32, offset: 0, flags: 0, extraData: !3,
4502 /// dwarfAddressSpace: 3)
4503 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4505 REQUIRED(tag, DwarfTagField, ); \
4506 OPTIONAL(name, MDStringField, ); \
4507 OPTIONAL(file, MDField, ); \
4508 OPTIONAL(line, LineField, ); \
4509 OPTIONAL(scope, MDField, ); \
4510 REQUIRED(baseType, MDField, ); \
4511 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4512 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4513 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4514 OPTIONAL(flags, DIFlagField, ); \
4515 OPTIONAL(extraData, MDField, ); \
4516 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4517 PARSE_MD_FIELDS();
4518 #undef VISIT_MD_FIELDS
4520 Optional<unsigned> DWARFAddressSpace;
4521 if (dwarfAddressSpace.Val != UINT32_MAX)
4522 DWARFAddressSpace = dwarfAddressSpace.Val;
4524 Result = GET_OR_DISTINCT(DIDerivedType,
4525 (Context, tag.Val, name.Val, file.Val, line.Val,
4526 scope.Val, baseType.Val, size.Val, align.Val,
4527 offset.Val, DWARFAddressSpace, flags.Val,
4528 extraData.Val));
4529 return false;
4532 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4534 REQUIRED(tag, DwarfTagField, ); \
4535 OPTIONAL(name, MDStringField, ); \
4536 OPTIONAL(file, MDField, ); \
4537 OPTIONAL(line, LineField, ); \
4538 OPTIONAL(scope, MDField, ); \
4539 OPTIONAL(baseType, MDField, ); \
4540 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4541 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4542 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4543 OPTIONAL(flags, DIFlagField, ); \
4544 OPTIONAL(elements, MDField, ); \
4545 OPTIONAL(runtimeLang, DwarfLangField, ); \
4546 OPTIONAL(vtableHolder, MDField, ); \
4547 OPTIONAL(templateParams, MDField, ); \
4548 OPTIONAL(identifier, MDStringField, ); \
4549 OPTIONAL(discriminator, MDField, );
4550 PARSE_MD_FIELDS();
4551 #undef VISIT_MD_FIELDS
4553 // If this has an identifier try to build an ODR type.
4554 if (identifier.Val)
4555 if (auto *CT = DICompositeType::buildODRType(
4556 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4557 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4558 elements.Val, runtimeLang.Val, vtableHolder.Val,
4559 templateParams.Val, discriminator.Val)) {
4560 Result = CT;
4561 return false;
4564 // Create a new node, and save it in the context if it belongs in the type
4565 // map.
4566 Result = GET_OR_DISTINCT(
4567 DICompositeType,
4568 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4569 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4570 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4571 discriminator.Val));
4572 return false;
4575 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4576 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4577 OPTIONAL(flags, DIFlagField, ); \
4578 OPTIONAL(cc, DwarfCCField, ); \
4579 REQUIRED(types, MDField, );
4580 PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4583 Result = GET_OR_DISTINCT(DISubroutineType,
4584 (Context, flags.Val, cc.Val, types.Val));
4585 return false;
4588 /// ParseDIFileType:
4589 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4590 /// checksumkind: CSK_MD5,
4591 /// checksum: "000102030405060708090a0b0c0d0e0f",
4592 /// source: "source file contents")
4593 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4594 // The default constructed value for checksumkind is required, but will never
4595 // be used, as the parser checks if the field was actually Seen before using
4596 // the Val.
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4598 REQUIRED(filename, MDStringField, ); \
4599 REQUIRED(directory, MDStringField, ); \
4600 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4601 OPTIONAL(checksum, MDStringField, ); \
4602 OPTIONAL(source, MDStringField, );
4603 PARSE_MD_FIELDS();
4604 #undef VISIT_MD_FIELDS
4606 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4607 if (checksumkind.Seen && checksum.Seen)
4608 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4609 else if (checksumkind.Seen || checksum.Seen)
4610 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4612 Optional<MDString *> OptSource;
4613 if (source.Seen)
4614 OptSource = source.Val;
4615 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4616 OptChecksum, OptSource));
4617 return false;
4620 /// ParseDICompileUnit:
4621 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4622 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4623 /// splitDebugFilename: "abc.debug",
4624 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4625 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4626 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4627 if (!IsDistinct)
4628 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4631 REQUIRED(language, DwarfLangField, ); \
4632 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4633 OPTIONAL(producer, MDStringField, ); \
4634 OPTIONAL(isOptimized, MDBoolField, ); \
4635 OPTIONAL(flags, MDStringField, ); \
4636 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4637 OPTIONAL(splitDebugFilename, MDStringField, ); \
4638 OPTIONAL(emissionKind, EmissionKindField, ); \
4639 OPTIONAL(enums, MDField, ); \
4640 OPTIONAL(retainedTypes, MDField, ); \
4641 OPTIONAL(globals, MDField, ); \
4642 OPTIONAL(imports, MDField, ); \
4643 OPTIONAL(macros, MDField, ); \
4644 OPTIONAL(dwoId, MDUnsignedField, ); \
4645 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4646 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4647 OPTIONAL(nameTableKind, NameTableKindField, ); \
4648 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4649 PARSE_MD_FIELDS();
4650 #undef VISIT_MD_FIELDS
4652 Result = DICompileUnit::getDistinct(
4653 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4654 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4655 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4656 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4657 debugBaseAddress.Val);
4658 return false;
4661 /// ParseDISubprogram:
4662 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4663 /// file: !1, line: 7, type: !2, isLocal: false,
4664 /// isDefinition: true, scopeLine: 8, containingType: !3,
4665 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4666 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4667 /// spFlags: 10, isOptimized: false, templateParams: !4,
4668 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4669 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4670 auto Loc = Lex.getLoc();
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4672 OPTIONAL(scope, MDField, ); \
4673 OPTIONAL(name, MDStringField, ); \
4674 OPTIONAL(linkageName, MDStringField, ); \
4675 OPTIONAL(file, MDField, ); \
4676 OPTIONAL(line, LineField, ); \
4677 OPTIONAL(type, MDField, ); \
4678 OPTIONAL(isLocal, MDBoolField, ); \
4679 OPTIONAL(isDefinition, MDBoolField, (true)); \
4680 OPTIONAL(scopeLine, LineField, ); \
4681 OPTIONAL(containingType, MDField, ); \
4682 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4683 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4684 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4685 OPTIONAL(flags, DIFlagField, ); \
4686 OPTIONAL(spFlags, DISPFlagField, ); \
4687 OPTIONAL(isOptimized, MDBoolField, ); \
4688 OPTIONAL(unit, MDField, ); \
4689 OPTIONAL(templateParams, MDField, ); \
4690 OPTIONAL(declaration, MDField, ); \
4691 OPTIONAL(retainedNodes, MDField, ); \
4692 OPTIONAL(thrownTypes, MDField, );
4693 PARSE_MD_FIELDS();
4694 #undef VISIT_MD_FIELDS
4696 // An explicit spFlags field takes precedence over individual fields in
4697 // older IR versions.
4698 DISubprogram::DISPFlags SPFlags =
4699 spFlags.Seen ? spFlags.Val
4700 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4701 isOptimized.Val, virtuality.Val);
4702 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4703 return Lex.Error(
4704 Loc,
4705 "missing 'distinct', required for !DISubprogram that is a Definition");
4706 Result = GET_OR_DISTINCT(
4707 DISubprogram,
4708 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4709 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4710 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4711 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4712 return false;
4715 /// ParseDILexicalBlock:
4716 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4717 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4719 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4720 OPTIONAL(file, MDField, ); \
4721 OPTIONAL(line, LineField, ); \
4722 OPTIONAL(column, ColumnField, );
4723 PARSE_MD_FIELDS();
4724 #undef VISIT_MD_FIELDS
4726 Result = GET_OR_DISTINCT(
4727 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4728 return false;
4731 /// ParseDILexicalBlockFile:
4732 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4733 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4735 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4736 OPTIONAL(file, MDField, ); \
4737 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4738 PARSE_MD_FIELDS();
4739 #undef VISIT_MD_FIELDS
4741 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4742 (Context, scope.Val, file.Val, discriminator.Val));
4743 return false;
4746 /// ParseDICommonBlock:
4747 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4748 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4750 REQUIRED(scope, MDField, ); \
4751 OPTIONAL(declaration, MDField, ); \
4752 OPTIONAL(name, MDStringField, ); \
4753 OPTIONAL(file, MDField, ); \
4754 OPTIONAL(line, LineField, );
4755 PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4758 Result = GET_OR_DISTINCT(DICommonBlock,
4759 (Context, scope.Val, declaration.Val, name.Val,
4760 file.Val, line.Val));
4761 return false;
4764 /// ParseDINamespace:
4765 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4766 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4768 REQUIRED(scope, MDField, ); \
4769 OPTIONAL(name, MDStringField, ); \
4770 OPTIONAL(exportSymbols, MDBoolField, );
4771 PARSE_MD_FIELDS();
4772 #undef VISIT_MD_FIELDS
4774 Result = GET_OR_DISTINCT(DINamespace,
4775 (Context, scope.Val, name.Val, exportSymbols.Val));
4776 return false;
4779 /// ParseDIMacro:
4780 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4781 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4783 REQUIRED(type, DwarfMacinfoTypeField, ); \
4784 OPTIONAL(line, LineField, ); \
4785 REQUIRED(name, MDStringField, ); \
4786 OPTIONAL(value, MDStringField, );
4787 PARSE_MD_FIELDS();
4788 #undef VISIT_MD_FIELDS
4790 Result = GET_OR_DISTINCT(DIMacro,
4791 (Context, type.Val, line.Val, name.Val, value.Val));
4792 return false;
4795 /// ParseDIMacroFile:
4796 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4797 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4799 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4800 OPTIONAL(line, LineField, ); \
4801 REQUIRED(file, MDField, ); \
4802 OPTIONAL(nodes, MDField, );
4803 PARSE_MD_FIELDS();
4804 #undef VISIT_MD_FIELDS
4806 Result = GET_OR_DISTINCT(DIMacroFile,
4807 (Context, type.Val, line.Val, file.Val, nodes.Val));
4808 return false;
4811 /// ParseDIModule:
4812 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4813 /// includePath: "/usr/include", isysroot: "/")
4814 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4816 REQUIRED(scope, MDField, ); \
4817 REQUIRED(name, MDStringField, ); \
4818 OPTIONAL(configMacros, MDStringField, ); \
4819 OPTIONAL(includePath, MDStringField, ); \
4820 OPTIONAL(isysroot, MDStringField, );
4821 PARSE_MD_FIELDS();
4822 #undef VISIT_MD_FIELDS
4824 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4825 configMacros.Val, includePath.Val, isysroot.Val));
4826 return false;
4829 /// ParseDITemplateTypeParameter:
4830 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4831 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4833 OPTIONAL(name, MDStringField, ); \
4834 REQUIRED(type, MDField, );
4835 PARSE_MD_FIELDS();
4836 #undef VISIT_MD_FIELDS
4838 Result =
4839 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4840 return false;
4843 /// ParseDITemplateValueParameter:
4844 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4845 /// name: "V", type: !1, value: i32 7)
4846 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4848 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4849 OPTIONAL(name, MDStringField, ); \
4850 OPTIONAL(type, MDField, ); \
4851 REQUIRED(value, MDField, );
4852 PARSE_MD_FIELDS();
4853 #undef VISIT_MD_FIELDS
4855 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4856 (Context, tag.Val, name.Val, type.Val, value.Val));
4857 return false;
4860 /// ParseDIGlobalVariable:
4861 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4862 /// file: !1, line: 7, type: !2, isLocal: false,
4863 /// isDefinition: true, templateParams: !3,
4864 /// declaration: !4, align: 8)
4865 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4867 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4868 OPTIONAL(scope, MDField, ); \
4869 OPTIONAL(linkageName, MDStringField, ); \
4870 OPTIONAL(file, MDField, ); \
4871 OPTIONAL(line, LineField, ); \
4872 OPTIONAL(type, MDField, ); \
4873 OPTIONAL(isLocal, MDBoolField, ); \
4874 OPTIONAL(isDefinition, MDBoolField, (true)); \
4875 OPTIONAL(templateParams, MDField, ); \
4876 OPTIONAL(declaration, MDField, ); \
4877 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4878 PARSE_MD_FIELDS();
4879 #undef VISIT_MD_FIELDS
4881 Result =
4882 GET_OR_DISTINCT(DIGlobalVariable,
4883 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4884 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4885 declaration.Val, templateParams.Val, align.Val));
4886 return false;
4889 /// ParseDILocalVariable:
4890 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4891 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4892 /// align: 8)
4893 /// ::= !DILocalVariable(scope: !0, name: "foo",
4894 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4895 /// align: 8)
4896 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4898 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4899 OPTIONAL(name, MDStringField, ); \
4900 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4901 OPTIONAL(file, MDField, ); \
4902 OPTIONAL(line, LineField, ); \
4903 OPTIONAL(type, MDField, ); \
4904 OPTIONAL(flags, DIFlagField, ); \
4905 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4906 PARSE_MD_FIELDS();
4907 #undef VISIT_MD_FIELDS
4909 Result = GET_OR_DISTINCT(DILocalVariable,
4910 (Context, scope.Val, name.Val, file.Val, line.Val,
4911 type.Val, arg.Val, flags.Val, align.Val));
4912 return false;
4915 /// ParseDILabel:
4916 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4917 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4919 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4920 REQUIRED(name, MDStringField, ); \
4921 REQUIRED(file, MDField, ); \
4922 REQUIRED(line, LineField, );
4923 PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4926 Result = GET_OR_DISTINCT(DILabel,
4927 (Context, scope.Val, name.Val, file.Val, line.Val));
4928 return false;
4931 /// ParseDIExpression:
4932 /// ::= !DIExpression(0, 7, -1)
4933 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4934 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4935 Lex.Lex();
4937 if (ParseToken(lltok::lparen, "expected '(' here"))
4938 return true;
4940 SmallVector<uint64_t, 8> Elements;
4941 if (Lex.getKind() != lltok::rparen)
4942 do {
4943 if (Lex.getKind() == lltok::DwarfOp) {
4944 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4945 Lex.Lex();
4946 Elements.push_back(Op);
4947 continue;
4949 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4952 if (Lex.getKind() == lltok::DwarfAttEncoding) {
4953 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4954 Lex.Lex();
4955 Elements.push_back(Op);
4956 continue;
4958 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4961 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4962 return TokError("expected unsigned integer");
4964 auto &U = Lex.getAPSIntVal();
4965 if (U.ugt(UINT64_MAX))
4966 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4967 Elements.push_back(U.getZExtValue());
4968 Lex.Lex();
4969 } while (EatIfPresent(lltok::comma));
4971 if (ParseToken(lltok::rparen, "expected ')' here"))
4972 return true;
4974 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4975 return false;
4978 /// ParseDIGlobalVariableExpression:
4979 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4980 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4981 bool IsDistinct) {
4982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4983 REQUIRED(var, MDField, ); \
4984 REQUIRED(expr, MDField, );
4985 PARSE_MD_FIELDS();
4986 #undef VISIT_MD_FIELDS
4988 Result =
4989 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4990 return false;
4993 /// ParseDIObjCProperty:
4994 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4995 /// getter: "getFoo", attributes: 7, type: !2)
4996 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4998 OPTIONAL(name, MDStringField, ); \
4999 OPTIONAL(file, MDField, ); \
5000 OPTIONAL(line, LineField, ); \
5001 OPTIONAL(setter, MDStringField, ); \
5002 OPTIONAL(getter, MDStringField, ); \
5003 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5004 OPTIONAL(type, MDField, );
5005 PARSE_MD_FIELDS();
5006 #undef VISIT_MD_FIELDS
5008 Result = GET_OR_DISTINCT(DIObjCProperty,
5009 (Context, name.Val, file.Val, line.Val, setter.Val,
5010 getter.Val, attributes.Val, type.Val));
5011 return false;
5014 /// ParseDIImportedEntity:
5015 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5016 /// line: 7, name: "foo")
5017 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5019 REQUIRED(tag, DwarfTagField, ); \
5020 REQUIRED(scope, MDField, ); \
5021 OPTIONAL(entity, MDField, ); \
5022 OPTIONAL(file, MDField, ); \
5023 OPTIONAL(line, LineField, ); \
5024 OPTIONAL(name, MDStringField, );
5025 PARSE_MD_FIELDS();
5026 #undef VISIT_MD_FIELDS
5028 Result = GET_OR_DISTINCT(
5029 DIImportedEntity,
5030 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5031 return false;
5034 #undef PARSE_MD_FIELD
5035 #undef NOP_FIELD
5036 #undef REQUIRE_FIELD
5037 #undef DECLARE_FIELD
5039 /// ParseMetadataAsValue
5040 /// ::= metadata i32 %local
5041 /// ::= metadata i32 @global
5042 /// ::= metadata i32 7
5043 /// ::= metadata !0
5044 /// ::= metadata !{...}
5045 /// ::= metadata !"string"
5046 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5047 // Note: the type 'metadata' has already been parsed.
