1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
56 static std::string
getTypeString(Type
*T
) {
58 raw_string_ostream
Tmp(Result
);
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
68 if (Context
.shouldDiscardValueNames())
71 "Can't read textual IR with a Context that discards named Values");
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
77 bool LLParser::parseStandaloneConstantValue(Constant
*&C
,
78 const SlotMapping
*Slots
) {
79 restoreParsingState(Slots
);
83 if (ParseType(Ty
) || parseConstantValue(Ty
, C
))
85 if (Lex
.getKind() != lltok::Eof
)
86 return Error(Lex
.getLoc(), "expected end of string");
90 bool LLParser::parseTypeAtBeginning(Type
*&Ty
, unsigned &Read
,
91 const SlotMapping
*Slots
) {
92 restoreParsingState(Slots
);
96 SMLoc Start
= Lex
.getLoc();
100 SMLoc End
= Lex
.getLoc();
101 Read
= End
.getPointer() - Start
.getPointer();
106 void LLParser::restoreParsingState(const SlotMapping
*Slots
) {
109 NumberedVals
= Slots
->GlobalValues
;
110 NumberedMetadata
= Slots
->MetadataNodes
;
111 for (const auto &I
: Slots
->NamedTypes
)
113 std::make_pair(I
.getKey(), std::make_pair(I
.second
, LocTy())));
114 for (const auto &I
: Slots
->Types
)
115 NumberedTypes
.insert(
116 std::make_pair(I
.first
, std::make_pair(I
.second
, LocTy())));
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 bool LLParser::ValidateEndOfModule() {
124 // Handle any function attribute group forward references.
125 for (const auto &RAG
: ForwardRefAttrGroups
) {
126 Value
*V
= RAG
.first
;
127 const std::vector
<unsigned> &Attrs
= RAG
.second
;
130 for (const auto &Attr
: Attrs
)
131 B
.merge(NumberedAttrBuilders
[Attr
]);
133 if (Function
*Fn
= dyn_cast
<Function
>(V
)) {
134 AttributeList AS
= Fn
->getAttributes();
135 AttrBuilder
FnAttrs(AS
.getFnAttributes());
136 AS
= AS
.removeAttributes(Context
, AttributeList::FunctionIndex
);
140 // If the alignment was parsed as an attribute, move to the alignment
142 if (FnAttrs
.hasAlignmentAttr()) {
143 Fn
->setAlignment(MaybeAlign(FnAttrs
.getAlignment()));
144 FnAttrs
.removeAttribute(Attribute::Alignment
);
147 AS
= AS
.addAttributes(Context
, AttributeList::FunctionIndex
,
148 AttributeSet::get(Context
, FnAttrs
));
149 Fn
->setAttributes(AS
);
150 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(V
)) {
151 AttributeList AS
= CI
->getAttributes();
152 AttrBuilder
FnAttrs(AS
.getFnAttributes());
153 AS
= AS
.removeAttributes(Context
, AttributeList::FunctionIndex
);
155 AS
= AS
.addAttributes(Context
, AttributeList::FunctionIndex
,
156 AttributeSet::get(Context
, FnAttrs
));
157 CI
->setAttributes(AS
);
158 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(V
)) {
159 AttributeList AS
= II
->getAttributes();
160 AttrBuilder
FnAttrs(AS
.getFnAttributes());
161 AS
= AS
.removeAttributes(Context
, AttributeList::FunctionIndex
);
163 AS
= AS
.addAttributes(Context
, AttributeList::FunctionIndex
,
164 AttributeSet::get(Context
, FnAttrs
));
165 II
->setAttributes(AS
);
166 } else if (CallBrInst
*CBI
= dyn_cast
<CallBrInst
>(V
)) {
167 AttributeList AS
= CBI
->getAttributes();
168 AttrBuilder
FnAttrs(AS
.getFnAttributes());
169 AS
= AS
.removeAttributes(Context
, AttributeList::FunctionIndex
);
171 AS
= AS
.addAttributes(Context
, AttributeList::FunctionIndex
,
172 AttributeSet::get(Context
, FnAttrs
));
173 CBI
->setAttributes(AS
);
174 } else if (auto *GV
= dyn_cast
<GlobalVariable
>(V
)) {
175 AttrBuilder
Attrs(GV
->getAttributes());
177 GV
->setAttributes(AttributeSet::get(Context
,Attrs
));
179 llvm_unreachable("invalid object with forward attribute group reference");
183 // If there are entries in ForwardRefBlockAddresses at this point, the
184 // function was never defined.
185 if (!ForwardRefBlockAddresses
.empty())
186 return Error(ForwardRefBlockAddresses
.begin()->first
.Loc
,
187 "expected function name in blockaddress");
189 for (const auto &NT
: NumberedTypes
)
190 if (NT
.second
.second
.isValid())
191 return Error(NT
.second
.second
,
192 "use of undefined type '%" + Twine(NT
.first
) + "'");
194 for (StringMap
<std::pair
<Type
*, LocTy
> >::iterator I
=
195 NamedTypes
.begin(), E
= NamedTypes
.end(); I
!= E
; ++I
)
196 if (I
->second
.second
.isValid())
197 return Error(I
->second
.second
,
198 "use of undefined type named '" + I
->getKey() + "'");
200 if (!ForwardRefComdats
.empty())
201 return Error(ForwardRefComdats
.begin()->second
,
202 "use of undefined comdat '$" +
203 ForwardRefComdats
.begin()->first
+ "'");
205 if (!ForwardRefVals
.empty())
206 return Error(ForwardRefVals
.begin()->second
.second
,
207 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
210 if (!ForwardRefValIDs
.empty())
211 return Error(ForwardRefValIDs
.begin()->second
.second
,
212 "use of undefined value '@" +
213 Twine(ForwardRefValIDs
.begin()->first
) + "'");
215 if (!ForwardRefMDNodes
.empty())
216 return Error(ForwardRefMDNodes
.begin()->second
.second
,
217 "use of undefined metadata '!" +
218 Twine(ForwardRefMDNodes
.begin()->first
) + "'");
220 // Resolve metadata cycles.
221 for (auto &N
: NumberedMetadata
) {
222 if (N
.second
&& !N
.second
->isResolved())
223 N
.second
->resolveCycles();
226 for (auto *Inst
: InstsWithTBAATag
) {
227 MDNode
*MD
= Inst
->getMetadata(LLVMContext::MD_tbaa
);
228 assert(MD
&& "UpgradeInstWithTBAATag should have a TBAA tag");
229 auto *UpgradedMD
= UpgradeTBAANode(*MD
);
230 if (MD
!= UpgradedMD
)
231 Inst
->setMetadata(LLVMContext::MD_tbaa
, UpgradedMD
);
234 // Look for intrinsic functions and CallInst that need to be upgraded
235 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
236 UpgradeCallsToIntrinsic(&*FI
++); // must be post-increment, as we remove
238 // Some types could be renamed during loading if several modules are
239 // loaded in the same LLVMContext (LTO scenario). In this case we should
240 // remangle intrinsics names as well.
241 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; ) {
242 Function
*F
= &*FI
++;
243 if (auto Remangled
= Intrinsic::remangleIntrinsicFunction(F
)) {
244 F
->replaceAllUsesWith(Remangled
.getValue());
245 F
->eraseFromParent();
249 if (UpgradeDebugInfo
)
250 llvm::UpgradeDebugInfo(*M
);
252 UpgradeModuleFlags(*M
);
253 UpgradeSectionAttributes(*M
);
257 // Initialize the slot mapping.
258 // Because by this point we've parsed and validated everything, we can "steal"
259 // the mapping from LLParser as it doesn't need it anymore.
260 Slots
->GlobalValues
= std::move(NumberedVals
);
261 Slots
->MetadataNodes
= std::move(NumberedMetadata
);
262 for (const auto &I
: NamedTypes
)
263 Slots
->NamedTypes
.insert(std::make_pair(I
.getKey(), I
.second
.first
));
264 for (const auto &I
: NumberedTypes
)
265 Slots
->Types
.insert(std::make_pair(I
.first
, I
.second
.first
));
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
275 if (!ForwardRefValueInfos
.empty())
276 return Error(ForwardRefValueInfos
.begin()->second
.front().second
,
277 "use of undefined summary '^" +
278 Twine(ForwardRefValueInfos
.begin()->first
) + "'");
280 if (!ForwardRefAliasees
.empty())
281 return Error(ForwardRefAliasees
.begin()->second
.front().second
,
282 "use of undefined summary '^" +
283 Twine(ForwardRefAliasees
.begin()->first
) + "'");
285 if (!ForwardRefTypeIds
.empty())
286 return Error(ForwardRefTypeIds
.begin()->second
.front().second
,
287 "use of undefined type id summary '^" +
288 Twine(ForwardRefTypeIds
.begin()->first
) + "'");
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
297 bool LLParser::ParseTopLevelEntities() {
298 // If there is no Module, then parse just the summary index entries.
301 switch (Lex
.getKind()) {
304 case lltok::SummaryID
:
305 if (ParseSummaryEntry())
308 case lltok::kw_source_filename
:
309 if (ParseSourceFileName())
313 // Skip everything else
319 switch (Lex
.getKind()) {
320 default: return TokError("expected top-level entity");
321 case lltok::Eof
: return false;
322 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
323 case lltok::kw_define
: if (ParseDefine()) return true; break;
324 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
325 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
326 case lltok::kw_source_filename
:
327 if (ParseSourceFileName())
330 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
331 case lltok::LocalVarID
: if (ParseUnnamedType()) return true; break;
332 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
333 case lltok::GlobalID
: if (ParseUnnamedGlobal()) return true; break;
334 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
335 case lltok::ComdatVar
: if (parseComdat()) return true; break;
336 case lltok::exclaim
: if (ParseStandaloneMetadata()) return true; break;
337 case lltok::SummaryID
:
338 if (ParseSummaryEntry())
341 case lltok::MetadataVar
:if (ParseNamedMetadata()) return true; break;
342 case lltok::kw_attributes
: if (ParseUnnamedAttrGrp()) return true; break;
343 case lltok::kw_uselistorder
: if (ParseUseListOrder()) return true; break;
344 case lltok::kw_uselistorder_bb
:
345 if (ParseUseListOrderBB())
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355 assert(Lex
.getKind() == lltok::kw_module
);
359 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
360 ParseStringConstant(AsmStr
)) return true;
362 M
->appendModuleInlineAsm(AsmStr
);
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370 assert(Lex
.getKind() == lltok::kw_target
);
373 default: return TokError("unknown target property");
374 case lltok::kw_triple
:
376 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
377 ParseStringConstant(Str
))
379 M
->setTargetTriple(Str
);
381 case lltok::kw_datalayout
:
383 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
384 ParseStringConstant(Str
))
386 if (DataLayoutStr
.empty())
387 M
->setDataLayout(Str
);
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395 assert(Lex
.getKind() == lltok::kw_source_filename
);
397 if (ParseToken(lltok::equal
, "expected '=' after source_filename") ||
398 ParseStringConstant(SourceFileName
))
401 M
->setSourceFileName(SourceFileName
);
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410 assert(Lex
.getKind() == lltok::kw_deplibs
);
412 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
413 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
416 if (EatIfPresent(lltok::rsquare
))
421 if (ParseStringConstant(Str
)) return true;
422 } while (EatIfPresent(lltok::comma
));
424 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430 LocTy TypeLoc
= Lex
.getLoc();
431 unsigned TypeID
= Lex
.getUIntVal();
432 Lex
.Lex(); // eat LocalVarID;
434 if (ParseToken(lltok::equal
, "expected '=' after name") ||
435 ParseToken(lltok::kw_type
, "expected 'type' after '='"))
438 Type
*Result
= nullptr;
439 if (ParseStructDefinition(TypeLoc
, "",
440 NumberedTypes
[TypeID
], Result
)) return true;
442 if (!isa
<StructType
>(Result
)) {
443 std::pair
<Type
*, LocTy
> &Entry
= NumberedTypes
[TypeID
];
445 return Error(TypeLoc
, "non-struct types may not be recursive");
446 Entry
.first
= Result
;
447 Entry
.second
= SMLoc();
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456 std::string Name
= Lex
.getStrVal();
457 LocTy NameLoc
= Lex
.getLoc();
458 Lex
.Lex(); // eat LocalVar.
460 if (ParseToken(lltok::equal
, "expected '=' after name") ||
461 ParseToken(lltok::kw_type
, "expected 'type' after name"))
464 Type
*Result
= nullptr;
465 if (ParseStructDefinition(NameLoc
, Name
,
466 NamedTypes
[Name
], Result
)) return true;
468 if (!isa
<StructType
>(Result
)) {
469 std::pair
<Type
*, LocTy
> &Entry
= NamedTypes
[Name
];
471 return Error(NameLoc
, "non-struct types may not be recursive");
472 Entry
.first
= Result
;
473 Entry
.second
= SMLoc();
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482 assert(Lex
.getKind() == lltok::kw_declare
);
485 std::vector
<std::pair
<unsigned, MDNode
*>> MDs
;
486 while (Lex
.getKind() == lltok::MetadataVar
) {
489 if (ParseMetadataAttachment(MDK
, N
))
491 MDs
.push_back({MDK
, N
});
495 if (ParseFunctionHeader(F
, false))
498 F
->addMetadata(MD
.first
, *MD
.second
);
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505 assert(Lex
.getKind() == lltok::kw_define
);
509 return ParseFunctionHeader(F
, true) ||
510 ParseOptionalFunctionMetadata(*F
) ||
511 ParseFunctionBody(*F
);
517 bool LLParser::ParseGlobalType(bool &IsConstant
) {
518 if (Lex
.getKind() == lltok::kw_constant
)
520 else if (Lex
.getKind() == lltok::kw_global
)
524 return TokError("expected 'global' or 'constant'");
530 bool LLParser::ParseOptionalUnnamedAddr(
531 GlobalVariable::UnnamedAddr
&UnnamedAddr
) {
532 if (EatIfPresent(lltok::kw_unnamed_addr
))
533 UnnamedAddr
= GlobalValue::UnnamedAddr::Global
;
534 else if (EatIfPresent(lltok::kw_local_unnamed_addr
))
535 UnnamedAddr
= GlobalValue::UnnamedAddr::Local
;
537 UnnamedAddr
= GlobalValue::UnnamedAddr::None
;
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551 unsigned VarID
= NumberedVals
.size();
553 LocTy NameLoc
= Lex
.getLoc();
555 // Handle the GlobalID form.
556 if (Lex
.getKind() == lltok::GlobalID
) {
557 if (Lex
.getUIntVal() != VarID
)
558 return Error(Lex
.getLoc(), "variable expected to be numbered '%" +
560 Lex
.Lex(); // eat GlobalID;
562 if (ParseToken(lltok::equal
, "expected '=' after name"))
567 unsigned Linkage
, Visibility
, DLLStorageClass
;
569 GlobalVariable::ThreadLocalMode TLM
;
570 GlobalVariable::UnnamedAddr UnnamedAddr
;
571 if (ParseOptionalLinkage(Linkage
, HasLinkage
, Visibility
, DLLStorageClass
,
573 ParseOptionalThreadLocal(TLM
) || ParseOptionalUnnamedAddr(UnnamedAddr
))
576 if (Lex
.getKind() != lltok::kw_alias
&& Lex
.getKind() != lltok::kw_ifunc
)
577 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
,
578 DLLStorageClass
, DSOLocal
, TLM
, UnnamedAddr
);
580 return parseIndirectSymbol(Name
, NameLoc
, Linkage
, Visibility
,
581 DLLStorageClass
, DSOLocal
, TLM
, UnnamedAddr
);
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590 assert(Lex
.getKind() == lltok::GlobalVar
);
591 LocTy NameLoc
= Lex
.getLoc();
592 std::string Name
= Lex
.getStrVal();
596 unsigned Linkage
, Visibility
, DLLStorageClass
;
598 GlobalVariable::ThreadLocalMode TLM
;
599 GlobalVariable::UnnamedAddr UnnamedAddr
;
600 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
601 ParseOptionalLinkage(Linkage
, HasLinkage
, Visibility
, DLLStorageClass
,
603 ParseOptionalThreadLocal(TLM
) || ParseOptionalUnnamedAddr(UnnamedAddr
))
606 if (Lex
.getKind() != lltok::kw_alias
&& Lex
.getKind() != lltok::kw_ifunc
)
607 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
,
608 DLLStorageClass
, DSOLocal
, TLM
, UnnamedAddr
);
610 return parseIndirectSymbol(Name
, NameLoc
, Linkage
, Visibility
,
611 DLLStorageClass
, DSOLocal
, TLM
, UnnamedAddr
);
614 bool LLParser::parseComdat() {
615 assert(Lex
.getKind() == lltok::ComdatVar
);
616 std::string Name
= Lex
.getStrVal();
617 LocTy NameLoc
= Lex
.getLoc();
620 if (ParseToken(lltok::equal
, "expected '=' here"))
623 if (ParseToken(lltok::kw_comdat
, "expected comdat keyword"))
624 return TokError("expected comdat type");
626 Comdat::SelectionKind SK
;
627 switch (Lex
.getKind()) {
629 return TokError("unknown selection kind");
633 case lltok::kw_exactmatch
:
634 SK
= Comdat::ExactMatch
;
636 case lltok::kw_largest
:
637 SK
= Comdat::Largest
;
639 case lltok::kw_noduplicates
:
640 SK
= Comdat::NoDuplicates
;
642 case lltok::kw_samesize
:
643 SK
= Comdat::SameSize
;
648 // See if the comdat was forward referenced, if so, use the comdat.
649 Module::ComdatSymTabType
&ComdatSymTab
= M
->getComdatSymbolTable();
650 Module::ComdatSymTabType::iterator I
= ComdatSymTab
.find(Name
);
651 if (I
!= ComdatSymTab
.end() && !ForwardRefComdats
.erase(Name
))
652 return Error(NameLoc
, "redefinition of comdat '$" + Name
+ "'");
655 if (I
!= ComdatSymTab
.end())
658 C
= M
->getOrInsertComdat(Name
);
659 C
->setSelectionKind(SK
);
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString
*&Result
) {
668 if (ParseStringConstant(Str
)) return true;
669 Result
= MDString::get(Context
, Str
);
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode
*&Result
) {
676 // !{ ..., !42, ... }
677 LocTy IDLoc
= Lex
.getLoc();
679 if (ParseUInt32(MID
))
682 // If not a forward reference, just return it now.
683 if (NumberedMetadata
.count(MID
)) {
684 Result
= NumberedMetadata
[MID
];
688 // Otherwise, create MDNode forward reference.
689 auto &FwdRef
= ForwardRefMDNodes
[MID
];
690 FwdRef
= std::make_pair(MDTuple::getTemporary(Context
, None
), IDLoc
);
692 Result
= FwdRef
.first
.get();
693 NumberedMetadata
[MID
].reset(Result
);
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700 assert(Lex
.getKind() == lltok::MetadataVar
);
701 std::string Name
= Lex
.getStrVal();
704 if (ParseToken(lltok::equal
, "expected '=' here") ||
705 ParseToken(lltok::exclaim
, "Expected '!' here") ||
706 ParseToken(lltok::lbrace
, "Expected '{' here"))
709 NamedMDNode
*NMD
= M
->getOrInsertNamedMetadata(Name
);
710 if (Lex
.getKind() != lltok::rbrace
)
713 // Parse DIExpressions inline as a special case. They are still MDNodes,
714 // so they can still appear in named metadata. Remove this logic if they
715 // become plain Metadata.
716 if (Lex
.getKind() == lltok::MetadataVar
&&
717 Lex
.getStrVal() == "DIExpression") {
718 if (ParseDIExpression(N
, /*IsDistinct=*/false))
720 } else if (ParseToken(lltok::exclaim
, "Expected '!' here") ||
725 } while (EatIfPresent(lltok::comma
));
727 return ParseToken(lltok::rbrace
, "expected end of metadata node");
730 /// ParseStandaloneMetadata:
732 bool LLParser::ParseStandaloneMetadata() {
733 assert(Lex
.getKind() == lltok::exclaim
);
735 unsigned MetadataID
= 0;
738 if (ParseUInt32(MetadataID
) ||
739 ParseToken(lltok::equal
, "expected '=' here"))
742 // Detect common error, from old metadata syntax.
743 if (Lex
.getKind() == lltok::Type
)
744 return TokError("unexpected type in metadata definition");
746 bool IsDistinct
= EatIfPresent(lltok::kw_distinct
);
747 if (Lex
.getKind() == lltok::MetadataVar
) {
748 if (ParseSpecializedMDNode(Init
, IsDistinct
))
750 } else if (ParseToken(lltok::exclaim
, "Expected '!' here") ||
751 ParseMDTuple(Init
, IsDistinct
))
754 // See if this was forward referenced, if so, handle it.
755 auto FI
= ForwardRefMDNodes
.find(MetadataID
);
756 if (FI
!= ForwardRefMDNodes
.end()) {
757 FI
->second
.first
->replaceAllUsesWith(Init
);
758 ForwardRefMDNodes
.erase(FI
);
760 assert(NumberedMetadata
[MetadataID
] == Init
&& "Tracking VH didn't work");
762 if (NumberedMetadata
.count(MetadataID
))
763 return TokError("Metadata id is already used");
764 NumberedMetadata
[MetadataID
].reset(Init
);
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772 // Each module summary entry consists of a tag for the entry
773 // type, followed by a colon, then the fields surrounded by nested sets of
774 // parentheses. The "tag:" looks like a Label. Once parsing support is
775 // in place we will look for the tokens corresponding to the expected tags.
776 if (Lex
.getKind() != lltok::kw_gv
&& Lex
.getKind() != lltok::kw_module
&&
777 Lex
.getKind() != lltok::kw_typeid
)
779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
781 if (ParseToken(lltok::colon
, "expected ':' at start of summary entry") ||
782 ParseToken(lltok::lparen
, "expected '(' at start of summary entry"))
784 // Now walk through the parenthesized entry, until the number of open
785 // parentheses goes back down to 0 (the first '(' was parsed above).
786 unsigned NumOpenParen
= 1;
788 switch (Lex
.getKind()) {
796 return TokError("found end of file while parsing summary entry");
798 // Skip everything in between parentheses.
802 } while (NumOpenParen
> 0);
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809 assert(Lex
.getKind() == lltok::SummaryID
);
810 unsigned SummaryID
= Lex
.getUIntVal();
812 // For summary entries, colons should be treated as distinct tokens,
813 // not an indication of the end of a label token.
814 Lex
.setIgnoreColonInIdentifiers(true);
817 if (ParseToken(lltok::equal
, "expected '=' here"))
820 // If we don't have an index object, skip the summary entry.
822 return SkipModuleSummaryEntry();
825 switch (Lex
.getKind()) {
827 result
= ParseGVEntry(SummaryID
);
829 case lltok::kw_module
:
830 result
= ParseModuleEntry(SummaryID
);
832 case lltok::kw_typeid
:
833 result
= ParseTypeIdEntry(SummaryID
);
835 case lltok::kw_typeidCompatibleVTable
:
836 result
= ParseTypeIdCompatibleVtableEntry(SummaryID
);
839 result
= Error(Lex
.getLoc(), "unexpected summary kind");
842 Lex
.setIgnoreColonInIdentifiers(false);
846 static bool isValidVisibilityForLinkage(unsigned V
, unsigned L
) {
847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes
)L
) ||
848 (GlobalValue::VisibilityTypes
)V
== GlobalValue::DefaultVisibility
;
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal
, GlobalValue
&GV
) {
855 GV
.setDSOLocal(true);
858 /// parseIndirectSymbol:
859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 /// OptionalVisibility OptionalDLLStorageClass
861 /// OptionalThreadLocal OptionalUnnamedAddr
862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
867 /// IndirectSymbolAttr
868 /// ::= ',' 'partition' StringConstant
870 /// Everything through OptionalUnnamedAddr has already been parsed.
872 bool LLParser::parseIndirectSymbol(const std::string
&Name
, LocTy NameLoc
,
873 unsigned L
, unsigned Visibility
,
874 unsigned DLLStorageClass
, bool DSOLocal
,
875 GlobalVariable::ThreadLocalMode TLM
,
876 GlobalVariable::UnnamedAddr UnnamedAddr
) {
878 if (Lex
.getKind() == lltok::kw_alias
)
880 else if (Lex
.getKind() == lltok::kw_ifunc
)
883 llvm_unreachable("Not an alias or ifunc!");
886 GlobalValue::LinkageTypes Linkage
= (GlobalValue::LinkageTypes
) L
;
888 if(IsAlias
&& !GlobalAlias::isValidLinkage(Linkage
))
889 return Error(NameLoc
, "invalid linkage type for alias");
891 if (!isValidVisibilityForLinkage(Visibility
, L
))
892 return Error(NameLoc
,
893 "symbol with local linkage must have default visibility");
896 LocTy ExplicitTypeLoc
= Lex
.getLoc();
898 ParseToken(lltok::comma
, "expected comma after alias or ifunc's type"))
902 LocTy AliaseeLoc
= Lex
.getLoc();
903 if (Lex
.getKind() != lltok::kw_bitcast
&&
904 Lex
.getKind() != lltok::kw_getelementptr
&&
905 Lex
.getKind() != lltok::kw_addrspacecast
&&
906 Lex
.getKind() != lltok::kw_inttoptr
) {
907 if (ParseGlobalTypeAndValue(Aliasee
))
910 // The bitcast dest type is not present, it is implied by the dest type.
914 if (ID
.Kind
!= ValID::t_Constant
)
915 return Error(AliaseeLoc
, "invalid aliasee");
916 Aliasee
= ID
.ConstantVal
;
919 Type
*AliaseeType
= Aliasee
->getType();
920 auto *PTy
= dyn_cast
<PointerType
>(AliaseeType
);
922 return Error(AliaseeLoc
, "An alias or ifunc must have pointer type");
923 unsigned AddrSpace
= PTy
->getAddressSpace();
925 if (IsAlias
&& Ty
!= PTy
->getElementType())
928 "explicit pointee type doesn't match operand's pointee type");
930 if (!IsAlias
&& !PTy
->getElementType()->isFunctionTy())
933 "explicit pointee type should be a function type");
935 GlobalValue
*GVal
= nullptr;
937 // See if the alias was forward referenced, if so, prepare to replace the
938 // forward reference.
940 GVal
= M
->getNamedValue(Name
);
942 if (!ForwardRefVals
.erase(Name
))
943 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
946 auto I
= ForwardRefValIDs
.find(NumberedVals
.size());
947 if (I
!= ForwardRefValIDs
.end()) {
948 GVal
= I
->second
.first
;
949 ForwardRefValIDs
.erase(I
);
953 // Okay, create the alias but do not insert it into the module yet.
954 std::unique_ptr
<GlobalIndirectSymbol
> GA
;
956 GA
.reset(GlobalAlias::create(Ty
, AddrSpace
,
957 (GlobalValue::LinkageTypes
)Linkage
, Name
,
958 Aliasee
, /*Parent*/ nullptr));
960 GA
.reset(GlobalIFunc::create(Ty
, AddrSpace
,
961 (GlobalValue::LinkageTypes
)Linkage
, Name
,
962 Aliasee
, /*Parent*/ nullptr));
963 GA
->setThreadLocalMode(TLM
);
964 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
965 GA
->setDLLStorageClass((GlobalValue::DLLStorageClassTypes
)DLLStorageClass
);
966 GA
->setUnnamedAddr(UnnamedAddr
);
967 maybeSetDSOLocal(DSOLocal
, *GA
);
969 // At this point we've parsed everything except for the IndirectSymbolAttrs.
970 // Now parse them if there are any.
971 while (Lex
.getKind() == lltok::comma
) {
974 if (Lex
.getKind() == lltok::kw_partition
) {
976 GA
->setPartition(Lex
.getStrVal());
977 if (ParseToken(lltok::StringConstant
, "expected partition string"))
980 return TokError("unknown alias or ifunc property!");
985 NumberedVals
.push_back(GA
.get());
988 // Verify that types agree.
989 if (GVal
->getType() != GA
->getType())
992 "forward reference and definition of alias have different types");
994 // If they agree, just RAUW the old value with the alias and remove the
996 GVal
->replaceAllUsesWith(GA
.get());
997 GVal
->eraseFromParent();
1000 // Insert into the module, we know its name won't collide now.
1002 M
->getAliasList().push_back(cast
<GlobalAlias
>(GA
.get()));
1004 M
->getIFuncList().push_back(cast
<GlobalIFunc
>(GA
.get()));
1005 assert(GA
->getName() == Name
&& "Should not be a name conflict!");
1007 // The module owns this now
1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 /// OptionalVisibility OptionalDLLStorageClass
1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 /// Const OptionalAttrs
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1026 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
1027 unsigned Linkage
, bool HasLinkage
,
1028 unsigned Visibility
, unsigned DLLStorageClass
,
1029 bool DSOLocal
, GlobalVariable::ThreadLocalMode TLM
,
1030 GlobalVariable::UnnamedAddr UnnamedAddr
) {
1031 if (!isValidVisibilityForLinkage(Visibility
, Linkage
))
1032 return Error(NameLoc
,
1033 "symbol with local linkage must have default visibility");
1036 bool IsConstant
, IsExternallyInitialized
;
1037 LocTy IsExternallyInitializedLoc
;
1041 if (ParseOptionalAddrSpace(AddrSpace
) ||
1042 ParseOptionalToken(lltok::kw_externally_initialized
,
1043 IsExternallyInitialized
,
1044 &IsExternallyInitializedLoc
) ||
1045 ParseGlobalType(IsConstant
) ||
1046 ParseType(Ty
, TyLoc
))
1049 // If the linkage is specified and is external, then no initializer is
1051 Constant
*Init
= nullptr;
1053 !GlobalValue::isValidDeclarationLinkage(
1054 (GlobalValue::LinkageTypes
)Linkage
)) {
1055 if (ParseGlobalValue(Ty
, Init
))
1059 if (Ty
->isFunctionTy() || !PointerType::isValidElementType(Ty
))
1060 return Error(TyLoc
, "invalid type for global variable");
1062 GlobalValue
*GVal
= nullptr;
1064 // See if the global was forward referenced, if so, use the global.
1065 if (!Name
.empty()) {
1066 GVal
= M
->getNamedValue(Name
);
1068 if (!ForwardRefVals
.erase(Name
))
1069 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
1072 auto I
= ForwardRefValIDs
.find(NumberedVals
.size());
1073 if (I
!= ForwardRefValIDs
.end()) {
1074 GVal
= I
->second
.first
;
1075 ForwardRefValIDs
.erase(I
);
1081 GV
= new GlobalVariable(*M
, Ty
, false, GlobalValue::ExternalLinkage
, nullptr,
1082 Name
, nullptr, GlobalVariable::NotThreadLocal
,
1085 if (GVal
->getValueType() != Ty
)
1087 "forward reference and definition of global have different types");
1089 GV
= cast
<GlobalVariable
>(GVal
);
1091 // Move the forward-reference to the correct spot in the module.
1092 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
1096 NumberedVals
.push_back(GV
);
1098 // Set the parsed properties on the global.
1100 GV
->setInitializer(Init
);
1101 GV
->setConstant(IsConstant
);
1102 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
1103 maybeSetDSOLocal(DSOLocal
, *GV
);
1104 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
1105 GV
->setDLLStorageClass((GlobalValue::DLLStorageClassTypes
)DLLStorageClass
);
1106 GV
->setExternallyInitialized(IsExternallyInitialized
);
1107 GV
->setThreadLocalMode(TLM
);
1108 GV
->setUnnamedAddr(UnnamedAddr
);
1110 // Parse attributes on the global.
1111 while (Lex
.getKind() == lltok::comma
) {
1114 if (Lex
.getKind() == lltok::kw_section
) {
1116 GV
->setSection(Lex
.getStrVal());
1117 if (ParseToken(lltok::StringConstant
, "expected global section string"))
1119 } else if (Lex
.getKind() == lltok::kw_partition
) {
1121 GV
->setPartition(Lex
.getStrVal());
1122 if (ParseToken(lltok::StringConstant
, "expected partition string"))
1124 } else if (Lex
.getKind() == lltok::kw_align
) {
1126 if (ParseOptionalAlignment(Alignment
)) return true;
1127 GV
->setAlignment(MaybeAlign(Alignment
));
1128 } else if (Lex
.getKind() == lltok::MetadataVar
) {
1129 if (ParseGlobalObjectMetadataAttachment(*GV
))
1133 if (parseOptionalComdat(Name
, C
))
1138 return TokError("unknown global variable property!");
1144 std::vector
<unsigned> FwdRefAttrGrps
;
1145 if (ParseFnAttributeValuePairs(Attrs
, FwdRefAttrGrps
, false, BuiltinLoc
))
1147 if (Attrs
.hasAttributes() || !FwdRefAttrGrps
.empty()) {
1148 GV
->setAttributes(AttributeSet::get(Context
, Attrs
));
1149 ForwardRefAttrGroups
[GV
] = FwdRefAttrGrps
;
1155 /// ParseUnnamedAttrGrp
1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158 assert(Lex
.getKind() == lltok::kw_attributes
);
1159 LocTy AttrGrpLoc
= Lex
.getLoc();
1162 if (Lex
.getKind() != lltok::AttrGrpID
)
1163 return TokError("expected attribute group id");
1165 unsigned VarID
= Lex
.getUIntVal();
1166 std::vector
<unsigned> unused
;
1170 if (ParseToken(lltok::equal
, "expected '=' here") ||
1171 ParseToken(lltok::lbrace
, "expected '{' here") ||
1172 ParseFnAttributeValuePairs(NumberedAttrBuilders
[VarID
], unused
, true,
1174 ParseToken(lltok::rbrace
, "expected end of attribute group"))
1177 if (!NumberedAttrBuilders
[VarID
].hasAttributes())
1178 return Error(AttrGrpLoc
, "attribute group has no attributes");
1183 /// ParseFnAttributeValuePairs
1184 /// ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder
&B
,
1186 std::vector
<unsigned> &FwdRefAttrGrps
,
1187 bool inAttrGrp
, LocTy
&BuiltinLoc
) {
1188 bool HaveError
= false;
1193 lltok::Kind Token
= Lex
.getKind();
1194 if (Token
== lltok::kw_builtin
)
1195 BuiltinLoc
= Lex
.getLoc();
1198 if (!inAttrGrp
) return HaveError
;
1199 return Error(Lex
.getLoc(), "unterminated attribute group");
1204 case lltok::AttrGrpID
: {
1205 // Allow a function to reference an attribute group:
1207 // define void @foo() #1 { ... }
1211 "cannot have an attribute group reference in an attribute group");
1213 unsigned AttrGrpNum
= Lex
.getUIntVal();
1214 if (inAttrGrp
) break;
1216 // Save the reference to the attribute group. We'll fill it in later.
1217 FwdRefAttrGrps
.push_back(AttrGrpNum
);
1220 // Target-dependent attributes:
1221 case lltok::StringConstant
: {
1222 if (ParseStringAttribute(B
))
1227 // Target-independent attributes:
1228 case lltok::kw_align
: {
1229 // As a hack, we allow function alignment to be initially parsed as an
1230 // attribute on a function declaration/definition or added to an attribute
1231 // group and later moved to the alignment field.
1235 if (ParseToken(lltok::equal
, "expected '=' here") ||
1236 ParseUInt32(Alignment
))
1239 if (ParseOptionalAlignment(Alignment
))
1242 B
.addAlignmentAttr(Alignment
);
1245 case lltok::kw_alignstack
: {
1249 if (ParseToken(lltok::equal
, "expected '=' here") ||
1250 ParseUInt32(Alignment
))
1253 if (ParseOptionalStackAlignment(Alignment
))
1256 B
.addStackAlignmentAttr(Alignment
);
1259 case lltok::kw_allocsize
: {
1260 unsigned ElemSizeArg
;
1261 Optional
<unsigned> NumElemsArg
;
1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263 if (parseAllocSizeArguments(ElemSizeArg
, NumElemsArg
))
1265 B
.addAllocSizeAttr(ElemSizeArg
, NumElemsArg
);
1268 case lltok::kw_alwaysinline
: B
.addAttribute(Attribute::AlwaysInline
); break;
1269 case lltok::kw_argmemonly
: B
.addAttribute(Attribute::ArgMemOnly
); break;
1270 case lltok::kw_builtin
: B
.addAttribute(Attribute::Builtin
); break;
1271 case lltok::kw_cold
: B
.addAttribute(Attribute::Cold
); break;
1272 case lltok::kw_convergent
: B
.addAttribute(Attribute::Convergent
); break;
1273 case lltok::kw_inaccessiblememonly
:
1274 B
.addAttribute(Attribute::InaccessibleMemOnly
); break;
1275 case lltok::kw_inaccessiblemem_or_argmemonly
:
1276 B
.addAttribute(Attribute::InaccessibleMemOrArgMemOnly
); break;
1277 case lltok::kw_inlinehint
: B
.addAttribute(Attribute::InlineHint
); break;
1278 case lltok::kw_jumptable
: B
.addAttribute(Attribute::JumpTable
); break;
1279 case lltok::kw_minsize
: B
.addAttribute(Attribute::MinSize
); break;
1280 case lltok::kw_naked
: B
.addAttribute(Attribute::Naked
); break;
1281 case lltok::kw_nobuiltin
: B
.addAttribute(Attribute::NoBuiltin
); break;
1282 case lltok::kw_noduplicate
: B
.addAttribute(Attribute::NoDuplicate
); break;
1283 case lltok::kw_nofree
: B
.addAttribute(Attribute::NoFree
); break;
1284 case lltok::kw_noimplicitfloat
:
1285 B
.addAttribute(Attribute::NoImplicitFloat
); break;
1286 case lltok::kw_noinline
: B
.addAttribute(Attribute::NoInline
); break;
1287 case lltok::kw_nonlazybind
: B
.addAttribute(Attribute::NonLazyBind
); break;
1288 case lltok::kw_noredzone
: B
.addAttribute(Attribute::NoRedZone
); break;
1289 case lltok::kw_noreturn
: B
.addAttribute(Attribute::NoReturn
); break;
1290 case lltok::kw_nosync
: B
.addAttribute(Attribute::NoSync
); break;
1291 case lltok::kw_nocf_check
: B
.addAttribute(Attribute::NoCfCheck
); break;
1292 case lltok::kw_norecurse
: B
.addAttribute(Attribute::NoRecurse
); break;
1293 case lltok::kw_nounwind
: B
.addAttribute(Attribute::NoUnwind
); break;
1294 case lltok::kw_optforfuzzing
:
1295 B
.addAttribute(Attribute::OptForFuzzing
); break;
1296 case lltok::kw_optnone
: B
.addAttribute(Attribute::OptimizeNone
); break;
1297 case lltok::kw_optsize
: B
.addAttribute(Attribute::OptimizeForSize
); break;
1298 case lltok::kw_readnone
: B
.addAttribute(Attribute::ReadNone
); break;
1299 case lltok::kw_readonly
: B
.addAttribute(Attribute::ReadOnly
); break;
1300 case lltok::kw_returns_twice
:
1301 B
.addAttribute(Attribute::ReturnsTwice
); break;
1302 case lltok::kw_speculatable
: B
.addAttribute(Attribute::Speculatable
); break;
1303 case lltok::kw_ssp
: B
.addAttribute(Attribute::StackProtect
); break;
1304 case lltok::kw_sspreq
: B
.addAttribute(Attribute::StackProtectReq
); break;
1305 case lltok::kw_sspstrong
:
1306 B
.addAttribute(Attribute::StackProtectStrong
); break;
1307 case lltok::kw_safestack
: B
.addAttribute(Attribute::SafeStack
); break;
1308 case lltok::kw_shadowcallstack
:
1309 B
.addAttribute(Attribute::ShadowCallStack
); break;
1310 case lltok::kw_sanitize_address
:
1311 B
.addAttribute(Attribute::SanitizeAddress
); break;
1312 case lltok::kw_sanitize_hwaddress
:
1313 B
.addAttribute(Attribute::SanitizeHWAddress
); break;
1314 case lltok::kw_sanitize_memtag
:
1315 B
.addAttribute(Attribute::SanitizeMemTag
); break;
1316 case lltok::kw_sanitize_thread
:
1317 B
.addAttribute(Attribute::SanitizeThread
); break;
1318 case lltok::kw_sanitize_memory
:
1319 B
.addAttribute(Attribute::SanitizeMemory
); break;
1320 case lltok::kw_speculative_load_hardening
:
1321 B
.addAttribute(Attribute::SpeculativeLoadHardening
);
1323 case lltok::kw_strictfp
: B
.addAttribute(Attribute::StrictFP
); break;
1324 case lltok::kw_uwtable
: B
.addAttribute(Attribute::UWTable
); break;
1325 case lltok::kw_willreturn
: B
.addAttribute(Attribute::WillReturn
); break;
1326 case lltok::kw_writeonly
: B
.addAttribute(Attribute::WriteOnly
); break;
1329 case lltok::kw_inreg
:
1330 case lltok::kw_signext
:
1331 case lltok::kw_zeroext
:
1334 "invalid use of attribute on a function");
1336 case lltok::kw_byval
:
1337 case lltok::kw_dereferenceable
:
1338 case lltok::kw_dereferenceable_or_null
:
1339 case lltok::kw_inalloca
:
1340 case lltok::kw_nest
:
1341 case lltok::kw_noalias
:
1342 case lltok::kw_nocapture
:
1343 case lltok::kw_nonnull
:
1344 case lltok::kw_returned
:
1345 case lltok::kw_sret
:
1346 case lltok::kw_swifterror
:
1347 case lltok::kw_swiftself
:
1348 case lltok::kw_immarg
:
1351 "invalid use of parameter-only attribute on a function");
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1363 static inline GlobalValue
*createGlobalFwdRef(Module
*M
, PointerType
*PTy
,
1364 const std::string
&Name
) {
1365 if (auto *FT
= dyn_cast
<FunctionType
>(PTy
->getElementType()))
1366 return Function::Create(FT
, GlobalValue::ExternalWeakLinkage
,
1367 PTy
->getAddressSpace(), Name
, M
);
1369 return new GlobalVariable(*M
, PTy
->getElementType(), false,
1370 GlobalValue::ExternalWeakLinkage
, nullptr, Name
,
1371 nullptr, GlobalVariable::NotThreadLocal
,
1372 PTy
->getAddressSpace());
1375 Value
*LLParser::checkValidVariableType(LocTy Loc
, const Twine
&Name
, Type
*Ty
,
1376 Value
*Val
, bool IsCall
) {
1377 if (Val
->getType() == Ty
)
1379 // For calls we also accept variables in the program address space.
1380 Type
*SuggestedTy
= Ty
;
1381 if (IsCall
&& isa
<PointerType
>(Ty
)) {
1382 Type
*TyInProgAS
= cast
<PointerType
>(Ty
)->getElementType()->getPointerTo(
1383 M
->getDataLayout().getProgramAddressSpace());
1384 SuggestedTy
= TyInProgAS
;
1385 if (Val
->getType() == TyInProgAS
)
1388 if (Ty
->isLabelTy())
1389 Error(Loc
, "'" + Name
+ "' is not a basic block");
1391 Error(Loc
, "'" + Name
+ "' defined with type '" +
1392 getTypeString(Val
->getType()) + "' but expected '" +
1393 getTypeString(SuggestedTy
) + "'");
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed. This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, Type
*Ty
,
1401 LocTy Loc
, bool IsCall
) {
1402 PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
1404 Error(Loc
, "global variable reference must have pointer type");
1408 // Look this name up in the normal function symbol table.
1410 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
1412 // If this is a forward reference for the value, see if we already created a
1413 // forward ref record.
1415 auto I
= ForwardRefVals
.find(Name
);
1416 if (I
!= ForwardRefVals
.end())
1417 Val
= I
->second
.first
;
1420 // If we have the value in the symbol table or fwd-ref table, return it.
1422 return cast_or_null
<GlobalValue
>(
1423 checkValidVariableType(Loc
, "@" + Name
, Ty
, Val
, IsCall
));
1425 // Otherwise, create a new forward reference for this value and remember it.
1426 GlobalValue
*FwdVal
= createGlobalFwdRef(M
, PTy
, Name
);
1427 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1431 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, Type
*Ty
, LocTy Loc
,
1433 PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
1435 Error(Loc
, "global variable reference must have pointer type");
1439 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : nullptr;
1441 // If this is a forward reference for the value, see if we already created a
1442 // forward ref record.
1444 auto I
= ForwardRefValIDs
.find(ID
);
1445 if (I
!= ForwardRefValIDs
.end())
1446 Val
= I
->second
.first
;
1449 // If we have the value in the symbol table or fwd-ref table, return it.
1451 return cast_or_null
<GlobalValue
>(
1452 checkValidVariableType(Loc
, "@" + Twine(ID
), Ty
, Val
, IsCall
));
1454 // Otherwise, create a new forward reference for this value and remember it.
1455 GlobalValue
*FwdVal
= createGlobalFwdRef(M
, PTy
, "");
1456 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1464 Comdat
*LLParser::getComdat(const std::string
&Name
, LocTy Loc
) {
1465 // Look this name up in the comdat symbol table.
1466 Module::ComdatSymTabType
&ComdatSymTab
= M
->getComdatSymbolTable();
1467 Module::ComdatSymTabType::iterator I
= ComdatSymTab
.find(Name
);
1468 if (I
!= ComdatSymTab
.end())
1471 // Otherwise, create a new forward reference for this value and remember it.
1472 Comdat
*C
= M
->getOrInsertComdat(Name
);
1473 ForwardRefComdats
[Name
] = Loc
;
1477 //===----------------------------------------------------------------------===//
1479 //===----------------------------------------------------------------------===//
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success. Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
1484 if (Lex
.getKind() != T
)
1485 return TokError(ErrMsg
);
1490 /// ParseStringConstant
1491 /// ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string
&Result
) {
1493 if (Lex
.getKind() != lltok::StringConstant
)
1494 return TokError("expected string constant");
1495 Result
= Lex
.getStrVal();
1502 bool LLParser::ParseUInt32(uint32_t &Val
) {
1503 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
1504 return TokError("expected integer");
1505 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
1506 if (Val64
!= unsigned(Val64
))
1507 return TokError("expected 32-bit integer (too large)");
1515 bool LLParser::ParseUInt64(uint64_t &Val
) {
1516 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
1517 return TokError("expected integer");
1518 Val
= Lex
.getAPSIntVal().getLimitedValue();
1524 /// := 'localdynamic'
1525 /// := 'initialexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode
&TLM
) {
1528 switch (Lex
.getKind()) {
1530 return TokError("expected localdynamic, initialexec or localexec");
1531 case lltok::kw_localdynamic
:
1532 TLM
= GlobalVariable::LocalDynamicTLSModel
;
1534 case lltok::kw_initialexec
:
1535 TLM
= GlobalVariable::InitialExecTLSModel
;
1537 case lltok::kw_localexec
:
1538 TLM
= GlobalVariable::LocalExecTLSModel
;
1546 /// ParseOptionalThreadLocal
1548 /// := 'thread_local'
1549 /// := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode
&TLM
) {
1551 TLM
= GlobalVariable::NotThreadLocal
;
1552 if (!EatIfPresent(lltok::kw_thread_local
))
1555 TLM
= GlobalVariable::GeneralDynamicTLSModel
;
1556 if (Lex
.getKind() == lltok::lparen
) {
1558 return ParseTLSModel(TLM
) ||
1559 ParseToken(lltok::rparen
, "expected ')' after thread local model");
1564 /// ParseOptionalAddrSpace
1566 /// := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
, unsigned DefaultAS
) {
1568 AddrSpace
= DefaultAS
;
1569 if (!EatIfPresent(lltok::kw_addrspace
))
1571 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
1572 ParseUInt32(AddrSpace
) ||
1573 ParseToken(lltok::rparen
, "expected ')' in address space");
1576 /// ParseStringAttribute
1577 /// := StringConstant
1578 /// := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder
&B
) {
1580 std::string Attr
= Lex
.getStrVal();
1583 if (EatIfPresent(lltok::equal
) && ParseStringConstant(Val
))
1585 B
.addAttribute(Attr
, Val
);
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder
&B
) {
1591 bool HaveError
= false;
1596 lltok::Kind Token
= Lex
.getKind();
1598 default: // End of attributes.
1600 case lltok::StringConstant
: {
1601 if (ParseStringAttribute(B
))
1605 case lltok::kw_align
: {
1607 if (ParseOptionalAlignment(Alignment
))
1609 B
.addAlignmentAttr(Alignment
);
1612 case lltok::kw_byval
: {
1614 if (ParseByValWithOptionalType(Ty
))
1619 case lltok::kw_dereferenceable
: {
1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable
, Bytes
))
1623 B
.addDereferenceableAttr(Bytes
);
1626 case lltok::kw_dereferenceable_or_null
: {
1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null
, Bytes
))
1630 B
.addDereferenceableOrNullAttr(Bytes
);
1633 case lltok::kw_inalloca
: B
.addAttribute(Attribute::InAlloca
); break;
1634 case lltok::kw_inreg
: B
.addAttribute(Attribute::InReg
); break;
1635 case lltok::kw_nest
: B
.addAttribute(Attribute::Nest
); break;
1636 case lltok::kw_noalias
: B
.addAttribute(Attribute::NoAlias
); break;
1637 case lltok::kw_nocapture
: B
.addAttribute(Attribute::NoCapture
); break;
1638 case lltok::kw_nonnull
: B
.addAttribute(Attribute::NonNull
); break;
1639 case lltok::kw_readnone
: B
.addAttribute(Attribute::ReadNone
); break;
1640 case lltok::kw_readonly
: B
.addAttribute(Attribute::ReadOnly
); break;
1641 case lltok::kw_returned
: B
.addAttribute(Attribute::Returned
); break;
1642 case lltok::kw_signext
: B
.addAttribute(Attribute::SExt
); break;
1643 case lltok::kw_sret
: B
.addAttribute(Attribute::StructRet
); break;
1644 case lltok::kw_swifterror
: B
.addAttribute(Attribute::SwiftError
); break;
1645 case lltok::kw_swiftself
: B
.addAttribute(Attribute::SwiftSelf
); break;
1646 case lltok::kw_writeonly
: B
.addAttribute(Attribute::WriteOnly
); break;
1647 case lltok::kw_zeroext
: B
.addAttribute(Attribute::ZExt
); break;
1648 case lltok::kw_immarg
: B
.addAttribute(Attribute::ImmArg
); break;
1650 case lltok::kw_alignstack
:
1651 case lltok::kw_alwaysinline
:
1652 case lltok::kw_argmemonly
:
1653 case lltok::kw_builtin
:
1654 case lltok::kw_inlinehint
:
1655 case lltok::kw_jumptable
:
1656 case lltok::kw_minsize
:
1657 case lltok::kw_naked
:
1658 case lltok::kw_nobuiltin
:
1659 case lltok::kw_noduplicate
:
1660 case lltok::kw_noimplicitfloat
:
1661 case lltok::kw_noinline
:
1662 case lltok::kw_nonlazybind
:
1663 case lltok::kw_noredzone
:
1664 case lltok::kw_noreturn
:
1665 case lltok::kw_nocf_check
:
1666 case lltok::kw_nounwind
:
1667 case lltok::kw_optforfuzzing
:
1668 case lltok::kw_optnone
:
1669 case lltok::kw_optsize
:
1670 case lltok::kw_returns_twice
:
1671 case lltok::kw_sanitize_address
:
1672 case lltok::kw_sanitize_hwaddress
:
1673 case lltok::kw_sanitize_memtag
:
1674 case lltok::kw_sanitize_memory
:
1675 case lltok::kw_sanitize_thread
:
1676 case lltok::kw_speculative_load_hardening
:
1678 case lltok::kw_sspreq
:
1679 case lltok::kw_sspstrong
:
1680 case lltok::kw_safestack
:
1681 case lltok::kw_shadowcallstack
:
1682 case lltok::kw_strictfp
:
1683 case lltok::kw_uwtable
:
1684 HaveError
|= Error(Lex
.getLoc(), "invalid use of function-only attribute");
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder
&B
) {
1694 bool HaveError
= false;
1699 lltok::Kind Token
= Lex
.getKind();
1701 default: // End of attributes.
1703 case lltok::StringConstant
: {
1704 if (ParseStringAttribute(B
))
1708 case lltok::kw_dereferenceable
: {
1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable
, Bytes
))
1712 B
.addDereferenceableAttr(Bytes
);
1715 case lltok::kw_dereferenceable_or_null
: {
1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null
, Bytes
))
1719 B
.addDereferenceableOrNullAttr(Bytes
);
1722 case lltok::kw_align
: {
1724 if (ParseOptionalAlignment(Alignment
))
1726 B
.addAlignmentAttr(Alignment
);
1729 case lltok::kw_inreg
: B
.addAttribute(Attribute::InReg
); break;
1730 case lltok::kw_noalias
: B
.addAttribute(Attribute::NoAlias
); break;
1731 case lltok::kw_nonnull
: B
.addAttribute(Attribute::NonNull
); break;
1732 case lltok::kw_signext
: B
.addAttribute(Attribute::SExt
); break;
1733 case lltok::kw_zeroext
: B
.addAttribute(Attribute::ZExt
); break;
1736 case lltok::kw_byval
:
1737 case lltok::kw_inalloca
:
1738 case lltok::kw_nest
:
1739 case lltok::kw_nocapture
:
1740 case lltok::kw_returned
:
1741 case lltok::kw_sret
:
1742 case lltok::kw_swifterror
:
1743 case lltok::kw_swiftself
:
1744 case lltok::kw_immarg
:
1745 HaveError
|= Error(Lex
.getLoc(), "invalid use of parameter-only attribute");
1748 case lltok::kw_alignstack
:
1749 case lltok::kw_alwaysinline
:
1750 case lltok::kw_argmemonly
:
1751 case lltok::kw_builtin
:
1752 case lltok::kw_cold
:
1753 case lltok::kw_inlinehint
:
1754 case lltok::kw_jumptable
:
1755 case lltok::kw_minsize
:
1756 case lltok::kw_naked
:
1757 case lltok::kw_nobuiltin
:
1758 case lltok::kw_noduplicate
:
1759 case lltok::kw_noimplicitfloat
:
1760 case lltok::kw_noinline
:
1761 case lltok::kw_nonlazybind
:
1762 case lltok::kw_noredzone
:
1763 case lltok::kw_noreturn
:
1764 case lltok::kw_nocf_check
:
1765 case lltok::kw_nounwind
:
1766 case lltok::kw_optforfuzzing
:
1767 case lltok::kw_optnone
:
1768 case lltok::kw_optsize
:
1769 case lltok::kw_returns_twice
:
1770 case lltok::kw_sanitize_address
:
1771 case lltok::kw_sanitize_hwaddress
:
1772 case lltok::kw_sanitize_memtag
:
1773 case lltok::kw_sanitize_memory
:
1774 case lltok::kw_sanitize_thread
:
1775 case lltok::kw_speculative_load_hardening
:
1777 case lltok::kw_sspreq
:
1778 case lltok::kw_sspstrong
:
1779 case lltok::kw_safestack
:
1780 case lltok::kw_shadowcallstack
:
1781 case lltok::kw_strictfp
:
1782 case lltok::kw_uwtable
:
1783 HaveError
|= Error(Lex
.getLoc(), "invalid use of function-only attribute");
1786 case lltok::kw_readnone
:
1787 case lltok::kw_readonly
:
1788 HaveError
|= Error(Lex
.getLoc(), "invalid use of attribute on return type");
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind
, bool &HasLinkage
) {
1800 return GlobalValue::ExternalLinkage
;
1801 case lltok::kw_private
:
1802 return GlobalValue::PrivateLinkage
;
1803 case lltok::kw_internal
:
1804 return GlobalValue::InternalLinkage
;
1805 case lltok::kw_weak
:
1806 return GlobalValue::WeakAnyLinkage
;
1807 case lltok::kw_weak_odr
:
1808 return GlobalValue::WeakODRLinkage
;
1809 case lltok::kw_linkonce
:
1810 return GlobalValue::LinkOnceAnyLinkage
;
1811 case lltok::kw_linkonce_odr
:
1812 return GlobalValue::LinkOnceODRLinkage
;
1813 case lltok::kw_available_externally
:
1814 return GlobalValue::AvailableExternallyLinkage
;
1815 case lltok::kw_appending
:
1816 return GlobalValue::AppendingLinkage
;
1817 case lltok::kw_common
:
1818 return GlobalValue::CommonLinkage
;
1819 case lltok::kw_extern_weak
:
1820 return GlobalValue::ExternalWeakLinkage
;
1821 case lltok::kw_external
:
1822 return GlobalValue::ExternalLinkage
;
1826 /// ParseOptionalLinkage
1833 /// ::= 'linkonce_odr'
1834 /// ::= 'available_externally'
1837 /// ::= 'extern_weak'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
,
1840 unsigned &Visibility
,
1841 unsigned &DLLStorageClass
,
1843 Res
= parseOptionalLinkageAux(Lex
.getKind(), HasLinkage
);
1846 ParseOptionalDSOLocal(DSOLocal
);
1847 ParseOptionalVisibility(Visibility
);
1848 ParseOptionalDLLStorageClass(DLLStorageClass
);
1850 if (DSOLocal
&& DLLStorageClass
== GlobalValue::DLLImportStorageClass
) {
1851 return Error(Lex
.getLoc(), "dso_location and DLL-StorageClass mismatch");
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal
) {
1858 switch (Lex
.getKind()) {
1862 case lltok::kw_dso_local
:
1866 case lltok::kw_dso_preemptable
:
1873 /// ParseOptionalVisibility
1879 void LLParser::ParseOptionalVisibility(unsigned &Res
) {
1880 switch (Lex
.getKind()) {
1882 Res
= GlobalValue::DefaultVisibility
;
1884 case lltok::kw_default
:
1885 Res
= GlobalValue::DefaultVisibility
;
1887 case lltok::kw_hidden
:
1888 Res
= GlobalValue::HiddenVisibility
;
1890 case lltok::kw_protected
:
1891 Res
= GlobalValue::ProtectedVisibility
;
1897 /// ParseOptionalDLLStorageClass
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res
) {
1903 switch (Lex
.getKind()) {
1905 Res
= GlobalValue::DefaultStorageClass
;
1907 case lltok::kw_dllimport
:
1908 Res
= GlobalValue::DLLImportStorageClass
;
1910 case lltok::kw_dllexport
:
1911 Res
= GlobalValue::DLLExportStorageClass
;
1917 /// ParseOptionalCallingConv
1921 /// ::= 'intel_ocl_bicc'
1923 /// ::= 'x86_stdcallcc'
1924 /// ::= 'x86_fastcallcc'
1925 /// ::= 'x86_thiscallcc'
1926 /// ::= 'x86_vectorcallcc'
1927 /// ::= 'arm_apcscc'
1928 /// ::= 'arm_aapcscc'
1929 /// ::= 'arm_aapcs_vfpcc'
1930 /// ::= 'aarch64_vector_pcs'
1931 /// ::= 'msp430_intrcc'
1932 /// ::= 'avr_intrcc'
1933 /// ::= 'avr_signalcc'
1934 /// ::= 'ptx_kernel'
1935 /// ::= 'ptx_device'
1937 /// ::= 'spir_kernel'
1938 /// ::= 'x86_64_sysvcc'
1940 /// ::= 'webkit_jscc'
1942 /// ::= 'preserve_mostcc'
1943 /// ::= 'preserve_allcc'
1946 /// ::= 'x86_intrcc'
1949 /// ::= 'cxx_fast_tlscc'
1957 /// ::= 'amdgpu_kernel'
1961 bool LLParser::ParseOptionalCallingConv(unsigned &CC
) {
1962 switch (Lex
.getKind()) {
1963 default: CC
= CallingConv::C
; return false;
1964 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
1965 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
1966 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
1967 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
1968 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
1969 case lltok::kw_x86_regcallcc
: CC
= CallingConv::X86_RegCall
; break;
1970 case lltok::kw_x86_thiscallcc
: CC
= CallingConv::X86_ThisCall
; break;
1971 case lltok::kw_x86_vectorcallcc
:CC
= CallingConv::X86_VectorCall
; break;
1972 case lltok::kw_arm_apcscc
: CC
= CallingConv::ARM_APCS
; break;
1973 case lltok::kw_arm_aapcscc
: CC
= CallingConv::ARM_AAPCS
; break;
1974 case lltok::kw_arm_aapcs_vfpcc
:CC
= CallingConv::ARM_AAPCS_VFP
; break;
1975 case lltok::kw_aarch64_vector_pcs
:CC
= CallingConv::AArch64_VectorCall
; break;
1976 case lltok::kw_msp430_intrcc
: CC
= CallingConv::MSP430_INTR
; break;
1977 case lltok::kw_avr_intrcc
: CC
= CallingConv::AVR_INTR
; break;
1978 case lltok::kw_avr_signalcc
: CC
= CallingConv::AVR_SIGNAL
; break;
1979 case lltok::kw_ptx_kernel
: CC
= CallingConv::PTX_Kernel
; break;
1980 case lltok::kw_ptx_device
: CC
= CallingConv::PTX_Device
; break;
1981 case lltok::kw_spir_kernel
: CC
= CallingConv::SPIR_KERNEL
; break;
1982 case lltok::kw_spir_func
: CC
= CallingConv::SPIR_FUNC
; break;
1983 case lltok::kw_intel_ocl_bicc
: CC
= CallingConv::Intel_OCL_BI
; break;
1984 case lltok::kw_x86_64_sysvcc
: CC
= CallingConv::X86_64_SysV
; break;
1985 case lltok::kw_win64cc
: CC
= CallingConv::Win64
; break;
1986 case lltok::kw_webkit_jscc
: CC
= CallingConv::WebKit_JS
; break;
1987 case lltok::kw_anyregcc
: CC
= CallingConv::AnyReg
; break;
1988 case lltok::kw_preserve_mostcc
:CC
= CallingConv::PreserveMost
; break;
1989 case lltok::kw_preserve_allcc
: CC
= CallingConv::PreserveAll
; break;
1990 case lltok::kw_ghccc
: CC
= CallingConv::GHC
; break;
1991 case lltok::kw_swiftcc
: CC
= CallingConv::Swift
; break;
1992 case lltok::kw_x86_intrcc
: CC
= CallingConv::X86_INTR
; break;
1993 case lltok::kw_hhvmcc
: CC
= CallingConv::HHVM
; break;
1994 case lltok::kw_hhvm_ccc
: CC
= CallingConv::HHVM_C
; break;
1995 case lltok::kw_cxx_fast_tlscc
: CC
= CallingConv::CXX_FAST_TLS
; break;
1996 case lltok::kw_amdgpu_vs
: CC
= CallingConv::AMDGPU_VS
; break;
1997 case lltok::kw_amdgpu_ls
: CC
= CallingConv::AMDGPU_LS
; break;
1998 case lltok::kw_amdgpu_hs
: CC
= CallingConv::AMDGPU_HS
; break;
1999 case lltok::kw_amdgpu_es
: CC
= CallingConv::AMDGPU_ES
; break;
2000 case lltok::kw_amdgpu_gs
: CC
= CallingConv::AMDGPU_GS
; break;
2001 case lltok::kw_amdgpu_ps
: CC
= CallingConv::AMDGPU_PS
; break;
2002 case lltok::kw_amdgpu_cs
: CC
= CallingConv::AMDGPU_CS
; break;
2003 case lltok::kw_amdgpu_kernel
: CC
= CallingConv::AMDGPU_KERNEL
; break;
2004 case lltok::kw_tailcc
: CC
= CallingConv::Tail
; break;
2005 case lltok::kw_cc
: {
2007 return ParseUInt32(CC
);
2015 /// ParseMetadataAttachment
2017 bool LLParser::ParseMetadataAttachment(unsigned &Kind
, MDNode
*&MD
) {
2018 assert(Lex
.getKind() == lltok::MetadataVar
&& "Expected metadata attachment");
2020 std::string Name
= Lex
.getStrVal();
2021 Kind
= M
->getMDKindID(Name
);
2024 return ParseMDNode(MD
);
2027 /// ParseInstructionMetadata
2028 /// ::= !dbg !42 (',' !dbg !57)*
2029 bool LLParser::ParseInstructionMetadata(Instruction
&Inst
) {
2031 if (Lex
.getKind() != lltok::MetadataVar
)
2032 return TokError("expected metadata after comma");
2036 if (ParseMetadataAttachment(MDK
, N
))
2039 Inst
.setMetadata(MDK
, N
);
2040 if (MDK
== LLVMContext::MD_tbaa
)
2041 InstsWithTBAATag
.push_back(&Inst
);
2043 // If this is the end of the list, we're done.