5048 Metadata *MD;
5049 if (ParseMetadata(MD, &PFS))
5050 return true;
5052 V = MetadataAsValue::get(Context, MD);
5053 return false;
5056 /// ParseValueAsMetadata
5057 /// ::= i32 %local
5058 /// ::= i32 @global
5059 /// ::= i32 7
5060 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5061 PerFunctionState *PFS) {
5062 Type *Ty;
5063 LocTy Loc;
5064 if (ParseType(Ty, TypeMsg, Loc))
5065 return true;
5066 if (Ty->isMetadataTy())
5067 return Error(Loc, "invalid metadata-value-metadata roundtrip");
5069 Value *V;
5070 if (ParseValue(Ty, V, PFS))
5071 return true;
5073 MD = ValueAsMetadata::get(V);
5074 return false;
5077 /// ParseMetadata
5078 /// ::= i32 %local
5079 /// ::= i32 @global
5080 /// ::= i32 7
5081 /// ::= !42
5082 /// ::= !{...}
5083 /// ::= !"string"
5084 /// ::= !DILocation(...)
5085 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5086 if (Lex.getKind() == lltok::MetadataVar) {
5087 MDNode *N;
5088 if (ParseSpecializedMDNode(N))
5089 return true;
5090 MD = N;
5091 return false;
5094 // ValueAsMetadata:
5095 // <type> <value>
5096 if (Lex.getKind() != lltok::exclaim)
5097 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5099 // '!'.
5100 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5101 Lex.Lex();
5103 // MDString:
5104 // ::= '!' STRINGCONSTANT
5105 if (Lex.getKind() == lltok::StringConstant) {
5106 MDString *S;
5107 if (ParseMDString(S))
5108 return true;
5109 MD = S;
5110 return false;
5113 // MDNode:
5114 // !{ ... }
5115 // !7
5116 MDNode *N;
5117 if (ParseMDNodeTail(N))
5118 return true;
5119 MD = N;
5120 return false;
5123 //===----------------------------------------------------------------------===//
5124 // Function Parsing.
5125 //===----------------------------------------------------------------------===//
5127 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5128 PerFunctionState *PFS, bool IsCall) {
5129 if (Ty->isFunctionTy())
5130 return Error(ID.Loc, "functions are not values, refer to them as pointers");
5132 switch (ID.Kind) {
5133 case ValID::t_LocalID:
5134 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5135 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5136 return V == nullptr;
5137 case ValID::t_LocalName:
5138 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5139 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5140 return V == nullptr;
5141 case ValID::t_InlineAsm: {
5142 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5143 return Error(ID.Loc, "invalid type for inline asm constraint string");
5144 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5145 (ID.UIntVal >> 1) & 1,
5146 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5147 return false;
5149 case ValID::t_GlobalName:
5150 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5151 return V == nullptr;
5152 case ValID::t_GlobalID:
5153 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5154 return V == nullptr;
5155 case ValID::t_APSInt:
5156 if (!Ty->isIntegerTy())
5157 return Error(ID.Loc, "integer constant must have integer type");
5158 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5159 V = ConstantInt::get(Context, ID.APSIntVal);
5160 return false;
5161 case ValID::t_APFloat:
5162 if (!Ty->isFloatingPointTy() ||
5163 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5164 return Error(ID.Loc, "floating point constant invalid for type");
5166 // The lexer has no type info, so builds all half, float, and double FP
5167 // constants as double. Fix this here. Long double does not need this.
5168 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5169 bool Ignored;
5170 if (Ty->isHalfTy())
5171 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5172 &Ignored);
5173 else if (Ty->isFloatTy())
5174 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5175 &Ignored);
5177 V = ConstantFP::get(Context, ID.APFloatVal);
5179 if (V->getType() != Ty)
5180 return Error(ID.Loc, "floating point constant does not have type '" +
5181 getTypeString(Ty) + "'");
5183 return false;
5184 case ValID::t_Null:
5185 if (!Ty->isPointerTy())
5186 return Error(ID.Loc, "null must be a pointer type");
5187 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5188 return false;
5189 case ValID::t_Undef:
5190 // FIXME: LabelTy should not be a first-class type.
5191 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5192 return Error(ID.Loc, "invalid type for undef constant");
5193 V = UndefValue::get(Ty);
5194 return false;
5195 case ValID::t_EmptyArray:
5196 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5197 return Error(ID.Loc, "invalid empty array initializer");
5198 V = UndefValue::get(Ty);
5199 return false;
5200 case ValID::t_Zero:
5201 // FIXME: LabelTy should not be a first-class type.
5202 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5203 return Error(ID.Loc, "invalid type for null constant");
5204 V = Constant::getNullValue(Ty);
5205 return false;
5206 case ValID::t_None:
5207 if (!Ty->isTokenTy())
5208 return Error(ID.Loc, "invalid type for none constant");
5209 V = Constant::getNullValue(Ty);
5210 return false;
5211 case ValID::t_Constant:
5212 if (ID.ConstantVal->getType() != Ty)
5213 return Error(ID.Loc, "constant expression type mismatch");
5215 V = ID.ConstantVal;
5216 return false;
5217 case ValID::t_ConstantStruct:
5218 case ValID::t_PackedConstantStruct:
5219 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5220 if (ST->getNumElements() != ID.UIntVal)
5221 return Error(ID.Loc,
5222 "initializer with struct type has wrong # elements");
5223 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5224 return Error(ID.Loc, "packed'ness of initializer and type don't match");
5226 // Verify that the elements are compatible with the structtype.
5227 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5228 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5229 return Error(ID.Loc, "element " + Twine(i) +
5230 " of struct initializer doesn't match struct element type");
5232 V = ConstantStruct::get(
5233 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5234 } else
5235 return Error(ID.Loc, "constant expression type mismatch");
5236 return false;
5238 llvm_unreachable("Invalid ValID");
5241 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5242 C = nullptr;
5243 ValID ID;
5244 auto Loc = Lex.getLoc();
5245 if (ParseValID(ID, /*PFS=*/nullptr))
5246 return true;
5247 switch (ID.Kind) {
5248 case ValID::t_APSInt:
5249 case ValID::t_APFloat:
5250 case ValID::t_Undef:
5251 case ValID::t_Constant:
5252 case ValID::t_ConstantStruct:
5253 case ValID::t_PackedConstantStruct: {
5254 Value *V;
5255 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5256 return true;
5257 assert(isa<Constant>(V) && "Expected a constant value");
5258 C = cast<Constant>(V);
5259 return false;
5261 case ValID::t_Null:
5262 C = Constant::getNullValue(Ty);
5263 return false;
5264 default:
5265 return Error(Loc, "expected a constant value");
5269 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5270 V = nullptr;
5271 ValID ID;
5272 return ParseValID(ID, PFS) ||
5273 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5276 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5277 Type *Ty = nullptr;
5278 return ParseType(Ty) ||
5279 ParseValue(Ty, V, PFS);
5282 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5283 PerFunctionState &PFS) {
5284 Value *V;
5285 Loc = Lex.getLoc();
5286 if (ParseTypeAndValue(V, PFS)) return true;
5287 if (!isa<BasicBlock>(V))
5288 return Error(Loc, "expected a basic block");
5289 BB = cast<BasicBlock>(V);
5290 return false;
5293 /// FunctionHeader
5294 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5295 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5296 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5297 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5298 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5299 // Parse the linkage.
5300 LocTy LinkageLoc = Lex.getLoc();
5301 unsigned Linkage;
5302 unsigned Visibility;
5303 unsigned DLLStorageClass;
5304 bool DSOLocal;
5305 AttrBuilder RetAttrs;
5306 unsigned CC;
5307 bool HasLinkage;
5308 Type *RetType = nullptr;
5309 LocTy RetTypeLoc = Lex.getLoc();
5310 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5311 DSOLocal) ||
5312 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5313 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5314 return true;
5316 // Verify that the linkage is ok.
5317 switch ((GlobalValue::LinkageTypes)Linkage) {
5318 case GlobalValue::ExternalLinkage:
5319 break; // always ok.
5320 case GlobalValue::ExternalWeakLinkage:
5321 if (isDefine)
5322 return Error(LinkageLoc, "invalid linkage for function definition");
5323 break;
5324 case GlobalValue::PrivateLinkage:
5325 case GlobalValue::InternalLinkage:
5326 case GlobalValue::AvailableExternallyLinkage:
5327 case GlobalValue::LinkOnceAnyLinkage:
5328 case GlobalValue::LinkOnceODRLinkage:
5329 case GlobalValue::WeakAnyLinkage:
5330 case GlobalValue::WeakODRLinkage:
5331 if (!isDefine)
5332 return Error(LinkageLoc, "invalid linkage for function declaration");
5333 break;
5334 case GlobalValue::AppendingLinkage:
5335 case GlobalValue::CommonLinkage:
5336 return Error(LinkageLoc, "invalid function linkage type");
5339 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5340 return Error(LinkageLoc,
5341 "symbol with local linkage must have default visibility");
5343 if (!FunctionType::isValidReturnType(RetType))
5344 return Error(RetTypeLoc, "invalid function return type");
5346 LocTy NameLoc = Lex.getLoc();
5348 std::string FunctionName;
5349 if (Lex.getKind() == lltok::GlobalVar) {
5350 FunctionName = Lex.getStrVal();
5351 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5352 unsigned NameID = Lex.getUIntVal();
5354 if (NameID != NumberedVals.size())
5355 return TokError("function expected to be numbered '%" +
5356 Twine(NumberedVals.size()) + "'");
5357 } else {
5358 return TokError("expected function name");
5361 Lex.Lex();
5363 if (Lex.getKind() != lltok::lparen)
5364 return TokError("expected '(' in function argument list");
5366 SmallVector<ArgInfo, 8> ArgList;
5367 bool isVarArg;
5368 AttrBuilder FuncAttrs;
5369 std::vector<unsigned> FwdRefAttrGrps;
5370 LocTy BuiltinLoc;
5371 std::string Section;
5372 std::string Partition;
5373 unsigned Alignment;
5374 std::string GC;
5375 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5376 unsigned AddrSpace = 0;
5377 Constant *Prefix = nullptr;
5378 Constant *Prologue = nullptr;
5379 Constant *PersonalityFn = nullptr;
5380 Comdat *C;
5382 if (ParseArgumentList(ArgList, isVarArg) ||
5383 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5384 ParseOptionalProgramAddrSpace(AddrSpace) ||
5385 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5386 BuiltinLoc) ||
5387 (EatIfPresent(lltok::kw_section) &&
5388 ParseStringConstant(Section)) ||
5389 (EatIfPresent(lltok::kw_partition) &&
5390 ParseStringConstant(Partition)) ||
5391 parseOptionalComdat(FunctionName, C) ||
5392 ParseOptionalAlignment(Alignment) ||
5393 (EatIfPresent(lltok::kw_gc) &&
5394 ParseStringConstant(GC)) ||
5395 (EatIfPresent(lltok::kw_prefix) &&
5396 ParseGlobalTypeAndValue(Prefix)) ||
5397 (EatIfPresent(lltok::kw_prologue) &&
5398 ParseGlobalTypeAndValue(Prologue)) ||
5399 (EatIfPresent(lltok::kw_personality) &&
5400 ParseGlobalTypeAndValue(PersonalityFn)))
5401 return true;
5403 if (FuncAttrs.contains(Attribute::Builtin))
5404 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5406 // If the alignment was parsed as an attribute, move to the alignment field.
5407 if (FuncAttrs.hasAlignmentAttr()) {
5408 Alignment = FuncAttrs.getAlignment();
5409 FuncAttrs.removeAttribute(Attribute::Alignment);
5412 // Okay, if we got here, the function is syntactically valid. Convert types
5413 // and do semantic checks.
5414 std::vector<Type*> ParamTypeList;
5415 SmallVector<AttributeSet, 8> Attrs;
5417 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5418 ParamTypeList.push_back(ArgList[i].Ty);
5419 Attrs.push_back(ArgList[i].Attrs);
5422 AttributeList PAL =
5423 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5424 AttributeSet::get(Context, RetAttrs), Attrs);
5426 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5427 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5429 FunctionType *FT =
5430 FunctionType::get(RetType, ParamTypeList, isVarArg);
5431 PointerType *PFT = PointerType::get(FT, AddrSpace);
5433 Fn = nullptr;
5434 if (!FunctionName.empty()) {
5435 // If this was a definition of a forward reference, remove the definition
5436 // from the forward reference table and fill in the forward ref.
5437 auto FRVI = ForwardRefVals.find(FunctionName);
5438 if (FRVI != ForwardRefVals.end()) {
5439 Fn = M->getFunction(FunctionName);
5440 if (!Fn)
5441 return Error(FRVI->second.second, "invalid forward reference to "
5442 "function as global value!");
5443 if (Fn->getType() != PFT)
5444 return Error(FRVI->second.second, "invalid forward reference to "
5445 "function '" + FunctionName + "' with wrong type: "
5446 "expected '" + getTypeString(PFT) + "' but was '" +
5447 getTypeString(Fn->getType()) + "'");
5448 ForwardRefVals.erase(FRVI);
5449 } else if ((Fn = M->getFunction(FunctionName))) {
5450 // Reject redefinitions.
5451 return Error(NameLoc, "invalid redefinition of function '" +
5452 FunctionName + "'");
5453 } else if (M->getNamedValue(FunctionName)) {
5454 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5457 } else {
5458 // If this is a definition of a forward referenced function, make sure the
5459 // types agree.
5460 auto I = ForwardRefValIDs.find(NumberedVals.size());
5461 if (I != ForwardRefValIDs.end()) {
5462 Fn = cast<Function>(I->second.first);
5463 if (Fn->getType() != PFT)
5464 return Error(NameLoc, "type of definition and forward reference of '@" +
5465 Twine(NumberedVals.size()) + "' disagree: "
5466 "expected '" + getTypeString(PFT) + "' but was '" +
5467 getTypeString(Fn->getType()) + "'");
5468 ForwardRefValIDs.erase(I);
5472 if (!Fn)
5473 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5474 FunctionName, M);
5475 else // Move the forward-reference to the correct spot in the module.
5476 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5478 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5480 if (FunctionName.empty())
5481 NumberedVals.push_back(Fn);
5483 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5484 maybeSetDSOLocal(DSOLocal, *Fn);
5485 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5486 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5487 Fn->setCallingConv(CC);
5488 Fn->setAttributes(PAL);
5489 Fn->setUnnamedAddr(UnnamedAddr);
5490 Fn->setAlignment(MaybeAlign(Alignment));
5491 Fn->setSection(Section);
5492 Fn->setPartition(Partition);
5493 Fn->setComdat(C);
5494 Fn->setPersonalityFn(PersonalityFn);
5495 if (!GC.empty()) Fn->setGC(GC);
5496 Fn->setPrefixData(Prefix);
5497 Fn->setPrologueData(Prologue);
5498 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5500 // Add all of the arguments we parsed to the function.
5501 Function::arg_iterator ArgIt = Fn->arg_begin();
5502 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5503 // If the argument has a name, insert it into the argument symbol table.
5504 if (ArgList[i].Name.empty()) continue;
5506 // Set the name, if it conflicted, it will be auto-renamed.
5507 ArgIt->setName(ArgList[i].Name);
5509 if (ArgIt->getName() != ArgList[i].Name)
5510 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5511 ArgList[i].Name + "'");
5514 if (isDefine)
5515 return false;
5517 // Check the declaration has no block address forward references.