2044 } while (EatIfPresent(lltok::comma
));
2048 /// ParseGlobalObjectMetadataAttachment
2050 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject
&GO
) {
2053 if (ParseMetadataAttachment(MDK
, N
))
2056 GO
.addMetadata(MDK
, *N
);
2060 /// ParseOptionalFunctionMetadata
2062 bool LLParser::ParseOptionalFunctionMetadata(Function
&F
) {
2063 while (Lex
.getKind() == lltok::MetadataVar
)
2064 if (ParseGlobalObjectMetadataAttachment(F
))
2069 /// ParseOptionalAlignment
2072 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
2074 if (!EatIfPresent(lltok::kw_align
))
2076 LocTy AlignLoc
= Lex
.getLoc();
2077 if (ParseUInt32(Alignment
)) return true;
2078 if (!isPowerOf2_32(Alignment
))
2079 return Error(AlignLoc
, "alignment is not a power of two");
2080 if (Alignment
> Value::MaximumAlignment
)
2081 return Error(AlignLoc
, "huge alignments are not supported yet");
2085 /// ParseOptionalDerefAttrBytes
2087 /// ::= AttrKind '(' 4 ')'
2089 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2090 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind
,
2092 assert((AttrKind
== lltok::kw_dereferenceable
||
2093 AttrKind
== lltok::kw_dereferenceable_or_null
) &&
2097 if (!EatIfPresent(AttrKind
))
2099 LocTy ParenLoc
= Lex
.getLoc();
2100 if (!EatIfPresent(lltok::lparen
))
2101 return Error(ParenLoc
, "expected '('");
2102 LocTy DerefLoc
= Lex
.getLoc();
2103 if (ParseUInt64(Bytes
)) return true;
2104 ParenLoc
= Lex
.getLoc();
2105 if (!EatIfPresent(lltok::rparen
))
2106 return Error(ParenLoc
, "expected ')'");
2108 return Error(DerefLoc
, "dereferenceable bytes must be non-zero");
2112 /// ParseOptionalCommaAlign
2116 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2118 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment
,
2119 bool &AteExtraComma
) {
2120 AteExtraComma
= false;
2121 while (EatIfPresent(lltok::comma
)) {
2122 // Metadata at the end is an early exit.
2123 if (Lex
.getKind() == lltok::MetadataVar
) {
2124 AteExtraComma
= true;
2128 if (Lex
.getKind() != lltok::kw_align
)
2129 return Error(Lex
.getLoc(), "expected metadata or 'align'");
2131 if (ParseOptionalAlignment(Alignment
)) return true;
2137 /// ParseOptionalCommaAddrSpace
2139 /// ::= ',' addrspace(1)
2141 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2143 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace
,
2145 bool &AteExtraComma
) {
2146 AteExtraComma
= false;
2147 while (EatIfPresent(lltok::comma
)) {
2148 // Metadata at the end is an early exit.
2149 if (Lex
.getKind() == lltok::MetadataVar
) {
2150 AteExtraComma
= true;
2155 if (Lex
.getKind() != lltok::kw_addrspace
)
2156 return Error(Lex
.getLoc(), "expected metadata or 'addrspace'");
2158 if (ParseOptionalAddrSpace(AddrSpace
))
2165 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg
,
2166 Optional
<unsigned> &HowManyArg
) {
2169 auto StartParen
= Lex
.getLoc();
2170 if (!EatIfPresent(lltok::lparen
))
2171 return Error(StartParen
, "expected '('");
2173 if (ParseUInt32(BaseSizeArg
))
2176 if (EatIfPresent(lltok::comma
)) {
2177 auto HowManyAt
= Lex
.getLoc();
2179 if (ParseUInt32(HowMany
))
2181 if (HowMany
== BaseSizeArg
)
2182 return Error(HowManyAt
,
2183 "'allocsize' indices can't refer to the same parameter");
2184 HowManyArg
= HowMany
;
2188 auto EndParen
= Lex
.getLoc();
2189 if (!EatIfPresent(lltok::rparen
))
2190 return Error(EndParen
, "expected ')'");
2194 /// ParseScopeAndOrdering
2195 /// if isAtomic: ::= SyncScope? AtomicOrdering
2198 /// This sets Scope and Ordering to the parsed values.
2199 bool LLParser::ParseScopeAndOrdering(bool isAtomic
, SyncScope::ID
&SSID
,
2200 AtomicOrdering
&Ordering
) {
2204 return ParseScope(SSID
) || ParseOrdering(Ordering
);
2208 /// ::= syncscope("singlethread" | "<target scope>")?
2210 /// This sets synchronization scope ID to the ID of the parsed value.
2211 bool LLParser::ParseScope(SyncScope::ID
&SSID
) {
2212 SSID
= SyncScope::System
;
2213 if (EatIfPresent(lltok::kw_syncscope
)) {
2214 auto StartParenAt
= Lex
.getLoc();
2215 if (!EatIfPresent(lltok::lparen
))
2216 return Error(StartParenAt
, "Expected '(' in syncscope");
2219 auto SSNAt
= Lex
.getLoc();
2220 if (ParseStringConstant(SSN
))
2221 return Error(SSNAt
, "Expected synchronization scope name");
2223 auto EndParenAt
= Lex
.getLoc();
2224 if (!EatIfPresent(lltok::rparen
))
2225 return Error(EndParenAt
, "Expected ')' in syncscope");
2227 SSID
= Context
.getOrInsertSyncScopeID(SSN
);
2234 /// ::= AtomicOrdering
2236 /// This sets Ordering to the parsed value.
2237 bool LLParser::ParseOrdering(AtomicOrdering
&Ordering
) {
2238 switch (Lex
.getKind()) {
2239 default: return TokError("Expected ordering on atomic instruction");
2240 case lltok::kw_unordered
: Ordering
= AtomicOrdering::Unordered
; break;
2241 case lltok::kw_monotonic
: Ordering
= AtomicOrdering::Monotonic
; break;
2242 // Not specified yet:
2243 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2244 case lltok::kw_acquire
: Ordering
= AtomicOrdering::Acquire
; break;
2245 case lltok::kw_release
: Ordering
= AtomicOrdering::Release
; break;
2246 case lltok::kw_acq_rel
: Ordering
= AtomicOrdering::AcquireRelease
; break;
2247 case lltok::kw_seq_cst
:
2248 Ordering
= AtomicOrdering::SequentiallyConsistent
;
2255 /// ParseOptionalStackAlignment
2257 /// ::= 'alignstack' '(' 4 ')'
2258 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment
) {
2260 if (!EatIfPresent(lltok::kw_alignstack
))
2262 LocTy ParenLoc
= Lex
.getLoc();
2263 if (!EatIfPresent(lltok::lparen
))
2264 return Error(ParenLoc
, "expected '('");
2265 LocTy AlignLoc
= Lex
.getLoc();
2266 if (ParseUInt32(Alignment
)) return true;
2267 ParenLoc
= Lex
.getLoc();
2268 if (!EatIfPresent(lltok::rparen
))
2269 return Error(ParenLoc
, "expected ')'");
2270 if (!isPowerOf2_32(Alignment
))
2271 return Error(AlignLoc
, "stack alignment is not a power of two");
2275 /// ParseIndexList - This parses the index list for an insert/extractvalue
2276 /// instruction. This sets AteExtraComma in the case where we eat an extra
2277 /// comma at the end of the line and find that it is followed by metadata.
2278 /// Clients that don't allow metadata can call the version of this function that
2279 /// only takes one argument.
2282 /// ::= (',' uint32)+
2284 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
,
2285 bool &AteExtraComma
) {
2286 AteExtraComma
= false;
2288 if (Lex
.getKind() != lltok::comma
)
2289 return TokError("expected ',' as start of index list");
2291 while (EatIfPresent(lltok::comma
)) {
2292 if (Lex
.getKind() == lltok::MetadataVar
) {
2293 if (Indices
.empty()) return TokError("expected index");
2294 AteExtraComma
= true;
2298 if (ParseUInt32(Idx
)) return true;
2299 Indices
.push_back(Idx
);
2305 //===----------------------------------------------------------------------===//
2307 //===----------------------------------------------------------------------===//
2309 /// ParseType - Parse a type.
2310 bool LLParser::ParseType(Type
*&Result
, const Twine
&Msg
, bool AllowVoid
) {
2311 SMLoc TypeLoc
= Lex
.getLoc();
2312 switch (Lex
.getKind()) {
2314 return TokError(Msg
);
2316 // Type ::= 'float' | 'void' (etc)
2317 Result
= Lex
.getTyVal();
2321 // Type ::= StructType
2322 if (ParseAnonStructType(Result
, false))
2325 case lltok::lsquare
:
2326 // Type ::= '[' ... ']'
2327 Lex
.Lex(); // eat the lsquare.
2328 if (ParseArrayVectorType(Result
, false))
2331 case lltok::less
: // Either vector or packed struct.
2332 // Type ::= '<' ... '>'
2334 if (Lex
.getKind() == lltok::lbrace
) {
2335 if (ParseAnonStructType(Result
, true) ||
2336 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
2338 } else if (ParseArrayVectorType(Result
, true))
2341 case lltok::LocalVar
: {
2343 std::pair
<Type
*, LocTy
> &Entry
= NamedTypes
[Lex
.getStrVal()];
2345 // If the type hasn't been defined yet, create a forward definition and
2346 // remember where that forward def'n was seen (in case it never is defined).
2348 Entry
.first
= StructType::create(Context
, Lex
.getStrVal());
2349 Entry
.second
= Lex
.getLoc();
2351 Result
= Entry
.first
;
2356 case lltok::LocalVarID
: {
2358 std::pair
<Type
*, LocTy
> &Entry
= NumberedTypes
[Lex
.getUIntVal()];
2360 // If the type hasn't been defined yet, create a forward definition and
2361 // remember where that forward def'n was seen (in case it never is defined).
2363 Entry
.first
= StructType::create(Context
);
2364 Entry
.second
= Lex
.getLoc();
2366 Result
= Entry
.first
;
2372 // Parse the type suffixes.
2374 switch (Lex
.getKind()) {
2377 if (!AllowVoid
&& Result
->isVoidTy())
2378 return Error(TypeLoc
, "void type only allowed for function results");
2381 // Type ::= Type '*'
2383 if (Result
->isLabelTy())
2384 return TokError("basic block pointers are invalid");
2385 if (Result
->isVoidTy())
2386 return TokError("pointers to void are invalid - use i8* instead");
2387 if (!PointerType::isValidElementType(Result
))
2388 return TokError("pointer to this type is invalid");
2389 Result
= PointerType::getUnqual(Result
);
2393 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2394 case lltok::kw_addrspace
: {
2395 if (Result
->isLabelTy())
2396 return TokError("basic block pointers are invalid");
2397 if (Result
->isVoidTy())
2398 return TokError("pointers to void are invalid; use i8* instead");
2399 if (!PointerType::isValidElementType(Result
))
2400 return TokError("pointer to this type is invalid");
2402 if (ParseOptionalAddrSpace(AddrSpace
) ||
2403 ParseToken(lltok::star
, "expected '*' in address space"))
2406 Result
= PointerType::get(Result
, AddrSpace
);
2410 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2412 if (ParseFunctionType(Result
))
2419 /// ParseParameterList
2421 /// ::= '(' Arg (',' Arg)* ')'
2423 /// ::= Type OptionalAttributes Value OptionalAttributes
2424 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
2425 PerFunctionState
&PFS
, bool IsMustTailCall
,
2426 bool InVarArgsFunc
) {
2427 if (ParseToken(lltok::lparen
, "expected '(' in call"))
2430 while (Lex
.getKind() != lltok::rparen
) {
2431 // If this isn't the first argument, we need a comma.
2432 if (!ArgList
.empty() &&
2433 ParseToken(lltok::comma
, "expected ',' in argument list"))
2436 // Parse an ellipsis if this is a musttail call in a variadic function.
2437 if (Lex
.getKind() == lltok::dotdotdot
) {
2438 const char *Msg
= "unexpected ellipsis in argument list for ";
2439 if (!IsMustTailCall
)
2440 return TokError(Twine(Msg
) + "non-musttail call");
2442 return TokError(Twine(Msg
) + "musttail call in non-varargs function");
2443 Lex
.Lex(); // Lex the '...', it is purely for readability.
2444 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
2447 // Parse the argument.
2449 Type
*ArgTy
= nullptr;
2450 AttrBuilder ArgAttrs
;
2452 if (ParseType(ArgTy
, ArgLoc
))
2455 if (ArgTy
->isMetadataTy()) {
2456 if (ParseMetadataAsValue(V
, PFS
))
2459 // Otherwise, handle normal operands.
2460 if (ParseOptionalParamAttrs(ArgAttrs
) || ParseValue(ArgTy
, V
, PFS
))
2463 ArgList
.push_back(ParamInfo(
2464 ArgLoc
, V
, AttributeSet::get(V
->getContext(), ArgAttrs
)));
2467 if (IsMustTailCall
&& InVarArgsFunc
)
2468 return TokError("expected '...' at end of argument list for musttail call "
2469 "in varargs function");
2471 Lex
.Lex(); // Lex the ')'.
2475 /// ParseByValWithOptionalType
2478 bool LLParser::ParseByValWithOptionalType(Type
*&Result
) {
2480 if (!EatIfPresent(lltok::kw_byval
))
2482 if (!EatIfPresent(lltok::lparen
))
2484 if (ParseType(Result
))
2486 if (!EatIfPresent(lltok::rparen
))
2487 return Error(Lex
.getLoc(), "expected ')'");
2491 /// ParseOptionalOperandBundles
2493 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2496 /// ::= bundle-tag '(' ')'
2497 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2499 /// bundle-tag ::= String Constant
2500 bool LLParser::ParseOptionalOperandBundles(
2501 SmallVectorImpl
<OperandBundleDef
> &BundleList
, PerFunctionState
&PFS
) {
2502 LocTy BeginLoc
= Lex
.getLoc();
2503 if (!EatIfPresent(lltok::lsquare
))
2506 while (Lex
.getKind() != lltok::rsquare
) {
2507 // If this isn't the first operand bundle, we need a comma.
2508 if (!BundleList
.empty() &&
2509 ParseToken(lltok::comma
, "expected ',' in input list"))
2513 if (ParseStringConstant(Tag
))
2516 if (ParseToken(lltok::lparen
, "expected '(' in operand bundle"))
2519 std::vector
<Value
*> Inputs
;
2520 while (Lex
.getKind() != lltok::rparen
) {
2521 // If this isn't the first input, we need a comma.
2522 if (!Inputs
.empty() &&
2523 ParseToken(lltok::comma
, "expected ',' in input list"))
2527 Value
*Input
= nullptr;
2528 if (ParseType(Ty
) || ParseValue(Ty
, Input
, PFS
))
2530 Inputs
.push_back(Input
);
2533 BundleList
.emplace_back(std::move(Tag
), std::move(Inputs
));
2535 Lex
.Lex(); // Lex the ')'.
2538 if (BundleList
.empty())
2539 return Error(BeginLoc
, "operand bundle set must not be empty");
2541 Lex
.Lex(); // Lex the ']'.
2545 /// ParseArgumentList - Parse the argument list for a function type or function
2547 /// ::= '(' ArgTypeListI ')'
2551 /// ::= ArgTypeList ',' '...'
2552 /// ::= ArgType (',' ArgType)*
2554 bool LLParser::ParseArgumentList(SmallVectorImpl
<ArgInfo
> &ArgList
,
2556 unsigned CurValID
= 0;
2558 assert(Lex
.getKind() == lltok::lparen
);
2559 Lex
.Lex(); // eat the (.
2561 if (Lex
.getKind() == lltok::rparen
) {
2563 } else if (Lex
.getKind() == lltok::dotdotdot
) {
2567 LocTy TypeLoc
= Lex
.getLoc();
2568 Type
*ArgTy
= nullptr;
2572 if (ParseType(ArgTy
) ||
2573 ParseOptionalParamAttrs(Attrs
)) return true;
2575 if (ArgTy
->isVoidTy())
2576 return Error(TypeLoc
, "argument can not have void type");
2578 if (Lex
.getKind() == lltok::LocalVar
) {
2579 Name
= Lex
.getStrVal();
2581 } else if (Lex
.getKind() == lltok::LocalVarID
) {
2582 if (Lex
.getUIntVal() != CurValID
)
2583 return Error(TypeLoc
, "argument expected to be numbered '%" +
2584 Twine(CurValID
) + "'");
2589 if (!FunctionType::isValidArgumentType(ArgTy
))
2590 return Error(TypeLoc
, "invalid type for function argument");
2592 ArgList
.emplace_back(TypeLoc
, ArgTy
,
2593 AttributeSet::get(ArgTy
->getContext(), Attrs
),
2596 while (EatIfPresent(lltok::comma
)) {
2597 // Handle ... at end of arg list.
2598 if (EatIfPresent(lltok::dotdotdot
)) {
2603 // Otherwise must be an argument type.
2604 TypeLoc
= Lex
.getLoc();
2605 if (ParseType(ArgTy
) || ParseOptionalParamAttrs(Attrs
)) return true;
2607 if (ArgTy
->isVoidTy())
2608 return Error(TypeLoc
, "argument can not have void type");
2610 if (Lex
.getKind() == lltok::LocalVar
) {
2611 Name
= Lex
.getStrVal();
2614 if (Lex
.getKind() == lltok::LocalVarID
) {
2615 if (Lex
.getUIntVal() != CurValID
)
2616 return Error(TypeLoc
, "argument expected to be numbered '%" +
2617 Twine(CurValID
) + "'");
2624 if (!ArgTy
->isFirstClassType())
2625 return Error(TypeLoc
, "invalid type for function argument");
2627 ArgList
.emplace_back(TypeLoc
, ArgTy
,
2628 AttributeSet::get(ArgTy
->getContext(), Attrs
),
2633 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
2636 /// ParseFunctionType
2637 /// ::= Type ArgumentList OptionalAttrs
2638 bool LLParser::ParseFunctionType(Type
*&Result
) {
2639 assert(Lex
.getKind() == lltok::lparen
);
2641 if (!FunctionType::isValidReturnType(Result
))
2642 return TokError("invalid function return type");
2644 SmallVector
<ArgInfo
, 8> ArgList
;
2646 if (ParseArgumentList(ArgList
, isVarArg
))
2649 // Reject names on the arguments lists.
2650 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2651 if (!ArgList
[i
].Name
.empty())
2652 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
2653 if (ArgList
[i
].Attrs
.hasAttributes())
2654 return Error(ArgList
[i
].Loc
,
2655 "argument attributes invalid in function type");
2658 SmallVector
<Type
*, 16> ArgListTy
;
2659 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
2660 ArgListTy
.push_back(ArgList
[i
].Ty
);
2662 Result
= FunctionType::get(Result
, ArgListTy
, isVarArg
);
2666 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2668 bool LLParser::ParseAnonStructType(Type
*&Result
, bool Packed
) {
2669 SmallVector
<Type
*, 8> Elts
;
2670 if (ParseStructBody(Elts
)) return true;
2672 Result
= StructType::get(Context
, Elts
, Packed
);
2676 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2677 bool LLParser::ParseStructDefinition(SMLoc TypeLoc
, StringRef Name
,
2678 std::pair
<Type
*, LocTy
> &Entry
,
2680 // If the type was already defined, diagnose the redefinition.
2681 if (Entry
.first
&& !Entry
.second
.isValid())
2682 return Error(TypeLoc
, "redefinition of type");
2684 // If we have opaque, just return without filling in the definition for the
2685 // struct. This counts as a definition as far as the .ll file goes.
2686 if (EatIfPresent(lltok::kw_opaque
)) {
2687 // This type is being defined, so clear the location to indicate this.
2688 Entry
.second
= SMLoc();
2690 // If this type number has never been uttered, create it.
2692 Entry
.first
= StructType::create(Context
, Name
);
2693 ResultTy
= Entry
.first
;
2697 // If the type starts with '<', then it is either a packed struct or a vector.
2698 bool isPacked
= EatIfPresent(lltok::less
);
2700 // If we don't have a struct, then we have a random type alias, which we
2701 // accept for compatibility with old files. These types are not allowed to be
2702 // forward referenced and not allowed to be recursive.
2703 if (Lex
.getKind() != lltok::lbrace
) {
2705 return Error(TypeLoc
, "forward references to non-struct type");
2709 return ParseArrayVectorType(ResultTy
, true);
2710 return ParseType(ResultTy
);
2713 // This type is being defined, so clear the location to indicate this.
2714 Entry
.second
= SMLoc();
2716 // If this type number has never been uttered, create it.
2718 Entry
.first
= StructType::create(Context
, Name
);
2720 StructType
*STy
= cast
<StructType
>(Entry
.first
);
2722 SmallVector
<Type
*, 8> Body
;
2723 if (ParseStructBody(Body
) ||
2724 (isPacked
&& ParseToken(lltok::greater
, "expected '>' in packed struct")))
2727 STy
->setBody(Body
, isPacked
);
2732 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2735 /// ::= '{' Type (',' Type)* '}'
2736 /// ::= '<' '{' '}' '>'
2737 /// ::= '<' '{' Type (',' Type)* '}' '>'
2738 bool LLParser::ParseStructBody(SmallVectorImpl
<Type
*> &Body
) {
2739 assert(Lex
.getKind() == lltok::lbrace
);
2740 Lex
.Lex(); // Consume the '{'
2742 // Handle the empty struct.
2743 if (EatIfPresent(lltok::rbrace
))
2746 LocTy EltTyLoc
= Lex
.getLoc();
2748 if (ParseType(Ty
)) return true;
2751 if (!StructType::isValidElementType(Ty
))
2752 return Error(EltTyLoc
, "invalid element type for struct");
2754 while (EatIfPresent(lltok::comma
)) {
2755 EltTyLoc
= Lex
.getLoc();
2756 if (ParseType(Ty
)) return true;
2758 if (!StructType::isValidElementType(Ty
))
2759 return Error(EltTyLoc
, "invalid element type for struct");
2764 return ParseToken(lltok::rbrace
, "expected '}' at end of struct");
2767 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2768 /// token has already been consumed.
2770 /// ::= '[' APSINTVAL 'x' Types ']'
2771 /// ::= '<' APSINTVAL 'x' Types '>'
2772 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2773 bool LLParser::ParseArrayVectorType(Type
*&Result
, bool isVector
) {
2774 bool Scalable
= false;
2776 if (isVector
&& Lex
.getKind() == lltok::kw_vscale
) {
2777 Lex
.Lex(); // consume the 'vscale'
2778 if (ParseToken(lltok::kw_x
, "expected 'x' after vscale"))
2784 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
2785 Lex
.getAPSIntVal().getBitWidth() > 64)
2786 return TokError("expected number in address space");
2788 LocTy SizeLoc
= Lex
.getLoc();
2789 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
2792 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
2795 LocTy TypeLoc
= Lex
.getLoc();
2796 Type
*EltTy
= nullptr;
2797 if (ParseType(EltTy
)) return true;
2799 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
2800 "expected end of sequential type"))
2805 return Error(SizeLoc
, "zero element vector is illegal");
2806 if ((unsigned)Size
!= Size
)
2807 return Error(SizeLoc
, "size too large for vector");
2808 if (!VectorType::isValidElementType(EltTy
))
2809 return Error(TypeLoc
, "invalid vector element type");
2810 Result
= VectorType::get(EltTy
, unsigned(Size
), Scalable
);
2812 if (!ArrayType::isValidElementType(EltTy
))
2813 return Error(TypeLoc
, "invalid array element type");
2814 Result
= ArrayType::get(EltTy
, Size
);
2819 //===----------------------------------------------------------------------===//
2820 // Function Semantic Analysis.
2821 //===----------------------------------------------------------------------===//
2823 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
,
2825 : P(p
), F(f
), FunctionNumber(functionNumber
) {
2827 // Insert unnamed arguments into the NumberedVals list.
2828 for (Argument
&A
: F
.args())
2830 NumberedVals
.push_back(&A
);
2833 LLParser::PerFunctionState::~PerFunctionState() {
2834 // If there were any forward referenced non-basicblock values, delete them.
2836 for (const auto &P
: ForwardRefVals
) {
2837 if (isa
<BasicBlock
>(P
.second
.first
))
2839 P
.second
.first
->replaceAllUsesWith(
2840 UndefValue::get(P
.second
.first
->getType()));
2841 P
.second
.first
->deleteValue();
2844 for (const auto &P
: ForwardRefValIDs
) {
2845 if (isa
<BasicBlock
>(P
.second
.first
))
2847 P
.second
.first
->replaceAllUsesWith(
2848 UndefValue::get(P
.second
.first
->getType()));
2849 P
.second
.first
->deleteValue();
2853 bool LLParser::PerFunctionState::FinishFunction() {
2854 if (!ForwardRefVals
.empty())
2855 return P
.Error(ForwardRefVals
.begin()->second
.second
,
2856 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
2858 if (!ForwardRefValIDs
.empty())
2859 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
2860 "use of undefined value '%" +
2861 Twine(ForwardRefValIDs
.begin()->first
) + "'");
2865 /// GetVal - Get a value with the specified name or ID, creating a
2866 /// forward reference record if needed. This can return null if the value
2867 /// exists but does not have the right type.
2868 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
, Type
*Ty
,
2869 LocTy Loc
, bool IsCall
) {
2870 // Look this name up in the normal function symbol table.
2871 Value
*Val
= F
.getValueSymbolTable()->lookup(Name
);
2873 // If this is a forward reference for the value, see if we already created a
2874 // forward ref record.
2876 auto I
= ForwardRefVals
.find(Name
);
2877 if (I
!= ForwardRefVals
.end())
2878 Val
= I
->second
.first
;
2881 // If we have the value in the symbol table or fwd-ref table, return it.
2883 return P
.checkValidVariableType(Loc
, "%" + Name
, Ty
, Val
, IsCall
);
2885 // Don't make placeholders with invalid type.
2886 if (!Ty
->isFirstClassType()) {
2887 P
.Error(Loc
, "invalid use of a non-first-class type");
2891 // Otherwise, create a new forward reference for this value and remember it.
2893 if (Ty
->isLabelTy()) {
2894 FwdVal
= BasicBlock::Create(F
.getContext(), Name
, &F
);
2896 FwdVal
= new Argument(Ty
, Name
);
2899 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
2903 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, Type
*Ty
, LocTy Loc
,
2905 // Look this name up in the normal function symbol table.
2906 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : nullptr;
2908 // If this is a forward reference for the value, see if we already created a
2909 // forward ref record.
2911 auto I
= ForwardRefValIDs
.find(ID
);
2912 if (I
!= ForwardRefValIDs
.end())
2913 Val
= I
->second
.first
;
2916 // If we have the value in the symbol table or fwd-ref table, return it.
2918 return P
.checkValidVariableType(Loc
, "%" + Twine(ID
), Ty
, Val
, IsCall
);
2920 if (!Ty
->isFirstClassType()) {
2921 P
.Error(Loc
, "invalid use of a non-first-class type");
2925 // Otherwise, create a new forward reference for this value and remember it.
2927 if (Ty
->isLabelTy()) {
2928 FwdVal
= BasicBlock::Create(F
.getContext(), "", &F
);
2930 FwdVal
= new Argument(Ty
);
2933 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
2937 /// SetInstName - After an instruction is parsed and inserted into its
2938 /// basic block, this installs its name.
2939 bool LLParser::PerFunctionState::SetInstName(int NameID
,
2940 const std::string
&NameStr
,
2941 LocTy NameLoc
, Instruction
*Inst
) {
2942 // If this instruction has void type, it cannot have a name or ID specified.
2943 if (Inst
->getType()->isVoidTy()) {
2944 if (NameID
!= -1 || !NameStr
.empty())
2945 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
2949 // If this was a numbered instruction, verify that the instruction is the
2950 // expected value and resolve any forward references.
2951 if (NameStr
.empty()) {
2952 // If neither a name nor an ID was specified, just use the next ID.
2954 NameID
= NumberedVals
.size();
2956 if (unsigned(NameID
) != NumberedVals
.size())
2957 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
2958 Twine(NumberedVals
.size()) + "'");
2960 auto FI
= ForwardRefValIDs
.find(NameID
);
2961 if (FI
!= ForwardRefValIDs
.end()) {
2962 Value
*Sentinel
= FI
->second
.first
;
2963 if (Sentinel
->getType() != Inst
->getType())
2964 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
2965 getTypeString(FI
->second
.first
->getType()) + "'");
2967 Sentinel
->replaceAllUsesWith(Inst
);
2968 Sentinel
->deleteValue();
2969 ForwardRefValIDs
.erase(FI
);
2972 NumberedVals
.push_back(Inst
);
2976 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2977 auto FI
= ForwardRefVals
.find(NameStr
);
2978 if (FI
!= ForwardRefVals
.end()) {
2979 Value
*Sentinel
= FI
->second
.first
;
2980 if (Sentinel
->getType() != Inst
->getType())
2981 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
2982 getTypeString(FI
->second
.first
->getType()) + "'");
2984 Sentinel
->replaceAllUsesWith(Inst
);
2985 Sentinel
->deleteValue();
2986 ForwardRefVals
.erase(FI
);
2989 // Set the name on the instruction.
2990 Inst
->setName(NameStr
);
2992 if (Inst
->getName() != NameStr
)
2993 return P
.Error(NameLoc
, "multiple definition of local value named '" +
2998 /// GetBB - Get a basic block with the specified name or ID, creating a
2999 /// forward reference record if needed.
3000 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
3002 return dyn_cast_or_null
<BasicBlock
>(
3003 GetVal(Name
, Type::getLabelTy(F
.getContext()), Loc
, /*IsCall=*/false));
3006 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
3007 return dyn_cast_or_null
<BasicBlock
>(
3008 GetVal(ID
, Type::getLabelTy(F
.getContext()), Loc
, /*IsCall=*/false));
3011 /// DefineBB - Define the specified basic block, which is either named or
3012 /// unnamed. If there is an error, this returns null otherwise it returns
3013 /// the block being defined.
3014 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
3015 int NameID
, LocTy Loc
) {
3018 if (NameID
!= -1 && unsigned(NameID
) != NumberedVals
.size()) {
3019 P
.Error(Loc
, "label expected to be numbered '" +
3020 Twine(NumberedVals
.size()) + "'");
3023 BB
= GetBB(NumberedVals
.size(), Loc
);
3025 P
.Error(Loc
, "unable to create block numbered '" +
3026 Twine(NumberedVals
.size()) + "'");
3030 BB
= GetBB(Name
, Loc
);
3032 P
.Error(Loc
, "unable to create block named '" + Name
+ "'");
3037 // Move the block to the end of the function. Forward ref'd blocks are
3038 // inserted wherever they happen to be referenced.
3039 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
3041 // Remove the block from forward ref sets.
3043 ForwardRefValIDs
.erase(NumberedVals
.size());
3044 NumberedVals
.push_back(BB
);
3046 // BB forward references are already in the function symbol table.
3047 ForwardRefVals
.erase(Name
);
3053 //===----------------------------------------------------------------------===//
3055 //===----------------------------------------------------------------------===//
3057 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3058 /// type implied. For example, if we parse "4" we don't know what integer type
3059 /// it has. The value will later be combined with its type and checked for
3060 /// sanity. PFS is used to convert function-local operands of metadata (since
3061 /// metadata operands are not just parsed here but also converted to values).
3062 /// PFS can be null when we are not parsing metadata values inside a function.
3063 bool LLParser::ParseValID(ValID
&ID
, PerFunctionState
*PFS
) {
3064 ID
.Loc
= Lex
.getLoc();
3065 switch (Lex
.getKind()) {
3066 default: return TokError("expected value token");
3067 case lltok::GlobalID
: // @42
3068 ID
.UIntVal
= Lex
.getUIntVal();
3069 ID
.Kind
= ValID::t_GlobalID
;
3071 case lltok::GlobalVar
: // @foo
3072 ID
.StrVal
= Lex
.getStrVal();
3073 ID
.Kind
= ValID::t_GlobalName
;
3075 case lltok::LocalVarID
: // %42
3076 ID
.UIntVal
= Lex
.getUIntVal();
3077 ID
.Kind
= ValID::t_LocalID
;
3079 case lltok::LocalVar
: // %foo
3080 ID
.StrVal
= Lex
.getStrVal();
3081 ID
.Kind
= ValID::t_LocalName
;
3084 ID
.APSIntVal
= Lex
.getAPSIntVal();
3085 ID
.Kind
= ValID::t_APSInt
;
3087 case lltok::APFloat
:
3088 ID
.APFloatVal
= Lex
.getAPFloatVal();
3089 ID
.Kind
= ValID::t_APFloat
;
3091 case lltok::kw_true
:
3092 ID
.ConstantVal
= ConstantInt::getTrue(Context
);
3093 ID
.Kind
= ValID::t_Constant
;
3095 case lltok::kw_false
:
3096 ID
.ConstantVal
= ConstantInt::getFalse(Context
);
3097 ID
.Kind
= ValID::t_Constant
;
3099 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
3100 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
3101 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
3102 case lltok::kw_none
: ID
.Kind
= ValID::t_None
; break;
3104 case lltok::lbrace
: {
3105 // ValID ::= '{' ConstVector '}'
3107 SmallVector
<Constant
*, 16> Elts
;
3108 if (ParseGlobalValueVector(Elts
) ||
3109 ParseToken(lltok::rbrace
, "expected end of struct constant"))
3112 ID
.ConstantStructElts
= std::make_unique
<Constant
*[]>(Elts
.size());
3113 ID
.UIntVal
= Elts
.size();
3114 memcpy(ID
.ConstantStructElts
.get(), Elts
.data(),
3115 Elts
.size() * sizeof(Elts
[0]));
3116 ID
.Kind
= ValID::t_ConstantStruct
;
3120 // ValID ::= '<' ConstVector '>' --> Vector.
3121 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3123 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
3125 SmallVector
<Constant
*, 16> Elts
;
3126 LocTy FirstEltLoc
= Lex
.getLoc();
3127 if (ParseGlobalValueVector(Elts
) ||
3129 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
3130 ParseToken(lltok::greater
, "expected end of constant"))
3133 if (isPackedStruct
) {
3134 ID
.ConstantStructElts
= std::make_unique
<Constant
*[]>(Elts
.size());
3135 memcpy(ID
.ConstantStructElts
.get(), Elts
.data(),
3136 Elts
.size() * sizeof(Elts
[0]));
3137 ID
.UIntVal
= Elts
.size();
3138 ID
.Kind
= ValID::t_PackedConstantStruct
;
3143 return Error(ID
.Loc
, "constant vector must not be empty");
3145 if (!Elts
[0]->getType()->isIntegerTy() &&
3146 !Elts
[0]->getType()->isFloatingPointTy() &&
3147 !Elts
[0]->getType()->isPointerTy())
3148 return Error(FirstEltLoc
,
3149 "vector elements must have integer, pointer or floating point type");
3151 // Verify that all the vector elements have the same type.
3152 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
3153 if (Elts
[i
]->getType() != Elts
[0]->getType())
3154 return Error(FirstEltLoc
,
3155 "vector element #" + Twine(i
) +
3156 " is not of type '" + getTypeString(Elts
[0]->getType()));
3158 ID
.ConstantVal
= ConstantVector::get(Elts
);
3159 ID
.Kind
= ValID::t_Constant
;
3162 case lltok::lsquare
: { // Array Constant
3164 SmallVector
<Constant
*, 16> Elts
;
3165 LocTy FirstEltLoc
= Lex
.getLoc();
3166 if (ParseGlobalValueVector(Elts
) ||
3167 ParseToken(lltok::rsquare
, "expected end of array constant"))
3170 // Handle empty element.
3172 // Use undef instead of an array because it's inconvenient to determine
3173 // the element type at this point, there being no elements to examine.
3174 ID
.Kind
= ValID::t_EmptyArray
;
3178 if (!Elts
[0]->getType()->isFirstClassType())
3179 return Error(FirstEltLoc
, "invalid array element type: " +
3180 getTypeString(Elts
[0]->getType()));
3182 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
3184 // Verify all elements are correct type!
3185 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
3186 if (Elts
[i
]->getType() != Elts
[0]->getType())
3187 return Error(FirstEltLoc
,
3188 "array element #" + Twine(i
) +
3189 " is not of type '" + getTypeString(Elts
[0]->getType()));
3192 ID
.ConstantVal
= ConstantArray::get(ATy
, Elts
);
3193 ID
.Kind
= ValID::t_Constant
;
3196 case lltok::kw_c
: // c "foo"
3198 ID
.ConstantVal
= ConstantDataArray::getString(Context
, Lex
.getStrVal(),
3200 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
3201 ID
.Kind
= ValID::t_Constant
;
3204 case lltok::kw_asm
: {
3205 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3207 bool HasSideEffect
, AlignStack
, AsmDialect
;
3209 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
3210 ParseOptionalToken(lltok::kw_alignstack
, AlignStack
) ||
3211 ParseOptionalToken(lltok::kw_inteldialect
, AsmDialect
) ||
3212 ParseStringConstant(ID
.StrVal
) ||
3213 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
3214 ParseToken(lltok::StringConstant
, "expected constraint string"))
3216 ID
.StrVal2
= Lex
.getStrVal();
3217 ID
.UIntVal
= unsigned(HasSideEffect
) | (unsigned(AlignStack
)<<1) |
3218 (unsigned(AsmDialect
)<<2);
3219 ID
.Kind
= ValID::t_InlineAsm
;
3223 case lltok::kw_blockaddress
: {
3224 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3229 if (ParseToken(lltok::lparen
, "expected '(' in block address expression") ||
3231 ParseToken(lltok::comma
, "expected comma in block address expression")||
3232 ParseValID(Label
) ||
3233 ParseToken(lltok::rparen
, "expected ')' in block address expression"))
3236 if (Fn
.Kind
!= ValID::t_GlobalID
&& Fn
.Kind
!= ValID::t_GlobalName
)
3237 return Error(Fn
.Loc
, "expected function name in blockaddress");
3238 if (Label
.Kind
!= ValID::t_LocalID
&& Label
.Kind
!= ValID::t_LocalName
)
3239 return Error(Label
.Loc
, "expected basic block name in blockaddress");
3241 // Try to find the function (but skip it if it's forward-referenced).
3242 GlobalValue
*GV
= nullptr;
3243 if (Fn
.Kind
== ValID::t_GlobalID
) {
3244 if (Fn
.UIntVal
< NumberedVals
.size())
3245 GV
= NumberedVals
[Fn
.UIntVal
];
3246 } else if (!ForwardRefVals
.count(Fn
.StrVal
)) {
3247 GV
= M
->getNamedValue(Fn
.StrVal
);
3249 Function
*F
= nullptr;
3251 // Confirm that it's actually a function with a definition.
3252 if (!isa
<Function
>(GV
))
3253 return Error(Fn
.Loc
, "expected function name in blockaddress");
3254 F
= cast
<Function
>(GV
);
3255 if (F
->isDeclaration())
3256 return Error(Fn
.Loc
, "cannot take blockaddress inside a declaration");
3260 // Make a global variable as a placeholder for this reference.
3261 GlobalValue
*&FwdRef
=
3262 ForwardRefBlockAddresses
.insert(std::make_pair(
3264 std::map
<ValID
, GlobalValue
*>()))
3265 .first
->second
.insert(std::make_pair(std::move(Label
), nullptr))
3268 FwdRef
= new GlobalVariable(*M
, Type::getInt8Ty(Context
), false,
3269 GlobalValue::InternalLinkage
, nullptr, "");
3270 ID
.ConstantVal
= FwdRef
;
3271 ID
.Kind
= ValID::t_Constant
;
3275 // We found the function; now find the basic block. Don't use PFS, since we
3276 // might be inside a constant expression.
3278 if (BlockAddressPFS
&& F
== &BlockAddressPFS
->getFunction()) {
3279 if (Label
.Kind
== ValID::t_LocalID
)
3280 BB
= BlockAddressPFS
->GetBB(Label
.UIntVal
, Label
.Loc
);
3282 BB
= BlockAddressPFS
->GetBB(Label
.StrVal
, Label
.Loc
);
3284 return Error(Label
.Loc
, "referenced value is not a basic block");
3286 if (Label
.Kind
== ValID::t_LocalID
)
3287 return Error(Label
.Loc
, "cannot take address of numeric label after "
3288 "the function is defined");
3289 BB
= dyn_cast_or_null
<BasicBlock
>(
3290 F
->getValueSymbolTable()->lookup(Label
.StrVal
));
3292 return Error(Label
.Loc
, "referenced value is not a basic block");
3295 ID
.ConstantVal
= BlockAddress::get(F
, BB
);
3296 ID
.Kind
= ValID::t_Constant
;
3300 case lltok::kw_trunc
:
3301 case lltok::kw_zext
:
3302 case lltok::kw_sext
:
3303 case lltok::kw_fptrunc
:
3304 case lltok::kw_fpext
:
3305 case lltok::kw_bitcast
:
3306 case lltok::kw_addrspacecast
:
3307 case lltok::kw_uitofp
:
3308 case lltok::kw_sitofp
:
3309 case lltok::kw_fptoui
:
3310 case lltok::kw_fptosi
:
3311 case lltok::kw_inttoptr
:
3312 case lltok::kw_ptrtoint
: {
3313 unsigned Opc
= Lex
.getUIntVal();
3314 Type
*DestTy
= nullptr;
3317 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
3318 ParseGlobalTypeAndValue(SrcVal
) ||
3319 ParseToken(lltok::kw_to
, "expected 'to' in constantexpr cast") ||
3320 ParseType(DestTy
) ||
3321 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
3323 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
3324 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
3325 getTypeString(SrcVal
->getType()) + "' to '" +
3326 getTypeString(DestTy
) + "'");
3327 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
,
3329 ID
.Kind
= ValID::t_Constant
;
3332 case lltok::kw_extractvalue
: {
3335 SmallVector
<unsigned, 4> Indices
;
3336 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
3337 ParseGlobalTypeAndValue(Val
) ||
3338 ParseIndexList(Indices
) ||
3339 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
3342 if (!Val
->getType()->isAggregateType())
3343 return Error(ID
.Loc
, "extractvalue operand must be aggregate type");
3344 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
))
3345 return Error(ID
.Loc
, "invalid indices for extractvalue");
3346 ID
.ConstantVal
= ConstantExpr::getExtractValue(Val
, Indices
);
3347 ID
.Kind
= ValID::t_Constant
;
3350 case lltok::kw_insertvalue
: {
3352 Constant
*Val0
, *Val1
;
3353 SmallVector
<unsigned, 4> Indices
;
3354 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
3355 ParseGlobalTypeAndValue(Val0
) ||
3356 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
3357 ParseGlobalTypeAndValue(Val1
) ||
3358 ParseIndexList(Indices
) ||
3359 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
3361 if (!Val0
->getType()->isAggregateType())
3362 return Error(ID
.Loc
, "insertvalue operand must be aggregate type");
3364 ExtractValueInst::getIndexedType(Val0
->getType(), Indices
);
3366 return Error(ID
.Loc
, "invalid indices for insertvalue");
3367 if (IndexedType
!= Val1
->getType())
3368 return Error(ID
.Loc
, "insertvalue operand and field disagree in type: '" +
3369 getTypeString(Val1
->getType()) +
3370 "' instead of '" + getTypeString(IndexedType
) +
3372 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
, Indices
);
3373 ID
.Kind
= ValID::t_Constant
;
3376 case lltok::kw_icmp
:
3377 case lltok::kw_fcmp
: {
3378 unsigned PredVal
, Opc
= Lex
.getUIntVal();
3379 Constant
*Val0
, *Val1
;
3381 if (ParseCmpPredicate(PredVal
, Opc
) ||
3382 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
3383 ParseGlobalTypeAndValue(Val0
) ||
3384 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
3385 ParseGlobalTypeAndValue(Val1
) ||
3386 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
3389 if (Val0
->getType() != Val1
->getType())
3390 return Error(ID
.Loc
, "compare operands must have the same type");
3392 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
3394 if (Opc
== Instruction::FCmp
) {
3395 if (!Val0
->getType()->isFPOrFPVectorTy())
3396 return Error(ID
.Loc
, "fcmp requires floating point operands");
3397 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
3399 assert(Opc
== Instruction::ICmp
&& "Unexpected opcode for CmpInst!");
3400 if (!Val0
->getType()->isIntOrIntVectorTy() &&
3401 !Val0
->getType()->isPtrOrPtrVectorTy())
3402 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
3403 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
3405 ID
.Kind
= ValID::t_Constant
;
3410 case lltok::kw_fneg
: {
3411 unsigned Opc
= Lex
.getUIntVal();
3414 if (ParseToken(lltok::lparen
, "expected '(' in unary constantexpr") ||
3415 ParseGlobalTypeAndValue(Val
) ||
3416 ParseToken(lltok::rparen
, "expected ')' in unary constantexpr"))
3419 // Check that the type is valid for the operator.
3421 case Instruction::FNeg
:
3422 if (!Val
->getType()->isFPOrFPVectorTy())
3423 return Error(ID
.Loc
, "constexpr requires fp operands");
3425 default: llvm_unreachable("Unknown unary operator!");
3428 Constant
*C
= ConstantExpr::get(Opc
, Val
, Flags
);
3430 ID
.Kind
= ValID::t_Constant
;
3433 // Binary Operators.
3435 case lltok::kw_fadd
:
3437 case lltok::kw_fsub
:
3439 case lltok::kw_fmul
:
3440 case lltok::kw_udiv
:
3441 case lltok::kw_sdiv
:
3442 case lltok::kw_fdiv
:
3443 case lltok::kw_urem
:
3444 case lltok::kw_srem
:
3445 case lltok::kw_frem
:
3447 case lltok::kw_lshr
:
3448 case lltok::kw_ashr
: {
3452 unsigned Opc
= Lex
.getUIntVal();
3453 Constant
*Val0
, *Val1
;
3455 if (Opc
== Instruction::Add
|| Opc
== Instruction::Sub
||
3456 Opc
== Instruction::Mul
|| Opc
== Instruction::Shl
) {
3457 if (EatIfPresent(lltok::kw_nuw
))
3459 if (EatIfPresent(lltok::kw_nsw
)) {
3461 if (EatIfPresent(lltok::kw_nuw
))
3464 } else if (Opc
== Instruction::SDiv
|| Opc
== Instruction::UDiv
||
3465 Opc
== Instruction::LShr
|| Opc
== Instruction::AShr
) {
3466 if (EatIfPresent(lltok::kw_exact
))
3469 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
3470 ParseGlobalTypeAndValue(Val0
) ||
3471 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
3472 ParseGlobalTypeAndValue(Val1
) ||
3473 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
3475 if (Val0
->getType() != Val1
->getType())
3476 return Error(ID
.Loc
, "operands of constexpr must have same type");
3477 // Check that the type is valid for the operator.
3479 case Instruction::Add
:
3480 case Instruction::Sub
:
3481 case Instruction::Mul
:
3482 case Instruction::UDiv
:
3483 case Instruction::SDiv
:
3484 case Instruction::URem
:
3485 case Instruction::SRem
:
3486 case Instruction::Shl
:
3487 case Instruction::AShr
:
3488 case Instruction::LShr
:
3489 if (!Val0
->getType()->isIntOrIntVectorTy())
3490 return Error(ID
.Loc
, "constexpr requires integer operands");
3492 case Instruction::FAdd
:
3493 case Instruction::FSub
:
3494 case Instruction::FMul
:
3495 case Instruction::FDiv
:
3496 case Instruction::FRem
:
3497 if (!Val0
->getType()->isFPOrFPVectorTy())
3498 return Error(ID
.Loc
, "constexpr requires fp operands");
3500 default: llvm_unreachable("Unknown binary operator!");
3503 if (NUW
) Flags
|= OverflowingBinaryOperator::NoUnsignedWrap
;
3504 if (NSW
) Flags
|= OverflowingBinaryOperator::NoSignedWrap
;
3505 if (Exact
) Flags
|= PossiblyExactOperator::IsExact
;
3506 Constant
*C
= ConstantExpr::get(Opc
, Val0
, Val1
, Flags
);
3508 ID
.Kind
= ValID::t_Constant
;
3512 // Logical Operations
3515 case lltok::kw_xor
: {
3516 unsigned Opc
= Lex
.getUIntVal();
3517 Constant
*Val0
, *Val1
;
3519 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
3520 ParseGlobalTypeAndValue(Val0
) ||
3521 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
3522 ParseGlobalTypeAndValue(Val1
) ||
3523 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
3525 if (Val0
->getType() != Val1
->getType())
3526 return Error(ID
.Loc
, "operands of constexpr must have same type");
3527 if (!Val0
->getType()->isIntOrIntVectorTy())
3528 return Error(ID
.Loc
,
3529 "constexpr requires integer or integer vector operands");
3530 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
3531 ID
.Kind
= ValID::t_Constant
;
3535 case lltok::kw_getelementptr
:
3536 case lltok::kw_shufflevector
:
3537 case lltok::kw_insertelement
:
3538 case lltok::kw_extractelement
:
3539 case lltok::kw_select
: {
3540 unsigned Opc
= Lex
.getUIntVal();
3541 SmallVector
<Constant
*, 16> Elts
;
3542 bool InBounds
= false;
3546 if (Opc
== Instruction::GetElementPtr
)
3547 InBounds
= EatIfPresent(lltok::kw_inbounds
);
3549 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr"))
3552 LocTy ExplicitTypeLoc
= Lex
.getLoc();
3553 if (Opc
== Instruction::GetElementPtr
) {
3554 if (ParseType(Ty
) ||
3555 ParseToken(lltok::comma
, "expected comma after getelementptr's type"))
3559 Optional
<unsigned> InRangeOp
;
3560 if (ParseGlobalValueVector(
3561 Elts
, Opc
== Instruction::GetElementPtr
? &InRangeOp
: nullptr) ||
3562 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
3565 if (Opc
== Instruction::GetElementPtr
) {
3566 if (Elts
.size() == 0 ||
3567 !Elts
[0]->getType()->isPtrOrPtrVectorTy())
3568 return Error(ID
.Loc
, "base of getelementptr must be a pointer");
3570 Type
*BaseType
= Elts
[0]->getType();
3571 auto *BasePointerType
= cast
<PointerType
>(BaseType
->getScalarType());
3572 if (Ty
!= BasePointerType
->getElementType())
3575 "explicit pointee type doesn't match operand's pointee type");
3578 BaseType
->isVectorTy() ? BaseType
->getVectorNumElements() : 0;
3580 ArrayRef
<Constant
*> Indices(Elts
.begin() + 1, Elts
.end());
3581 for (Constant
*Val
: Indices
) {
3582 Type
*ValTy
= Val
->getType();
3583 if (!ValTy
->isIntOrIntVectorTy())
3584 return Error(ID
.Loc
, "getelementptr index must be an integer");
3585 if (ValTy
->isVectorTy()) {
3586 unsigned ValNumEl
= ValTy
->getVectorNumElements();
3587 if (GEPWidth
&& (ValNumEl
!= GEPWidth
))
3590 "getelementptr vector index has a wrong number of elements");
3591 // GEPWidth may have been unknown because the base is a scalar,
3592 // but it is known now.
3593 GEPWidth
= ValNumEl
;
3597 SmallPtrSet
<Type
*, 4> Visited
;
3598 if (!Indices
.empty() && !Ty
->isSized(&Visited
))
3599 return Error(ID
.Loc
, "base element of getelementptr must be sized");
3601 if (!GetElementPtrInst::getIndexedType(Ty
, Indices
))
3602 return Error(ID
.Loc
, "invalid getelementptr indices");
3605 if (*InRangeOp
== 0)
3606 return Error(ID
.Loc
,
3607 "inrange keyword may not appear on pointer operand");
3611 ID
.ConstantVal
= ConstantExpr::getGetElementPtr(Ty
, Elts
[0], Indices
,
3612 InBounds
, InRangeOp
);
3613 } else if (Opc
== Instruction::Select
) {
3614 if (Elts
.size() != 3)
3615 return Error(ID
.Loc
, "expected three operands to select");
3616 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
3618 return Error(ID
.Loc
, Reason
);
3619 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
3620 } else if (Opc
== Instruction::ShuffleVector
) {
3621 if (Elts
.size() != 3)
3622 return Error(ID
.Loc
, "expected three operands to shufflevector");
3623 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
3624 return Error(ID
.Loc
, "invalid operands to shufflevector");
3626 ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
3627 } else if (Opc
== Instruction::ExtractElement
) {
3628 if (Elts
.size() != 2)
3629 return Error(ID
.Loc
, "expected two operands to extractelement");
3630 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
3631 return Error(ID
.Loc
, "invalid extractelement operands");
3632 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
3634 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
3635 if (Elts
.size() != 3)
3636 return Error(ID
.Loc
, "expected three operands to insertelement");
3637 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
3638 return Error(ID
.Loc
, "invalid insertelement operands");
3640 ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
3643 ID
.Kind
= ValID::t_Constant
;
3652 /// ParseGlobalValue - Parse a global value with the specified type.
3653 bool LLParser::ParseGlobalValue(Type
*Ty
, Constant
*&C
) {
3657 bool Parsed
= ParseValID(ID
) ||
3658 ConvertValIDToValue(Ty
, ID
, V
, nullptr, /*IsCall=*/false);
3659 if (V
&& !(C
= dyn_cast
<Constant
>(V
)))
3660 return Error(ID
.Loc
, "global values must be constants");
3664 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
3666 return ParseType(Ty
) ||
3667 ParseGlobalValue(Ty
, V
);
3670 bool LLParser::parseOptionalComdat(StringRef GlobalName
, Comdat
*&C
) {
3673 LocTy KwLoc
= Lex
.getLoc();
3674 if (!EatIfPresent(lltok::kw_comdat
))
3677 if (EatIfPresent(lltok::lparen
)) {
3678 if (Lex
.getKind() != lltok::ComdatVar
)
3679 return TokError("expected comdat variable");
3680 C
= getComdat(Lex
.getStrVal(), Lex
.getLoc());
3682 if (ParseToken(lltok::rparen
, "expected ')' after comdat var"))
3685 if (GlobalName
.empty())
3686 return TokError("comdat cannot be unnamed");
3687 C
= getComdat(GlobalName
, KwLoc
);
3693 /// ParseGlobalValueVector
3695 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3696 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
,
3697 Optional
<unsigned> *InRangeOp
) {
3699 if (Lex
.getKind() == lltok::rbrace
||
3700 Lex
.getKind() == lltok::rsquare
||
3701 Lex
.getKind() == lltok::greater
||
3702 Lex
.getKind() == lltok::rparen
)
3706 if (InRangeOp
&& !*InRangeOp
&& EatIfPresent(lltok::kw_inrange
))
3707 *InRangeOp
= Elts
.size();
3710 if (ParseGlobalTypeAndValue(C
)) return true;
3712 } while (EatIfPresent(lltok::comma
));
3717 bool LLParser::ParseMDTuple(MDNode
*&MD
, bool IsDistinct
) {
3718 SmallVector
<Metadata
*, 16> Elts
;
3719 if (ParseMDNodeVector(Elts
))
3722 MD
= (IsDistinct
? MDTuple::getDistinct
: MDTuple::get
)(Context
, Elts
);
3729 /// ::= !DILocation(...)
3730 bool LLParser::ParseMDNode(MDNode
*&N
) {
3731 if (Lex
.getKind() == lltok::MetadataVar
)
3732 return ParseSpecializedMDNode(N
);
3734 return ParseToken(lltok::exclaim
, "expected '!' here") ||
3738 bool LLParser::ParseMDNodeTail(MDNode
*&N
) {
3740 if (Lex
.getKind() == lltok::lbrace
)
3741 return ParseMDTuple(N
);
3744 return ParseMDNodeID(N
);
3749 /// Structure to represent an optional metadata field.
3750 template <class FieldTy
> struct MDFieldImpl
{
3751 typedef MDFieldImpl ImplTy
;
3755 void assign(FieldTy Val
) {
3757 this->Val
= std::move(Val
);
3760 explicit MDFieldImpl(FieldTy Default
)
3761 : Val(std::move(Default
)), Seen(false) {}
3764 /// Structure to represent an optional metadata field that
3765 /// can be of either type (A or B) and encapsulates the
3766 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3767 /// to reimplement the specifics for representing each Field.
3768 template <class FieldTypeA
, class FieldTypeB
> struct MDEitherFieldImpl
{
3769 typedef MDEitherFieldImpl
<FieldTypeA
, FieldTypeB
> ImplTy
;
3780 void assign(FieldTypeA A
) {
3782 this->A
= std::move(A
);
3786 void assign(FieldTypeB B
) {
3788 this->B
= std::move(B
);
3792 explicit MDEitherFieldImpl(FieldTypeA DefaultA
, FieldTypeB DefaultB
)
3793 : A(std::move(DefaultA
)), B(std::move(DefaultB
)), Seen(false),
3794 WhatIs(IsInvalid
) {}
3797 struct MDUnsignedField
: public MDFieldImpl
<uint64_t> {
3800 MDUnsignedField(uint64_t Default
= 0, uint64_t Max
= UINT64_MAX
)
3801 : ImplTy(Default
), Max(Max
) {}
3804 struct LineField
: public MDUnsignedField
{
3805 LineField() : MDUnsignedField(0, UINT32_MAX
) {}
3808 struct ColumnField
: public MDUnsignedField
{
3809 ColumnField() : MDUnsignedField(0, UINT16_MAX
) {}
3812 struct DwarfTagField
: public MDUnsignedField
{
3813 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user
) {}
3814 DwarfTagField(dwarf::Tag DefaultTag
)
3815 : MDUnsignedField(DefaultTag
, dwarf::DW_TAG_hi_user
) {}
3818 struct DwarfMacinfoTypeField
: public MDUnsignedField
{
3819 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext
) {}
3820 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType
)
3821 : MDUnsignedField(DefaultType
, dwarf::DW_MACINFO_vendor_ext
) {}
3824 struct DwarfAttEncodingField
: public MDUnsignedField
{
3825 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user
) {}
3828 struct DwarfVirtualityField
: public MDUnsignedField
{
3829 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max
) {}
3832 struct DwarfLangField
: public MDUnsignedField
{
3833 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user
) {}
3836 struct DwarfCCField
: public MDUnsignedField
{
3837 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user
) {}
3840 struct EmissionKindField
: public MDUnsignedField
{
3841 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind
) {}
3844 struct NameTableKindField
: public MDUnsignedField
{
3845 NameTableKindField()
3848 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind
) {}
3851 struct DIFlagField
: public MDFieldImpl
<DINode::DIFlags
> {
3852 DIFlagField() : MDFieldImpl(DINode::FlagZero
) {}
3855 struct DISPFlagField
: public MDFieldImpl
<DISubprogram::DISPFlags
> {
3856 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero
) {}
3859 struct MDSignedField
: public MDFieldImpl
<int64_t> {
3863 MDSignedField(int64_t Default
= 0)
3864 : ImplTy(Default
), Min(INT64_MIN
), Max(INT64_MAX
) {}
3865 MDSignedField(int64_t Default
, int64_t Min
, int64_t Max
)
3866 : ImplTy(Default
), Min(Min
), Max(Max
) {}
3869 struct MDBoolField
: public MDFieldImpl
<bool> {
3870 MDBoolField(bool Default
= false) : ImplTy(Default
) {}
3873 struct MDField
: public MDFieldImpl
<Metadata
*> {
3876 MDField(bool AllowNull
= true) : ImplTy(nullptr), AllowNull(AllowNull
) {}
3879 struct MDConstant
: public MDFieldImpl
<ConstantAsMetadata
*> {
3880 MDConstant() : ImplTy(nullptr) {}
3883 struct MDStringField
: public MDFieldImpl
<MDString
*> {
3885 MDStringField(bool AllowEmpty
= true)
3886 : ImplTy(nullptr), AllowEmpty(AllowEmpty
) {}
3889 struct MDFieldList
: public MDFieldImpl
<SmallVector
<Metadata
*, 4>> {
3890 MDFieldList() : ImplTy(SmallVector
<Metadata
*, 4>()) {}
3893 struct ChecksumKindField
: public MDFieldImpl
<DIFile::ChecksumKind
> {
3894 ChecksumKindField(DIFile::ChecksumKind CSKind
) : ImplTy(CSKind
) {}
3897 struct MDSignedOrMDField
: MDEitherFieldImpl
<MDSignedField
, MDField
> {
3898 MDSignedOrMDField(int64_t Default
= 0, bool AllowNull
= true)
3899 : ImplTy(MDSignedField(Default
), MDField(AllowNull
)) {}
3901 MDSignedOrMDField(int64_t Default
, int64_t Min
, int64_t Max
,
3902 bool AllowNull
= true)
3903 : ImplTy(MDSignedField(Default
, Min
, Max
), MDField(AllowNull
)) {}
3905 bool isMDSignedField() const { return WhatIs
== IsTypeA
; }
3906 bool isMDField() const { return WhatIs
== IsTypeB
; }
3907 int64_t getMDSignedValue() const {
3908 assert(isMDSignedField() && "Wrong field type");
3911 Metadata
*getMDFieldValue() const {
3912 assert(isMDField() && "Wrong field type");
3917 struct MDSignedOrUnsignedField
3918 : MDEitherFieldImpl
<MDSignedField
, MDUnsignedField
> {
3919 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3921 bool isMDSignedField() const { return WhatIs
== IsTypeA
; }
3922 bool isMDUnsignedField() const { return WhatIs
== IsTypeB
; }
3923 int64_t getMDSignedValue() const {
3924 assert(isMDSignedField() && "Wrong field type");
3927 uint64_t getMDUnsignedValue() const {
3928 assert(isMDUnsignedField() && "Wrong field type");
3933 } // end anonymous namespace
3938 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
3939 MDUnsignedField
&Result
) {
3940 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
3941 return TokError("expected unsigned integer");
3943 auto &U
= Lex
.getAPSIntVal();
3944 if (U
.ugt(Result
.Max
))
3945 return TokError("value for '" + Name
+ "' too large, limit is " +
3947 Result
.assign(U
.getZExtValue());
3948 assert(Result
.Val
<= Result
.Max
&& "Expected value in range");
3954 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, LineField
&Result
) {
3955 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
3958 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, ColumnField
&Result
) {
3959 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
3963 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, DwarfTagField
&Result
) {
3964 if (Lex
.getKind() == lltok::APSInt
)
3965 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
3967 if (Lex
.getKind() != lltok::DwarfTag
)
3968 return TokError("expected DWARF tag");
3970 unsigned Tag
= dwarf::getTag(Lex
.getStrVal());
3971 if (Tag
== dwarf::DW_TAG_invalid
)
3972 return TokError("invalid DWARF tag" + Twine(" '") + Lex
.getStrVal() + "'");
3973 assert(Tag
<= Result
.Max
&& "Expected valid DWARF tag");
3981 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
3982 DwarfMacinfoTypeField
&Result
) {
3983 if (Lex
.getKind() == lltok::APSInt
)
3984 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
3986 if (Lex
.getKind() != lltok::DwarfMacinfo
)
3987 return TokError("expected DWARF macinfo type");
3989 unsigned Macinfo
= dwarf::getMacinfo(Lex
.getStrVal());
3990 if (Macinfo
== dwarf::DW_MACINFO_invalid
)
3992 "invalid DWARF macinfo type" + Twine(" '") + Lex
.getStrVal() + "'");
3993 assert(Macinfo
<= Result
.Max
&& "Expected valid DWARF macinfo type");
3995 Result
.assign(Macinfo
);
4001 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4002 DwarfVirtualityField
&Result
) {
4003 if (Lex
.getKind() == lltok::APSInt
)
4004 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4006 if (Lex
.getKind() != lltok::DwarfVirtuality
)
4007 return TokError("expected DWARF virtuality code");
4009 unsigned Virtuality
= dwarf::getVirtuality(Lex
.getStrVal());
4010 if (Virtuality
== dwarf::DW_VIRTUALITY_invalid
)
4011 return TokError("invalid DWARF virtuality code" + Twine(" '") +
4012 Lex
.getStrVal() + "'");
4013 assert(Virtuality
<= Result
.Max
&& "Expected valid DWARF virtuality code");
4014 Result
.assign(Virtuality
);
4020 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, DwarfLangField
&Result
) {
4021 if (Lex
.getKind() == lltok::APSInt
)
4022 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4024 if (Lex
.getKind() != lltok::DwarfLang
)
4025 return TokError("expected DWARF language");
4027 unsigned Lang
= dwarf::getLanguage(Lex
.getStrVal());
4029 return TokError("invalid DWARF language" + Twine(" '") + Lex
.getStrVal() +
4031 assert(Lang
<= Result
.Max
&& "Expected valid DWARF language");
4032 Result
.assign(Lang
);
4038 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, DwarfCCField
&Result
) {
4039 if (Lex
.getKind() == lltok::APSInt
)
4040 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4042 if (Lex
.getKind() != lltok::DwarfCC
)
4043 return TokError("expected DWARF calling convention");
4045 unsigned CC
= dwarf::getCallingConvention(Lex
.getStrVal());
4047 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex
.getStrVal() +
4049 assert(CC
<= Result
.Max
&& "Expected valid DWARF calling convention");
4056 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, EmissionKindField
&Result
) {
4057 if (Lex
.getKind() == lltok::APSInt
)
4058 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4060 if (Lex
.getKind() != lltok::EmissionKind
)
4061 return TokError("expected emission kind");
4063 auto Kind
= DICompileUnit::getEmissionKind(Lex
.getStrVal());
4065 return TokError("invalid emission kind" + Twine(" '") + Lex
.getStrVal() +
4067 assert(*Kind
<= Result
.Max
&& "Expected valid emission kind");
4068 Result
.assign(*Kind
);
4074 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4075 NameTableKindField
&Result
) {
4076 if (Lex
.getKind() == lltok::APSInt
)
4077 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4079 if (Lex
.getKind() != lltok::NameTableKind
)
4080 return TokError("expected nameTable kind");
4082 auto Kind
= DICompileUnit::getNameTableKind(Lex
.getStrVal());
4084 return TokError("invalid nameTable kind" + Twine(" '") + Lex
.getStrVal() +
4086 assert(((unsigned)*Kind
) <= Result
.Max
&& "Expected valid nameTable kind");
4087 Result
.assign((unsigned)*Kind
);
4093 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4094 DwarfAttEncodingField
&Result
) {
4095 if (Lex
.getKind() == lltok::APSInt
)
4096 return ParseMDField(Loc
, Name
, static_cast<MDUnsignedField
&>(Result
));
4098 if (Lex
.getKind() != lltok::DwarfAttEncoding
)
4099 return TokError("expected DWARF type attribute encoding");
4101 unsigned Encoding
= dwarf::getAttributeEncoding(Lex
.getStrVal());
4103 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4104 Lex
.getStrVal() + "'");
4105 assert(Encoding
<= Result
.Max
&& "Expected valid DWARF language");
4106 Result
.assign(Encoding
);
4113 /// ::= DIFlagVector
4114 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4116 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, DIFlagField
&Result
) {
4118 // Parser for a single flag.