5518 ValID ID;
5519 if (FunctionName.empty()) {
5520 ID.Kind = ValID::t_GlobalID;
5521 ID.UIntVal = NumberedVals.size() - 1;
5522 } else {
5523 ID.Kind = ValID::t_GlobalName;
5524 ID.StrVal = FunctionName;
5526 auto Blocks = ForwardRefBlockAddresses.find(ID);
5527 if (Blocks != ForwardRefBlockAddresses.end())
5528 return Error(Blocks->first.Loc,
5529 "cannot take blockaddress inside a declaration");
5530 return false;
5533 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5534 ValID ID;
5535 if (FunctionNumber == -1) {
5536 ID.Kind = ValID::t_GlobalName;
5537 ID.StrVal = F.getName();
5538 } else {
5539 ID.Kind = ValID::t_GlobalID;
5540 ID.UIntVal = FunctionNumber;
5543 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5544 if (Blocks == P.ForwardRefBlockAddresses.end())
5545 return false;
5547 for (const auto &I : Blocks->second) {
5548 const ValID &BBID = I.first;
5549 GlobalValue *GV = I.second;
5551 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5552 "Expected local id or name");
5553 BasicBlock *BB;
5554 if (BBID.Kind == ValID::t_LocalName)
5555 BB = GetBB(BBID.StrVal, BBID.Loc);
5556 else
5557 BB = GetBB(BBID.UIntVal, BBID.Loc);
5558 if (!BB)
5559 return P.Error(BBID.Loc, "referenced value is not a basic block");
5561 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5562 GV->eraseFromParent();
5565 P.ForwardRefBlockAddresses.erase(Blocks);
5566 return false;
5569 /// ParseFunctionBody
5570 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5571 bool LLParser::ParseFunctionBody(Function &Fn) {
5572 if (Lex.getKind() != lltok::lbrace)
5573 return TokError("expected '{' in function body");
5574 Lex.Lex(); // eat the {.
5576 int FunctionNumber = -1;
5577 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5579 PerFunctionState PFS(*this, Fn, FunctionNumber);
5581 // Resolve block addresses and allow basic blocks to be forward-declared
5582 // within this function.
5583 if (PFS.resolveForwardRefBlockAddresses())
5584 return true;
5585 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5587 // We need at least one basic block.
5588 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5589 return TokError("function body requires at least one basic block");
5591 while (Lex.getKind() != lltok::rbrace &&
5592 Lex.getKind() != lltok::kw_uselistorder)
5593 if (ParseBasicBlock(PFS)) return true;
5595 while (Lex.getKind() != lltok::rbrace)
5596 if (ParseUseListOrder(&PFS))
5597 return true;
5599 // Eat the }.
5600 Lex.Lex();
5602 // Verify function is ok.
5603 return PFS.FinishFunction();
5606 /// ParseBasicBlock
5607 /// ::= (LabelStr|LabelID)? Instruction*
5608 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5609 // If this basic block starts out with a name, remember it.
5610 std::string Name;
5611 int NameID = -1;
5612 LocTy NameLoc = Lex.getLoc();
5613 if (Lex.getKind() == lltok::LabelStr) {
5614 Name = Lex.getStrVal();
5615 Lex.Lex();
5616 } else if (Lex.getKind() == lltok::LabelID) {
5617 NameID = Lex.getUIntVal();
5618 Lex.Lex();
5621 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5622 if (!BB)
5623 return true;
5625 std::string NameStr;
5627 // Parse the instructions in this block until we get a terminator.
5628 Instruction *Inst;
5629 do {
5630 // This instruction may have three possibilities for a name: a) none
5631 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5632 LocTy NameLoc = Lex.getLoc();
5633 int NameID = -1;
5634 NameStr = "";
5636 if (Lex.getKind() == lltok::LocalVarID) {
5637 NameID = Lex.getUIntVal();
5638 Lex.Lex();
5639 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5640 return true;
5641 } else if (Lex.getKind() == lltok::LocalVar) {
5642 NameStr = Lex.getStrVal();
5643 Lex.Lex();
5644 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5645 return true;
5648 switch (ParseInstruction(Inst, BB, PFS)) {
5649 default: llvm_unreachable("Unknown ParseInstruction result!");
5650 case InstError: return true;
5651 case InstNormal:
5652 BB->getInstList().push_back(Inst);
5654 // With a normal result, we check to see if the instruction is followed by
5655 // a comma and metadata.
5656 if (EatIfPresent(lltok::comma))
5657 if (ParseInstructionMetadata(*Inst))
5658 return true;
5659 break;
5660 case InstExtraComma:
5661 BB->getInstList().push_back(Inst);
5663 // If the instruction parser ate an extra comma at the end of it, it
5664 // *must* be followed by metadata.
5665 if (ParseInstructionMetadata(*Inst))
5666 return true;
5667 break;
5670 // Set the name on the instruction.
5671 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5672 } while (!Inst->isTerminator());
5674 return false;
5677 //===----------------------------------------------------------------------===//
5678 // Instruction Parsing.
5679 //===----------------------------------------------------------------------===//
5681 /// ParseInstruction - Parse one of the many different instructions.
5683 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5684 PerFunctionState &PFS) {
5685 lltok::Kind Token = Lex.getKind();
5686 if (Token == lltok::Eof)
5687 return TokError("found end of file when expecting more instructions");
5688 LocTy Loc = Lex.getLoc();
5689 unsigned KeywordVal = Lex.getUIntVal();
5690 Lex.Lex(); // Eat the keyword.
5692 switch (Token) {
5693 default: return Error(Loc, "expected instruction opcode");
5694 // Terminator Instructions.
5695 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5696 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5697 case lltok::kw_br: return ParseBr(Inst, PFS);
5698 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5699 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5700 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5701 case lltok::kw_resume: return ParseResume(Inst, PFS);
5702 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5703 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5704 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5705 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5706 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5707 case lltok::kw_callbr: return ParseCallBr(Inst, PFS);
5708 // Unary Operators.
5709 case lltok::kw_fneg: {
5710 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5711 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5712 if (Res != 0)
5713 return Res;
5714 if (FMF.any())
5715 Inst->setFastMathFlags(FMF);
5716 return false;
5718 // Binary Operators.
5719 case lltok::kw_add:
5720 case lltok::kw_sub:
5721 case lltok::kw_mul:
5722 case lltok::kw_shl: {
5723 bool NUW = EatIfPresent(lltok::kw_nuw);
5724 bool NSW = EatIfPresent(lltok::kw_nsw);
5725 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5727 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5729 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5730 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5731 return false;
5733 case lltok::kw_fadd:
5734 case lltok::kw_fsub:
5735 case lltok::kw_fmul:
5736 case lltok::kw_fdiv:
5737 case lltok::kw_frem: {
5738 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5739 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5740 if (Res != 0)
5741 return Res;
5742 if (FMF.any())
5743 Inst->setFastMathFlags(FMF);
5744 return 0;
5747 case lltok::kw_sdiv:
5748 case lltok::kw_udiv:
5749 case lltok::kw_lshr:
5750 case lltok::kw_ashr: {
5751 bool Exact = EatIfPresent(lltok::kw_exact);
5753 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5754 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5755 return false;
5758 case lltok::kw_urem:
5759 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal,
5760 /*IsFP*/false);
5761 case lltok::kw_and:
5762 case lltok::kw_or:
5763 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5764 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5765 case lltok::kw_fcmp: {
5766 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5767 int Res = ParseCompare(Inst, PFS, KeywordVal);
5768 if (Res != 0)
5769 return Res;
5770 if (FMF.any())
5771 Inst->setFastMathFlags(FMF);
5772 return 0;
5775 // Casts.
5776 case lltok::kw_trunc:
5777 case lltok::kw_zext:
5778 case lltok::kw_sext:
5779 case lltok::kw_fptrunc:
5780 case lltok::kw_fpext:
5781 case lltok::kw_bitcast:
5782 case lltok::kw_addrspacecast:
5783 case lltok::kw_uitofp:
5784 case lltok::kw_sitofp:
5785 case lltok::kw_fptoui:
5786 case lltok::kw_fptosi:
5787 case lltok::kw_inttoptr:
5788 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5789 // Other.
5790 case lltok::kw_select: {
5791 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5792 int Res = ParseSelect(Inst, PFS);
5793 if (Res != 0)
5794 return Res;
5795 if (FMF.any()) {
5796 if (!Inst->getType()->isFPOrFPVectorTy())
5797 return Error(Loc, "fast-math-flags specified for select without "
5798 "floating-point scalar or vector return type");
5799 Inst->setFastMathFlags(FMF);
5801 return 0;
5803 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5804 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5805 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5806 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5807 case lltok::kw_phi: {
5808 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5809 int Res = ParsePHI(Inst, PFS);
5810 if (Res != 0)
5811 return Res;
5812 if (FMF.any()) {
5813 if (!Inst->getType()->isFPOrFPVectorTy())
5814 return Error(Loc, "fast-math-flags specified for phi without "
5815 "floating-point scalar or vector return type");
5816 Inst->setFastMathFlags(FMF);
5818 return 0;
5820 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5821 // Call.
5822 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5823 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5824 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5825 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5826 // Memory.
5827 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5828 case lltok::kw_load: return ParseLoad(Inst, PFS);
5829 case lltok::kw_store: return ParseStore(Inst, PFS);
5830 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5831 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5832 case lltok::kw_fence: return ParseFence(Inst, PFS);
5833 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5834 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5835 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5839 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5840 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5841 if (Opc == Instruction::FCmp) {
5842 switch (Lex.getKind()) {
5843 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5844 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5845 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5846 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5847 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5848 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5849 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5850 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5851 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5852 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5853 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5854 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5855 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5856 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5857 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5858 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5859 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5861 } else {
5862 switch (Lex.getKind()) {
5863 default: return TokError("expected icmp predicate (e.g. 'eq')");
5864 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5865 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5866 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5867 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5868 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5869 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5870 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5871 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5872 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5873 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5876 Lex.Lex();
5877 return false;
5880 //===----------------------------------------------------------------------===//
5881 // Terminator Instructions.
5882 //===----------------------------------------------------------------------===//
5884 /// ParseRet - Parse a return instruction.
5885 /// ::= 'ret' void (',' !dbg, !1)*
5886 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5887 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5888 PerFunctionState &PFS) {
5889 SMLoc TypeLoc = Lex.getLoc();
5890 Type *Ty = nullptr;
5891 if (ParseType(Ty, true /*void allowed*/)) return true;
5893 Type *ResType = PFS.getFunction().getReturnType();
5895 if (Ty->isVoidTy()) {
5896 if (!ResType->isVoidTy())
5897 return Error(TypeLoc, "value doesn't match function result type '" +
5898 getTypeString(ResType) + "'");
5900 Inst = ReturnInst::Create(Context);
5901 return false;
5904 Value *RV;
5905 if (ParseValue(Ty, RV, PFS)) return true;
5907 if (ResType != RV->getType())
5908 return Error(TypeLoc, "value doesn't match function result type '" +
5909 getTypeString(ResType) + "'");
5911 Inst = ReturnInst::Create(Context, RV);
5912 return false;
5915 /// ParseBr
5916 /// ::= 'br' TypeAndValue
5917 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5918 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5919 LocTy Loc, Loc2;
5920 Value *Op0;
5921 BasicBlock *Op1, *Op2;
5922 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5924 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5925 Inst = BranchInst::Create(BB);
5926 return false;
5929 if (Op0->getType() != Type::getInt1Ty(Context))
5930 return Error(Loc, "branch condition must have 'i1' type");
5932 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5933 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5934 ParseToken(lltok::comma, "expected ',' after true destination") ||
5935 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5936 return true;
5938 Inst = BranchInst::Create(Op1, Op2, Op0);
5939 return false;
5942 /// ParseSwitch
5943 /// Instruction
5944 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5945 /// JumpTable
5946 /// ::= (TypeAndValue ',' TypeAndValue)*
5947 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5948 LocTy CondLoc, BBLoc;
5949 Value *Cond;
5950 BasicBlock *DefaultBB;
5951 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5952 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5953 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5954 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5955 return true;
5957 if (!Cond->getType()->isIntegerTy())
5958 return Error(CondLoc, "switch condition must have integer type");
5960 // Parse the jump table pairs.
5961 SmallPtrSet<Value*, 32> SeenCases;
5962 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5963 while (Lex.getKind() != lltok::rsquare) {
5964 Value *Constant;
5965 BasicBlock *DestBB;
5967 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5968 ParseToken(lltok::comma, "expected ',' after case value") ||
5969 ParseTypeAndBasicBlock(DestBB, PFS))
5970 return true;
5972 if (!SeenCases.insert(Constant).second)
5973 return Error(CondLoc, "duplicate case value in switch");
5974 if (!isa<ConstantInt>(Constant))
5975 return Error(CondLoc, "case value is not a constant integer");
5977 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5980 Lex.Lex(); // Eat the ']'.
5982 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5983 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5984 SI->addCase(Table[i].first, Table[i].second);
5985 Inst = SI;
5986 return false;
5989 /// ParseIndirectBr
5990 /// Instruction
5991 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5992 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5993 LocTy AddrLoc;
5994 Value *Address;
5995 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5996 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5997 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5998 return true;
6000 if (!Address->getType()->isPointerTy())
6001 return Error(AddrLoc, "indirectbr address must have pointer type");
6003 // Parse the destination list.
6004 SmallVector<BasicBlock*, 16> DestList;
6006 if (Lex.getKind() != lltok::rsquare) {
6007 BasicBlock *DestBB;
6008 if (ParseTypeAndBasicBlock(DestBB, PFS))
6009 return true;
6010 DestList.push_back(DestBB);
6012 while (EatIfPresent(lltok::comma)) {
6013 if (ParseTypeAndBasicBlock(DestBB, PFS))
6014 return true;
6015 DestList.push_back(DestBB);
6019 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6020 return true;
6022 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6023 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6024 IBI->addDestination(DestList[i]);
6025 Inst = IBI;
6026 return false;
6029 /// ParseInvoke
6030 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6031 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6032 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6033 LocTy CallLoc = Lex.getLoc();
6034 AttrBuilder RetAttrs, FnAttrs;
6035 std::vector<unsigned> FwdRefAttrGrps;
6036 LocTy NoBuiltinLoc;
6037 unsigned CC;
6038 unsigned InvokeAddrSpace;
6039 Type *RetType = nullptr;
6040 LocTy RetTypeLoc;
6041 ValID CalleeID;
6042 SmallVector<ParamInfo, 16> ArgList;
6043 SmallVector<OperandBundleDef, 2> BundleList;
6045 BasicBlock *NormalBB, *UnwindBB;
6046 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6047 ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6048 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6049 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6050 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6051 NoBuiltinLoc) ||
6052 ParseOptionalOperandBundles(BundleList, PFS) ||
6053 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6054 ParseTypeAndBasicBlock(NormalBB, PFS) ||
6055 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6056 ParseTypeAndBasicBlock(UnwindBB, PFS))
6057 return true;
6059 // If RetType is a non-function pointer type, then this is the short syntax
6060 // for the call, which means that RetType is just the return type. Infer the
6061 // rest of the function argument types from the arguments that are present.
6062 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6063 if (!Ty) {
6064 // Pull out the types of all of the arguments...
6065 std::vector<Type*> ParamTypes;
6066 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6067 ParamTypes.push_back(ArgList[i].V->getType());
6069 if (!FunctionType::isValidReturnType(RetType))
6070 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6072 Ty = FunctionType::get(RetType, ParamTypes, false);
6075 CalleeID.FTy = Ty;
6077 // Look up the callee.
6078 Value *Callee;
6079 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6080 Callee, &PFS, /*IsCall=*/true))
6081 return true;
6083 // Set up the Attribute for the function.
6084 SmallVector<Value *, 8> Args;
6085 SmallVector<AttributeSet, 8> ArgAttrs;
6087 // Loop through FunctionType's arguments and ensure they are specified
6088 // correctly. Also, gather any parameter attributes.