4119 auto parseFlag
= [&](DINode::DIFlags
&Val
) {
4120 if (Lex
.getKind() == lltok::APSInt
&& !Lex
.getAPSIntVal().isSigned()) {
4121 uint32_t TempVal
= static_cast<uint32_t>(Val
);
4122 bool Res
= ParseUInt32(TempVal
);
4123 Val
= static_cast<DINode::DIFlags
>(TempVal
);
4127 if (Lex
.getKind() != lltok::DIFlag
)
4128 return TokError("expected debug info flag");
4130 Val
= DINode::getFlag(Lex
.getStrVal());
4132 return TokError(Twine("invalid debug info flag flag '") +
4133 Lex
.getStrVal() + "'");
4138 // Parse the flags and combine them together.
4139 DINode::DIFlags Combined
= DINode::FlagZero
;
4141 DINode::DIFlags Val
;
4145 } while (EatIfPresent(lltok::bar
));
4147 Result
.assign(Combined
);
4153 /// ::= DISPFlagVector
4154 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4156 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, DISPFlagField
&Result
) {
4158 // Parser for a single flag.
4159 auto parseFlag
= [&](DISubprogram::DISPFlags
&Val
) {
4160 if (Lex
.getKind() == lltok::APSInt
&& !Lex
.getAPSIntVal().isSigned()) {
4161 uint32_t TempVal
= static_cast<uint32_t>(Val
);
4162 bool Res
= ParseUInt32(TempVal
);
4163 Val
= static_cast<DISubprogram::DISPFlags
>(TempVal
);
4167 if (Lex
.getKind() != lltok::DISPFlag
)
4168 return TokError("expected debug info flag");
4170 Val
= DISubprogram::getFlag(Lex
.getStrVal());
4172 return TokError(Twine("invalid subprogram debug info flag '") +
4173 Lex
.getStrVal() + "'");
4178 // Parse the flags and combine them together.
4179 DISubprogram::DISPFlags Combined
= DISubprogram::SPFlagZero
;
4181 DISubprogram::DISPFlags Val
;
4185 } while (EatIfPresent(lltok::bar
));
4187 Result
.assign(Combined
);
4192 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4193 MDSignedField
&Result
) {
4194 if (Lex
.getKind() != lltok::APSInt
)
4195 return TokError("expected signed integer");
4197 auto &S
= Lex
.getAPSIntVal();
4199 return TokError("value for '" + Name
+ "' too small, limit is " +
4202 return TokError("value for '" + Name
+ "' too large, limit is " +
4204 Result
.assign(S
.getExtValue());
4205 assert(Result
.Val
>= Result
.Min
&& "Expected value in range");
4206 assert(Result
.Val
<= Result
.Max
&& "Expected value in range");
4212 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, MDBoolField
&Result
) {
4213 switch (Lex
.getKind()) {
4215 return TokError("expected 'true' or 'false'");
4216 case lltok::kw_true
:
4217 Result
.assign(true);
4219 case lltok::kw_false
:
4220 Result
.assign(false);
4228 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, MDField
&Result
) {
4229 if (Lex
.getKind() == lltok::kw_null
) {
4230 if (!Result
.AllowNull
)
4231 return TokError("'" + Name
+ "' cannot be null");
4233 Result
.assign(nullptr);
4238 if (ParseMetadata(MD
, nullptr))
4246 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4247 MDSignedOrMDField
&Result
) {
4248 // Try to parse a signed int.
4249 if (Lex
.getKind() == lltok::APSInt
) {
4250 MDSignedField Res
= Result
.A
;
4251 if (!ParseMDField(Loc
, Name
, Res
)) {
4258 // Otherwise, try to parse as an MDField.
4259 MDField Res
= Result
.B
;
4260 if (!ParseMDField(Loc
, Name
, Res
)) {
4269 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4270 MDSignedOrUnsignedField
&Result
) {
4271 if (Lex
.getKind() != lltok::APSInt
)
4274 if (Lex
.getAPSIntVal().isSigned()) {
4275 MDSignedField Res
= Result
.A
;
4276 if (ParseMDField(Loc
, Name
, Res
))
4282 MDUnsignedField Res
= Result
.B
;
4283 if (ParseMDField(Loc
, Name
, Res
))
4290 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, MDStringField
&Result
) {
4291 LocTy ValueLoc
= Lex
.getLoc();
4293 if (ParseStringConstant(S
))
4296 if (!Result
.AllowEmpty
&& S
.empty())
4297 return Error(ValueLoc
, "'" + Name
+ "' cannot be empty");
4299 Result
.assign(S
.empty() ? nullptr : MDString::get(Context
, S
));
4304 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
, MDFieldList
&Result
) {
4305 SmallVector
<Metadata
*, 4> MDs
;
4306 if (ParseMDNodeVector(MDs
))
4309 Result
.assign(std::move(MDs
));
4314 bool LLParser::ParseMDField(LocTy Loc
, StringRef Name
,
4315 ChecksumKindField
&Result
) {
4316 Optional
<DIFile::ChecksumKind
> CSKind
=
4317 DIFile::getChecksumKind(Lex
.getStrVal());
4319 if (Lex
.getKind() != lltok::ChecksumKind
|| !CSKind
)
4321 "invalid checksum kind" + Twine(" '") + Lex
.getStrVal() + "'");
4323 Result
.assign(*CSKind
);
4328 } // end namespace llvm
4330 template <class ParserTy
>
4331 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField
) {
4333 if (Lex
.getKind() != lltok::LabelStr
)
4334 return TokError("expected field label here");
4338 } while (EatIfPresent(lltok::comma
));
4343 template <class ParserTy
>
4344 bool LLParser::ParseMDFieldsImpl(ParserTy parseField
, LocTy
&ClosingLoc
) {
4345 assert(Lex
.getKind() == lltok::MetadataVar
&& "Expected metadata type name");
4348 if (ParseToken(lltok::lparen
, "expected '(' here"))
4350 if (Lex
.getKind() != lltok::rparen
)
4351 if (ParseMDFieldsImplBody(parseField
))
4354 ClosingLoc
= Lex
.getLoc();
4355 return ParseToken(lltok::rparen
, "expected ')' here");
4358 template <class FieldTy
>
4359 bool LLParser::ParseMDField(StringRef Name
, FieldTy
&Result
) {
4361 return TokError("field '" + Name
+ "' cannot be specified more than once");
4363 LocTy Loc
= Lex
.getLoc();
4365 return ParseMDField(Loc
, Name
, Result
);
4368 bool LLParser::ParseSpecializedMDNode(MDNode
*&N
, bool IsDistinct
) {
4369 assert(Lex
.getKind() == lltok::MetadataVar
&& "Expected metadata type name");
4371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4372 if (Lex.getStrVal() == #CLASS) \
4373 return Parse##CLASS(N, IsDistinct);
4374 #include "llvm/IR/Metadata.def"
4376 return TokError("expected metadata type");
4379 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4380 #define NOP_FIELD(NAME, TYPE, INIT)
4381 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4383 return Error(ClosingLoc, "missing required field '" #NAME "'");
4384 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4385 if (Lex.getStrVal() == #NAME) \
4386 return ParseMDField(#NAME, NAME);
4387 #define PARSE_MD_FIELDS() \
4388 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4391 if (ParseMDFieldsImpl([&]() -> bool { \
4392 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4393 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4396 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4398 #define GET_OR_DISTINCT(CLASS, ARGS) \
4399 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4401 /// ParseDILocationFields:
4402 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4403 /// isImplicitCode: true)
4404 bool LLParser::ParseDILocation(MDNode
*&Result
, bool IsDistinct
) {
4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4406 OPTIONAL(line, LineField, ); \
4407 OPTIONAL(column, ColumnField, ); \
4408 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4409 OPTIONAL(inlinedAt, MDField, ); \
4410 OPTIONAL(isImplicitCode, MDBoolField, (false));
4412 #undef VISIT_MD_FIELDS
4415 GET_OR_DISTINCT(DILocation
, (Context
, line
.Val
, column
.Val
, scope
.Val
,
4416 inlinedAt
.Val
, isImplicitCode
.Val
));
4420 /// ParseGenericDINode:
4421 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4422 bool LLParser::ParseGenericDINode(MDNode
*&Result
, bool IsDistinct
) {
4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4424 REQUIRED(tag, DwarfTagField, ); \
4425 OPTIONAL(header, MDStringField, ); \
4426 OPTIONAL(operands, MDFieldList, );
4428 #undef VISIT_MD_FIELDS
4430 Result
= GET_OR_DISTINCT(GenericDINode
,
4431 (Context
, tag
.Val
, header
.Val
, operands
.Val
));
4435 /// ParseDISubrange:
4436 /// ::= !DISubrange(count: 30, lowerBound: 2)
4437 /// ::= !DISubrange(count: !node, lowerBound: 2)
4438 bool LLParser::ParseDISubrange(MDNode
*&Result
, bool IsDistinct
) {
4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4440 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4441 OPTIONAL(lowerBound, MDSignedField, );
4443 #undef VISIT_MD_FIELDS
4445 if (count
.isMDSignedField())
4446 Result
= GET_OR_DISTINCT(
4447 DISubrange
, (Context
, count
.getMDSignedValue(), lowerBound
.Val
));
4448 else if (count
.isMDField())
4449 Result
= GET_OR_DISTINCT(
4450 DISubrange
, (Context
, count
.getMDFieldValue(), lowerBound
.Val
));
4457 /// ParseDIEnumerator:
4458 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4459 bool LLParser::ParseDIEnumerator(MDNode
*&Result
, bool IsDistinct
) {
4460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4461 REQUIRED(name, MDStringField, ); \
4462 REQUIRED(value, MDSignedOrUnsignedField, ); \
4463 OPTIONAL(isUnsigned, MDBoolField, (false));
4465 #undef VISIT_MD_FIELDS
4467 if (isUnsigned
.Val
&& value
.isMDSignedField())
4468 return TokError("unsigned enumerator with negative value");
4470 int64_t Value
= value
.isMDSignedField()
4471 ? value
.getMDSignedValue()
4472 : static_cast<int64_t>(value
.getMDUnsignedValue());
4474 GET_OR_DISTINCT(DIEnumerator
, (Context
, Value
, isUnsigned
.Val
, name
.Val
));
4479 /// ParseDIBasicType:
4480 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4481 /// encoding: DW_ATE_encoding, flags: 0)
4482 bool LLParser::ParseDIBasicType(MDNode
*&Result
, bool IsDistinct
) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4484 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4485 OPTIONAL(name, MDStringField, ); \
4486 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4487 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4488 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4489 OPTIONAL(flags, DIFlagField, );
4491 #undef VISIT_MD_FIELDS
4493 Result
= GET_OR_DISTINCT(DIBasicType
, (Context
, tag
.Val
, name
.Val
, size
.Val
,
4494 align
.Val
, encoding
.Val
, flags
.Val
));
4498 /// ParseDIDerivedType:
4499 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4500 /// line: 7, scope: !1, baseType: !2, size: 32,
4501 /// align: 32, offset: 0, flags: 0, extraData: !3,
4502 /// dwarfAddressSpace: 3)
4503 bool LLParser::ParseDIDerivedType(MDNode
*&Result
, bool IsDistinct
) {
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4505 REQUIRED(tag, DwarfTagField, ); \
4506 OPTIONAL(name, MDStringField, ); \
4507 OPTIONAL(file, MDField, ); \
4508 OPTIONAL(line, LineField, ); \
4509 OPTIONAL(scope, MDField, ); \
4510 REQUIRED(baseType, MDField, ); \
4511 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4512 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4513 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4514 OPTIONAL(flags, DIFlagField, ); \
4515 OPTIONAL(extraData, MDField, ); \
4516 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4518 #undef VISIT_MD_FIELDS
4520 Optional
<unsigned> DWARFAddressSpace
;
4521 if (dwarfAddressSpace
.Val
!= UINT32_MAX
)
4522 DWARFAddressSpace
= dwarfAddressSpace
.Val
;
4524 Result
= GET_OR_DISTINCT(DIDerivedType
,
4525 (Context
, tag
.Val
, name
.Val
, file
.Val
, line
.Val
,
4526 scope
.Val
, baseType
.Val
, size
.Val
, align
.Val
,
4527 offset
.Val
, DWARFAddressSpace
, flags
.Val
,
4532 bool LLParser::ParseDICompositeType(MDNode
*&Result
, bool IsDistinct
) {
4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4534 REQUIRED(tag, DwarfTagField, ); \
4535 OPTIONAL(name, MDStringField, ); \
4536 OPTIONAL(file, MDField, ); \
4537 OPTIONAL(line, LineField, ); \
4538 OPTIONAL(scope, MDField, ); \
4539 OPTIONAL(baseType, MDField, ); \
4540 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4541 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4542 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4543 OPTIONAL(flags, DIFlagField, ); \
4544 OPTIONAL(elements, MDField, ); \
4545 OPTIONAL(runtimeLang, DwarfLangField, ); \
4546 OPTIONAL(vtableHolder, MDField, ); \
4547 OPTIONAL(templateParams, MDField, ); \
4548 OPTIONAL(identifier, MDStringField, ); \
4549 OPTIONAL(discriminator, MDField, );
4551 #undef VISIT_MD_FIELDS
4553 // If this has an identifier try to build an ODR type.
4555 if (auto *CT
= DICompositeType::buildODRType(
4556 Context
, *identifier
.Val
, tag
.Val
, name
.Val
, file
.Val
, line
.Val
,
4557 scope
.Val
, baseType
.Val
, size
.Val
, align
.Val
, offset
.Val
, flags
.Val
,
4558 elements
.Val
, runtimeLang
.Val
, vtableHolder
.Val
,
4559 templateParams
.Val
, discriminator
.Val
)) {
4564 // Create a new node, and save it in the context if it belongs in the type
4566 Result
= GET_OR_DISTINCT(
4568 (Context
, tag
.Val
, name
.Val
, file
.Val
, line
.Val
, scope
.Val
, baseType
.Val
,
4569 size
.Val
, align
.Val
, offset
.Val
, flags
.Val
, elements
.Val
,
4570 runtimeLang
.Val
, vtableHolder
.Val
, templateParams
.Val
, identifier
.Val
,
4571 discriminator
.Val
));
4575 bool LLParser::ParseDISubroutineType(MDNode
*&Result
, bool IsDistinct
) {
4576 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4577 OPTIONAL(flags, DIFlagField, ); \
4578 OPTIONAL(cc, DwarfCCField, ); \
4579 REQUIRED(types, MDField, );
4581 #undef VISIT_MD_FIELDS
4583 Result
= GET_OR_DISTINCT(DISubroutineType
,
4584 (Context
, flags
.Val
, cc
.Val
, types
.Val
));
4588 /// ParseDIFileType:
4589 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4590 /// checksumkind: CSK_MD5,
4591 /// checksum: "000102030405060708090a0b0c0d0e0f",
4592 /// source: "source file contents")
4593 bool LLParser::ParseDIFile(MDNode
*&Result
, bool IsDistinct
) {
4594 // The default constructed value for checksumkind is required, but will never
4595 // be used, as the parser checks if the field was actually Seen before using
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4598 REQUIRED(filename, MDStringField, ); \
4599 REQUIRED(directory, MDStringField, ); \
4600 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4601 OPTIONAL(checksum, MDStringField, ); \
4602 OPTIONAL(source, MDStringField, );
4604 #undef VISIT_MD_FIELDS
4606 Optional
<DIFile::ChecksumInfo
<MDString
*>> OptChecksum
;
4607 if (checksumkind
.Seen
&& checksum
.Seen
)
4608 OptChecksum
.emplace(checksumkind
.Val
, checksum
.Val
);
4609 else if (checksumkind
.Seen
|| checksum
.Seen
)
4610 return Lex
.Error("'checksumkind' and 'checksum' must be provided together");
4612 Optional
<MDString
*> OptSource
;
4614 OptSource
= source
.Val
;
4615 Result
= GET_OR_DISTINCT(DIFile
, (Context
, filename
.Val
, directory
.Val
,
4616 OptChecksum
, OptSource
));
4620 /// ParseDICompileUnit:
4621 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4622 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4623 /// splitDebugFilename: "abc.debug",
4624 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4625 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4626 bool LLParser::ParseDICompileUnit(MDNode
*&Result
, bool IsDistinct
) {
4628 return Lex
.Error("missing 'distinct', required for !DICompileUnit");
4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4631 REQUIRED(language, DwarfLangField, ); \
4632 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4633 OPTIONAL(producer, MDStringField, ); \
4634 OPTIONAL(isOptimized, MDBoolField, ); \
4635 OPTIONAL(flags, MDStringField, ); \
4636 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4637 OPTIONAL(splitDebugFilename, MDStringField, ); \
4638 OPTIONAL(emissionKind, EmissionKindField, ); \
4639 OPTIONAL(enums, MDField, ); \
4640 OPTIONAL(retainedTypes, MDField, ); \
4641 OPTIONAL(globals, MDField, ); \
4642 OPTIONAL(imports, MDField, ); \
4643 OPTIONAL(macros, MDField, ); \
4644 OPTIONAL(dwoId, MDUnsignedField, ); \
4645 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4646 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4647 OPTIONAL(nameTableKind, NameTableKindField, ); \
4648 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4650 #undef VISIT_MD_FIELDS
4652 Result
= DICompileUnit::getDistinct(
4653 Context
, language
.Val
, file
.Val
, producer
.Val
, isOptimized
.Val
, flags
.Val
,
4654 runtimeVersion
.Val
, splitDebugFilename
.Val
, emissionKind
.Val
, enums
.Val
,
4655 retainedTypes
.Val
, globals
.Val
, imports
.Val
, macros
.Val
, dwoId
.Val
,
4656 splitDebugInlining
.Val
, debugInfoForProfiling
.Val
, nameTableKind
.Val
,
4657 debugBaseAddress
.Val
);
4661 /// ParseDISubprogram:
4662 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4663 /// file: !1, line: 7, type: !2, isLocal: false,
4664 /// isDefinition: true, scopeLine: 8, containingType: !3,
4665 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4666 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4667 /// spFlags: 10, isOptimized: false, templateParams: !4,
4668 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4669 bool LLParser::ParseDISubprogram(MDNode
*&Result
, bool IsDistinct
) {
4670 auto Loc
= Lex
.getLoc();
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4672 OPTIONAL(scope, MDField, ); \
4673 OPTIONAL(name, MDStringField, ); \
4674 OPTIONAL(linkageName, MDStringField, ); \
4675 OPTIONAL(file, MDField, ); \
4676 OPTIONAL(line, LineField, ); \
4677 OPTIONAL(type, MDField, ); \
4678 OPTIONAL(isLocal, MDBoolField, ); \
4679 OPTIONAL(isDefinition, MDBoolField, (true)); \
4680 OPTIONAL(scopeLine, LineField, ); \
4681 OPTIONAL(containingType, MDField, ); \
4682 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4683 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4684 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4685 OPTIONAL(flags, DIFlagField, ); \
4686 OPTIONAL(spFlags, DISPFlagField, ); \
4687 OPTIONAL(isOptimized, MDBoolField, ); \
4688 OPTIONAL(unit, MDField, ); \
4689 OPTIONAL(templateParams, MDField, ); \
4690 OPTIONAL(declaration, MDField, ); \
4691 OPTIONAL(retainedNodes, MDField, ); \
4692 OPTIONAL(thrownTypes, MDField, );
4694 #undef VISIT_MD_FIELDS
4696 // An explicit spFlags field takes precedence over individual fields in
4697 // older IR versions.
4698 DISubprogram::DISPFlags SPFlags
=
4699 spFlags
.Seen
? spFlags
.Val
4700 : DISubprogram::toSPFlags(isLocal
.Val
, isDefinition
.Val
,
4701 isOptimized
.Val
, virtuality
.Val
);
4702 if ((SPFlags
& DISubprogram::SPFlagDefinition
) && !IsDistinct
)
4705 "missing 'distinct', required for !DISubprogram that is a Definition");
4706 Result
= GET_OR_DISTINCT(
4708 (Context
, scope
.Val
, name
.Val
, linkageName
.Val
, file
.Val
, line
.Val
,
4709 type
.Val
, scopeLine
.Val
, containingType
.Val
, virtualIndex
.Val
,
4710 thisAdjustment
.Val
, flags
.Val
, SPFlags
, unit
.Val
, templateParams
.Val
,
4711 declaration
.Val
, retainedNodes
.Val
, thrownTypes
.Val
));
4715 /// ParseDILexicalBlock:
4716 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4717 bool LLParser::ParseDILexicalBlock(MDNode
*&Result
, bool IsDistinct
) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4719 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4720 OPTIONAL(file, MDField, ); \
4721 OPTIONAL(line, LineField, ); \
4722 OPTIONAL(column, ColumnField, );
4724 #undef VISIT_MD_FIELDS
4726 Result
= GET_OR_DISTINCT(
4727 DILexicalBlock
, (Context
, scope
.Val
, file
.Val
, line
.Val
, column
.Val
));
4731 /// ParseDILexicalBlockFile:
4732 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4733 bool LLParser::ParseDILexicalBlockFile(MDNode
*&Result
, bool IsDistinct
) {
4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4735 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4736 OPTIONAL(file, MDField, ); \
4737 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4739 #undef VISIT_MD_FIELDS
4741 Result
= GET_OR_DISTINCT(DILexicalBlockFile
,
4742 (Context
, scope
.Val
, file
.Val
, discriminator
.Val
));
4746 /// ParseDICommonBlock:
4747 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4748 bool LLParser::ParseDICommonBlock(MDNode
*&Result
, bool IsDistinct
) {
4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4750 REQUIRED(scope, MDField, ); \
4751 OPTIONAL(declaration, MDField, ); \
4752 OPTIONAL(name, MDStringField, ); \
4753 OPTIONAL(file, MDField, ); \
4754 OPTIONAL(line, LineField, );
4756 #undef VISIT_MD_FIELDS
4758 Result
= GET_OR_DISTINCT(DICommonBlock
,
4759 (Context
, scope
.Val
, declaration
.Val
, name
.Val
,
4760 file
.Val
, line
.Val
));
4764 /// ParseDINamespace:
4765 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4766 bool LLParser::ParseDINamespace(MDNode
*&Result
, bool IsDistinct
) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4768 REQUIRED(scope, MDField, ); \
4769 OPTIONAL(name, MDStringField, ); \
4770 OPTIONAL(exportSymbols, MDBoolField, );
4772 #undef VISIT_MD_FIELDS
4774 Result
= GET_OR_DISTINCT(DINamespace
,
4775 (Context
, scope
.Val
, name
.Val
, exportSymbols
.Val
));
4780 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4781 bool LLParser::ParseDIMacro(MDNode
*&Result
, bool IsDistinct
) {
4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4783 REQUIRED(type, DwarfMacinfoTypeField, ); \
4784 OPTIONAL(line, LineField, ); \
4785 REQUIRED(name, MDStringField, ); \
4786 OPTIONAL(value, MDStringField, );
4788 #undef VISIT_MD_FIELDS
4790 Result
= GET_OR_DISTINCT(DIMacro
,
4791 (Context
, type
.Val
, line
.Val
, name
.Val
, value
.Val
));
4795 /// ParseDIMacroFile:
4796 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4797 bool LLParser::ParseDIMacroFile(MDNode
*&Result
, bool IsDistinct
) {
4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4799 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4800 OPTIONAL(line, LineField, ); \
4801 REQUIRED(file, MDField, ); \
4802 OPTIONAL(nodes, MDField, );
4804 #undef VISIT_MD_FIELDS
4806 Result
= GET_OR_DISTINCT(DIMacroFile
,
4807 (Context
, type
.Val
, line
.Val
, file
.Val
, nodes
.Val
));
4812 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4813 /// includePath: "/usr/include", isysroot: "/")
4814 bool LLParser::ParseDIModule(MDNode
*&Result
, bool IsDistinct
) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4816 REQUIRED(scope, MDField, ); \
4817 REQUIRED(name, MDStringField, ); \
4818 OPTIONAL(configMacros, MDStringField, ); \
4819 OPTIONAL(includePath, MDStringField, ); \
4820 OPTIONAL(isysroot, MDStringField, );
4822 #undef VISIT_MD_FIELDS
4824 Result
= GET_OR_DISTINCT(DIModule
, (Context
, scope
.Val
, name
.Val
,
4825 configMacros
.Val
, includePath
.Val
, isysroot
.Val
));
4829 /// ParseDITemplateTypeParameter:
4830 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4831 bool LLParser::ParseDITemplateTypeParameter(MDNode
*&Result
, bool IsDistinct
) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4833 OPTIONAL(name, MDStringField, ); \
4834 REQUIRED(type, MDField, );
4836 #undef VISIT_MD_FIELDS
4839 GET_OR_DISTINCT(DITemplateTypeParameter
, (Context
, name
.Val
, type
.Val
));
4843 /// ParseDITemplateValueParameter:
4844 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4845 /// name: "V", type: !1, value: i32 7)
4846 bool LLParser::ParseDITemplateValueParameter(MDNode
*&Result
, bool IsDistinct
) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4848 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4849 OPTIONAL(name, MDStringField, ); \
4850 OPTIONAL(type, MDField, ); \
4851 REQUIRED(value, MDField, );
4853 #undef VISIT_MD_FIELDS
4855 Result
= GET_OR_DISTINCT(DITemplateValueParameter
,
4856 (Context
, tag
.Val
, name
.Val
, type
.Val
, value
.Val
));
4860 /// ParseDIGlobalVariable:
4861 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4862 /// file: !1, line: 7, type: !2, isLocal: false,
4863 /// isDefinition: true, templateParams: !3,
4864 /// declaration: !4, align: 8)
4865 bool LLParser::ParseDIGlobalVariable(MDNode
*&Result
, bool IsDistinct
) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4867 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4868 OPTIONAL(scope, MDField, ); \
4869 OPTIONAL(linkageName, MDStringField, ); \
4870 OPTIONAL(file, MDField, ); \
4871 OPTIONAL(line, LineField, ); \
4872 OPTIONAL(type, MDField, ); \
4873 OPTIONAL(isLocal, MDBoolField, ); \
4874 OPTIONAL(isDefinition, MDBoolField, (true)); \
4875 OPTIONAL(templateParams, MDField, ); \
4876 OPTIONAL(declaration, MDField, ); \
4877 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4879 #undef VISIT_MD_FIELDS
4882 GET_OR_DISTINCT(DIGlobalVariable
,
4883 (Context
, scope
.Val
, name
.Val
, linkageName
.Val
, file
.Val
,
4884 line
.Val
, type
.Val
, isLocal
.Val
, isDefinition
.Val
,
4885 declaration
.Val
, templateParams
.Val
, align
.Val
));
4889 /// ParseDILocalVariable:
4890 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4891 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4893 /// ::= !DILocalVariable(scope: !0, name: "foo",
4894 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4896 bool LLParser::ParseDILocalVariable(MDNode
*&Result
, bool IsDistinct
) {
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4898 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4899 OPTIONAL(name, MDStringField, ); \
4900 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4901 OPTIONAL(file, MDField, ); \
4902 OPTIONAL(line, LineField, ); \
4903 OPTIONAL(type, MDField, ); \
4904 OPTIONAL(flags, DIFlagField, ); \
4905 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4907 #undef VISIT_MD_FIELDS
4909 Result
= GET_OR_DISTINCT(DILocalVariable
,
4910 (Context
, scope
.Val
, name
.Val
, file
.Val
, line
.Val
,
4911 type
.Val
, arg
.Val
, flags
.Val
, align
.Val
));
4916 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4917 bool LLParser::ParseDILabel(MDNode
*&Result
, bool IsDistinct
) {
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4919 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4920 REQUIRED(name, MDStringField, ); \
4921 REQUIRED(file, MDField, ); \
4922 REQUIRED(line, LineField, );
4924 #undef VISIT_MD_FIELDS
4926 Result
= GET_OR_DISTINCT(DILabel
,
4927 (Context
, scope
.Val
, name
.Val
, file
.Val
, line
.Val
));
4931 /// ParseDIExpression:
4932 /// ::= !DIExpression(0, 7, -1)
4933 bool LLParser::ParseDIExpression(MDNode
*&Result
, bool IsDistinct
) {
4934 assert(Lex
.getKind() == lltok::MetadataVar
&& "Expected metadata type name");
4937 if (ParseToken(lltok::lparen
, "expected '(' here"))
4940 SmallVector
<uint64_t, 8> Elements
;
4941 if (Lex
.getKind() != lltok::rparen
)
4943 if (Lex
.getKind() == lltok::DwarfOp
) {
4944 if (unsigned Op
= dwarf::getOperationEncoding(Lex
.getStrVal())) {
4946 Elements
.push_back(Op
);
4949 return TokError(Twine("invalid DWARF op '") + Lex
.getStrVal() + "'");
4952 if (Lex
.getKind() == lltok::DwarfAttEncoding
) {
4953 if (unsigned Op
= dwarf::getAttributeEncoding(Lex
.getStrVal())) {
4955 Elements
.push_back(Op
);
4958 return TokError(Twine("invalid DWARF attribute encoding '") + Lex
.getStrVal() + "'");
4961 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
4962 return TokError("expected unsigned integer");
4964 auto &U
= Lex
.getAPSIntVal();
4965 if (U
.ugt(UINT64_MAX
))
4966 return TokError("element too large, limit is " + Twine(UINT64_MAX
));
4967 Elements
.push_back(U
.getZExtValue());
4969 } while (EatIfPresent(lltok::comma
));
4971 if (ParseToken(lltok::rparen
, "expected ')' here"))
4974 Result
= GET_OR_DISTINCT(DIExpression
, (Context
, Elements
));
4978 /// ParseDIGlobalVariableExpression:
4979 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4980 bool LLParser::ParseDIGlobalVariableExpression(MDNode
*&Result
,
4982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4983 REQUIRED(var, MDField, ); \
4984 REQUIRED(expr, MDField, );
4986 #undef VISIT_MD_FIELDS
4989 GET_OR_DISTINCT(DIGlobalVariableExpression
, (Context
, var
.Val
, expr
.Val
));
4993 /// ParseDIObjCProperty:
4994 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4995 /// getter: "getFoo", attributes: 7, type: !2)
4996 bool LLParser::ParseDIObjCProperty(MDNode
*&Result
, bool IsDistinct
) {
4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4998 OPTIONAL(name, MDStringField, ); \
4999 OPTIONAL(file, MDField, ); \
5000 OPTIONAL(line, LineField, ); \
5001 OPTIONAL(setter, MDStringField, ); \
5002 OPTIONAL(getter, MDStringField, ); \
5003 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5004 OPTIONAL(type, MDField, );
5006 #undef VISIT_MD_FIELDS
5008 Result
= GET_OR_DISTINCT(DIObjCProperty
,
5009 (Context
, name
.Val
, file
.Val
, line
.Val
, setter
.Val
,
5010 getter
.Val
, attributes
.Val
, type
.Val
));
5014 /// ParseDIImportedEntity:
5015 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5016 /// line: 7, name: "foo")
5017 bool LLParser::ParseDIImportedEntity(MDNode
*&Result
, bool IsDistinct
) {
5018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5019 REQUIRED(tag, DwarfTagField, ); \
5020 REQUIRED(scope, MDField, ); \
5021 OPTIONAL(entity, MDField, ); \
5022 OPTIONAL(file, MDField, ); \
5023 OPTIONAL(line, LineField, ); \
5024 OPTIONAL(name, MDStringField, );
5026 #undef VISIT_MD_FIELDS
5028 Result
= GET_OR_DISTINCT(
5030 (Context
, tag
.Val
, scope
.Val
, entity
.Val
, file
.Val
, line
.Val
, name
.Val
));
5034 #undef PARSE_MD_FIELD
5036 #undef REQUIRE_FIELD
5037 #undef DECLARE_FIELD
5039 /// ParseMetadataAsValue
5040 /// ::= metadata i32 %local
5041 /// ::= metadata i32 @global
5042 /// ::= metadata i32 7
5044 /// ::= metadata !{...}
5045 /// ::= metadata !"string"
5046 bool LLParser::ParseMetadataAsValue(Value
*&V
, PerFunctionState
&PFS
) {
5047 // Note: the type 'metadata' has already been parsed.
5049 if (ParseMetadata(MD
, &PFS
))
5052 V
= MetadataAsValue::get(Context
, MD
);
5056 /// ParseValueAsMetadata
5060 bool LLParser::ParseValueAsMetadata(Metadata
*&MD
, const Twine
&TypeMsg
,
5061 PerFunctionState
*PFS
) {
5064 if (ParseType(Ty
, TypeMsg
, Loc
))
5066 if (Ty
->isMetadataTy())
5067 return Error(Loc
, "invalid metadata-value-metadata roundtrip");
5070 if (ParseValue(Ty
, V
, PFS
))
5073 MD
= ValueAsMetadata::get(V
);
5084 /// ::= !DILocation(...)