6089 FunctionType::param_iterator I = Ty->param_begin();
6090 FunctionType::param_iterator E = Ty->param_end();
6091 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6092 Type *ExpectedTy = nullptr;
6093 if (I != E) {
6094 ExpectedTy = *I++;
6095 } else if (!Ty->isVarArg()) {
6096 return Error(ArgList[i].Loc, "too many arguments specified");
6099 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6100 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6101 getTypeString(ExpectedTy) + "'");
6102 Args.push_back(ArgList[i].V);
6103 ArgAttrs.push_back(ArgList[i].Attrs);
6106 if (I != E)
6107 return Error(CallLoc, "not enough parameters specified for call");
6109 if (FnAttrs.hasAlignmentAttr())
6110 return Error(CallLoc, "invoke instructions may not have an alignment");
6112 // Finish off the Attribute and check them
6113 AttributeList PAL =
6114 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6115 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6117 InvokeInst *II =
6118 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6119 II->setCallingConv(CC);
6120 II->setAttributes(PAL);
6121 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6122 Inst = II;
6123 return false;
6126 /// ParseResume
6127 /// ::= 'resume' TypeAndValue
6128 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6129 Value *Exn; LocTy ExnLoc;
6130 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6131 return true;
6133 ResumeInst *RI = ResumeInst::Create(Exn);
6134 Inst = RI;
6135 return false;
6138 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6139 PerFunctionState &PFS) {
6140 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6141 return true;
6143 while (Lex.getKind() != lltok::rsquare) {
6144 // If this isn't the first argument, we need a comma.
6145 if (!Args.empty() &&
6146 ParseToken(lltok::comma, "expected ',' in argument list"))
6147 return true;
6149 // Parse the argument.
6150 LocTy ArgLoc;
6151 Type *ArgTy = nullptr;
6152 if (ParseType(ArgTy, ArgLoc))
6153 return true;
6155 Value *V;
6156 if (ArgTy->isMetadataTy()) {
6157 if (ParseMetadataAsValue(V, PFS))
6158 return true;
6159 } else {
6160 if (ParseValue(ArgTy, V, PFS))
6161 return true;
6163 Args.push_back(V);
6166 Lex.Lex(); // Lex the ']'.
6167 return false;
6170 /// ParseCleanupRet
6171 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6172 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6173 Value *CleanupPad = nullptr;
6175 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6176 return true;
6178 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6179 return true;
6181 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6182 return true;
6184 BasicBlock *UnwindBB = nullptr;
6185 if (Lex.getKind() == lltok::kw_to) {
6186 Lex.Lex();
6187 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6188 return true;
6189 } else {
6190 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6191 return true;
6195 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6196 return false;
6199 /// ParseCatchRet
6200 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6201 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6202 Value *CatchPad = nullptr;
6204 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6205 return true;
6207 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6208 return true;
6210 BasicBlock *BB;
6211 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6212 ParseTypeAndBasicBlock(BB, PFS))
6213 return true;
6215 Inst = CatchReturnInst::Create(CatchPad, BB);
6216 return false;
6219 /// ParseCatchSwitch
6220 /// ::= 'catchswitch' within Parent
6221 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6222 Value *ParentPad;
6224 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6225 return true;
6227 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6228 Lex.getKind() != lltok::LocalVarID)
6229 return TokError("expected scope value for catchswitch");
6231 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6232 return true;
6234 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6235 return true;
6237 SmallVector<BasicBlock *, 32> Table;
6238 do {
6239 BasicBlock *DestBB;
6240 if (ParseTypeAndBasicBlock(DestBB, PFS))
6241 return true;
6242 Table.push_back(DestBB);
6243 } while (EatIfPresent(lltok::comma));
6245 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6246 return true;
6248 if (ParseToken(lltok::kw_unwind,
6249 "expected 'unwind' after catchswitch scope"))
6250 return true;
6252 BasicBlock *UnwindBB = nullptr;
6253 if (EatIfPresent(lltok::kw_to)) {
6254 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6255 return true;
6256 } else {
6257 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6258 return true;
6261 auto *CatchSwitch =
6262 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6263 for (BasicBlock *DestBB : Table)
6264 CatchSwitch->addHandler(DestBB);
6265 Inst = CatchSwitch;
6266 return false;
6269 /// ParseCatchPad
6270 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6271 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6272 Value *CatchSwitch = nullptr;
6274 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6275 return true;
6277 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6278 return TokError("expected scope value for catchpad");
6280 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6281 return true;
6283 SmallVector<Value *, 8> Args;
6284 if (ParseExceptionArgs(Args, PFS))
6285 return true;
6287 Inst = CatchPadInst::Create(CatchSwitch, Args);
6288 return false;
6291 /// ParseCleanupPad
6292 /// ::= 'cleanuppad' within Parent ParamList
6293 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6294 Value *ParentPad = nullptr;
6296 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6297 return true;
6299 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6300 Lex.getKind() != lltok::LocalVarID)
6301 return TokError("expected scope value for cleanuppad");
6303 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6304 return true;
6306 SmallVector<Value *, 8> Args;
6307 if (ParseExceptionArgs(Args, PFS))
6308 return true;
6310 Inst = CleanupPadInst::Create(ParentPad, Args);
6311 return false;
6314 //===----------------------------------------------------------------------===//
6315 // Unary Operators.
6316 //===----------------------------------------------------------------------===//
6318 /// ParseUnaryOp
6319 /// ::= UnaryOp TypeAndValue ',' Value
6321 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6322 /// operand is allowed.
6323 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6324 unsigned Opc, bool IsFP) {
6325 LocTy Loc; Value *LHS;
6326 if (ParseTypeAndValue(LHS, Loc, PFS))
6327 return true;
6329 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6330 : LHS->getType()->isIntOrIntVectorTy();
6332 if (!Valid)
6333 return Error(Loc, "invalid operand type for instruction");
6335 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6336 return false;
6339 /// ParseCallBr
6340 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6341 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6342 /// '[' LabelList ']'
6343 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6344 LocTy CallLoc = Lex.getLoc();
6345 AttrBuilder RetAttrs, FnAttrs;
6346 std::vector<unsigned> FwdRefAttrGrps;
6347 LocTy NoBuiltinLoc;
6348 unsigned CC;
6349 Type *RetType = nullptr;
6350 LocTy RetTypeLoc;
6351 ValID CalleeID;
6352 SmallVector<ParamInfo, 16> ArgList;
6353 SmallVector<OperandBundleDef, 2> BundleList;
6355 BasicBlock *DefaultDest;
6356 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6357 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6358 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6359 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6360 NoBuiltinLoc) ||
6361 ParseOptionalOperandBundles(BundleList, PFS) ||
6362 ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6363 ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6364 ParseToken(lltok::lsquare, "expected '[' in callbr"))
6365 return true;
6367 // Parse the destination list.
6368 SmallVector<BasicBlock *, 16> IndirectDests;
6370 if (Lex.getKind() != lltok::rsquare) {
6371 BasicBlock *DestBB;
6372 if (ParseTypeAndBasicBlock(DestBB, PFS))
6373 return true;
6374 IndirectDests.push_back(DestBB);
6376 while (EatIfPresent(lltok::comma)) {
6377 if (ParseTypeAndBasicBlock(DestBB, PFS))
6378 return true;
6379 IndirectDests.push_back(DestBB);
6383 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6384 return true;
6386 // If RetType is a non-function pointer type, then this is the short syntax
6387 // for the call, which means that RetType is just the return type. Infer the
6388 // rest of the function argument types from the arguments that are present.
6389 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6390 if (!Ty) {
6391 // Pull out the types of all of the arguments...
6392 std::vector<Type *> ParamTypes;
6393 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6394 ParamTypes.push_back(ArgList[i].V->getType());
6396 if (!FunctionType::isValidReturnType(RetType))
6397 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6399 Ty = FunctionType::get(RetType, ParamTypes, false);
6402 CalleeID.FTy = Ty;
6404 // Look up the callee.
6405 Value *Callee;
6406 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6407 /*IsCall=*/true))
6408 return true;
6410 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6411 return Error(RetTypeLoc, "asm-goto outputs not supported");
6413 // Set up the Attribute for the function.
6414 SmallVector<Value *, 8> Args;
6415 SmallVector<AttributeSet, 8> ArgAttrs;
6417 // Loop through FunctionType's arguments and ensure they are specified
6418 // correctly. Also, gather any parameter attributes.
6419 FunctionType::param_iterator I = Ty->param_begin();
6420 FunctionType::param_iterator E = Ty->param_end();
6421 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6422 Type *ExpectedTy = nullptr;
6423 if (I != E) {
6424 ExpectedTy = *I++;
6425 } else if (!Ty->isVarArg()) {
6426 return Error(ArgList[i].Loc, "too many arguments specified");
6429 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6430 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6431 getTypeString(ExpectedTy) + "'");
6432 Args.push_back(ArgList[i].V);
6433 ArgAttrs.push_back(ArgList[i].Attrs);
6436 if (I != E)
6437 return Error(CallLoc, "not enough parameters specified for call");
6439 if (FnAttrs.hasAlignmentAttr())
6440 return Error(CallLoc, "callbr instructions may not have an alignment");
6442 // Finish off the Attribute and check them
6443 AttributeList PAL =
6444 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6445 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6447 CallBrInst *CBI =
6448 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6449 BundleList);
6450 CBI->setCallingConv(CC);
6451 CBI->setAttributes(PAL);
6452 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6453 Inst = CBI;
6454 return false;
6457 //===----------------------------------------------------------------------===//
6458 // Binary Operators.
6459 //===----------------------------------------------------------------------===//
6461 /// ParseArithmetic
6462 /// ::= ArithmeticOps TypeAndValue ',' Value
6464 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6465 /// operand is allowed.
6466 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6467 unsigned Opc, bool IsFP) {
6468 LocTy Loc; Value *LHS, *RHS;
6469 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6470 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6471 ParseValue(LHS->getType(), RHS, PFS))
6472 return true;
6474 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6475 : LHS->getType()->isIntOrIntVectorTy();
6477 if (!Valid)
6478 return Error(Loc, "invalid operand type for instruction");
6480 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6481 return false;
6484 /// ParseLogical
6485 /// ::= ArithmeticOps TypeAndValue ',' Value {
6486 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6487 unsigned Opc) {
6488 LocTy Loc; Value *LHS, *RHS;
6489 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6490 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6491 ParseValue(LHS->getType(), RHS, PFS))
6492 return true;
6494 if (!LHS->getType()->isIntOrIntVectorTy())
6495 return Error(Loc,"instruction requires integer or integer vector operands");
6497 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6498 return false;
6501 /// ParseCompare
6502 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6503 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6504 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6505 unsigned Opc) {
6506 // Parse the integer/fp comparison predicate.
6507 LocTy Loc;
6508 unsigned Pred;
6509 Value *LHS, *RHS;
6510 if (ParseCmpPredicate(Pred, Opc) ||
6511 ParseTypeAndValue(LHS, Loc, PFS) ||
6512 ParseToken(lltok::comma, "expected ',' after compare value") ||
6513 ParseValue(LHS->getType(), RHS, PFS))
6514 return true;
6516 if (Opc == Instruction::FCmp) {
6517 if (!LHS->getType()->isFPOrFPVectorTy())
6518 return Error(Loc, "fcmp requires floating point operands");
6519 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6520 } else {
6521 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6522 if (!LHS->getType()->isIntOrIntVectorTy() &&
6523 !LHS->getType()->isPtrOrPtrVectorTy())
6524 return Error(Loc, "icmp requires integer operands");
6525 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6527 return false;
6530 //===----------------------------------------------------------------------===//
6531 // Other Instructions.
6532 //===----------------------------------------------------------------------===//
6535 /// ParseCast
6536 /// ::= CastOpc TypeAndValue 'to' Type
6537 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6538 unsigned Opc) {
6539 LocTy Loc;
6540 Value *Op;
6541 Type *DestTy = nullptr;
6542 if (ParseTypeAndValue(Op, Loc, PFS) ||
6543 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6544 ParseType(DestTy))
6545 return true;
6547 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6548 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6549 return Error(Loc, "invalid cast opcode for cast from '" +
6550 getTypeString(Op->getType()) + "' to '" +
6551 getTypeString(DestTy) + "'");
6553 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6554 return false;
6557 /// ParseSelect
6558 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6559 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6560 LocTy Loc;
6561 Value *Op0, *Op1, *Op2;
6562 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6563 ParseToken(lltok::comma, "expected ',' after select condition") ||
6564 ParseTypeAndValue(Op1, PFS) ||
6565 ParseToken(lltok::comma, "expected ',' after select value") ||
6566 ParseTypeAndValue(Op2, PFS))
6567 return true;
6569 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6570 return Error(Loc, Reason);
6572 Inst = SelectInst::Create(Op0, Op1, Op2);
6573 return false;
6576 /// ParseVA_Arg
6577 /// ::= 'va_arg' TypeAndValue ',' Type
6578 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6579 Value *Op;
6580 Type *EltTy = nullptr;
6581 LocTy TypeLoc;
6582 if (ParseTypeAndValue(Op, PFS) ||
6583 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6584 ParseType(EltTy, TypeLoc))
6585 return true;
6587 if (!EltTy->isFirstClassType())
6588 return Error(TypeLoc, "va_arg requires operand with first class type");
6590 Inst = new VAArgInst(Op, EltTy);
6591 return false;
6594 /// ParseExtractElement
6595 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6596 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6597 LocTy Loc;
6598 Value *Op0, *Op1;
6599 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6600 ParseToken(lltok::comma, "expected ',' after extract value") ||
6601 ParseTypeAndValue(Op1, PFS))
6602 return true;
6604 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6605 return Error(Loc, "invalid extractelement operands");
6607 Inst = ExtractElementInst::Create(Op0, Op1);
6608 return false;
6611 /// ParseInsertElement
6612 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6613 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6614 LocTy Loc;
6615 Value *Op0, *Op1, *Op2;
6616 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6617 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6618 ParseTypeAndValue(Op1, PFS) ||
6619 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6620 ParseTypeAndValue(Op2, PFS))
6621 return true;
6623 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6624 return Error(Loc, "invalid insertelement operands");
6626 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6627 return false;
6630 /// ParseShuffleVector
6631 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6632 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6633 LocTy Loc;
6634 Value *Op0, *Op1, *Op2;
6635 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6636 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6637 ParseTypeAndValue(Op1, PFS) ||
6638 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6639 ParseTypeAndValue(Op2, PFS))
6640 return true;
6642 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6643 return Error(Loc, "invalid shufflevector operands");
6645 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6646 return false;
6649 /// ParsePHI
6650 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6651 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6652 Type *Ty = nullptr; LocTy TypeLoc;
6653 Value *Op0, *Op1;
6655 if (ParseType(Ty, TypeLoc) ||
6656 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6657 ParseValue(Ty, Op0, PFS) ||
6658 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6659 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6660 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6661 return true;
6663 bool AteExtraComma = false;
6664 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6666 while (true) {
6667 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6669 if (!EatIfPresent(lltok::comma))
6670 break;
6672 if (Lex.getKind() == lltok::MetadataVar) {
6673 AteExtraComma = true;
6674 break;
6677 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6678 ParseValue(Ty, Op0, PFS) ||
6679 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6680 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6681 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6682 return true;
6685 if (!Ty->isFirstClassType())
6686 return Error(TypeLoc, "phi node must have first class type");
6688 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6689 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6690 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6691 Inst = PN;
6692 return AteExtraComma ? InstExtraComma : InstNormal;
6695 /// ParseLandingPad
6696 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6697 /// Clause
6698 /// ::= 'catch' TypeAndValue
6699 /// ::= 'filter'
6700 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6701 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6702 Type *Ty = nullptr; LocTy TyLoc;
6704 if (ParseType(Ty, TyLoc))
6705 return true;
6707 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6708 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6710 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6711 LandingPadInst::ClauseType CT;
6712 if (EatIfPresent(lltok::kw_catch))
6713 CT = LandingPadInst::Catch;
6714 else if (EatIfPresent(lltok::kw_filter))
6715 CT = LandingPadInst::Filter;
6716 else
6717 return TokError("expected 'catch' or 'filter' clause type");
6719 Value *V;
6720 LocTy VLoc;
6721 if (ParseTypeAndValue(V, VLoc, PFS))
6722 return true;
6724 // A 'catch' type expects a non-array constant. A filter clause expects an
6725 // array constant.