5085 bool LLParser::ParseMetadata(Metadata
*&MD
, PerFunctionState
*PFS
) {
5086 if (Lex
.getKind() == lltok::MetadataVar
) {
5088 if (ParseSpecializedMDNode(N
))
5096 if (Lex
.getKind() != lltok::exclaim
)
5097 return ParseValueAsMetadata(MD
, "expected metadata operand", PFS
);
5100 assert(Lex
.getKind() == lltok::exclaim
&& "Expected '!' here");
5104 // ::= '!' STRINGCONSTANT
5105 if (Lex
.getKind() == lltok::StringConstant
) {
5107 if (ParseMDString(S
))
5117 if (ParseMDNodeTail(N
))
5123 //===----------------------------------------------------------------------===//
5124 // Function Parsing.
5125 //===----------------------------------------------------------------------===//
5127 bool LLParser::ConvertValIDToValue(Type
*Ty
, ValID
&ID
, Value
*&V
,
5128 PerFunctionState
*PFS
, bool IsCall
) {
5129 if (Ty
->isFunctionTy())
5130 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
5133 case ValID::t_LocalID
:
5134 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
5135 V
= PFS
->GetVal(ID
.UIntVal
, Ty
, ID
.Loc
, IsCall
);
5136 return V
== nullptr;
5137 case ValID::t_LocalName
:
5138 if (!PFS
) return Error(ID
.Loc
, "invalid use of function-local name");
5139 V
= PFS
->GetVal(ID
.StrVal
, Ty
, ID
.Loc
, IsCall
);
5140 return V
== nullptr;
5141 case ValID::t_InlineAsm
: {
5142 if (!ID
.FTy
|| !InlineAsm::Verify(ID
.FTy
, ID
.StrVal2
))
5143 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
5144 V
= InlineAsm::get(ID
.FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
& 1,
5145 (ID
.UIntVal
>> 1) & 1,
5146 (InlineAsm::AsmDialect(ID
.UIntVal
>> 2)));
5149 case ValID::t_GlobalName
:
5150 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
, IsCall
);
5151 return V
== nullptr;
5152 case ValID::t_GlobalID
:
5153 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
, IsCall
);
5154 return V
== nullptr;
5155 case ValID::t_APSInt
:
5156 if (!Ty
->isIntegerTy())
5157 return Error(ID
.Loc
, "integer constant must have integer type");
5158 ID
.APSIntVal
= ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
5159 V
= ConstantInt::get(Context
, ID
.APSIntVal
);
5161 case ValID::t_APFloat
:
5162 if (!Ty
->isFloatingPointTy() ||
5163 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
5164 return Error(ID
.Loc
, "floating point constant invalid for type");
5166 // The lexer has no type info, so builds all half, float, and double FP
5167 // constants as double. Fix this here. Long double does not need this.
5168 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble()) {
5171 ID
.APFloatVal
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
,
5173 else if (Ty
->isFloatTy())
5174 ID
.APFloatVal
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
,
5177 V
= ConstantFP::get(Context
, ID
.APFloatVal
);
5179 if (V
->getType() != Ty
)
5180 return Error(ID
.Loc
, "floating point constant does not have type '" +
5181 getTypeString(Ty
) + "'");
5185 if (!Ty
->isPointerTy())
5186 return Error(ID
.Loc
, "null must be a pointer type");
5187 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
5189 case ValID::t_Undef
:
5190 // FIXME: LabelTy should not be a first-class type.
5191 if (!Ty
->isFirstClassType() || Ty
->isLabelTy())
5192 return Error(ID
.Loc
, "invalid type for undef constant");
5193 V
= UndefValue::get(Ty
);
5195 case ValID::t_EmptyArray
:
5196 if (!Ty
->isArrayTy() || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
5197 return Error(ID
.Loc
, "invalid empty array initializer");
5198 V
= UndefValue::get(Ty
);
5201 // FIXME: LabelTy should not be a first-class type.
5202 if (!Ty
->isFirstClassType() || Ty
->isLabelTy())
5203 return Error(ID
.Loc
, "invalid type for null constant");
5204 V
= Constant::getNullValue(Ty
);
5207 if (!Ty
->isTokenTy())
5208 return Error(ID
.Loc
, "invalid type for none constant");
5209 V
= Constant::getNullValue(Ty
);
5211 case ValID::t_Constant
:
5212 if (ID
.ConstantVal
->getType() != Ty
)
5213 return Error(ID
.Loc
, "constant expression type mismatch");
5217 case ValID::t_ConstantStruct
:
5218 case ValID::t_PackedConstantStruct
:
5219 if (StructType
*ST
= dyn_cast
<StructType
>(Ty
)) {
5220 if (ST
->getNumElements() != ID
.UIntVal
)
5221 return Error(ID
.Loc
,
5222 "initializer with struct type has wrong # elements");
5223 if (ST
->isPacked() != (ID
.Kind
== ValID::t_PackedConstantStruct
))
5224 return Error(ID
.Loc
, "packed'ness of initializer and type don't match");
5226 // Verify that the elements are compatible with the structtype.
5227 for (unsigned i
= 0, e
= ID
.UIntVal
; i
!= e
; ++i
)
5228 if (ID
.ConstantStructElts
[i
]->getType() != ST
->getElementType(i
))
5229 return Error(ID
.Loc
, "element " + Twine(i
) +
5230 " of struct initializer doesn't match struct element type");
5232 V
= ConstantStruct::get(
5233 ST
, makeArrayRef(ID
.ConstantStructElts
.get(), ID
.UIntVal
));
5235 return Error(ID
.Loc
, "constant expression type mismatch");
5238 llvm_unreachable("Invalid ValID");
5241 bool LLParser::parseConstantValue(Type
*Ty
, Constant
*&C
) {
5244 auto Loc
= Lex
.getLoc();
5245 if (ParseValID(ID
, /*PFS=*/nullptr))
5248 case ValID::t_APSInt
:
5249 case ValID::t_APFloat
:
5250 case ValID::t_Undef
:
5251 case ValID::t_Constant
:
5252 case ValID::t_ConstantStruct
:
5253 case ValID::t_PackedConstantStruct
: {
5255 if (ConvertValIDToValue(Ty
, ID
, V
, /*PFS=*/nullptr, /*IsCall=*/false))
5257 assert(isa
<Constant
>(V
) && "Expected a constant value");
5258 C
= cast
<Constant
>(V
);
5262 C
= Constant::getNullValue(Ty
);
5265 return Error(Loc
, "expected a constant value");
5269 bool LLParser::ParseValue(Type
*Ty
, Value
*&V
, PerFunctionState
*PFS
) {
5272 return ParseValID(ID
, PFS
) ||
5273 ConvertValIDToValue(Ty
, ID
, V
, PFS
, /*IsCall=*/false);
5276 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
*PFS
) {
5278 return ParseType(Ty
) ||
5279 ParseValue(Ty
, V
, PFS
);
5282 bool LLParser::ParseTypeAndBasicBlock(BasicBlock
*&BB
, LocTy
&Loc
,
5283 PerFunctionState
&PFS
) {
5286 if (ParseTypeAndValue(V
, PFS
)) return true;
5287 if (!isa
<BasicBlock
>(V
))
5288 return Error(Loc
, "expected a basic block");
5289 BB
= cast
<BasicBlock
>(V
);
5294 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5295 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5296 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5297 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5298 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
5299 // Parse the linkage.
5300 LocTy LinkageLoc
= Lex
.getLoc();
5302 unsigned Visibility
;
5303 unsigned DLLStorageClass
;
5305 AttrBuilder RetAttrs
;
5308 Type
*RetType
= nullptr;
5309 LocTy RetTypeLoc
= Lex
.getLoc();
5310 if (ParseOptionalLinkage(Linkage
, HasLinkage
, Visibility
, DLLStorageClass
,
5312 ParseOptionalCallingConv(CC
) || ParseOptionalReturnAttrs(RetAttrs
) ||
5313 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
5316 // Verify that the linkage is ok.
5317 switch ((GlobalValue::LinkageTypes
)Linkage
) {
5318 case GlobalValue::ExternalLinkage
:
5319 break; // always ok.
5320 case GlobalValue::ExternalWeakLinkage
:
5322 return Error(LinkageLoc
, "invalid linkage for function definition");
5324 case GlobalValue::PrivateLinkage
:
5325 case GlobalValue::InternalLinkage
:
5326 case GlobalValue::AvailableExternallyLinkage
:
5327 case GlobalValue::LinkOnceAnyLinkage
:
5328 case GlobalValue::LinkOnceODRLinkage
:
5329 case GlobalValue::WeakAnyLinkage
:
5330 case GlobalValue::WeakODRLinkage
:
5332 return Error(LinkageLoc
, "invalid linkage for function declaration");
5334 case GlobalValue::AppendingLinkage
:
5335 case GlobalValue::CommonLinkage
:
5336 return Error(LinkageLoc
, "invalid function linkage type");
5339 if (!isValidVisibilityForLinkage(Visibility
, Linkage
))
5340 return Error(LinkageLoc
,
5341 "symbol with local linkage must have default visibility");
5343 if (!FunctionType::isValidReturnType(RetType
))
5344 return Error(RetTypeLoc
, "invalid function return type");
5346 LocTy NameLoc
= Lex
.getLoc();
5348 std::string FunctionName
;
5349 if (Lex
.getKind() == lltok::GlobalVar
) {
5350 FunctionName
= Lex
.getStrVal();
5351 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
5352 unsigned NameID
= Lex
.getUIntVal();
5354 if (NameID
!= NumberedVals
.size())
5355 return TokError("function expected to be numbered '%" +
5356 Twine(NumberedVals
.size()) + "'");
5358 return TokError("expected function name");
5363 if (Lex
.getKind() != lltok::lparen
)
5364 return TokError("expected '(' in function argument list");
5366 SmallVector
<ArgInfo
, 8> ArgList
;
5368 AttrBuilder FuncAttrs
;
5369 std::vector
<unsigned> FwdRefAttrGrps
;
5371 std::string Section
;
5372 std::string Partition
;
5375 GlobalValue::UnnamedAddr UnnamedAddr
= GlobalValue::UnnamedAddr::None
;
5376 unsigned AddrSpace
= 0;
5377 Constant
*Prefix
= nullptr;
5378 Constant
*Prologue
= nullptr;
5379 Constant
*PersonalityFn
= nullptr;
5382 if (ParseArgumentList(ArgList
, isVarArg
) ||
5383 ParseOptionalUnnamedAddr(UnnamedAddr
) ||
5384 ParseOptionalProgramAddrSpace(AddrSpace
) ||
5385 ParseFnAttributeValuePairs(FuncAttrs
, FwdRefAttrGrps
, false,
5387 (EatIfPresent(lltok::kw_section
) &&
5388 ParseStringConstant(Section
)) ||
5389 (EatIfPresent(lltok::kw_partition
) &&
5390 ParseStringConstant(Partition
)) ||
5391 parseOptionalComdat(FunctionName
, C
) ||
5392 ParseOptionalAlignment(Alignment
) ||
5393 (EatIfPresent(lltok::kw_gc
) &&
5394 ParseStringConstant(GC
)) ||
5395 (EatIfPresent(lltok::kw_prefix
) &&
5396 ParseGlobalTypeAndValue(Prefix
)) ||
5397 (EatIfPresent(lltok::kw_prologue
) &&
5398 ParseGlobalTypeAndValue(Prologue
)) ||
5399 (EatIfPresent(lltok::kw_personality
) &&
5400 ParseGlobalTypeAndValue(PersonalityFn
)))
5403 if (FuncAttrs
.contains(Attribute::Builtin
))
5404 return Error(BuiltinLoc
, "'builtin' attribute not valid on function");
5406 // If the alignment was parsed as an attribute, move to the alignment field.
5407 if (FuncAttrs
.hasAlignmentAttr()) {
5408 Alignment
= FuncAttrs
.getAlignment();
5409 FuncAttrs
.removeAttribute(Attribute::Alignment
);
5412 // Okay, if we got here, the function is syntactically valid. Convert types
5413 // and do semantic checks.
5414 std::vector
<Type
*> ParamTypeList
;
5415 SmallVector
<AttributeSet
, 8> Attrs
;
5417 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
5418 ParamTypeList
.push_back(ArgList
[i
].Ty
);
5419 Attrs
.push_back(ArgList
[i
].Attrs
);
5423 AttributeList::get(Context
, AttributeSet::get(Context
, FuncAttrs
),
5424 AttributeSet::get(Context
, RetAttrs
), Attrs
);
5426 if (PAL
.hasAttribute(1, Attribute::StructRet
) && !RetType
->isVoidTy())
5427 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
5430 FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
5431 PointerType
*PFT
= PointerType::get(FT
, AddrSpace
);
5434 if (!FunctionName
.empty()) {
5435 // If this was a definition of a forward reference, remove the definition
5436 // from the forward reference table and fill in the forward ref.
5437 auto FRVI
= ForwardRefVals
.find(FunctionName
);
5438 if (FRVI
!= ForwardRefVals
.end()) {
5439 Fn
= M
->getFunction(FunctionName
);
5441 return Error(FRVI
->second
.second
, "invalid forward reference to "
5442 "function as global value!");
5443 if (Fn
->getType() != PFT
)
5444 return Error(FRVI
->second
.second
, "invalid forward reference to "
5445 "function '" + FunctionName
+ "' with wrong type: "
5446 "expected '" + getTypeString(PFT
) + "' but was '" +
5447 getTypeString(Fn
->getType()) + "'");
5448 ForwardRefVals
.erase(FRVI
);
5449 } else if ((Fn
= M
->getFunction(FunctionName
))) {
5450 // Reject redefinitions.
5451 return Error(NameLoc
, "invalid redefinition of function '" +
5452 FunctionName
+ "'");
5453 } else if (M
->getNamedValue(FunctionName
)) {
5454 return Error(NameLoc
, "redefinition of function '@" + FunctionName
+ "'");
5458 // If this is a definition of a forward referenced function, make sure the
5460 auto I
= ForwardRefValIDs
.find(NumberedVals
.size());
5461 if (I
!= ForwardRefValIDs
.end()) {
5462 Fn
= cast
<Function
>(I
->second
.first
);
5463 if (Fn
->getType() != PFT
)
5464 return Error(NameLoc
, "type of definition and forward reference of '@" +
5465 Twine(NumberedVals
.size()) + "' disagree: "
5466 "expected '" + getTypeString(PFT
) + "' but was '" +
5467 getTypeString(Fn
->getType()) + "'");
5468 ForwardRefValIDs
.erase(I
);
5473 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, AddrSpace
,
5475 else // Move the forward-reference to the correct spot in the module.
5476 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
5478 assert(Fn
->getAddressSpace() == AddrSpace
&& "Created function in wrong AS");
5480 if (FunctionName
.empty())
5481 NumberedVals
.push_back(Fn
);
5483 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
5484 maybeSetDSOLocal(DSOLocal
, *Fn
);
5485 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
5486 Fn
->setDLLStorageClass((GlobalValue::DLLStorageClassTypes
)DLLStorageClass
);
5487 Fn
->setCallingConv(CC
);
5488 Fn
->setAttributes(PAL
);
5489 Fn
->setUnnamedAddr(UnnamedAddr
);
5490 Fn
->setAlignment(MaybeAlign(Alignment
));
5491 Fn
->setSection(Section
);
5492 Fn
->setPartition(Partition
);
5494 Fn
->setPersonalityFn(PersonalityFn
);
5495 if (!GC
.empty()) Fn
->setGC(GC
);
5496 Fn
->setPrefixData(Prefix
);
5497 Fn
->setPrologueData(Prologue
);
5498 ForwardRefAttrGroups
[Fn
] = FwdRefAttrGrps
;
5500 // Add all of the arguments we parsed to the function.
5501 Function::arg_iterator ArgIt
= Fn
->arg_begin();
5502 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
5503 // If the argument has a name, insert it into the argument symbol table.
5504 if (ArgList
[i
].Name
.empty()) continue;
5506 // Set the name, if it conflicted, it will be auto-renamed.
5507 ArgIt
->setName(ArgList
[i
].Name
);
5509 if (ArgIt
->getName() != ArgList
[i
].Name
)
5510 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
5511 ArgList
[i
].Name
+ "'");
5517 // Check the declaration has no block address forward references.
5519 if (FunctionName
.empty()) {
5520 ID
.Kind
= ValID::t_GlobalID
;
5521 ID
.UIntVal
= NumberedVals
.size() - 1;
5523 ID
.Kind
= ValID::t_GlobalName
;
5524 ID
.StrVal
= FunctionName
;
5526 auto Blocks
= ForwardRefBlockAddresses
.find(ID
);
5527 if (Blocks
!= ForwardRefBlockAddresses
.end())
5528 return Error(Blocks
->first
.Loc
,
5529 "cannot take blockaddress inside a declaration");
5533 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5535 if (FunctionNumber
== -1) {
5536 ID
.Kind
= ValID::t_GlobalName
;
5537 ID
.StrVal
= F
.getName();
5539 ID
.Kind
= ValID::t_GlobalID
;
5540 ID
.UIntVal
= FunctionNumber
;
5543 auto Blocks
= P
.ForwardRefBlockAddresses
.find(ID
);
5544 if (Blocks
== P
.ForwardRefBlockAddresses
.end())
5547 for (const auto &I
: Blocks
->second
) {
5548 const ValID
&BBID
= I
.first
;
5549 GlobalValue
*GV
= I
.second
;
5551 assert((BBID
.Kind
== ValID::t_LocalID
|| BBID
.Kind
== ValID::t_LocalName
) &&
5552 "Expected local id or name");
5554 if (BBID
.Kind
== ValID::t_LocalName
)
5555 BB
= GetBB(BBID
.StrVal
, BBID
.Loc
);
5557 BB
= GetBB(BBID
.UIntVal
, BBID
.Loc
);
5559 return P
.Error(BBID
.Loc
, "referenced value is not a basic block");
5561 GV
->replaceAllUsesWith(BlockAddress::get(&F
, BB
));
5562 GV
->eraseFromParent();
5565 P
.ForwardRefBlockAddresses
.erase(Blocks
);
5569 /// ParseFunctionBody
5570 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5571 bool LLParser::ParseFunctionBody(Function
&Fn
) {
5572 if (Lex
.getKind() != lltok::lbrace
)
5573 return TokError("expected '{' in function body");
5574 Lex
.Lex(); // eat the {.
5576 int FunctionNumber
= -1;
5577 if (!Fn
.hasName()) FunctionNumber
= NumberedVals
.size()-1;
5579 PerFunctionState
PFS(*this, Fn
, FunctionNumber
);
5581 // Resolve block addresses and allow basic blocks to be forward-declared
5582 // within this function.
5583 if (PFS
.resolveForwardRefBlockAddresses())
5585 SaveAndRestore
<PerFunctionState
*> ScopeExit(BlockAddressPFS
, &PFS
);
5587 // We need at least one basic block.
5588 if (Lex
.getKind() == lltok::rbrace
|| Lex
.getKind() == lltok::kw_uselistorder
)
5589 return TokError("function body requires at least one basic block");
5591 while (Lex
.getKind() != lltok::rbrace
&&
5592 Lex
.getKind() != lltok::kw_uselistorder
)
5593 if (ParseBasicBlock(PFS
)) return true;
5595 while (Lex
.getKind() != lltok::rbrace
)
5596 if (ParseUseListOrder(&PFS
))
5602 // Verify function is ok.
5603 return PFS
.FinishFunction();
5607 /// ::= (LabelStr|LabelID)? Instruction*
5608 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
5609 // If this basic block starts out with a name, remember it.
5612 LocTy NameLoc
= Lex
.getLoc();
5613 if (Lex
.getKind() == lltok::LabelStr
) {
5614 Name
= Lex
.getStrVal();
5616 } else if (Lex
.getKind() == lltok::LabelID
) {
5617 NameID
= Lex
.getUIntVal();
5621 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameID
, NameLoc
);
5625 std::string NameStr
;
5627 // Parse the instructions in this block until we get a terminator.
5630 // This instruction may have three possibilities for a name: a) none
5631 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5632 LocTy NameLoc
= Lex
.getLoc();
5636 if (Lex
.getKind() == lltok::LocalVarID
) {
5637 NameID
= Lex
.getUIntVal();
5639 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
5641 } else if (Lex
.getKind() == lltok::LocalVar
) {
5642 NameStr
= Lex
.getStrVal();
5644 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
5648 switch (ParseInstruction(Inst
, BB
, PFS
)) {
5649 default: llvm_unreachable("Unknown ParseInstruction result!");
5650 case InstError
: return true;
5652 BB
->getInstList().push_back(Inst
);
5654 // With a normal result, we check to see if the instruction is followed by
5655 // a comma and metadata.
5656 if (EatIfPresent(lltok::comma
))
5657 if (ParseInstructionMetadata(*Inst
))
5660 case InstExtraComma
:
5661 BB
->getInstList().push_back(Inst
);
5663 // If the instruction parser ate an extra comma at the end of it, it
5664 // *must* be followed by metadata.
5665 if (ParseInstructionMetadata(*Inst
))
5670 // Set the name on the instruction.
5671 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
5672 } while (!Inst
->isTerminator());
5677 //===----------------------------------------------------------------------===//
5678 // Instruction Parsing.
5679 //===----------------------------------------------------------------------===//
5681 /// ParseInstruction - Parse one of the many different instructions.
5683 int LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
5684 PerFunctionState
&PFS
) {
5685 lltok::Kind Token
= Lex
.getKind();
5686 if (Token
== lltok::Eof
)
5687 return TokError("found end of file when expecting more instructions");
5688 LocTy Loc
= Lex
.getLoc();
5689 unsigned KeywordVal
= Lex
.getUIntVal();
5690 Lex
.Lex(); // Eat the keyword.
5693 default: return Error(Loc
, "expected instruction opcode");
5694 // Terminator Instructions.
5695 case lltok::kw_unreachable
: Inst
= new UnreachableInst(Context
); return false;
5696 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
5697 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
5698 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
5699 case lltok::kw_indirectbr
: return ParseIndirectBr(Inst
, PFS
);
5700 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
5701 case lltok::kw_resume
: return ParseResume(Inst
, PFS
);
5702 case lltok::kw_cleanupret
: return ParseCleanupRet(Inst
, PFS
);
5703 case lltok::kw_catchret
: return ParseCatchRet(Inst
, PFS
);
5704 case lltok::kw_catchswitch
: return ParseCatchSwitch(Inst
, PFS
);
5705 case lltok::kw_catchpad
: return ParseCatchPad(Inst
, PFS
);
5706 case lltok::kw_cleanuppad
: return ParseCleanupPad(Inst
, PFS
);
5707 case lltok::kw_callbr
: return ParseCallBr(Inst
, PFS
);
5709 case lltok::kw_fneg
: {
5710 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
5711 int Res
= ParseUnaryOp(Inst
, PFS
, KeywordVal
, /*IsFP*/true);
5715 Inst
->setFastMathFlags(FMF
);
5718 // Binary Operators.
5722 case lltok::kw_shl
: {
5723 bool NUW
= EatIfPresent(lltok::kw_nuw
);
5724 bool NSW
= EatIfPresent(lltok::kw_nsw
);
5725 if (!NUW
) NUW
= EatIfPresent(lltok::kw_nuw
);
5727 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, /*IsFP*/false)) return true;
5729 if (NUW
) cast
<BinaryOperator
>(Inst
)->setHasNoUnsignedWrap(true);
5730 if (NSW
) cast
<BinaryOperator
>(Inst
)->setHasNoSignedWrap(true);
5733 case lltok::kw_fadd
:
5734 case lltok::kw_fsub
:
5735 case lltok::kw_fmul
:
5736 case lltok::kw_fdiv
:
5737 case lltok::kw_frem
: {
5738 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
5739 int Res
= ParseArithmetic(Inst
, PFS
, KeywordVal
, /*IsFP*/true);
5743 Inst
->setFastMathFlags(FMF
);
5747 case lltok::kw_sdiv
:
5748 case lltok::kw_udiv
:
5749 case lltok::kw_lshr
:
5750 case lltok::kw_ashr
: {
5751 bool Exact
= EatIfPresent(lltok::kw_exact
);
5753 if (ParseArithmetic(Inst
, PFS
, KeywordVal
, /*IsFP*/false)) return true;
5754 if (Exact
) cast
<BinaryOperator
>(Inst
)->setIsExact(true);
5758 case lltok::kw_urem
:
5759 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
,
5763 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
5764 case lltok::kw_icmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
5765 case lltok::kw_fcmp
: {
5766 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
5767 int Res
= ParseCompare(Inst
, PFS
, KeywordVal
);
5771 Inst
->setFastMathFlags(FMF
);
5776 case lltok::kw_trunc
:
5777 case lltok::kw_zext
:
5778 case lltok::kw_sext
:
5779 case lltok::kw_fptrunc
:
5780 case lltok::kw_fpext
:
5781 case lltok::kw_bitcast
:
5782 case lltok::kw_addrspacecast
:
5783 case lltok::kw_uitofp
:
5784 case lltok::kw_sitofp
:
5785 case lltok::kw_fptoui
:
5786 case lltok::kw_fptosi
:
5787 case lltok::kw_inttoptr
:
5788 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
5790 case lltok::kw_select
: {
5791 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
5792 int Res
= ParseSelect(Inst
, PFS
);
5796 if (!Inst
->getType()->isFPOrFPVectorTy())
5797 return Error(Loc
, "fast-math-flags specified for select without "
5798 "floating-point scalar or vector return type");
5799 Inst
->setFastMathFlags(FMF
);
5803 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
5804 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
5805 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
5806 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
5807 case lltok::kw_phi
: {
5808 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
5809 int Res
= ParsePHI(Inst
, PFS
);
5813 if (!Inst
->getType()->isFPOrFPVectorTy())
5814 return Error(Loc
, "fast-math-flags specified for phi without "
5815 "floating-point scalar or vector return type");
5816 Inst
->setFastMathFlags(FMF
);
5820 case lltok::kw_landingpad
: return ParseLandingPad(Inst
, PFS
);
5822 case lltok::kw_call
: return ParseCall(Inst
, PFS
, CallInst::TCK_None
);
5823 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, CallInst::TCK_Tail
);
5824 case lltok::kw_musttail
: return ParseCall(Inst
, PFS
, CallInst::TCK_MustTail
);
5825 case lltok::kw_notail
: return ParseCall(Inst
, PFS
, CallInst::TCK_NoTail
);
5827 case lltok::kw_alloca
: return ParseAlloc(Inst
, PFS
);
5828 case lltok::kw_load
: return ParseLoad(Inst
, PFS
);
5829 case lltok::kw_store
: return ParseStore(Inst
, PFS
);
5830 case lltok::kw_cmpxchg
: return ParseCmpXchg(Inst
, PFS
);
5831 case lltok::kw_atomicrmw
: return ParseAtomicRMW(Inst
, PFS
);
5832 case lltok::kw_fence
: return ParseFence(Inst
, PFS
);
5833 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
5834 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
5835 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
5839 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5840 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
5841 if (Opc
== Instruction::FCmp
) {
5842 switch (Lex
.getKind()) {
5843 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5844 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
5845 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
5846 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
5847 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
5848 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
5849 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
5850 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
5851 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
5852 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
5853 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
5854 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
5855 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
5856 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
5857 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
5858 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
5859 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
5862 switch (Lex
.getKind()) {
5863 default: return TokError("expected icmp predicate (e.g. 'eq')");
5864 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
5865 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
5866 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
5867 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
5868 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
5869 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
5870 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
5871 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
5872 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
5873 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
5880 //===----------------------------------------------------------------------===//
5881 // Terminator Instructions.
5882 //===----------------------------------------------------------------------===//
5884 /// ParseRet - Parse a return instruction.
5885 /// ::= 'ret' void (',' !dbg, !1)*
5886 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5887 bool LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
5888 PerFunctionState
&PFS
) {
5889 SMLoc TypeLoc
= Lex
.getLoc();
5891 if (ParseType(Ty
, true /*void allowed*/)) return true;
5893 Type
*ResType
= PFS
.getFunction().getReturnType();
5895 if (Ty
->isVoidTy()) {
5896 if (!ResType
->isVoidTy())
5897 return Error(TypeLoc
, "value doesn't match function result type '" +
5898 getTypeString(ResType
) + "'");
5900 Inst
= ReturnInst::Create(Context
);
5905 if (ParseValue(Ty
, RV
, PFS
)) return true;
5907 if (ResType
!= RV
->getType())
5908 return Error(TypeLoc
, "value doesn't match function result type '" +
5909 getTypeString(ResType
) + "'");
5911 Inst
= ReturnInst::Create(Context
, RV
);
5916 /// ::= 'br' TypeAndValue
5917 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5918 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
5921 BasicBlock
*Op1
, *Op2
;
5922 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
5924 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
5925 Inst
= BranchInst::Create(BB
);
5929 if (Op0
->getType() != Type::getInt1Ty(Context
))
5930 return Error(Loc
, "branch condition must have 'i1' type");
5932 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
5933 ParseTypeAndBasicBlock(Op1
, Loc
, PFS
) ||
5934 ParseToken(lltok::comma
, "expected ',' after true destination") ||
5935 ParseTypeAndBasicBlock(Op2
, Loc2
, PFS
))
5938 Inst
= BranchInst::Create(Op1
, Op2
, Op0
);
5944 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5946 /// ::= (TypeAndValue ',' TypeAndValue)*
5947 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
5948 LocTy CondLoc
, BBLoc
;
5950 BasicBlock
*DefaultBB
;
5951 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
5952 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
5953 ParseTypeAndBasicBlock(DefaultBB
, BBLoc
, PFS
) ||
5954 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
5957 if (!Cond
->getType()->isIntegerTy())
5958 return Error(CondLoc
, "switch condition must have integer type");
5960 // Parse the jump table pairs.
5961 SmallPtrSet
<Value
*, 32> SeenCases
;
5962 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
5963 while (Lex
.getKind() != lltok::rsquare
) {
5967 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
5968 ParseToken(lltok::comma
, "expected ',' after case value") ||
5969 ParseTypeAndBasicBlock(DestBB
, PFS
))
5972 if (!SeenCases
.insert(Constant
).second
)
5973 return Error(CondLoc
, "duplicate case value in switch");
5974 if (!isa
<ConstantInt
>(Constant
))
5975 return Error(CondLoc
, "case value is not a constant integer");
5977 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
), DestBB
));
5980 Lex
.Lex(); // Eat the ']'.
5982 SwitchInst
*SI
= SwitchInst::Create(Cond
, DefaultBB
, Table
.size());
5983 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
5984 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
5991 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5992 bool LLParser::ParseIndirectBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
5995 if (ParseTypeAndValue(Address
, AddrLoc
, PFS
) ||
5996 ParseToken(lltok::comma
, "expected ',' after indirectbr address") ||
5997 ParseToken(lltok::lsquare
, "expected '[' with indirectbr"))
6000 if (!Address
->getType()->isPointerTy())
6001 return Error(AddrLoc
, "indirectbr address must have pointer type");
6003 // Parse the destination list.
6004 SmallVector
<BasicBlock
*, 16> DestList
;
6006 if (Lex
.getKind() != lltok::rsquare
) {
6008 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
6010 DestList
.push_back(DestBB
);
6012 while (EatIfPresent(lltok::comma
)) {
6013 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
6015 DestList
.push_back(DestBB
);
6019 if (ParseToken(lltok::rsquare
, "expected ']' at end of block list"))
6022 IndirectBrInst
*IBI
= IndirectBrInst::Create(Address
, DestList
.size());
6023 for (unsigned i
= 0, e
= DestList
.size(); i
!= e
; ++i
)
6024 IBI
->addDestination(DestList
[i
]);
6030 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6031 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6032 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6033 LocTy CallLoc
= Lex
.getLoc();
6034 AttrBuilder RetAttrs
, FnAttrs
;
6035 std::vector
<unsigned> FwdRefAttrGrps
;
6038 unsigned InvokeAddrSpace
;
6039 Type
*RetType
= nullptr;
6042 SmallVector
<ParamInfo
, 16> ArgList
;
6043 SmallVector
<OperandBundleDef
, 2> BundleList
;
6045 BasicBlock
*NormalBB
, *UnwindBB
;
6046 if (ParseOptionalCallingConv(CC
) || ParseOptionalReturnAttrs(RetAttrs
) ||
6047 ParseOptionalProgramAddrSpace(InvokeAddrSpace
) ||
6048 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
6049 ParseValID(CalleeID
) || ParseParameterList(ArgList
, PFS
) ||
6050 ParseFnAttributeValuePairs(FnAttrs
, FwdRefAttrGrps
, false,
6052 ParseOptionalOperandBundles(BundleList
, PFS
) ||
6053 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
6054 ParseTypeAndBasicBlock(NormalBB
, PFS
) ||
6055 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
6056 ParseTypeAndBasicBlock(UnwindBB
, PFS
))
6059 // If RetType is a non-function pointer type, then this is the short syntax
6060 // for the call, which means that RetType is just the return type. Infer the
6061 // rest of the function argument types from the arguments that are present.
6062 FunctionType
*Ty
= dyn_cast
<FunctionType
>(RetType
);
6064 // Pull out the types of all of the arguments...
6065 std::vector
<Type
*> ParamTypes
;
6066 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
6067 ParamTypes
.push_back(ArgList
[i
].V
->getType());
6069 if (!FunctionType::isValidReturnType(RetType
))
6070 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
6072 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
6077 // Look up the callee.
6079 if (ConvertValIDToValue(PointerType::get(Ty
, InvokeAddrSpace
), CalleeID
,
6080 Callee
, &PFS
, /*IsCall=*/true))
6083 // Set up the Attribute for the function.
6084 SmallVector
<Value
*, 8> Args
;
6085 SmallVector
<AttributeSet
, 8> ArgAttrs
;
6087 // Loop through FunctionType's arguments and ensure they are specified
6088 // correctly. Also, gather any parameter attributes.
6089 FunctionType::param_iterator I
= Ty
->param_begin();
6090 FunctionType::param_iterator E
= Ty
->param_end();
6091 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
6092 Type
*ExpectedTy
= nullptr;
6095 } else if (!Ty
->isVarArg()) {
6096 return Error(ArgList
[i
].Loc
, "too many arguments specified");
6099 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
6100 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
6101 getTypeString(ExpectedTy
) + "'");
6102 Args
.push_back(ArgList
[i
].V
);
6103 ArgAttrs
.push_back(ArgList
[i
].Attrs
);
6107 return Error(CallLoc
, "not enough parameters specified for call");
6109 if (FnAttrs
.hasAlignmentAttr())
6110 return Error(CallLoc
, "invoke instructions may not have an alignment");
6112 // Finish off the Attribute and check them
6114 AttributeList::get(Context
, AttributeSet::get(Context
, FnAttrs
),
6115 AttributeSet::get(Context
, RetAttrs
), ArgAttrs
);
6118 InvokeInst::Create(Ty
, Callee
, NormalBB
, UnwindBB
, Args
, BundleList
);
6119 II
->setCallingConv(CC
);
6120 II
->setAttributes(PAL
);
6121 ForwardRefAttrGroups
[II
] = FwdRefAttrGrps
;
6127 /// ::= 'resume' TypeAndValue
6128 bool LLParser::ParseResume(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6129 Value
*Exn
; LocTy ExnLoc
;
6130 if (ParseTypeAndValue(Exn
, ExnLoc
, PFS
))
6133 ResumeInst
*RI
= ResumeInst::Create(Exn
);
6138 bool LLParser::ParseExceptionArgs(SmallVectorImpl
<Value
*> &Args
,
6139 PerFunctionState
&PFS
) {
6140 if (ParseToken(lltok::lsquare
, "expected '[' in catchpad/cleanuppad"))
6143 while (Lex
.getKind() != lltok::rsquare
) {
6144 // If this isn't the first argument, we need a comma.
6145 if (!Args
.empty() &&
6146 ParseToken(lltok::comma
, "expected ',' in argument list"))
6149 // Parse the argument.
6151 Type
*ArgTy
= nullptr;
6152 if (ParseType(ArgTy
, ArgLoc
))
6156 if (ArgTy
->isMetadataTy()) {
6157 if (ParseMetadataAsValue(V
, PFS
))
6160 if (ParseValue(ArgTy
, V
, PFS
))
6166 Lex
.Lex(); // Lex the ']'.
6171 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6172 bool LLParser::ParseCleanupRet(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6173 Value
*CleanupPad
= nullptr;
6175 if (ParseToken(lltok::kw_from
, "expected 'from' after cleanupret"))
6178 if (ParseValue(Type::getTokenTy(Context
), CleanupPad
, PFS
))
6181 if (ParseToken(lltok::kw_unwind
, "expected 'unwind' in cleanupret"))
6184 BasicBlock
*UnwindBB
= nullptr;
6185 if (Lex
.getKind() == lltok::kw_to
) {
6187 if (ParseToken(lltok::kw_caller
, "expected 'caller' in cleanupret"))
6190 if (ParseTypeAndBasicBlock(UnwindBB
, PFS
)) {
6195 Inst
= CleanupReturnInst::Create(CleanupPad
, UnwindBB
);
6200 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6201 bool LLParser::ParseCatchRet(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6202 Value
*CatchPad
= nullptr;
6204 if (ParseToken(lltok::kw_from
, "expected 'from' after catchret"))
6207 if (ParseValue(Type::getTokenTy(Context
), CatchPad
, PFS
))
6211 if (ParseToken(lltok::kw_to
, "expected 'to' in catchret") ||
6212 ParseTypeAndBasicBlock(BB
, PFS
))
6215 Inst
= CatchReturnInst::Create(CatchPad
, BB
);
6219 /// ParseCatchSwitch
6220 /// ::= 'catchswitch' within Parent
6221 bool LLParser::ParseCatchSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6224 if (ParseToken(lltok::kw_within
, "expected 'within' after catchswitch"))
6227 if (Lex
.getKind() != lltok::kw_none
&& Lex
.getKind() != lltok::LocalVar
&&
6228 Lex
.getKind() != lltok::LocalVarID
)
6229 return TokError("expected scope value for catchswitch");
6231 if (ParseValue(Type::getTokenTy(Context
), ParentPad
, PFS
))
6234 if (ParseToken(lltok::lsquare
, "expected '[' with catchswitch labels"))
6237 SmallVector
<BasicBlock
*, 32> Table
;
6240 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
6242 Table
.push_back(DestBB
);
6243 } while (EatIfPresent(lltok::comma
));
6245 if (ParseToken(lltok::rsquare
, "expected ']' after catchswitch labels"))
6248 if (ParseToken(lltok::kw_unwind
,
6249 "expected 'unwind' after catchswitch scope"))
6252 BasicBlock
*UnwindBB
= nullptr;
6253 if (EatIfPresent(lltok::kw_to
)) {
6254 if (ParseToken(lltok::kw_caller
, "expected 'caller' in catchswitch"))
6257 if (ParseTypeAndBasicBlock(UnwindBB
, PFS
))
6262 CatchSwitchInst::Create(ParentPad
, UnwindBB
, Table
.size());
6263 for (BasicBlock
*DestBB
: Table
)
6264 CatchSwitch
->addHandler(DestBB
);
6270 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6271 bool LLParser::ParseCatchPad(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6272 Value
*CatchSwitch
= nullptr;
6274 if (ParseToken(lltok::kw_within
, "expected 'within' after catchpad"))
6277 if (Lex
.getKind() != lltok::LocalVar
&& Lex
.getKind() != lltok::LocalVarID
)
6278 return TokError("expected scope value for catchpad");
6280 if (ParseValue(Type::getTokenTy(Context
), CatchSwitch
, PFS
))
6283 SmallVector
<Value
*, 8> Args
;
6284 if (ParseExceptionArgs(Args
, PFS
))
6287 Inst
= CatchPadInst::Create(CatchSwitch
, Args
);
6292 /// ::= 'cleanuppad' within Parent ParamList
6293 bool LLParser::ParseCleanupPad(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6294 Value
*ParentPad
= nullptr;
6296 if (ParseToken(lltok::kw_within
, "expected 'within' after cleanuppad"))
6299 if (Lex
.getKind() != lltok::kw_none
&& Lex
.getKind() != lltok::LocalVar
&&
6300 Lex
.getKind() != lltok::LocalVarID
)
6301 return TokError("expected scope value for cleanuppad");
6303 if (ParseValue(Type::getTokenTy(Context
), ParentPad
, PFS
))
6306 SmallVector
<Value
*, 8> Args
;
6307 if (ParseExceptionArgs(Args
, PFS
))
6310 Inst
= CleanupPadInst::Create(ParentPad
, Args
);
6314 //===----------------------------------------------------------------------===//
6316 //===----------------------------------------------------------------------===//
6319 /// ::= UnaryOp TypeAndValue ',' Value
6321 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6322 /// operand is allowed.
6323 bool LLParser::ParseUnaryOp(Instruction
*&Inst
, PerFunctionState
&PFS
,
6324 unsigned Opc
, bool IsFP
) {
6325 LocTy Loc
; Value
*LHS
;
6326 if (ParseTypeAndValue(LHS
, Loc
, PFS
))
6329 bool Valid
= IsFP
? LHS
->getType()->isFPOrFPVectorTy()
6330 : LHS
->getType()->isIntOrIntVectorTy();
6333 return Error(Loc
, "invalid operand type for instruction");
6335 Inst
= UnaryOperator::Create((Instruction::UnaryOps
)Opc
, LHS
);
6340 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6341 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6342 /// '[' LabelList ']'
6343 bool LLParser::ParseCallBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6344 LocTy CallLoc
= Lex
.getLoc();
6345 AttrBuilder RetAttrs
, FnAttrs
;
6346 std::vector
<unsigned> FwdRefAttrGrps
;
6349 Type
*RetType
= nullptr;
6352 SmallVector
<ParamInfo
, 16> ArgList
;
6353 SmallVector
<OperandBundleDef
, 2> BundleList
;
6355 BasicBlock
*DefaultDest
;
6356 if (ParseOptionalCallingConv(CC
) || ParseOptionalReturnAttrs(RetAttrs
) ||
6357 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
6358 ParseValID(CalleeID
) || ParseParameterList(ArgList
, PFS
) ||
6359 ParseFnAttributeValuePairs(FnAttrs
, FwdRefAttrGrps
, false,
6361 ParseOptionalOperandBundles(BundleList
, PFS
) ||
6362 ParseToken(lltok::kw_to
, "expected 'to' in callbr") ||
6363 ParseTypeAndBasicBlock(DefaultDest
, PFS
) ||
6364 ParseToken(lltok::lsquare
, "expected '[' in callbr"))
6367 // Parse the destination list.
6368 SmallVector
<BasicBlock
*, 16> IndirectDests
;
6370 if (Lex
.getKind() != lltok::rsquare
) {
6372 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
6374 IndirectDests
.push_back(DestBB
);
6376 while (EatIfPresent(lltok::comma
)) {
6377 if (ParseTypeAndBasicBlock(DestBB
, PFS
))
6379 IndirectDests
.push_back(DestBB
);
6383 if (ParseToken(lltok::rsquare
, "expected ']' at end of block list"))
6386 // If RetType is a non-function pointer type, then this is the short syntax
6387 // for the call, which means that RetType is just the return type. Infer the
6388 // rest of the function argument types from the arguments that are present.
6389 FunctionType
*Ty
= dyn_cast
<FunctionType
>(RetType
);
6391 // Pull out the types of all of the arguments...
6392 std::vector
<Type
*> ParamTypes
;
6393 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
6394 ParamTypes
.push_back(ArgList
[i
].V
->getType());
6396 if (!FunctionType::isValidReturnType(RetType
))
6397 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
6399 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
6404 // Look up the callee.
6406 if (ConvertValIDToValue(PointerType::getUnqual(Ty
), CalleeID
, Callee
, &PFS
,
6410 if (isa
<InlineAsm
>(Callee
) && !Ty
->getReturnType()->isVoidTy())
6411 return Error(RetTypeLoc
, "asm-goto outputs not supported");
6413 // Set up the Attribute for the function.
6414 SmallVector
<Value
*, 8> Args
;
6415 SmallVector
<AttributeSet
, 8> ArgAttrs
;
6417 // Loop through FunctionType's arguments and ensure they are specified
6418 // correctly. Also, gather any parameter attributes.
6419 FunctionType::param_iterator I
= Ty
->param_begin();
6420 FunctionType::param_iterator E
= Ty
->param_end();
6421 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
6422 Type
*ExpectedTy
= nullptr;
6425 } else if (!Ty
->isVarArg()) {
6426 return Error(ArgList
[i
].Loc
, "too many arguments specified");
6429 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
6430 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
6431 getTypeString(ExpectedTy
) + "'");
6432 Args
.push_back(ArgList
[i
].V
);
6433 ArgAttrs
.push_back(ArgList
[i
].Attrs
);
6437 return Error(CallLoc
, "not enough parameters specified for call");
6439 if (FnAttrs
.hasAlignmentAttr())
6440 return Error(CallLoc
, "callbr instructions may not have an alignment");
6442 // Finish off the Attribute and check them
6444 AttributeList::get(Context
, AttributeSet::get(Context
, FnAttrs
),
6445 AttributeSet::get(Context
, RetAttrs
), ArgAttrs
);
6448 CallBrInst::Create(Ty
, Callee
, DefaultDest
, IndirectDests
, Args
,
6450 CBI
->setCallingConv(CC
);
6451 CBI
->setAttributes(PAL
);
6452 ForwardRefAttrGroups
[CBI
] = FwdRefAttrGrps
;
6457 //===----------------------------------------------------------------------===//
6458 // Binary Operators.
6459 //===----------------------------------------------------------------------===//
6462 /// ::= ArithmeticOps TypeAndValue ',' Value
6464 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6465 /// operand is allowed.
6466 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
6467 unsigned Opc
, bool IsFP
) {
6468 LocTy Loc
; Value
*LHS
, *RHS
;
6469 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
6470 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
6471 ParseValue(LHS
->getType(), RHS
, PFS
))
6474 bool Valid
= IsFP
? LHS
->getType()->isFPOrFPVectorTy()
6475 : LHS
->getType()->isIntOrIntVectorTy();
6478 return Error(Loc
, "invalid operand type for instruction");
6480 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
6485 /// ::= ArithmeticOps TypeAndValue ',' Value {
6486 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
6488 LocTy Loc
; Value
*LHS
, *RHS
;
6489 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
6490 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
6491 ParseValue(LHS
->getType(), RHS
, PFS
))
6494 if (!LHS
->getType()->isIntOrIntVectorTy())
6495 return Error(Loc
,"instruction requires integer or integer vector operands");
6497 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
6502 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6503 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6504 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
6506 // Parse the integer/fp comparison predicate.
6510 if (ParseCmpPredicate(Pred
, Opc
) ||
6511 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
6512 ParseToken(lltok::comma
, "expected ',' after compare value") ||
6513 ParseValue(LHS
->getType(), RHS
, PFS
))
6516 if (Opc
== Instruction::FCmp
) {
6517 if (!LHS
->getType()->isFPOrFPVectorTy())
6518 return Error(Loc
, "fcmp requires floating point operands");
6519 Inst
= new FCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
6521 assert(Opc
== Instruction::ICmp
&& "Unknown opcode for CmpInst!");
6522 if (!LHS
->getType()->isIntOrIntVectorTy() &&
6523 !LHS
->getType()->isPtrOrPtrVectorTy())
6524 return Error(Loc
, "icmp requires integer operands");
6525 Inst
= new ICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
6530 //===----------------------------------------------------------------------===//
6531 // Other Instructions.
6532 //===----------------------------------------------------------------------===//
6536 /// ::= CastOpc TypeAndValue 'to' Type
6537 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
6541 Type
*DestTy
= nullptr;
6542 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
6543 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
6547 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
6548 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
6549 return Error(Loc
, "invalid cast opcode for cast from '" +
6550 getTypeString(Op
->getType()) + "' to '" +
6551 getTypeString(DestTy
) + "'");
6553 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
6558 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6559 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6561 Value
*Op0
, *Op1
, *Op2
;
6562 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
6563 ParseToken(lltok::comma
, "expected ',' after select condition") ||
6564 ParseTypeAndValue(Op1
, PFS
) ||
6565 ParseToken(lltok::comma
, "expected ',' after select value") ||
6566 ParseTypeAndValue(Op2
, PFS
))
6569 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
6570 return Error(Loc
, Reason
);
6572 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
6577 /// ::= 'va_arg' TypeAndValue ',' Type
6578 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6580 Type
*EltTy
= nullptr;
6582 if (ParseTypeAndValue(Op
, PFS
) ||
6583 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
6584 ParseType(EltTy
, TypeLoc
))
6587 if (!EltTy
->isFirstClassType())
6588 return Error(TypeLoc
, "va_arg requires operand with first class type");
6590 Inst
= new VAArgInst(Op
, EltTy
);
6594 /// ParseExtractElement
6595 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6596 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6599 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
6600 ParseToken(lltok::comma
, "expected ',' after extract value") ||
6601 ParseTypeAndValue(Op1
, PFS
))
6604 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
6605 return Error(Loc
, "invalid extractelement operands");
6607 Inst
= ExtractElementInst::Create(Op0
, Op1
);
6611 /// ParseInsertElement
6612 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6613 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6615 Value
*Op0
, *Op1
, *Op2
;
6616 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
6617 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
6618 ParseTypeAndValue(Op1
, PFS
) ||
6619 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
6620 ParseTypeAndValue(Op2
, PFS
))
6623 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
6624 return Error(Loc
, "invalid insertelement operands");
6626 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
6630 /// ParseShuffleVector
6631 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6632 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6634 Value
*Op0
, *Op1
, *Op2
;
6635 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
6636 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
6637 ParseTypeAndValue(Op1
, PFS
) ||
6638 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
6639 ParseTypeAndValue(Op2
, PFS
))
6642 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
6643 return Error(Loc
, "invalid shufflevector operands");
6645 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
6650 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6651 int LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6652 Type
*Ty
= nullptr; LocTy TypeLoc
;
6655 if (ParseType(Ty
, TypeLoc
) ||
6656 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
6657 ParseValue(Ty
, Op0
, PFS
) ||
6658 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
6659 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
6660 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
6663 bool AteExtraComma
= false;
6664 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
6667 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
6669 if (!EatIfPresent(lltok::comma
))
6672 if (Lex
.getKind() == lltok::MetadataVar
) {
6673 AteExtraComma
= true;
6677 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
6678 ParseValue(Ty
, Op0
, PFS
) ||
6679 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
6680 ParseValue(Type::getLabelTy(Context
), Op1
, PFS
) ||
6681 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
6685 if (!Ty
->isFirstClassType())
6686 return Error(TypeLoc
, "phi node must have first class type");
6688 PHINode
*PN
= PHINode::Create(Ty
, PHIVals
.size());
6689 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
6690 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
6692 return AteExtraComma
? InstExtraComma
: InstNormal
;
6696 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6698 /// ::= 'catch' TypeAndValue
6700 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6701 bool LLParser::ParseLandingPad(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6702 Type
*Ty
= nullptr; LocTy TyLoc
;
6704 if (ParseType(Ty
, TyLoc
))
6707 std::unique_ptr
<LandingPadInst
> LP(LandingPadInst::Create(Ty
, 0));
6708 LP
->setCleanup(EatIfPresent(lltok::kw_cleanup
));
6710 while (Lex
.getKind() == lltok::kw_catch
|| Lex
.getKind() == lltok::kw_filter
){
6711 LandingPadInst::ClauseType CT
;
6712 if (EatIfPresent(lltok::kw_catch
))
6713 CT
= LandingPadInst::Catch
;
6714 else if (EatIfPresent(lltok::kw_filter
))
6715 CT
= LandingPadInst::Filter
;
6717 return TokError("expected 'catch' or 'filter' clause type");
6721 if (ParseTypeAndValue(V
, VLoc
, PFS
))
6724 // A 'catch' type expects a non-array constant. A filter clause expects an
6726 if (CT
== LandingPadInst::Catch
) {
6727 if (isa
<ArrayType
>(V
->getType()))
6728 Error(VLoc
, "'catch' clause has an invalid type");
6730 if (!isa
<ArrayType
>(V
->getType()))
6731 Error(VLoc
, "'filter' clause has an invalid type");
6734 Constant
*CV
= dyn_cast
<Constant
>(V
);
6736 return Error(VLoc
, "clause argument must be a constant");
6740 Inst
= LP
.release();
6745 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6746 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6747 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6748 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6749 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6750 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6751 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6752 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6753 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
6754 CallInst::TailCallKind TCK
) {
6755 AttrBuilder RetAttrs
, FnAttrs
;
6756 std::vector
<unsigned> FwdRefAttrGrps
;
6758 unsigned CallAddrSpace
;
6760 Type
*RetType
= nullptr;
6763 SmallVector
<ParamInfo
, 16> ArgList
;
6764 SmallVector
<OperandBundleDef
, 2> BundleList
;
6765 LocTy CallLoc
= Lex
.getLoc();
6767 if (TCK
!= CallInst::TCK_None
&&
6768 ParseToken(lltok::kw_call
,
6769 "expected 'tail call', 'musttail call', or 'notail call'"))
6772 FastMathFlags FMF
= EatFastMathFlagsIfPresent();
6774 if (ParseOptionalCallingConv(CC
) || ParseOptionalReturnAttrs(RetAttrs
) ||
6775 ParseOptionalProgramAddrSpace(CallAddrSpace
) ||
6776 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
6777 ParseValID(CalleeID
) ||
6778 ParseParameterList(ArgList
, PFS
, TCK
== CallInst::TCK_MustTail
,
6779 PFS
.getFunction().isVarArg()) ||
6780 ParseFnAttributeValuePairs(FnAttrs
, FwdRefAttrGrps
, false, BuiltinLoc
) ||
6781 ParseOptionalOperandBundles(BundleList
, PFS
))
6784 if (FMF
.any() && !RetType
->isFPOrFPVectorTy())
6785 return Error(CallLoc
, "fast-math-flags specified for call without "
6786 "floating-point scalar or vector return type");
6788 // If RetType is a non-function pointer type, then this is the short syntax
6789 // for the call, which means that RetType is just the return type. Infer the
6790 // rest of the function argument types from the arguments that are present.
6791 FunctionType
*Ty
= dyn_cast
<FunctionType
>(RetType
);
6793 // Pull out the types of all of the arguments...
6794 std::vector
<Type
*> ParamTypes
;
6795 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
6796 ParamTypes
.push_back(ArgList
[i
].V
->getType());
6798 if (!FunctionType::isValidReturnType(RetType
))
6799 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
6801 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
6806 // Look up the callee.
6808 if (ConvertValIDToValue(PointerType::get(Ty
, CallAddrSpace
), CalleeID
, Callee
,
6809 &PFS
, /*IsCall=*/true))
6812 // Set up the Attribute for the function.
6813 SmallVector
<AttributeSet
, 8> Attrs
;
6815 SmallVector
<Value
*, 8> Args
;
6817 // Loop through FunctionType's arguments and ensure they are specified
6818 // correctly. Also, gather any parameter attributes.
6819 FunctionType::param_iterator I
= Ty
->param_begin();
6820 FunctionType::param_iterator E
= Ty
->param_end();
6821 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
6822 Type
*ExpectedTy
= nullptr;
6825 } else if (!Ty
->isVarArg()) {
6826 return Error(ArgList
[i
].Loc
, "too many arguments specified");
6829 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
6830 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
6831 getTypeString(ExpectedTy
) + "'");
6832 Args
.push_back(ArgList
[i
].V
);
6833 Attrs
.push_back(ArgList
[i
].Attrs
);
6837 return Error(CallLoc
, "not enough parameters specified for call");
6839 if (FnAttrs
.hasAlignmentAttr())
6840 return Error(CallLoc
, "call instructions may not have an alignment");
6842 // Finish off the Attribute and check them
6844 AttributeList::get(Context
, AttributeSet::get(Context
, FnAttrs
),
6845 AttributeSet::get(Context
, RetAttrs
), Attrs
);
6847 CallInst
*CI
= CallInst::Create(Ty
, Callee
, Args
, BundleList
);
6848 CI
->setTailCallKind(TCK
);
6849 CI
->setCallingConv(CC
);
6851 CI
->setFastMathFlags(FMF
);
6852 CI
->setAttributes(PAL
);
6853 ForwardRefAttrGroups
[CI
] = FwdRefAttrGrps
;
6858 //===----------------------------------------------------------------------===//
6859 // Memory Instructions.
6860 //===----------------------------------------------------------------------===//
6863 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6864 /// (',' 'align' i32)? (',', 'addrspace(n))?
6865 int LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6866 Value
*Size
= nullptr;
6867 LocTy SizeLoc
, TyLoc
, ASLoc
;
6868 unsigned Alignment
= 0;
6869 unsigned AddrSpace
= 0;
6872 bool IsInAlloca
= EatIfPresent(lltok::kw_inalloca
);
6873 bool IsSwiftError
= EatIfPresent(lltok::kw_swifterror
);
6875 if (ParseType(Ty
, TyLoc
)) return true;
6877 if (Ty
->isFunctionTy() || !PointerType::isValidElementType(Ty
))
6878 return Error(TyLoc
, "invalid type for alloca");
6880 bool AteExtraComma
= false;
6881 if (EatIfPresent(lltok::comma
)) {
6882 if (Lex
.getKind() == lltok::kw_align
) {
6883 if (ParseOptionalAlignment(Alignment
))
6885 if (ParseOptionalCommaAddrSpace(AddrSpace
, ASLoc
, AteExtraComma
))
6887 } else if (Lex
.getKind() == lltok::kw_addrspace
) {
6888 ASLoc
= Lex
.getLoc();
6889 if (ParseOptionalAddrSpace(AddrSpace
))
6891 } else if (Lex
.getKind() == lltok::MetadataVar
) {
6892 AteExtraComma
= true;
6894 if (ParseTypeAndValue(Size
, SizeLoc
, PFS
))
6896 if (EatIfPresent(lltok::comma
)) {
6897 if (Lex
.getKind() == lltok::kw_align
) {
6898 if (ParseOptionalAlignment(Alignment
))
6900 if (ParseOptionalCommaAddrSpace(AddrSpace
, ASLoc
, AteExtraComma
))
6902 } else if (Lex
.getKind() == lltok::kw_addrspace
) {
6903 ASLoc
= Lex
.getLoc();
6904 if (ParseOptionalAddrSpace(AddrSpace
))
6906 } else if (Lex
.getKind() == lltok::MetadataVar
) {
6907 AteExtraComma
= true;
6913 if (Size
&& !Size
->getType()->isIntegerTy())
6914 return Error(SizeLoc
, "element count must have integer type");
6916 AllocaInst
*AI
= new AllocaInst(Ty
, AddrSpace
, Size
, Alignment
);
6917 AI
->setUsedWithInAlloca(IsInAlloca
);
6918 AI
->setSwiftError(IsSwiftError
);
6920 return AteExtraComma
? InstExtraComma
: InstNormal
;
6924 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6925 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6926 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6927 int LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6928 Value
*Val
; LocTy Loc
;
6929 unsigned Alignment
= 0;
6930 bool AteExtraComma
= false;
6931 bool isAtomic
= false;
6932 AtomicOrdering Ordering
= AtomicOrdering::NotAtomic
;
6933 SyncScope::ID SSID
= SyncScope::System
;
6935 if (Lex
.getKind() == lltok::kw_atomic
) {
6940 bool isVolatile
= false;
6941 if (Lex
.getKind() == lltok::kw_volatile
) {
6947 LocTy ExplicitTypeLoc
= Lex
.getLoc();
6948 if (ParseType(Ty
) ||
6949 ParseToken(lltok::comma
, "expected comma after load's type") ||
6950 ParseTypeAndValue(Val
, Loc
, PFS
) ||
6951 ParseScopeAndOrdering(isAtomic
, SSID
, Ordering
) ||
6952 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
6955 if (!Val
->getType()->isPointerTy() || !Ty
->isFirstClassType())
6956 return Error(Loc
, "load operand must be a pointer to a first class type");
6957 if (isAtomic
&& !Alignment
)
6958 return Error(Loc
, "atomic load must have explicit non-zero alignment");
6959 if (Ordering
== AtomicOrdering::Release
||
6960 Ordering
== AtomicOrdering::AcquireRelease
)
6961 return Error(Loc
, "atomic load cannot use Release ordering");
6963 if (Ty
!= cast
<PointerType
>(Val
->getType())->getElementType())
6964 return Error(ExplicitTypeLoc
,
6965 "explicit pointee type doesn't match operand's pointee type");
6967 Inst
= new LoadInst(Ty
, Val
, "", isVolatile
, Alignment
, Ordering
, SSID
);
6968 return AteExtraComma
? InstExtraComma
: InstNormal
;
6973 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6974 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6975 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6976 int LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
) {
6977 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
6978 unsigned Alignment
= 0;
6979 bool AteExtraComma
= false;
6980 bool isAtomic
= false;
6981 AtomicOrdering Ordering
= AtomicOrdering::NotAtomic
;
6982 SyncScope::ID SSID
= SyncScope::System
;
6984 if (Lex
.getKind() == lltok::kw_atomic
) {
6989 bool isVolatile
= false;
6990 if (Lex
.getKind() == lltok::kw_volatile
) {
6995 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
6996 ParseToken(lltok::comma
, "expected ',' after store operand") ||
6997 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
6998 ParseScopeAndOrdering(isAtomic
, SSID
, Ordering
) ||
6999 ParseOptionalCommaAlign(Alignment
, AteExtraComma
))
7002 if (!Ptr
->getType()->isPointerTy())
7003 return Error(PtrLoc
, "store operand must be a pointer");
7004 if (!Val
->getType()->isFirstClassType())
7005 return Error(Loc
, "store operand must be a first class value");
7006 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
7007 return Error(Loc
, "stored value and pointer type do not match");
7008 if (isAtomic
&& !Alignment
)
7009 return Error(Loc
, "atomic store must have explicit non-zero alignment");
7010 if (Ordering
== AtomicOrdering::Acquire
||
7011 Ordering
== AtomicOrdering::AcquireRelease
)
7012 return Error(Loc
, "atomic store cannot use Acquire ordering");
7014 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
, Ordering
, SSID
);
7015 return AteExtraComma
? InstExtraComma
: InstNormal
;
7019 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7020 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7021 int LLParser::ParseCmpXchg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7022 Value
*Ptr
, *Cmp
, *New
; LocTy PtrLoc
, CmpLoc
, NewLoc
;
7023 bool AteExtraComma
= false;
7024 AtomicOrdering SuccessOrdering
= AtomicOrdering::NotAtomic
;
7025 AtomicOrdering FailureOrdering
= AtomicOrdering::NotAtomic
;
7026 SyncScope::ID SSID
= SyncScope::System
;
7027 bool isVolatile
= false;
7028 bool isWeak
= false;
7030 if (EatIfPresent(lltok::kw_weak
))
7033 if (EatIfPresent(lltok::kw_volatile
))
7036 if (ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
7037 ParseToken(lltok::comma
, "expected ',' after cmpxchg address") ||
7038 ParseTypeAndValue(Cmp
, CmpLoc
, PFS
) ||
7039 ParseToken(lltok::comma
, "expected ',' after cmpxchg cmp operand") ||
7040 ParseTypeAndValue(New
, NewLoc
, PFS
) ||
7041 ParseScopeAndOrdering(true /*Always atomic*/, SSID
, SuccessOrdering
) ||
7042 ParseOrdering(FailureOrdering
))
7045 if (SuccessOrdering
== AtomicOrdering::Unordered
||
7046 FailureOrdering
== AtomicOrdering::Unordered
)
7047 return TokError("cmpxchg cannot be unordered");
7048 if (isStrongerThan(FailureOrdering
, SuccessOrdering
))
7049 return TokError("cmpxchg failure argument shall be no stronger than the "
7050 "success argument");
7051 if (FailureOrdering
== AtomicOrdering::Release
||
7052 FailureOrdering
== AtomicOrdering::AcquireRelease
)
7054 "cmpxchg failure ordering cannot include release semantics");
7055 if (!Ptr
->getType()->isPointerTy())
7056 return Error(PtrLoc
, "cmpxchg operand must be a pointer");
7057 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Cmp
->getType())
7058 return Error(CmpLoc
, "compare value and pointer type do not match");
7059 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != New
->getType())
7060 return Error(NewLoc
, "new value and pointer type do not match");
7061 if (!New
->getType()->isFirstClassType())
7062 return Error(NewLoc
, "cmpxchg operand must be a first class value");
7063 AtomicCmpXchgInst
*CXI
= new AtomicCmpXchgInst(
7064 Ptr
, Cmp
, New
, SuccessOrdering
, FailureOrdering
, SSID
);
7065 CXI
->setVolatile(isVolatile
);
7066 CXI
->setWeak(isWeak
);
7068 return AteExtraComma
? InstExtraComma
: InstNormal
;
7072 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7073 /// 'singlethread'? AtomicOrdering
7074 int LLParser::ParseAtomicRMW(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7075 Value
*Ptr
, *Val
; LocTy PtrLoc
, ValLoc
;
7076 bool AteExtraComma
= false;
7077 AtomicOrdering Ordering
= AtomicOrdering::NotAtomic
;
7078 SyncScope::ID SSID
= SyncScope::System
;
7079 bool isVolatile
= false;
7081 AtomicRMWInst::BinOp Operation
;
7083 if (EatIfPresent(lltok::kw_volatile
))
7086 switch (Lex
.getKind()) {
7087 default: return TokError("expected binary operation in atomicrmw");
7088 case lltok::kw_xchg
: Operation
= AtomicRMWInst::Xchg
; break;
7089 case lltok::kw_add
: Operation
= AtomicRMWInst::Add
; break;
7090 case lltok::kw_sub
: Operation
= AtomicRMWInst::Sub
; break;
7091 case lltok::kw_and
: Operation
= AtomicRMWInst::And
; break;
7092 case lltok::kw_nand
: Operation
= AtomicRMWInst::Nand
; break;
7093 case lltok::kw_or
: Operation
= AtomicRMWInst::Or
; break;
7094 case lltok::kw_xor
: Operation
= AtomicRMWInst::Xor
; break;
7095 case lltok::kw_max
: Operation
= AtomicRMWInst::Max
; break;
7096 case lltok::kw_min
: Operation
= AtomicRMWInst::Min
; break;
7097 case lltok::kw_umax
: Operation
= AtomicRMWInst::UMax
; break;
7098 case lltok::kw_umin
: Operation
= AtomicRMWInst::UMin
; break;
7099 case lltok::kw_fadd
:
7100 Operation
= AtomicRMWInst::FAdd
;
7103 case lltok::kw_fsub
:
7104 Operation
= AtomicRMWInst::FSub
;
7108 Lex
.Lex(); // Eat the operation.