6726 if (CT == LandingPadInst::Catch) {
6727 if (isa<ArrayType>(V->getType()))
6728 Error(VLoc, "'catch' clause has an invalid type");
6729 } else {
6730 if (!isa<ArrayType>(V->getType()))
6731 Error(VLoc, "'filter' clause has an invalid type");
6734 Constant *CV = dyn_cast<Constant>(V);
6735 if (!CV)
6736 return Error(VLoc, "clause argument must be a constant");
6737 LP->addClause(CV);
6740 Inst = LP.release();
6741 return false;
6744 /// ParseCall
6745 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6746 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6747 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6748 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6749 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6750 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6751 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6752 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6753 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6754 CallInst::TailCallKind TCK) {
6755 AttrBuilder RetAttrs, FnAttrs;
6756 std::vector<unsigned> FwdRefAttrGrps;
6757 LocTy BuiltinLoc;
6758 unsigned CallAddrSpace;
6759 unsigned CC;
6760 Type *RetType = nullptr;
6761 LocTy RetTypeLoc;
6762 ValID CalleeID;
6763 SmallVector<ParamInfo, 16> ArgList;
6764 SmallVector<OperandBundleDef, 2> BundleList;
6765 LocTy CallLoc = Lex.getLoc();
6767 if (TCK != CallInst::TCK_None &&
6768 ParseToken(lltok::kw_call,
6769 "expected 'tail call', 'musttail call', or 'notail call'"))
6770 return true;
6772 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6774 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6775 ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6776 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6777 ParseValID(CalleeID) ||
6778 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6779 PFS.getFunction().isVarArg()) ||
6780 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6781 ParseOptionalOperandBundles(BundleList, PFS))
6782 return true;
6784 if (FMF.any() && !RetType->isFPOrFPVectorTy())
6785 return Error(CallLoc, "fast-math-flags specified for call without "
6786 "floating-point scalar or vector return type");
6788 // If RetType is a non-function pointer type, then this is the short syntax
6789 // for the call, which means that RetType is just the return type. Infer the
6790 // rest of the function argument types from the arguments that are present.
6791 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6792 if (!Ty) {
6793 // Pull out the types of all of the arguments...
6794 std::vector<Type*> ParamTypes;
6795 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6796 ParamTypes.push_back(ArgList[i].V->getType());
6798 if (!FunctionType::isValidReturnType(RetType))
6799 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6801 Ty = FunctionType::get(RetType, ParamTypes, false);
6804 CalleeID.FTy = Ty;
6806 // Look up the callee.
6807 Value *Callee;
6808 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6809 &PFS, /*IsCall=*/true))
6810 return true;
6812 // Set up the Attribute for the function.
6813 SmallVector<AttributeSet, 8> Attrs;
6815 SmallVector<Value*, 8> Args;
6817 // Loop through FunctionType's arguments and ensure they are specified
6818 // correctly. Also, gather any parameter attributes.
6819 FunctionType::param_iterator I = Ty->param_begin();
6820 FunctionType::param_iterator E = Ty->param_end();
6821 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6822 Type *ExpectedTy = nullptr;
6823 if (I != E) {
6824 ExpectedTy = *I++;
6825 } else if (!Ty->isVarArg()) {
6826 return Error(ArgList[i].Loc, "too many arguments specified");
6829 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6830 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6831 getTypeString(ExpectedTy) + "'");
6832 Args.push_back(ArgList[i].V);
6833 Attrs.push_back(ArgList[i].Attrs);
6836 if (I != E)
6837 return Error(CallLoc, "not enough parameters specified for call");
6839 if (FnAttrs.hasAlignmentAttr())
6840 return Error(CallLoc, "call instructions may not have an alignment");
6842 // Finish off the Attribute and check them
6843 AttributeList PAL =
6844 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6845 AttributeSet::get(Context, RetAttrs), Attrs);
6847 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6848 CI->setTailCallKind(TCK);
6849 CI->setCallingConv(CC);
6850 if (FMF.any())
6851 CI->setFastMathFlags(FMF);
6852 CI->setAttributes(PAL);
6853 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6854 Inst = CI;
6855 return false;
6858 //===----------------------------------------------------------------------===//
6859 // Memory Instructions.
6860 //===----------------------------------------------------------------------===//
6862 /// ParseAlloc
6863 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6864 /// (',' 'align' i32)? (',', 'addrspace(n))?
6865 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6866 Value *Size = nullptr;
6867 LocTy SizeLoc, TyLoc, ASLoc;
6868 unsigned Alignment = 0;
6869 unsigned AddrSpace = 0;
6870 Type *Ty = nullptr;
6872 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6873 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6875 if (ParseType(Ty, TyLoc)) return true;
6877 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6878 return Error(TyLoc, "invalid type for alloca");
6880 bool AteExtraComma = false;
6881 if (EatIfPresent(lltok::comma)) {
6882 if (Lex.getKind() == lltok::kw_align) {
6883 if (ParseOptionalAlignment(Alignment))
6884 return true;
6885 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6886 return true;
6887 } else if (Lex.getKind() == lltok::kw_addrspace) {
6888 ASLoc = Lex.getLoc();
6889 if (ParseOptionalAddrSpace(AddrSpace))
6890 return true;
6891 } else if (Lex.getKind() == lltok::MetadataVar) {
6892 AteExtraComma = true;
6893 } else {
6894 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6895 return true;
6896 if (EatIfPresent(lltok::comma)) {
6897 if (Lex.getKind() == lltok::kw_align) {
6898 if (ParseOptionalAlignment(Alignment))
6899 return true;
6900 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6901 return true;
6902 } else if (Lex.getKind() == lltok::kw_addrspace) {
6903 ASLoc = Lex.getLoc();
6904 if (ParseOptionalAddrSpace(AddrSpace))
6905 return true;
6906 } else if (Lex.getKind() == lltok::MetadataVar) {
6907 AteExtraComma = true;
6913 if (Size && !Size->getType()->isIntegerTy())
6914 return Error(SizeLoc, "element count must have integer type");
6916 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6917 AI->setUsedWithInAlloca(IsInAlloca);
6918 AI->setSwiftError(IsSwiftError);
6919 Inst = AI;
6920 return AteExtraComma ? InstExtraComma : InstNormal;
6923 /// ParseLoad
6924 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6925 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6926 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6927 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6928 Value *Val; LocTy Loc;
6929 unsigned Alignment = 0;
6930 bool AteExtraComma = false;
6931 bool isAtomic = false;
6932 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6933 SyncScope::ID SSID = SyncScope::System;
6935 if (Lex.getKind() == lltok::kw_atomic) {
6936 isAtomic = true;
6937 Lex.Lex();
6940 bool isVolatile = false;
6941 if (Lex.getKind() == lltok::kw_volatile) {
6942 isVolatile = true;
6943 Lex.Lex();
6946 Type *Ty;
6947 LocTy ExplicitTypeLoc = Lex.getLoc();
6948 if (ParseType(Ty) ||
6949 ParseToken(lltok::comma, "expected comma after load's type") ||
6950 ParseTypeAndValue(Val, Loc, PFS) ||
6951 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6952 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6953 return true;
6955 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6956 return Error(Loc, "load operand must be a pointer to a first class type");
6957 if (isAtomic && !Alignment)
6958 return Error(Loc, "atomic load must have explicit non-zero alignment");
6959 if (Ordering == AtomicOrdering::Release ||
6960 Ordering == AtomicOrdering::AcquireRelease)
6961 return Error(Loc, "atomic load cannot use Release ordering");
6963 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6964 return Error(ExplicitTypeLoc,
6965 "explicit pointee type doesn't match operand's pointee type");
6967 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6968 return AteExtraComma ? InstExtraComma : InstNormal;
6971 /// ParseStore
6973 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6974 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6975 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6976 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6977 Value *Val, *Ptr; LocTy Loc, PtrLoc;
6978 unsigned Alignment = 0;
6979 bool AteExtraComma = false;
6980 bool isAtomic = false;
6981 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6982 SyncScope::ID SSID = SyncScope::System;
6984 if (Lex.getKind() == lltok::kw_atomic) {
6985 isAtomic = true;
6986 Lex.Lex();
6989 bool isVolatile = false;
6990 if (Lex.getKind() == lltok::kw_volatile) {
6991 isVolatile = true;
6992 Lex.Lex();
6995 if (ParseTypeAndValue(Val, Loc, PFS) ||
6996 ParseToken(lltok::comma, "expected ',' after store operand") ||
6997 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6998 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6999 ParseOptionalCommaAlign(Alignment, AteExtraComma))
7000 return true;
7002 if (!Ptr->getType()->isPointerTy())
7003 return Error(PtrLoc, "store operand must be a pointer");
7004 if (!Val->getType()->isFirstClassType())
7005 return Error(Loc, "store operand must be a first class value");
7006 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7007 return Error(Loc, "stored value and pointer type do not match");
7008 if (isAtomic && !Alignment)
7009 return Error(Loc, "atomic store must have explicit non-zero alignment");
7010 if (Ordering == AtomicOrdering::Acquire ||
7011 Ordering == AtomicOrdering::AcquireRelease)
7012 return Error(Loc, "atomic store cannot use Acquire ordering");
7014 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7015 return AteExtraComma ? InstExtraComma : InstNormal;
7018 /// ParseCmpXchg
7019 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7020 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7021 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7022 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7023 bool AteExtraComma = false;
7024 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7025 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7026 SyncScope::ID SSID = SyncScope::System;
7027 bool isVolatile = false;
7028 bool isWeak = false;
7030 if (EatIfPresent(lltok::kw_weak))
7031 isWeak = true;
7033 if (EatIfPresent(lltok::kw_volatile))
7034 isVolatile = true;
7036 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7037 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7038 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7039 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7040 ParseTypeAndValue(New, NewLoc, PFS) ||
7041 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7042 ParseOrdering(FailureOrdering))
7043 return true;
7045 if (SuccessOrdering == AtomicOrdering::Unordered ||
7046 FailureOrdering == AtomicOrdering::Unordered)
7047 return TokError("cmpxchg cannot be unordered");
7048 if (isStrongerThan(FailureOrdering, SuccessOrdering))
7049 return TokError("cmpxchg failure argument shall be no stronger than the "
7050 "success argument");
7051 if (FailureOrdering == AtomicOrdering::Release ||
7052 FailureOrdering == AtomicOrdering::AcquireRelease)
7053 return TokError(
7054 "cmpxchg failure ordering cannot include release semantics");
7055 if (!Ptr->getType()->isPointerTy())
7056 return Error(PtrLoc, "cmpxchg operand must be a pointer");
7057 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7058 return Error(CmpLoc, "compare value and pointer type do not match");
7059 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7060 return Error(NewLoc, "new value and pointer type do not match");
7061 if (!New->getType()->isFirstClassType())
7062 return Error(NewLoc, "cmpxchg operand must be a first class value");
7063 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7064 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7065 CXI->setVolatile(isVolatile);
7066 CXI->setWeak(isWeak);
7067 Inst = CXI;
7068 return AteExtraComma ? InstExtraComma : InstNormal;
7071 /// ParseAtomicRMW
7072 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7073 /// 'singlethread'? AtomicOrdering
7074 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7075 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7076 bool AteExtraComma = false;
7077 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7078 SyncScope::ID SSID = SyncScope::System;
7079 bool isVolatile = false;
7080 bool IsFP = false;
7081 AtomicRMWInst::BinOp Operation;
7083 if (EatIfPresent(lltok::kw_volatile))
7084 isVolatile = true;
7086 switch (Lex.getKind()) {
7087 default: return TokError("expected binary operation in atomicrmw");
7088 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7089 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7090 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7091 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7092 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7093 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7094 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7095 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7096 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7097 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7098 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7099 case lltok::kw_fadd:
7100 Operation = AtomicRMWInst::FAdd;
7101 IsFP = true;
7102 break;
7103 case lltok::kw_fsub:
7104 Operation = AtomicRMWInst::FSub;
7105 IsFP = true;
7106 break;
7108 Lex.Lex(); // Eat the operation.
7110 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7111 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7112 ParseTypeAndValue(Val, ValLoc, PFS) ||
7113 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7114 return true;
7116 if (Ordering == AtomicOrdering::Unordered)
7117 return TokError("atomicrmw cannot be unordered");
7118 if (!Ptr->getType()->isPointerTy())
7119 return Error(PtrLoc, "atomicrmw operand must be a pointer");
7120 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7121 return Error(ValLoc, "atomicrmw value and pointer type do not match");
7123 if (Operation == AtomicRMWInst::Xchg) {
7124 if (!Val->getType()->isIntegerTy() &&
7125 !Val->getType()->isFloatingPointTy()) {
7126 return Error(ValLoc, "atomicrmw " +
7127 AtomicRMWInst::getOperationName(Operation) +
7128 " operand must be an integer or floating point type");
7130 } else if (IsFP) {
7131 if (!Val->getType()->isFloatingPointTy()) {
7132 return Error(ValLoc, "atomicrmw " +
7133 AtomicRMWInst::getOperationName(Operation) +
7134 " operand must be a floating point type");
7136 } else {
7137 if (!Val->getType()->isIntegerTy()) {
7138 return Error(ValLoc, "atomicrmw " +
7139 AtomicRMWInst::getOperationName(Operation) +
7140 " operand must be an integer");
7144 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7145 if (Size < 8 || (Size & (Size - 1)))
7146 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7147 " integer");
7149 AtomicRMWInst *RMWI =
7150 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7151 RMWI->setVolatile(isVolatile);
7152 Inst = RMWI;
7153 return AteExtraComma ? InstExtraComma : InstNormal;
7156 /// ParseFence
7157 /// ::= 'fence' 'singlethread'? AtomicOrdering
7158 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7159 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7160 SyncScope::ID SSID = SyncScope::System;
7161 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7162 return true;
7164 if (Ordering == AtomicOrdering::Unordered)
7165 return TokError("fence cannot be unordered");
7166 if (Ordering == AtomicOrdering::Monotonic)
7167 return TokError("fence cannot be monotonic");
7169 Inst = new FenceInst(Context, Ordering, SSID);
7170 return InstNormal;
7173 /// ParseGetElementPtr
7174 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7175 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7176 Value *Ptr = nullptr;
7177 Value *Val = nullptr;
7178 LocTy Loc, EltLoc;
7180 bool InBounds = EatIfPresent(lltok::kw_inbounds);
7182 Type *Ty = nullptr;
7183 LocTy ExplicitTypeLoc = Lex.getLoc();
7184 if (ParseType(Ty) ||
7185 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7186 ParseTypeAndValue(Ptr, Loc, PFS))
7187 return true;
7189 Type *BaseType = Ptr->getType();
7190 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7191 if (!BasePointerType)
7192 return Error(Loc, "base of getelementptr must be a pointer");
7194 if (Ty != BasePointerType->getElementType())
7195 return Error(ExplicitTypeLoc,
7196 "explicit pointee type doesn't match operand's pointee type");
7198 SmallVector<Value*, 16> Indices;
7199 bool AteExtraComma = false;
7200 // GEP returns a vector of pointers if at least one of parameters is a vector.
7201 // All vector parameters should have the same vector width.
7202 unsigned GEPWidth = BaseType->isVectorTy() ?
7203 BaseType->getVectorNumElements() : 0;
7205 while (EatIfPresent(lltok::comma)) {
7206 if (Lex.getKind() == lltok::MetadataVar) {
7207 AteExtraComma = true;
7208 break;
7210 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7211 if (!Val->getType()->isIntOrIntVectorTy())
7212 return Error(EltLoc, "getelementptr index must be an integer");
7214 if (Val->getType()->isVectorTy()) {
7215 unsigned ValNumEl = Val->getType()->getVectorNumElements();
7216 if (GEPWidth && GEPWidth != ValNumEl)
7217 return Error(EltLoc,
7218 "getelementptr vector index has a wrong number of elements");
7219 GEPWidth = ValNumEl;
7221 Indices.push_back(Val);
7224 SmallPtrSet<Type*, 4> Visited;
7225 if (!Indices.empty() && !Ty->isSized(&Visited))
7226 return Error(Loc, "base element of getelementptr must be sized");
7228 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7229 return Error(Loc, "invalid getelementptr indices");
7230 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7231 if (InBounds)
7232 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7233 return AteExtraComma ? InstExtraComma : InstNormal;
7236 /// ParseExtractValue
7237 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
7238 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7239 Value *Val; LocTy Loc;
7240 SmallVector<unsigned, 4> Indices;
7241 bool AteExtraComma;
7242 if (ParseTypeAndValue(Val, Loc, PFS) ||
7243 ParseIndexList(Indices, AteExtraComma))
7244 return true;
7246 if (!Val->getType()->isAggregateType())
7247 return Error(Loc, "extractvalue operand must be aggregate type");
7249 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7250 return Error(Loc, "invalid indices for extractvalue");
7251 Inst = ExtractValueInst::Create(Val, Indices);
7252 return AteExtraComma ? InstExtraComma : InstNormal;
7255 /// ParseInsertValue
7256 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7257 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7258 Value *Val0, *Val1; LocTy Loc0, Loc1;
7259 SmallVector<unsigned, 4> Indices;
7260 bool AteExtraComma;
7261 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7262 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7263 ParseTypeAndValue(Val1, Loc1, PFS) ||
7264 ParseIndexList(Indices, AteExtraComma))
7265 return true;
7267 if (!Val0->getType()->isAggregateType())
7268 return Error(Loc0, "insertvalue operand must be aggregate type");
7270 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7271 if (!IndexedType)
7272 return Error(Loc0, "invalid indices for insertvalue");
7273 if (IndexedType != Val1->getType())
7274 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7275 getTypeString(Val1->getType()) + "' instead of '" +
7276 getTypeString(IndexedType) + "'");
7277 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7278 return AteExtraComma ? InstExtraComma : InstNormal;
7281 //===----------------------------------------------------------------------===//
7282 // Embedded metadata.
7283 //===----------------------------------------------------------------------===//
7285 /// ParseMDNodeVector
7286 /// ::= { Element (',' Element)* }
7287 /// Element
7288 /// ::= 'null' | TypeAndValue
7289 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7290 if (ParseToken(lltok::lbrace, "expected '{' here"))
7291 return true;
7293 // Check for an empty list.
7294 if (EatIfPresent(lltok::rbrace))
7295 return false;
7297 do {
7298 // Null is a special case since it is typeless.
7299 if (EatIfPresent(lltok::kw_null)) {
7300 Elts.push_back(nullptr);
7301 continue;
7304 Metadata *MD;
7305 if (ParseMetadata(MD, nullptr))
7306 return true;
7307 Elts.push_back(MD);
7308 } while (EatIfPresent(lltok::comma));
7310 return ParseToken(lltok::rbrace, "expected end of metadata node");
7313 //===----------------------------------------------------------------------===//
7314 // Use-list order directives.
7315 //===----------------------------------------------------------------------===//
7316 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7317 SMLoc Loc) {
7318 if (V->use_empty())
7319 return Error(Loc, "value has no uses");
7321 unsigned NumUses = 0;
7322 SmallDenseMap<const Use *, unsigned, 16> Order;
7323 for (const Use &U : V->uses()) {
7324 if (++NumUses > Indexes.size())
7325 break;
7326 Order[&U] = Indexes[NumUses - 1];
7328 if (NumUses < 2)
7329 return Error(Loc, "value only has one use");
7330 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7331 return Error(Loc,
7332 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7334 V->sortUseList([&](const Use &L, const Use &R) {
7335 return Order.lookup(&L) < Order.lookup(&R);
7337 return false;
7340 /// ParseUseListOrderIndexes
7341 /// ::= '{' uint32 (',' uint32)+ '}'
7342 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7343 SMLoc Loc = Lex.getLoc();
7344 if (ParseToken(lltok::lbrace, "expected '{' here"))
7345 return true;
7346 if (Lex.getKind() == lltok::rbrace)
7347 return Lex.Error("expected non-empty list of uselistorder indexes");
7349 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7350 // indexes should be distinct numbers in the range [0, size-1], and should
7351 // not be in order.
7352 unsigned Offset = 0;
7353 unsigned Max = 0;
7354 bool IsOrdered = true;
7355 assert(Indexes.empty() && "Expected empty order vector");
7356 do {
7357 unsigned Index;
7358 if (ParseUInt32(Index))
7359 return true;
7361 // Update consistency checks.
7362 Offset += Index - Indexes.size();
7363 Max = std::max(Max, Index);
7364 IsOrdered &= Index == Indexes.size();
7366 Indexes.push_back(Index);
7367 } while (EatIfPresent(lltok::comma));
7369 if (ParseToken(lltok::rbrace, "expected '}' here"))
7370 return true;
7372 if (Indexes.size() < 2)
7373 return Error(Loc, "expected >= 2 uselistorder indexes");
7374 if (Offset != 0 || Max >= Indexes.size())
7375 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7376 if (IsOrdered)
7377 return Error(Loc, "expected uselistorder indexes to change the order");
7379 return false;
7382 /// ParseUseListOrder
7383 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7384 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7385 SMLoc Loc = Lex.getLoc();
7386 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7387 return true;
7389 Value *V;
7390 SmallVector<unsigned, 16> Indexes;
7391 if (ParseTypeAndValue(V, PFS) ||
7392 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7393 ParseUseListOrderIndexes(Indexes))
7394 return true;
7396 return sortUseListOrder(V, Indexes, Loc);
7399 /// ParseUseListOrderBB
7400 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7401 bool LLParser::ParseUseListOrderBB() {
7402 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7403 SMLoc Loc = Lex.getLoc();
7404 Lex.Lex();
7406 ValID Fn, Label;
7407 SmallVector<unsigned, 16> Indexes;
7408 if (ParseValID(Fn) ||
7409 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7410 ParseValID(Label) ||
7411 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7412 ParseUseListOrderIndexes(Indexes))
7413 return true;
7415 // Check the function.
7416 GlobalValue *GV;
7417 if (Fn.Kind == ValID::t_GlobalName)
7418 GV = M->getNamedValue(Fn.StrVal);
7419 else if (Fn.Kind == ValID::t_GlobalID)
7420 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7421 else
7422 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7423 if (!GV)
7424 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7425 auto *F = dyn_cast<Function>(GV);
7426 if (!F)
7427 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7428 if (F->isDeclaration())
7429 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7431 // Check the basic block.
7432 if (Label.Kind == ValID::t_LocalID)
7433 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7434 if (Label.Kind != ValID::t_LocalName)
7435 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7436 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7437 if (!V)
7438 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7439 if (!isa<BasicBlock>(V))
7440 return Error(Label.Loc, "expected basic block in uselistorder_bb");
7442 return sortUseListOrder(V, Indexes, Loc);
7445 /// ModuleEntry
7446 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7447 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7448 bool LLParser::ParseModuleEntry(unsigned ID) {
7449 assert(Lex.getKind() == lltok::kw_module);
7450 Lex.Lex();
7452 std::string Path;
7453 if (ParseToken(lltok::colon, "expected ':' here") ||
7454 ParseToken(lltok::lparen, "expected '(' here") ||
7455 ParseToken(lltok::kw_path, "expected 'path' here") ||
7456 ParseToken(lltok::colon, "expected ':' here") ||
7457 ParseStringConstant(Path) ||
7458 ParseToken(lltok::comma, "expected ',' here") ||
7459 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7460 ParseToken(lltok::colon, "expected ':' here") ||
7461 ParseToken(lltok::lparen, "expected '(' here"))
7462 return true;
7464 ModuleHash Hash;
7465 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7466 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7467 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7468 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7469 ParseUInt32(Hash[4]))
7470 return true;
7472 if (ParseToken(lltok::rparen, "expected ')' here") ||
7473 ParseToken(lltok::rparen, "expected ')' here"))
7474 return true;
7476 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7477 ModuleIdMap[ID] = ModuleEntry->first();
7479 return false;
7482 /// TypeIdEntry
7483 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7484 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7485 assert(Lex.getKind() == lltok::kw_typeid);
7486 Lex.Lex();
7488 std::string Name;
7489 if (ParseToken(lltok::colon, "expected ':' here") ||
7490 ParseToken(lltok::lparen, "expected '(' here") ||
7491 ParseToken(lltok::kw_name, "expected 'name' here") ||
7492 ParseToken(lltok::colon, "expected ':' here") ||
7493 ParseStringConstant(Name))
7494 return true;
7496 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7497 if (ParseToken(lltok::comma, "expected ',' here") ||
7498 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7499 return true;
7501 // Check if this ID was forward referenced, and if so, update the
7502 // corresponding GUIDs.
7503 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7504 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7505 for (auto TIDRef : FwdRefTIDs->second) {
7506 assert(!*TIDRef.first &&
7507 "Forward referenced type id GUID expected to be 0");
7508 *TIDRef.first = GlobalValue::getGUID(Name);
7510 ForwardRefTypeIds.erase(FwdRefTIDs);
7513 return false;
7516 /// TypeIdSummary
7517 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7518 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7519 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7520 ParseToken(lltok::colon, "expected ':' here") ||
7521 ParseToken(lltok::lparen, "expected '(' here") ||
7522 ParseTypeTestResolution(TIS.TTRes))
7523 return true;
7525 if (EatIfPresent(lltok::comma)) {
7526 // Expect optional wpdResolutions field
7527 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7528 return true;
7531 if (ParseToken(lltok::rparen, "expected ')' here"))
7532 return true;
7534 return false;
7537 static ValueInfo EmptyVI =
7538 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7540 /// TypeIdCompatibleVtableEntry
7541 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7542 /// TypeIdCompatibleVtableInfo
7543 /// ')'
7544 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7545 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7546 Lex.Lex();
7548 std::string Name;
7549 if (ParseToken(lltok::colon, "expected ':' here") ||
7550 ParseToken(lltok::lparen, "expected '(' here") ||
7551 ParseToken(lltok::kw_name, "expected 'name' here") ||
7552 ParseToken(lltok::colon, "expected ':' here") ||
7553 ParseStringConstant(Name))
7554 return true;
7556 TypeIdCompatibleVtableInfo &TI =
7557 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7558 if (ParseToken(lltok::comma, "expected ',' here") ||
7559 ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7560 ParseToken(lltok::colon, "expected ':' here") ||
7561 ParseToken(lltok::lparen, "expected '(' here"))
7562 return true;
7564 IdToIndexMapType IdToIndexMap;
7565 // Parse each call edge
7566 do {
7567 uint64_t Offset;
7568 if (ParseToken(lltok::lparen, "expected '(' here") ||
7569 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7570 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7571 ParseToken(lltok::comma, "expected ',' here"))
7572 return true;
7574 LocTy Loc = Lex.getLoc();
7575 unsigned GVId;
7576 ValueInfo VI;
7577 if (ParseGVReference(VI, GVId))
7578 return true;
7580 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7581 // forward reference. We will save the location of the ValueInfo needing an
7582 // update, but can only do so once the std::vector is finalized.
7583 if (VI == EmptyVI)
7584 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7585 TI.push_back({Offset, VI});
7587 if (ParseToken(lltok::rparen, "expected ')' in call"))
7588 return true;
7589 } while (EatIfPresent(lltok::comma));
7591 // Now that the TI vector is finalized, it is safe to save the locations
7592 // of any forward GV references that need updating later.
7593 for (auto I : IdToIndexMap) {
7594 for (auto P : I.second) {
7595 assert(TI[P.first].VTableVI == EmptyVI &&
7596 "Forward referenced ValueInfo expected to be empty");
7597 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7598 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7599 FwdRef.first->second.push_back(
7600 std::make_pair(&TI[P.first].VTableVI, P.second));
7604 if (ParseToken(lltok::rparen, "expected ')' here") ||
7605 ParseToken(lltok::rparen, "expected ')' here"))
7606 return true;
7608 // Check if this ID was forward referenced, and if so, update the
7609 // corresponding GUIDs.
7610 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7611 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7612 for (auto TIDRef : FwdRefTIDs->second) {
7613 assert(!*TIDRef.first &&
7614 "Forward referenced type id GUID expected to be 0");
7615 *TIDRef.first = GlobalValue::getGUID(Name);
7617 ForwardRefTypeIds.erase(FwdRefTIDs);
7620 return false;
7623 /// TypeTestResolution
7624 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7625 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7626 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7627 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7628 /// [',' 'inlinesBits' ':' UInt64]? ')'
7629 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7630 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7631 ParseToken(lltok::colon, "expected ':' here") ||
7632 ParseToken(lltok::lparen, "expected '(' here") ||
7633 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7634 ParseToken(lltok::colon, "expected ':' here"))
7635 return true;
7637 switch (Lex.getKind()) {
7638 case lltok::kw_unsat:
7639 TTRes.TheKind = TypeTestResolution::Unsat;
7640 break;
7641 case lltok::kw_byteArray:
7642 TTRes.TheKind = TypeTestResolution::ByteArray;
7643 break;
7644 case lltok::kw_inline:
7645 TTRes.TheKind = TypeTestResolution::Inline;
7646 break;
7647 case lltok::kw_single:
7648 TTRes.TheKind = TypeTestResolution::Single;
7649 break;
7650 case lltok::kw_allOnes:
7651 TTRes.TheKind = TypeTestResolution::AllOnes;
7652 break;
7653 default:
7654 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7656 Lex.Lex();
7658 if (ParseToken(lltok::comma, "expected ',' here") ||
7659 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7660 ParseToken(lltok::colon, "expected ':' here") ||
7661 ParseUInt32(TTRes.SizeM1BitWidth))
7662 return true;
7664 // Parse optional fields
7665 while (EatIfPresent(lltok::comma)) {
7666 switch (Lex.getKind()) {
7667 case lltok::kw_alignLog2:
7668 Lex.Lex();
7669 if (ParseToken(lltok::colon, "expected ':'") ||
7670 ParseUInt64(TTRes.AlignLog2))
7671 return true;
7672 break;
7673 case lltok::kw_sizeM1:
7674 Lex.Lex();
7675 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7676 return true;
7677 break;
7678 case lltok::kw_bitMask: {
7679 unsigned Val;
7680 Lex.Lex();
7681 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7682 return true;
7683 assert(Val <= 0xff);
7684 TTRes.BitMask = (uint8_t)Val;
7685 break;
7687 case lltok::kw_inlineBits:
7688 Lex.Lex();
7689 if (ParseToken(lltok::colon, "expected ':'") ||
7690 ParseUInt64(TTRes.InlineBits))
7691 return true;
7692 break;
7693 default:
7694 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7698 if (ParseToken(lltok::rparen, "expected ')' here"))
7699 return true;
7701 return false;
7704 /// OptionalWpdResolutions
7705 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7706 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7707 bool LLParser::ParseOptionalWpdResolutions(
7708 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7709 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7710 ParseToken(lltok::colon, "expected ':' here") ||
7711 ParseToken(lltok::lparen, "expected '(' here"))
7712 return true;
7714 do {
7715 uint64_t Offset;
7716 WholeProgramDevirtResolution WPDRes;
7717 if (ParseToken(lltok::lparen, "expected '(' here") ||
7718 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7719 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7720 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7721 ParseToken(lltok::rparen, "expected ')' here"))
7722 return true;
7723 WPDResMap[Offset] = WPDRes;
7724 } while (EatIfPresent(lltok::comma));
7726 if (ParseToken(lltok::rparen, "expected ')' here"))
7727 return true;
7729 return false;
7732 /// WpdRes
7733 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7734 /// [',' OptionalResByArg]? ')'
7735 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7736 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7737 /// [',' OptionalResByArg]? ')'
7738 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7739 /// [',' OptionalResByArg]? ')'
7740 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7741 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7742 ParseToken(lltok::colon, "expected ':' here") ||
7743 ParseToken(lltok::lparen, "expected '(' here") ||
7744 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7745 ParseToken(lltok::colon, "expected ':' here"))
7746 return true;
7748 switch (Lex.getKind()) {
7749 case lltok::kw_indir:
7750 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7751 break;
7752 case lltok::kw_singleImpl:
7753 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7754 break;
7755 case lltok::kw_branchFunnel:
7756 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7757 break;
7758 default:
7759 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7761 Lex.Lex();
7763 // Parse optional fields
7764 while (EatIfPresent(lltok::comma)) {
7765 switch (Lex.getKind()) {
7766 case lltok::kw_singleImplName:
7767 Lex.Lex();
7768 if (ParseToken(lltok::colon, "expected ':' here") ||
7769 ParseStringConstant(WPDRes.SingleImplName))
7770 return true;
7771 break;
7772 case lltok::kw_resByArg:
7773 if (ParseOptionalResByArg(WPDRes.ResByArg))
7774 return true;
7775 break;
7776 default:
7777 return Error(Lex.getLoc(),
7778 "expected optional WholeProgramDevirtResolution field");
7782 if (ParseToken(lltok::rparen, "expected ')' here"))
7783 return true;
7785 return false;
7788 /// OptionalResByArg
7789 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7790 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7791 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7792 /// 'virtualConstProp' )
7793 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7794 /// [',' 'bit' ':' UInt32]? ')'
7795 bool LLParser::ParseOptionalResByArg(
7796 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7797 &ResByArg) {
7798 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7799 ParseToken(lltok::colon, "expected ':' here") ||
7800 ParseToken(lltok::lparen, "expected '(' here"))
7801 return true;
7803 do {
7804 std::vector<uint64_t> Args;
7805 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7806 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7807 ParseToken(lltok::colon, "expected ':' here") ||
7808 ParseToken(lltok::lparen, "expected '(' here") ||
7809 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7810 ParseToken(lltok::colon, "expected ':' here"))
7811 return true;
7813 WholeProgramDevirtResolution::ByArg ByArg;
7814 switch (Lex.getKind()) {
7815 case lltok::kw_indir:
7816 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7817 break;
7818 case lltok::kw_uniformRetVal:
7819 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7820 break;
7821 case lltok::kw_uniqueRetVal:
7822 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7823 break;
7824 case lltok::kw_virtualConstProp:
7825 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7826 break;
7827 default:
7828 return Error(Lex.getLoc(),
7829 "unexpected WholeProgramDevirtResolution::ByArg kind");
7831 Lex.Lex();
7833 // Parse optional fields
7834 while (EatIfPresent(lltok::comma)) {
7835 switch (Lex.getKind()) {
7836 case lltok::kw_info:
7837 Lex.Lex();
7838 if (ParseToken(lltok::colon, "expected ':' here") ||
7839 ParseUInt64(ByArg.Info))
7840 return true;
7841 break;
7842 case lltok::kw_byte:
7843 Lex.Lex();
7844 if (ParseToken(lltok::colon, "expected ':' here") ||
7845 ParseUInt32(ByArg.Byte))
7846 return true;
7847 break;
7848 case lltok::kw_bit:
7849 Lex.Lex();
7850 if (ParseToken(lltok::colon, "expected ':' here") ||
7851 ParseUInt32(ByArg.Bit))
7852 return true;
7853 break;
7854 default:
7855 return Error(Lex.getLoc(),
7856 "expected optional whole program devirt field");
7860 if (ParseToken(lltok::rparen, "expected ')' here"))
7861 return true;
7863 ResByArg[Args] = ByArg;
7864 } while (EatIfPresent(lltok::comma));
7866 if (ParseToken(lltok::rparen, "expected ')' here"))
7867 return true;
7869 return false;
7872 /// OptionalResByArg
7873 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7874 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7875 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7876 ParseToken(lltok::colon, "expected ':' here") ||
7877 ParseToken(lltok::lparen, "expected '(' here"))
7878 return true;
7880 do {
7881 uint64_t Val;
7882 if (ParseUInt64(Val))
7883 return true;
7884 Args.push_back(Val);
7885 } while (EatIfPresent(lltok::comma));
7887 if (ParseToken(lltok::rparen, "expected ')' here"))
7888 return true;
7890 return false;
7893 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7895 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7896 bool ReadOnly = Fwd->isReadOnly();
7897 bool WriteOnly = Fwd->isWriteOnly();
7898 assert(!(ReadOnly && WriteOnly));
7899 *Fwd = Resolved;
7900 if (ReadOnly)
7901 Fwd->setReadOnly();
7902 if (WriteOnly)
7903 Fwd->setWriteOnly();
7906 /// Stores the given Name/GUID and associated summary into the Index.
7907 /// Also updates any forward references to the associated entry ID.
7908 void LLParser::AddGlobalValueToIndex(
7909 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7910 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7911 // First create the ValueInfo utilizing the Name or GUID.
7912 ValueInfo VI;
7913 if (GUID != 0) {
7914 assert(Name.empty());
7915 VI = Index->getOrInsertValueInfo(GUID);
7916 } else {
7917 assert(!Name.empty());
7918 if (M) {
7919 auto *GV = M->getNamedValue(Name);
7920 assert(GV);
7921 VI = Index->getOrInsertValueInfo(GV);
7922 } else {
7923 assert(
7924 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7925 "Need a source_filename to compute GUID for local");
7926 GUID = GlobalValue::getGUID(
7927 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7928 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7932 // Resolve forward references from calls/refs
7933 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7934 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7935 for (auto VIRef : FwdRefVIs->second) {
7936 assert(VIRef.first->getRef() == FwdVIRef &&
7937 "Forward referenced ValueInfo expected to be empty");
7938 resolveFwdRef(VIRef.first, VI);
7940 ForwardRefValueInfos.erase(FwdRefVIs);
7943 // Resolve forward references from aliases
7944 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7945 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7946 for (auto AliaseeRef : FwdRefAliasees->second) {
7947 assert(!AliaseeRef.first->hasAliasee() &&
7948 "Forward referencing alias already has aliasee");
7949 assert(Summary && "Aliasee must be a definition");
7950 AliaseeRef.first->setAliasee(VI, Summary.get());
7952 ForwardRefAliasees.erase(FwdRefAliasees);
7955 // Add the summary if one was provided.
7956 if (Summary)
7957 Index->addGlobalValueSummary(VI, std::move(Summary));
7959 // Save the associated ValueInfo for use in later references by ID.
7960 if (ID == NumberedValueInfos.size())
7961 NumberedValueInfos.push_back(VI);
7962 else {
7963 // Handle non-continuous numbers (to make test simplification easier).
7964 if (ID > NumberedValueInfos.size())
7965 NumberedValueInfos.resize(ID + 1);
7966 NumberedValueInfos[ID] = VI;
7970 /// ParseGVEntry
7971 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7972 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7973 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7974 bool LLParser::ParseGVEntry(unsigned ID) {
7975 assert(Lex.getKind() == lltok::kw_gv);
7976 Lex.Lex();
7978 if (ParseToken(lltok::colon, "expected ':' here") ||
7979 ParseToken(lltok::lparen, "expected '(' here"))
7980 return true;
7982 std::string Name;
7983 GlobalValue::GUID GUID = 0;
7984 switch (Lex.getKind()) {
7985 case lltok::kw_name:
7986 Lex.Lex();
7987 if (ParseToken(lltok::colon, "expected ':' here") ||
7988 ParseStringConstant(Name))
7989 return true;
7990 // Can't create GUID/ValueInfo until we have the linkage.
7991 break;
7992 case lltok::kw_guid:
7993 Lex.Lex();
7994 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7995 return true;
7996 break;
7997 default:
7998 return Error(Lex.getLoc(), "expected name or guid tag");
8001 if (!EatIfPresent(lltok::comma)) {
8002 // No summaries. Wrap up.
8003 if (ParseToken(lltok::rparen, "expected ')' here"))
8004 return true;
8005 // This was created for a call to an external or indirect target.
8006 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8007 // created for indirect calls with VP. A Name with no GUID came from
8008 // an external definition. We pass ExternalLinkage since that is only
8009 // used when the GUID must be computed from Name, and in that case
8010 // the symbol must have external linkage.
8011 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8012 nullptr);
8013 return false;
8016 // Have a list of summaries
8017 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8018 ParseToken(lltok::colon, "expected ':' here"))
8019 return true;
8021 do {
8022 if (ParseToken(lltok::lparen, "expected '(' here"))
8023 return true;
8024 switch (Lex.getKind()) {
8025 case lltok::kw_function:
8026 if (ParseFunctionSummary(Name, GUID, ID))
8027 return true;
8028 break;
8029 case lltok::kw_variable:
8030 if (ParseVariableSummary(Name, GUID, ID))
8031 return true;
8032 break;
8033 case lltok::kw_alias:
8034 if (ParseAliasSummary(Name, GUID, ID))
8035 return true;
8036 break;
8037 default:
8038 return Error(Lex.getLoc(), "expected summary type");
8040 if (ParseToken(lltok::rparen, "expected ')' here"))
8041 return true;
8042 } while (EatIfPresent(lltok::comma));
8044 if (ParseToken(lltok::rparen, "expected ')' here"))
8045 return true;
8047 return false;
8050 /// FunctionSummary
8051 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8052 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8053 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8054 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8055 unsigned ID) {
8056 assert(Lex.getKind() == lltok::kw_function);
8057 Lex.Lex();
8059 StringRef ModulePath;
8060 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8061 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8062 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8063 unsigned InstCount;
8064 std::vector<FunctionSummary::EdgeTy> Calls;
8065 FunctionSummary::TypeIdInfo TypeIdInfo;
8066 std::vector<ValueInfo> Refs;
8067 // Default is all-zeros (conservative values).
8068 FunctionSummary::FFlags FFlags = {};
8069 if (ParseToken(lltok::colon, "expected ':' here") ||
8070 ParseToken(lltok::lparen, "expected '(' here") ||
8071 ParseModuleReference(ModulePath) ||
8072 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8073 ParseToken(lltok::comma, "expected ',' here") ||
8074 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8075 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8076 return true;
8078 // Parse optional fields
8079 while (EatIfPresent(lltok::comma)) {
8080 switch (Lex.getKind()) {
8081 case lltok::kw_funcFlags:
8082 if (ParseOptionalFFlags(FFlags))
8083 return true;
8084 break;
8085 case lltok::kw_calls:
8086 if (ParseOptionalCalls(Calls))
8087 return true;
8088 break;
8089 case lltok::kw_typeIdInfo:
8090 if (ParseOptionalTypeIdInfo(TypeIdInfo))
8091 return true;
8092 break;
8093 case lltok::kw_refs:
8094 if (ParseOptionalRefs(Refs))
8095 return true;
8096 break;
8097 default:
8098 return Error(Lex.getLoc(), "expected optional function summary field");
8102 if (ParseToken(lltok::rparen, "expected ')' here"))
8103 return true;
8105 auto FS = std::make_unique<FunctionSummary>(
8106 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8107 std::move(Calls), std::move(TypeIdInfo.TypeTests),
8108 std::move(TypeIdInfo.TypeTestAssumeVCalls),
8109 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8110 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8111 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8113 FS->setModulePath(ModulePath);
8115 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8116 ID, std::move(FS));
8118 return false;
8121 /// VariableSummary
8122 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8123 /// [',' OptionalRefs]? ')'
8124 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8125 unsigned ID) {
8126 assert(Lex.getKind() == lltok::kw_variable);
8127 Lex.Lex();
8129 StringRef ModulePath;
8130 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8131 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8132 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8133 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8134 /* WriteOnly */ false);
8135 std::vector<ValueInfo> Refs;
8136 VTableFuncList VTableFuncs;
8137 if (ParseToken(lltok::colon, "expected ':' here") ||
8138 ParseToken(lltok::lparen, "expected '(' here") ||
8139 ParseModuleReference(ModulePath) ||
8140 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8141 ParseToken(lltok::comma, "expected ',' here") ||
8142 ParseGVarFlags(GVarFlags))
8143 return true;
8145 // Parse optional fields
8146 while (EatIfPresent(lltok::comma)) {
8147 switch (Lex.getKind()) {
8148 case lltok::kw_vTableFuncs:
8149 if (ParseOptionalVTableFuncs(VTableFuncs))
8150 return true;
8151 break;
8152 case lltok::kw_refs:
8153 if (ParseOptionalRefs(Refs))
8154 return true;
8155 break;
8156 default:
8157 return Error(Lex.getLoc(), "expected optional variable summary field");
8161 if (ParseToken(lltok::rparen, "expected ')' here"))
8162 return true;
8164 auto GS =
8165 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8167 GS->setModulePath(ModulePath);
8168 GS->setVTableFuncs(std::move(VTableFuncs));
8170 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8171 ID, std::move(GS));
8173 return false;
8176 /// AliasSummary
8177 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8178 /// 'aliasee' ':' GVReference ')'
8179 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8180 unsigned ID) {
8181 assert(Lex.getKind() == lltok::kw_alias);
8182 LocTy Loc = Lex.getLoc();
8183 Lex.Lex();
8185 StringRef ModulePath;
8186 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8187 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8188 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8189 if (ParseToken(lltok::colon, "expected ':' here") ||
8190 ParseToken(lltok::lparen, "expected '(' here") ||
8191 ParseModuleReference(ModulePath) ||
8192 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8193 ParseToken(lltok::comma, "expected ',' here") ||
8194 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8195 ParseToken(lltok::colon, "expected ':' here"))
8196 return true;
8198 ValueInfo AliaseeVI;
8199 unsigned GVId;
8200 if (ParseGVReference(AliaseeVI, GVId))
8201 return true;
8203 if (ParseToken(lltok::rparen, "expected ')' here"))
8204 return true;
8206 auto AS = std::make_unique<AliasSummary>(GVFlags);
8208 AS->setModulePath(ModulePath);
8210 // Record forward reference if the aliasee is not parsed yet.
8211 if (AliaseeVI.getRef() == FwdVIRef) {
8212 auto FwdRef = ForwardRefAliasees.insert(
8213 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8214 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8215 } else {
8216 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8217 assert(Summary && "Aliasee must be a definition");
8218 AS->setAliasee(AliaseeVI, Summary);
8221 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8222 ID, std::move(AS));
8224 return false;
8227 /// Flag
8228 /// ::= [0|1]
8229 bool LLParser::ParseFlag(unsigned &Val) {
8230 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8231 return TokError("expected integer");
8232 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8233 Lex.Lex();
8234 return false;
8237 /// OptionalFFlags
8238 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8239 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8240 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8241 /// [',' 'noInline' ':' Flag]? ')'
8242 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8243 assert(Lex.getKind() == lltok::kw_funcFlags);
8244 Lex.Lex();
8246 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8247 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8248 return true;
8250 do {
8251 unsigned Val = 0;
8252 switch (Lex.getKind()) {
8253 case lltok::kw_readNone:
8254 Lex.Lex();
8255 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8256 return true;
8257 FFlags.ReadNone = Val;
8258 break;
8259 case lltok::kw_readOnly:
8260 Lex.Lex();
8261 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8262 return true;
8263 FFlags.ReadOnly = Val;
8264 break;
8265 case lltok::kw_noRecurse:
8266 Lex.Lex();
8267 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8268 return true;
8269 FFlags.NoRecurse = Val;
8270 break;
8271 case lltok::kw_returnDoesNotAlias:
8272 Lex.Lex();
8273 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8274 return true;
8275 FFlags.ReturnDoesNotAlias = Val;
8276 break;
8277 case lltok::kw_noInline:
8278 Lex.Lex();
8279 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8280 return true;
8281 FFlags.NoInline = Val;
8282 break;
8283 default:
8284 return Error(Lex.getLoc(), "expected function flag type");
8286 } while (EatIfPresent(lltok::comma));
8288 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8289 return true;
8291 return false;
8294 /// OptionalCalls
8295 /// := 'calls' ':' '(' Call [',' Call]* ')'
8296 /// Call ::= '(' 'callee' ':' GVReference
8297 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8298 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8299 assert(Lex.getKind() == lltok::kw_calls);
8300 Lex.Lex();
8302 if (ParseToken(lltok::colon, "expected ':' in calls") |
8303 ParseToken(lltok::lparen, "expected '(' in calls"))
8304 return true;
8306 IdToIndexMapType IdToIndexMap;
8307 // Parse each call edge
8308 do {
8309 ValueInfo VI;
8310 if (ParseToken(lltok::lparen, "expected '(' in call") ||
8311 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8312 ParseToken(lltok::colon, "expected ':'"))
8313 return true;
8315 LocTy Loc = Lex.getLoc();
8316 unsigned GVId;
8317 if (ParseGVReference(VI, GVId))
8318 return true;
8320 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8321 unsigned RelBF = 0;
8322 if (EatIfPresent(lltok::comma)) {
8323 // Expect either hotness or relbf
8324 if (EatIfPresent(lltok::kw_hotness)) {
8325 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8326 return true;
8327 } else {
8328 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8329 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8330 return true;
8333 // Keep track of the Call array index needing a forward reference.
8334 // We will save the location of the ValueInfo needing an update, but
8335 // can only do so once the std::vector is finalized.
8336 if (VI.getRef() == FwdVIRef)
8337 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8338 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8340 if (ParseToken(lltok::rparen, "expected ')' in call"))
8341 return true;
8342 } while (EatIfPresent(lltok::comma));
8344 // Now that the Calls vector is finalized, it is safe to save the locations
8345 // of any forward GV references that need updating later.
8346 for (auto I : IdToIndexMap) {
8347 for (auto P : I.second) {
8348 assert(Calls[P.first].first.getRef() == FwdVIRef &&
8349 "Forward referenced ValueInfo expected to be empty");
8350 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8351 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8352 FwdRef.first->second.push_back(
8353 std::make_pair(&Calls[P.first].first, P.second));
8357 if (ParseToken(lltok::rparen, "expected ')' in calls"))
8358 return true;
8360 return false;
8363 /// Hotness
8364 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
8365 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8366 switch (Lex.getKind()) {
8367 case lltok::kw_unknown:
8368 Hotness = CalleeInfo::HotnessType::Unknown;
8369 break;
8370 case lltok::kw_cold:
8371 Hotness = CalleeInfo::HotnessType::Cold;
8372 break;
8373 case lltok::kw_none:
8374 Hotness = CalleeInfo::HotnessType::None;
8375 break;
8376 case lltok::kw_hot:
8377 Hotness = CalleeInfo::HotnessType::Hot;
8378 break;
8379 case lltok::kw_critical:
8380 Hotness = CalleeInfo::HotnessType::Critical;
8381 break;
8382 default:
8383 return Error(Lex.getLoc(), "invalid call edge hotness");
8385 Lex.Lex();
8386 return false;
8389 /// OptionalVTableFuncs
8390 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8391 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8392 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8393 assert(Lex.getKind() == lltok::kw_vTableFuncs);
8394 Lex.Lex();
8396 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8397 ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8398 return true;
8400 IdToIndexMapType IdToIndexMap;
8401 // Parse each virtual function pair
8402 do {
8403 ValueInfo VI;
8404 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8405 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8406 ParseToken(lltok::colon, "expected ':'"))
8407 return true;
8409 LocTy Loc = Lex.getLoc();
8410 unsigned GVId;
8411 if (ParseGVReference(VI, GVId))
8412 return true;
8414 uint64_t Offset;
8415 if (ParseToken(lltok::comma, "expected comma") ||
8416 ParseToken(lltok::kw_offset, "expected offset") ||
8417 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8418 return true;
8420 // Keep track of the VTableFuncs array index needing a forward reference.
8421 // We will save the location of the ValueInfo needing an update, but
8422 // can only do so once the std::vector is finalized.
8423 if (VI == EmptyVI)
8424 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8425 VTableFuncs.push_back({VI, Offset});
8427 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8428 return true;
8429 } while (EatIfPresent(lltok::comma));
8431 // Now that the VTableFuncs vector is finalized, it is safe to save the
8432 // locations of any forward GV references that need updating later.
8433 for (auto I : IdToIndexMap) {
8434 for (auto P : I.second) {
8435 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8436 "Forward referenced ValueInfo expected to be empty");
8437 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8438 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8439 FwdRef.first->second.push_back(
8440 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8444 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8445 return true;
8447 return false;
8450 /// OptionalRefs
8451 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8452 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8453 assert(Lex.getKind() == lltok::kw_refs);
8454 Lex.Lex();
8456 if (ParseToken(lltok::colon, "expected ':' in refs") |
8457 ParseToken(lltok::lparen, "expected '(' in refs"))
8458 return true;
8460 struct ValueContext {
8461 ValueInfo VI;
8462 unsigned GVId;
8463 LocTy Loc;
8465 std::vector<ValueContext> VContexts;
8466 // Parse each ref edge
8467 do {
8468 ValueContext VC;
8469 VC.Loc = Lex.getLoc();
8470 if (ParseGVReference(VC.VI, VC.GVId))
8471 return true;
8472 VContexts.push_back(VC);
8473 } while (EatIfPresent(lltok::comma));
8475 // Sort value contexts so that ones with writeonly
8476 // and readonly ValueInfo are at the end of VContexts vector.
8477 // See FunctionSummary::specialRefCounts()
8478 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8479 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8482 IdToIndexMapType IdToIndexMap;
8483 for (auto &VC : VContexts) {
8484 // Keep track of the Refs array index needing a forward reference.
8485 // We will save the location of the ValueInfo needing an update, but
8486 // can only do so once the std::vector is finalized.
8487 if (VC.VI.getRef() == FwdVIRef)
8488 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8489 Refs.push_back(VC.VI);
8492 // Now that the Refs vector is finalized, it is safe to save the locations
8493 // of any forward GV references that need updating later.
8494 for (auto I : IdToIndexMap) {
8495 for (auto P : I.second) {
8496 assert(Refs[P.first].getRef() == FwdVIRef &&
8497 "Forward referenced ValueInfo expected to be empty");
8498 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8499 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8500 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8504 if (ParseToken(lltok::rparen, "expected ')' in refs"))
8505 return true;
8507 return false;
8510 /// OptionalTypeIdInfo
8511 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8512 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8513 /// [',' TypeCheckedLoadConstVCalls]? ')'
8514 bool LLParser::ParseOptionalTypeIdInfo(
8515 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8516 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8517 Lex.Lex();
8519 if (ParseToken(lltok::colon, "expected ':' here") ||
8520 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8521 return true;
8523 do {
8524 switch (Lex.getKind()) {
8525 case lltok::kw_typeTests:
8526 if (ParseTypeTests(TypeIdInfo.TypeTests))
8527 return true;
8528 break;
8529 case lltok::kw_typeTestAssumeVCalls:
8530 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8531 TypeIdInfo.TypeTestAssumeVCalls))
8532 return true;
8533 break;
8534 case lltok::kw_typeCheckedLoadVCalls:
8535 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8536 TypeIdInfo.TypeCheckedLoadVCalls))
8537 return true;
8538 break;
8539 case lltok::kw_typeTestAssumeConstVCalls:
8540 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8541 TypeIdInfo.TypeTestAssumeConstVCalls))
8542 return true;
8543 break;
8544 case lltok::kw_typeCheckedLoadConstVCalls:
8545 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8546 TypeIdInfo.TypeCheckedLoadConstVCalls))
8547 return true;
8548 break;
8549 default:
8550 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8552 } while (EatIfPresent(lltok::comma));
8554 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8555 return true;
8557 return false;
8560 /// TypeTests
8561 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8562 /// [',' (SummaryID | UInt64)]* ')'
8563 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8564 assert(Lex.getKind() == lltok::kw_typeTests);
8565 Lex.Lex();
8567 if (ParseToken(lltok::colon, "expected ':' here") ||
8568 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8569 return true;
8571 IdToIndexMapType IdToIndexMap;
8572 do {
8573 GlobalValue::GUID GUID = 0;
8574 if (Lex.getKind() == lltok::SummaryID) {
8575 unsigned ID = Lex.getUIntVal();
8576 LocTy Loc = Lex.getLoc();
8577 // Keep track of the TypeTests array index needing a forward reference.
8578 // We will save the location of the GUID needing an update, but
8579 // can only do so once the std::vector is finalized.
8580 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8581 Lex.Lex();
8582 } else if (ParseUInt64(GUID))
8583 return true;
8584 TypeTests.push_back(GUID);
8585 } while (EatIfPresent(lltok::comma));
8587 // Now that the TypeTests vector is finalized, it is safe to save the
8588 // locations of any forward GV references that need updating later.
8589 for (auto I : IdToIndexMap) {
8590 for (auto P : I.second) {
8591 assert(TypeTests[P.first] == 0 &&
8592 "Forward referenced type id GUID expected to be 0");
8593 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8594 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8595 FwdRef.first->second.push_back(
8596 std::make_pair(&TypeTests[P.first], P.second));
8600 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8601 return true;
8603 return false;
8606 /// VFuncIdList
8607 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8608 bool LLParser::ParseVFuncIdList(
8609 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8610 assert(Lex.getKind() == Kind);
8611 Lex.Lex();
8613 if (ParseToken(lltok::colon, "expected ':' here") ||
8614 ParseToken(lltok::lparen, "expected '(' here"))
8615 return true;
8617 IdToIndexMapType IdToIndexMap;
8618 do {
8619 FunctionSummary::VFuncId VFuncId;
8620 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8621 return true;
8622 VFuncIdList.push_back(VFuncId);
8623 } while (EatIfPresent(lltok::comma));
8625 if (ParseToken(lltok::rparen, "expected ')' here"))
8626 return true;
8628 // Now that the VFuncIdList vector is finalized, it is safe to save the
8629 // locations of any forward GV references that need updating later.
8630 for (auto I : IdToIndexMap) {
8631 for (auto P : I.second) {
8632 assert(VFuncIdList[P.first].GUID == 0 &&
8633 "Forward referenced type id GUID expected to be 0");
8634 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8635 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8636 FwdRef.first->second.push_back(
8637 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8641 return false;
8644 /// ConstVCallList
8645 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8646 bool LLParser::ParseConstVCallList(
8647 lltok::Kind Kind,
8648 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8649 assert(Lex.getKind() == Kind);
8650 Lex.Lex();
8652 if (ParseToken(lltok::colon, "expected ':' here") ||
8653 ParseToken(lltok::lparen, "expected '(' here"))
8654 return true;
8656 IdToIndexMapType IdToIndexMap;
8657 do {
8658 FunctionSummary::ConstVCall ConstVCall;
8659 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8660 return true;
8661 ConstVCallList.push_back(ConstVCall);
8662 } while (EatIfPresent(lltok::comma));
8664 if (ParseToken(lltok::rparen, "expected ')' here"))
8665 return true;
8667 // Now that the ConstVCallList vector is finalized, it is safe to save the
8668 // locations of any forward GV references that need updating later.
8669 for (auto I : IdToIndexMap) {
8670 for (auto P : I.second) {
8671 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8672 "Forward referenced type id GUID expected to be 0");
8673 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8674 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8675 FwdRef.first->second.push_back(
8676 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8680 return false;
8683 /// ConstVCall
8684 /// ::= '(' VFuncId ',' Args ')'
8685 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8686 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8687 if (ParseToken(lltok::lparen, "expected '(' here") ||
8688 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8689 return true;
8691 if (EatIfPresent(lltok::comma))
8692 if (ParseArgs(ConstVCall.Args))
8693 return true;
8695 if (ParseToken(lltok::rparen, "expected ')' here"))
8696 return true;
8698 return false;
8701 /// VFuncId
8702 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8703 /// 'offset' ':' UInt64 ')'
8704 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8705 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8706 assert(Lex.getKind() == lltok::kw_vFuncId);
8707 Lex.Lex();
8709 if (ParseToken(lltok::colon, "expected ':' here") ||
8710 ParseToken(lltok::lparen, "expected '(' here"))
8711 return true;
8713 if (Lex.getKind() == lltok::SummaryID) {
8714 VFuncId.GUID = 0;
8715 unsigned ID = Lex.getUIntVal();
8716 LocTy Loc = Lex.getLoc();
8717 // Keep track of the array index needing a forward reference.
8718 // We will save the location of the GUID needing an update, but
8719 // can only do so once the caller's std::vector is finalized.
8720 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8721 Lex.Lex();
8722 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8723 ParseToken(lltok::colon, "expected ':' here") ||
8724 ParseUInt64(VFuncId.GUID))
8725 return true;
8727 if (ParseToken(lltok::comma, "expected ',' here") ||
8728 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8729 ParseToken(lltok::colon, "expected ':' here") ||
8730 ParseUInt64(VFuncId.Offset) ||
8731 ParseToken(lltok::rparen, "expected ')' here"))
8732 return true;
8734 return false;
8737 /// GVFlags
8738 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8739 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8740 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8741 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8742 assert(Lex.getKind() == lltok::kw_flags);
8743 Lex.Lex();
8745 if (ParseToken(lltok::colon, "expected ':' here") ||
8746 ParseToken(lltok::lparen, "expected '(' here"))
8747 return true;
8749 do {
8750 unsigned Flag = 0;
8751 switch (Lex.getKind()) {
8752 case lltok::kw_linkage:
8753 Lex.Lex();
8754 if (ParseToken(lltok::colon, "expected ':'"))
8755 return true;
8756 bool HasLinkage;
8757 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8758 assert(HasLinkage && "Linkage not optional in summary entry");
8759 Lex.Lex();
8760 break;
8761 case lltok::kw_notEligibleToImport:
8762 Lex.Lex();
8763 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8764 return true;
8765 GVFlags.NotEligibleToImport = Flag;
8766 break;
8767 case lltok::kw_live:
8768 Lex.Lex();
8769 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8770 return true;
8771 GVFlags.Live = Flag;
8772 break;
8773 case lltok::kw_dsoLocal:
8774 Lex.Lex();
8775 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8776 return true;
8777 GVFlags.DSOLocal = Flag;
8778 break;
8779 case lltok::kw_canAutoHide:
8780 Lex.Lex();
8781 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8782 return true;
8783 GVFlags.CanAutoHide = Flag;
8784 break;
8785 default:
8786 return Error(Lex.getLoc(), "expected gv flag type");
8788 } while (EatIfPresent(lltok::comma));
8790 if (ParseToken(lltok::rparen, "expected ')' here"))
8791 return true;
8793 return false;
8796 /// GVarFlags
8797 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8798 /// ',' 'writeonly' ':' Flag ')'
8799 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8800 assert(Lex.getKind() == lltok::kw_varFlags);
8801 Lex.Lex();
8803 if (ParseToken(lltok::colon, "expected ':' here") ||
8804 ParseToken(lltok::lparen, "expected '(' here"))
8805 return true;
8807 auto ParseRest = [this](unsigned int &Val) {
8808 Lex.Lex();
8809 if (ParseToken(lltok::colon, "expected ':'"))
8810 return true;
8811 return ParseFlag(Val);
8814 do {
8815 unsigned Flag = 0;
8816 switch (Lex.getKind()) {
8817 case lltok::kw_readonly:
8818 if (ParseRest(Flag))
8819 return true;
8820 GVarFlags.MaybeReadOnly = Flag;
8821 break;
8822 case lltok::kw_writeonly:
8823 if (ParseRest(Flag))
8824 return true;
8825 GVarFlags.MaybeWriteOnly = Flag;
8826 break;
8827 default:
8828 return Error(Lex.getLoc(), "expected gvar flag type");
8830 } while (EatIfPresent(lltok::comma));
8831 return ParseToken(lltok::rparen, "expected ')' here");
8834 /// ModuleReference
8835 /// ::= 'module' ':' UInt
8836 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8837 // Parse module id.
8838 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8839 ParseToken(lltok::colon, "expected ':' here") ||
8840 ParseToken(lltok::SummaryID, "expected module ID"))
8841 return true;
8843 unsigned ModuleID = Lex.getUIntVal();
8844 auto I = ModuleIdMap.find(ModuleID);
8845 // We should have already parsed all module IDs
8846 assert(I != ModuleIdMap.end());
8847 ModulePath = I->second;
8848 return false;
8851 /// GVReference
8852 /// ::= SummaryID
8853 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8854 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8855 if (!ReadOnly)
8856 WriteOnly = EatIfPresent(lltok::kw_writeonly);
8857 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8858 return true;
8860 GVId = Lex.getUIntVal();
8861 // Check if we already have a VI for this GV
8862 if (GVId < NumberedValueInfos.size()) {
8863 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8864 VI = NumberedValueInfos[GVId];
8865 } else
8866 // We will create a forward reference to the stored location.
8867 VI = ValueInfo(false, FwdVIRef);
8869 if (ReadOnly)
8870 VI.setReadOnly();
8871 if (WriteOnly)
8872 VI.setWriteOnly();
8873 return false;