7110 if (ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
7111 ParseToken(lltok::comma
, "expected ',' after atomicrmw address") ||
7112 ParseTypeAndValue(Val
, ValLoc
, PFS
) ||
7113 ParseScopeAndOrdering(true /*Always atomic*/, SSID
, Ordering
))
7116 if (Ordering
== AtomicOrdering::Unordered
)
7117 return TokError("atomicrmw cannot be unordered");
7118 if (!Ptr
->getType()->isPointerTy())
7119 return Error(PtrLoc
, "atomicrmw operand must be a pointer");
7120 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
7121 return Error(ValLoc
, "atomicrmw value and pointer type do not match");
7123 if (Operation
== AtomicRMWInst::Xchg
) {
7124 if (!Val
->getType()->isIntegerTy() &&
7125 !Val
->getType()->isFloatingPointTy()) {
7126 return Error(ValLoc
, "atomicrmw " +
7127 AtomicRMWInst::getOperationName(Operation
) +
7128 " operand must be an integer or floating point type");
7131 if (!Val
->getType()->isFloatingPointTy()) {
7132 return Error(ValLoc
, "atomicrmw " +
7133 AtomicRMWInst::getOperationName(Operation
) +
7134 " operand must be a floating point type");
7137 if (!Val
->getType()->isIntegerTy()) {
7138 return Error(ValLoc
, "atomicrmw " +
7139 AtomicRMWInst::getOperationName(Operation
) +
7140 " operand must be an integer");
7144 unsigned Size
= Val
->getType()->getPrimitiveSizeInBits();
7145 if (Size
< 8 || (Size
& (Size
- 1)))
7146 return Error(ValLoc
, "atomicrmw operand must be power-of-two byte-sized"
7149 AtomicRMWInst
*RMWI
=
7150 new AtomicRMWInst(Operation
, Ptr
, Val
, Ordering
, SSID
);
7151 RMWI
->setVolatile(isVolatile
);
7153 return AteExtraComma
? InstExtraComma
: InstNormal
;
7157 /// ::= 'fence' 'singlethread'? AtomicOrdering
7158 int LLParser::ParseFence(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7159 AtomicOrdering Ordering
= AtomicOrdering::NotAtomic
;
7160 SyncScope::ID SSID
= SyncScope::System
;
7161 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID
, Ordering
))
7164 if (Ordering
== AtomicOrdering::Unordered
)
7165 return TokError("fence cannot be unordered");
7166 if (Ordering
== AtomicOrdering::Monotonic
)
7167 return TokError("fence cannot be monotonic");
7169 Inst
= new FenceInst(Context
, Ordering
, SSID
);
7173 /// ParseGetElementPtr
7174 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7175 int LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7176 Value
*Ptr
= nullptr;
7177 Value
*Val
= nullptr;
7180 bool InBounds
= EatIfPresent(lltok::kw_inbounds
);
7183 LocTy ExplicitTypeLoc
= Lex
.getLoc();
7184 if (ParseType(Ty
) ||
7185 ParseToken(lltok::comma
, "expected comma after getelementptr's type") ||
7186 ParseTypeAndValue(Ptr
, Loc
, PFS
))
7189 Type
*BaseType
= Ptr
->getType();
7190 PointerType
*BasePointerType
= dyn_cast
<PointerType
>(BaseType
->getScalarType());
7191 if (!BasePointerType
)
7192 return Error(Loc
, "base of getelementptr must be a pointer");
7194 if (Ty
!= BasePointerType
->getElementType())
7195 return Error(ExplicitTypeLoc
,
7196 "explicit pointee type doesn't match operand's pointee type");
7198 SmallVector
<Value
*, 16> Indices
;
7199 bool AteExtraComma
= false;
7200 // GEP returns a vector of pointers if at least one of parameters is a vector.
7201 // All vector parameters should have the same vector width.
7202 unsigned GEPWidth
= BaseType
->isVectorTy() ?
7203 BaseType
->getVectorNumElements() : 0;
7205 while (EatIfPresent(lltok::comma
)) {
7206 if (Lex
.getKind() == lltok::MetadataVar
) {
7207 AteExtraComma
= true;
7210 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
7211 if (!Val
->getType()->isIntOrIntVectorTy())
7212 return Error(EltLoc
, "getelementptr index must be an integer");
7214 if (Val
->getType()->isVectorTy()) {
7215 unsigned ValNumEl
= Val
->getType()->getVectorNumElements();
7216 if (GEPWidth
&& GEPWidth
!= ValNumEl
)
7217 return Error(EltLoc
,
7218 "getelementptr vector index has a wrong number of elements");
7219 GEPWidth
= ValNumEl
;
7221 Indices
.push_back(Val
);
7224 SmallPtrSet
<Type
*, 4> Visited
;
7225 if (!Indices
.empty() && !Ty
->isSized(&Visited
))
7226 return Error(Loc
, "base element of getelementptr must be sized");
7228 if (!GetElementPtrInst::getIndexedType(Ty
, Indices
))
7229 return Error(Loc
, "invalid getelementptr indices");
7230 Inst
= GetElementPtrInst::Create(Ty
, Ptr
, Indices
);
7232 cast
<GetElementPtrInst
>(Inst
)->setIsInBounds(true);
7233 return AteExtraComma
? InstExtraComma
: InstNormal
;
7236 /// ParseExtractValue
7237 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
7238 int LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7239 Value
*Val
; LocTy Loc
;
7240 SmallVector
<unsigned, 4> Indices
;
7242 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
7243 ParseIndexList(Indices
, AteExtraComma
))
7246 if (!Val
->getType()->isAggregateType())
7247 return Error(Loc
, "extractvalue operand must be aggregate type");
7249 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
))
7250 return Error(Loc
, "invalid indices for extractvalue");
7251 Inst
= ExtractValueInst::Create(Val
, Indices
);
7252 return AteExtraComma
? InstExtraComma
: InstNormal
;
7255 /// ParseInsertValue
7256 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7257 int LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
7258 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
7259 SmallVector
<unsigned, 4> Indices
;
7261 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
7262 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
7263 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
7264 ParseIndexList(Indices
, AteExtraComma
))
7267 if (!Val0
->getType()->isAggregateType())
7268 return Error(Loc0
, "insertvalue operand must be aggregate type");
7270 Type
*IndexedType
= ExtractValueInst::getIndexedType(Val0
->getType(), Indices
);
7272 return Error(Loc0
, "invalid indices for insertvalue");
7273 if (IndexedType
!= Val1
->getType())
7274 return Error(Loc1
, "insertvalue operand and field disagree in type: '" +
7275 getTypeString(Val1
->getType()) + "' instead of '" +
7276 getTypeString(IndexedType
) + "'");
7277 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
);
7278 return AteExtraComma
? InstExtraComma
: InstNormal
;
7281 //===----------------------------------------------------------------------===//
7282 // Embedded metadata.
7283 //===----------------------------------------------------------------------===//
7285 /// ParseMDNodeVector
7286 /// ::= { Element (',' Element)* }
7288 /// ::= 'null' | TypeAndValue
7289 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Metadata
*> &Elts
) {
7290 if (ParseToken(lltok::lbrace
, "expected '{' here"))
7293 // Check for an empty list.
7294 if (EatIfPresent(lltok::rbrace
))
7298 // Null is a special case since it is typeless.
7299 if (EatIfPresent(lltok::kw_null
)) {
7300 Elts
.push_back(nullptr);
7305 if (ParseMetadata(MD
, nullptr))
7308 } while (EatIfPresent(lltok::comma
));
7310 return ParseToken(lltok::rbrace
, "expected end of metadata node");
7313 //===----------------------------------------------------------------------===//
7314 // Use-list order directives.
7315 //===----------------------------------------------------------------------===//
7316 bool LLParser::sortUseListOrder(Value
*V
, ArrayRef
<unsigned> Indexes
,
7319 return Error(Loc
, "value has no uses");
7321 unsigned NumUses
= 0;
7322 SmallDenseMap
<const Use
*, unsigned, 16> Order
;
7323 for (const Use
&U
: V
->uses()) {
7324 if (++NumUses
> Indexes
.size())
7326 Order
[&U
] = Indexes
[NumUses
- 1];
7329 return Error(Loc
, "value only has one use");
7330 if (Order
.size() != Indexes
.size() || NumUses
> Indexes
.size())
7332 "wrong number of indexes, expected " + Twine(V
->getNumUses()));
7334 V
->sortUseList([&](const Use
&L
, const Use
&R
) {
7335 return Order
.lookup(&L
) < Order
.lookup(&R
);
7340 /// ParseUseListOrderIndexes
7341 /// ::= '{' uint32 (',' uint32)+ '}'
7342 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl
<unsigned> &Indexes
) {
7343 SMLoc Loc
= Lex
.getLoc();
7344 if (ParseToken(lltok::lbrace
, "expected '{' here"))
7346 if (Lex
.getKind() == lltok::rbrace
)
7347 return Lex
.Error("expected non-empty list of uselistorder indexes");
7349 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7350 // indexes should be distinct numbers in the range [0, size-1], and should
7352 unsigned Offset
= 0;
7354 bool IsOrdered
= true;
7355 assert(Indexes
.empty() && "Expected empty order vector");
7358 if (ParseUInt32(Index
))
7361 // Update consistency checks.
7362 Offset
+= Index
- Indexes
.size();
7363 Max
= std::max(Max
, Index
);
7364 IsOrdered
&= Index
== Indexes
.size();
7366 Indexes
.push_back(Index
);
7367 } while (EatIfPresent(lltok::comma
));
7369 if (ParseToken(lltok::rbrace
, "expected '}' here"))
7372 if (Indexes
.size() < 2)
7373 return Error(Loc
, "expected >= 2 uselistorder indexes");
7374 if (Offset
!= 0 || Max
>= Indexes
.size())
7375 return Error(Loc
, "expected distinct uselistorder indexes in range [0, size)");
7377 return Error(Loc
, "expected uselistorder indexes to change the order");
7382 /// ParseUseListOrder
7383 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7384 bool LLParser::ParseUseListOrder(PerFunctionState
*PFS
) {
7385 SMLoc Loc
= Lex
.getLoc();
7386 if (ParseToken(lltok::kw_uselistorder
, "expected uselistorder directive"))
7390 SmallVector
<unsigned, 16> Indexes
;
7391 if (ParseTypeAndValue(V
, PFS
) ||
7392 ParseToken(lltok::comma
, "expected comma in uselistorder directive") ||
7393 ParseUseListOrderIndexes(Indexes
))
7396 return sortUseListOrder(V
, Indexes
, Loc
);
7399 /// ParseUseListOrderBB
7400 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7401 bool LLParser::ParseUseListOrderBB() {
7402 assert(Lex
.getKind() == lltok::kw_uselistorder_bb
);
7403 SMLoc Loc
= Lex
.getLoc();
7407 SmallVector
<unsigned, 16> Indexes
;
7408 if (ParseValID(Fn
) ||
7409 ParseToken(lltok::comma
, "expected comma in uselistorder_bb directive") ||
7410 ParseValID(Label
) ||
7411 ParseToken(lltok::comma
, "expected comma in uselistorder_bb directive") ||
7412 ParseUseListOrderIndexes(Indexes
))
7415 // Check the function.
7417 if (Fn
.Kind
== ValID::t_GlobalName
)
7418 GV
= M
->getNamedValue(Fn
.StrVal
);
7419 else if (Fn
.Kind
== ValID::t_GlobalID
)
7420 GV
= Fn
.UIntVal
< NumberedVals
.size() ? NumberedVals
[Fn
.UIntVal
] : nullptr;
7422 return Error(Fn
.Loc
, "expected function name in uselistorder_bb");
7424 return Error(Fn
.Loc
, "invalid function forward reference in uselistorder_bb");
7425 auto *F
= dyn_cast
<Function
>(GV
);
7427 return Error(Fn
.Loc
, "expected function name in uselistorder_bb");
7428 if (F
->isDeclaration())
7429 return Error(Fn
.Loc
, "invalid declaration in uselistorder_bb");
7431 // Check the basic block.
7432 if (Label
.Kind
== ValID::t_LocalID
)
7433 return Error(Label
.Loc
, "invalid numeric label in uselistorder_bb");
7434 if (Label
.Kind
!= ValID::t_LocalName
)
7435 return Error(Label
.Loc
, "expected basic block name in uselistorder_bb");
7436 Value
*V
= F
->getValueSymbolTable()->lookup(Label
.StrVal
);
7438 return Error(Label
.Loc
, "invalid basic block in uselistorder_bb");
7439 if (!isa
<BasicBlock
>(V
))
7440 return Error(Label
.Loc
, "expected basic block in uselistorder_bb");
7442 return sortUseListOrder(V
, Indexes
, Loc
);
7446 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7447 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7448 bool LLParser::ParseModuleEntry(unsigned ID
) {
7449 assert(Lex
.getKind() == lltok::kw_module
);
7453 if (ParseToken(lltok::colon
, "expected ':' here") ||
7454 ParseToken(lltok::lparen
, "expected '(' here") ||
7455 ParseToken(lltok::kw_path
, "expected 'path' here") ||
7456 ParseToken(lltok::colon
, "expected ':' here") ||
7457 ParseStringConstant(Path
) ||
7458 ParseToken(lltok::comma
, "expected ',' here") ||
7459 ParseToken(lltok::kw_hash
, "expected 'hash' here") ||
7460 ParseToken(lltok::colon
, "expected ':' here") ||
7461 ParseToken(lltok::lparen
, "expected '(' here"))
7465 if (ParseUInt32(Hash
[0]) || ParseToken(lltok::comma
, "expected ',' here") ||
7466 ParseUInt32(Hash
[1]) || ParseToken(lltok::comma
, "expected ',' here") ||
7467 ParseUInt32(Hash
[2]) || ParseToken(lltok::comma
, "expected ',' here") ||
7468 ParseUInt32(Hash
[3]) || ParseToken(lltok::comma
, "expected ',' here") ||
7469 ParseUInt32(Hash
[4]))
7472 if (ParseToken(lltok::rparen
, "expected ')' here") ||
7473 ParseToken(lltok::rparen
, "expected ')' here"))
7476 auto ModuleEntry
= Index
->addModule(Path
, ID
, Hash
);
7477 ModuleIdMap
[ID
] = ModuleEntry
->first();
7483 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7484 bool LLParser::ParseTypeIdEntry(unsigned ID
) {
7485 assert(Lex
.getKind() == lltok::kw_typeid
);
7489 if (ParseToken(lltok::colon
, "expected ':' here") ||
7490 ParseToken(lltok::lparen
, "expected '(' here") ||
7491 ParseToken(lltok::kw_name
, "expected 'name' here") ||
7492 ParseToken(lltok::colon
, "expected ':' here") ||
7493 ParseStringConstant(Name
))
7496 TypeIdSummary
&TIS
= Index
->getOrInsertTypeIdSummary(Name
);
7497 if (ParseToken(lltok::comma
, "expected ',' here") ||
7498 ParseTypeIdSummary(TIS
) || ParseToken(lltok::rparen
, "expected ')' here"))
7501 // Check if this ID was forward referenced, and if so, update the
7502 // corresponding GUIDs.
7503 auto FwdRefTIDs
= ForwardRefTypeIds
.find(ID
);
7504 if (FwdRefTIDs
!= ForwardRefTypeIds
.end()) {
7505 for (auto TIDRef
: FwdRefTIDs
->second
) {
7506 assert(!*TIDRef
.first
&&
7507 "Forward referenced type id GUID expected to be 0");
7508 *TIDRef
.first
= GlobalValue::getGUID(Name
);
7510 ForwardRefTypeIds
.erase(FwdRefTIDs
);
7517 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7518 bool LLParser::ParseTypeIdSummary(TypeIdSummary
&TIS
) {
7519 if (ParseToken(lltok::kw_summary
, "expected 'summary' here") ||
7520 ParseToken(lltok::colon
, "expected ':' here") ||
7521 ParseToken(lltok::lparen
, "expected '(' here") ||
7522 ParseTypeTestResolution(TIS
.TTRes
))
7525 if (EatIfPresent(lltok::comma
)) {
7526 // Expect optional wpdResolutions field
7527 if (ParseOptionalWpdResolutions(TIS
.WPDRes
))
7531 if (ParseToken(lltok::rparen
, "expected ')' here"))
7537 static ValueInfo EmptyVI
=
7538 ValueInfo(false, (GlobalValueSummaryMapTy::value_type
*)-8);
7540 /// TypeIdCompatibleVtableEntry
7541 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7542 /// TypeIdCompatibleVtableInfo
7544 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID
) {
7545 assert(Lex
.getKind() == lltok::kw_typeidCompatibleVTable
);
7549 if (ParseToken(lltok::colon
, "expected ':' here") ||
7550 ParseToken(lltok::lparen
, "expected '(' here") ||
7551 ParseToken(lltok::kw_name
, "expected 'name' here") ||
7552 ParseToken(lltok::colon
, "expected ':' here") ||
7553 ParseStringConstant(Name
))
7556 TypeIdCompatibleVtableInfo
&TI
=
7557 Index
->getOrInsertTypeIdCompatibleVtableSummary(Name
);
7558 if (ParseToken(lltok::comma
, "expected ',' here") ||
7559 ParseToken(lltok::kw_summary
, "expected 'summary' here") ||
7560 ParseToken(lltok::colon
, "expected ':' here") ||
7561 ParseToken(lltok::lparen
, "expected '(' here"))
7564 IdToIndexMapType IdToIndexMap
;
7565 // Parse each call edge
7568 if (ParseToken(lltok::lparen
, "expected '(' here") ||
7569 ParseToken(lltok::kw_offset
, "expected 'offset' here") ||
7570 ParseToken(lltok::colon
, "expected ':' here") || ParseUInt64(Offset
) ||
7571 ParseToken(lltok::comma
, "expected ',' here"))
7574 LocTy Loc
= Lex
.getLoc();
7577 if (ParseGVReference(VI
, GVId
))
7580 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7581 // forward reference. We will save the location of the ValueInfo needing an
7582 // update, but can only do so once the std::vector is finalized.
7584 IdToIndexMap
[GVId
].push_back(std::make_pair(TI
.size(), Loc
));
7585 TI
.push_back({Offset
, VI
});
7587 if (ParseToken(lltok::rparen
, "expected ')' in call"))
7589 } while (EatIfPresent(lltok::comma
));
7591 // Now that the TI vector is finalized, it is safe to save the locations
7592 // of any forward GV references that need updating later.
7593 for (auto I
: IdToIndexMap
) {
7594 for (auto P
: I
.second
) {
7595 assert(TI
[P
.first
].VTableVI
== EmptyVI
&&
7596 "Forward referenced ValueInfo expected to be empty");
7597 auto FwdRef
= ForwardRefValueInfos
.insert(std::make_pair(
7598 I
.first
, std::vector
<std::pair
<ValueInfo
*, LocTy
>>()));
7599 FwdRef
.first
->second
.push_back(
7600 std::make_pair(&TI
[P
.first
].VTableVI
, P
.second
));
7604 if (ParseToken(lltok::rparen
, "expected ')' here") ||
7605 ParseToken(lltok::rparen
, "expected ')' here"))
7608 // Check if this ID was forward referenced, and if so, update the
7609 // corresponding GUIDs.
7610 auto FwdRefTIDs
= ForwardRefTypeIds
.find(ID
);
7611 if (FwdRefTIDs
!= ForwardRefTypeIds
.end()) {
7612 for (auto TIDRef
: FwdRefTIDs
->second
) {
7613 assert(!*TIDRef
.first
&&
7614 "Forward referenced type id GUID expected to be 0");
7615 *TIDRef
.first
= GlobalValue::getGUID(Name
);
7617 ForwardRefTypeIds
.erase(FwdRefTIDs
);
7623 /// TypeTestResolution
7624 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7625 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7626 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7627 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7628 /// [',' 'inlinesBits' ':' UInt64]? ')'
7629 bool LLParser::ParseTypeTestResolution(TypeTestResolution
&TTRes
) {
7630 if (ParseToken(lltok::kw_typeTestRes
, "expected 'typeTestRes' here") ||
7631 ParseToken(lltok::colon
, "expected ':' here") ||
7632 ParseToken(lltok::lparen
, "expected '(' here") ||
7633 ParseToken(lltok::kw_kind
, "expected 'kind' here") ||
7634 ParseToken(lltok::colon
, "expected ':' here"))
7637 switch (Lex
.getKind()) {
7638 case lltok::kw_unsat
:
7639 TTRes
.TheKind
= TypeTestResolution::Unsat
;
7641 case lltok::kw_byteArray
:
7642 TTRes
.TheKind
= TypeTestResolution::ByteArray
;
7644 case lltok::kw_inline
:
7645 TTRes
.TheKind
= TypeTestResolution::Inline
;
7647 case lltok::kw_single
:
7648 TTRes
.TheKind
= TypeTestResolution::Single
;
7650 case lltok::kw_allOnes
:
7651 TTRes
.TheKind
= TypeTestResolution::AllOnes
;
7654 return Error(Lex
.getLoc(), "unexpected TypeTestResolution kind");
7658 if (ParseToken(lltok::comma
, "expected ',' here") ||
7659 ParseToken(lltok::kw_sizeM1BitWidth
, "expected 'sizeM1BitWidth' here") ||
7660 ParseToken(lltok::colon
, "expected ':' here") ||
7661 ParseUInt32(TTRes
.SizeM1BitWidth
))
7664 // Parse optional fields
7665 while (EatIfPresent(lltok::comma
)) {
7666 switch (Lex
.getKind()) {
7667 case lltok::kw_alignLog2
:
7669 if (ParseToken(lltok::colon
, "expected ':'") ||
7670 ParseUInt64(TTRes
.AlignLog2
))
7673 case lltok::kw_sizeM1
:
7675 if (ParseToken(lltok::colon
, "expected ':'") || ParseUInt64(TTRes
.SizeM1
))
7678 case lltok::kw_bitMask
: {
7681 if (ParseToken(lltok::colon
, "expected ':'") || ParseUInt32(Val
))
7683 assert(Val
<= 0xff);
7684 TTRes
.BitMask
= (uint8_t)Val
;
7687 case lltok::kw_inlineBits
:
7689 if (ParseToken(lltok::colon
, "expected ':'") ||
7690 ParseUInt64(TTRes
.InlineBits
))
7694 return Error(Lex
.getLoc(), "expected optional TypeTestResolution field");
7698 if (ParseToken(lltok::rparen
, "expected ')' here"))
7704 /// OptionalWpdResolutions
7705 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7706 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7707 bool LLParser::ParseOptionalWpdResolutions(
7708 std::map
<uint64_t, WholeProgramDevirtResolution
> &WPDResMap
) {
7709 if (ParseToken(lltok::kw_wpdResolutions
, "expected 'wpdResolutions' here") ||
7710 ParseToken(lltok::colon
, "expected ':' here") ||
7711 ParseToken(lltok::lparen
, "expected '(' here"))
7716 WholeProgramDevirtResolution WPDRes
;
7717 if (ParseToken(lltok::lparen
, "expected '(' here") ||
7718 ParseToken(lltok::kw_offset
, "expected 'offset' here") ||
7719 ParseToken(lltok::colon
, "expected ':' here") || ParseUInt64(Offset
) ||
7720 ParseToken(lltok::comma
, "expected ',' here") || ParseWpdRes(WPDRes
) ||
7721 ParseToken(lltok::rparen
, "expected ')' here"))
7723 WPDResMap
[Offset
] = WPDRes
;
7724 } while (EatIfPresent(lltok::comma
));
7726 if (ParseToken(lltok::rparen
, "expected ')' here"))
7733 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7734 /// [',' OptionalResByArg]? ')'
7735 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7736 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7737 /// [',' OptionalResByArg]? ')'
7738 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7739 /// [',' OptionalResByArg]? ')'
7740 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution
&WPDRes
) {
7741 if (ParseToken(lltok::kw_wpdRes
, "expected 'wpdRes' here") ||
7742 ParseToken(lltok::colon
, "expected ':' here") ||
7743 ParseToken(lltok::lparen
, "expected '(' here") ||
7744 ParseToken(lltok::kw_kind
, "expected 'kind' here") ||
7745 ParseToken(lltok::colon
, "expected ':' here"))
7748 switch (Lex
.getKind()) {
7749 case lltok::kw_indir
:
7750 WPDRes
.TheKind
= WholeProgramDevirtResolution::Indir
;
7752 case lltok::kw_singleImpl
:
7753 WPDRes
.TheKind
= WholeProgramDevirtResolution::SingleImpl
;
7755 case lltok::kw_branchFunnel
:
7756 WPDRes
.TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
7759 return Error(Lex
.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7763 // Parse optional fields
7764 while (EatIfPresent(lltok::comma
)) {
7765 switch (Lex
.getKind()) {
7766 case lltok::kw_singleImplName
:
7768 if (ParseToken(lltok::colon
, "expected ':' here") ||
7769 ParseStringConstant(WPDRes
.SingleImplName
))
7772 case lltok::kw_resByArg
:
7773 if (ParseOptionalResByArg(WPDRes
.ResByArg
))
7777 return Error(Lex
.getLoc(),
7778 "expected optional WholeProgramDevirtResolution field");
7782 if (ParseToken(lltok::rparen
, "expected ')' here"))
7788 /// OptionalResByArg
7789 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7790 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7791 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7792 /// 'virtualConstProp' )
7793 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7794 /// [',' 'bit' ':' UInt32]? ')'
7795 bool LLParser::ParseOptionalResByArg(
7796 std::map
<std::vector
<uint64_t>, WholeProgramDevirtResolution::ByArg
>
7798 if (ParseToken(lltok::kw_resByArg
, "expected 'resByArg' here") ||
7799 ParseToken(lltok::colon
, "expected ':' here") ||
7800 ParseToken(lltok::lparen
, "expected '(' here"))
7804 std::vector
<uint64_t> Args
;
7805 if (ParseArgs(Args
) || ParseToken(lltok::comma
, "expected ',' here") ||
7806 ParseToken(lltok::kw_byArg
, "expected 'byArg here") ||
7807 ParseToken(lltok::colon
, "expected ':' here") ||
7808 ParseToken(lltok::lparen
, "expected '(' here") ||
7809 ParseToken(lltok::kw_kind
, "expected 'kind' here") ||
7810 ParseToken(lltok::colon
, "expected ':' here"))
7813 WholeProgramDevirtResolution::ByArg ByArg
;
7814 switch (Lex
.getKind()) {
7815 case lltok::kw_indir
:
7816 ByArg
.TheKind
= WholeProgramDevirtResolution::ByArg::Indir
;
7818 case lltok::kw_uniformRetVal
:
7819 ByArg
.TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
7821 case lltok::kw_uniqueRetVal
:
7822 ByArg
.TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
7824 case lltok::kw_virtualConstProp
:
7825 ByArg
.TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
7828 return Error(Lex
.getLoc(),
7829 "unexpected WholeProgramDevirtResolution::ByArg kind");
7833 // Parse optional fields
7834 while (EatIfPresent(lltok::comma
)) {
7835 switch (Lex
.getKind()) {
7836 case lltok::kw_info
:
7838 if (ParseToken(lltok::colon
, "expected ':' here") ||
7839 ParseUInt64(ByArg
.Info
))
7842 case lltok::kw_byte
:
7844 if (ParseToken(lltok::colon
, "expected ':' here") ||
7845 ParseUInt32(ByArg
.Byte
))
7850 if (ParseToken(lltok::colon
, "expected ':' here") ||
7851 ParseUInt32(ByArg
.Bit
))
7855 return Error(Lex
.getLoc(),
7856 "expected optional whole program devirt field");
7860 if (ParseToken(lltok::rparen
, "expected ')' here"))
7863 ResByArg
[Args
] = ByArg
;
7864 } while (EatIfPresent(lltok::comma
));
7866 if (ParseToken(lltok::rparen
, "expected ')' here"))
7872 /// OptionalResByArg
7873 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7874 bool LLParser::ParseArgs(std::vector
<uint64_t> &Args
) {
7875 if (ParseToken(lltok::kw_args
, "expected 'args' here") ||
7876 ParseToken(lltok::colon
, "expected ':' here") ||
7877 ParseToken(lltok::lparen
, "expected '(' here"))
7882 if (ParseUInt64(Val
))
7884 Args
.push_back(Val
);
7885 } while (EatIfPresent(lltok::comma
));
7887 if (ParseToken(lltok::rparen
, "expected ')' here"))
7893 static const auto FwdVIRef
= (GlobalValueSummaryMapTy::value_type
*)-8;
7895 static void resolveFwdRef(ValueInfo
*Fwd
, ValueInfo
&Resolved
) {
7896 bool ReadOnly
= Fwd
->isReadOnly();
7897 bool WriteOnly
= Fwd
->isWriteOnly();
7898 assert(!(ReadOnly
&& WriteOnly
));
7903 Fwd
->setWriteOnly();
7906 /// Stores the given Name/GUID and associated summary into the Index.
7907 /// Also updates any forward references to the associated entry ID.
7908 void LLParser::AddGlobalValueToIndex(
7909 std::string Name
, GlobalValue::GUID GUID
, GlobalValue::LinkageTypes Linkage
,
7910 unsigned ID
, std::unique_ptr
<GlobalValueSummary
> Summary
) {
7911 // First create the ValueInfo utilizing the Name or GUID.
7914 assert(Name
.empty());
7915 VI
= Index
->getOrInsertValueInfo(GUID
);
7917 assert(!Name
.empty());
7919 auto *GV
= M
->getNamedValue(Name
);
7921 VI
= Index
->getOrInsertValueInfo(GV
);
7924 (!GlobalValue::isLocalLinkage(Linkage
) || !SourceFileName
.empty()) &&
7925 "Need a source_filename to compute GUID for local");
7926 GUID
= GlobalValue::getGUID(
7927 GlobalValue::getGlobalIdentifier(Name
, Linkage
, SourceFileName
));
7928 VI
= Index
->getOrInsertValueInfo(GUID
, Index
->saveString(Name
));
7932 // Resolve forward references from calls/refs
7933 auto FwdRefVIs
= ForwardRefValueInfos
.find(ID
);
7934 if (FwdRefVIs
!= ForwardRefValueInfos
.end()) {
7935 for (auto VIRef
: FwdRefVIs
->second
) {
7936 assert(VIRef
.first
->getRef() == FwdVIRef
&&
7937 "Forward referenced ValueInfo expected to be empty");
7938 resolveFwdRef(VIRef
.first
, VI
);
7940 ForwardRefValueInfos
.erase(FwdRefVIs
);
7943 // Resolve forward references from aliases
7944 auto FwdRefAliasees
= ForwardRefAliasees
.find(ID
);
7945 if (FwdRefAliasees
!= ForwardRefAliasees
.end()) {
7946 for (auto AliaseeRef
: FwdRefAliasees
->second
) {
7947 assert(!AliaseeRef
.first
->hasAliasee() &&
7948 "Forward referencing alias already has aliasee");
7949 assert(Summary
&& "Aliasee must be a definition");
7950 AliaseeRef
.first
->setAliasee(VI
, Summary
.get());
7952 ForwardRefAliasees
.erase(FwdRefAliasees
);
7955 // Add the summary if one was provided.
7957 Index
->addGlobalValueSummary(VI
, std::move(Summary
));
7959 // Save the associated ValueInfo for use in later references by ID.
7960 if (ID
== NumberedValueInfos
.size())
7961 NumberedValueInfos
.push_back(VI
);
7963 // Handle non-continuous numbers (to make test simplification easier).
7964 if (ID
> NumberedValueInfos
.size())
7965 NumberedValueInfos
.resize(ID
+ 1);
7966 NumberedValueInfos
[ID
] = VI
;
7971 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7972 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7973 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7974 bool LLParser::ParseGVEntry(unsigned ID
) {
7975 assert(Lex
.getKind() == lltok::kw_gv
);
7978 if (ParseToken(lltok::colon
, "expected ':' here") ||
7979 ParseToken(lltok::lparen
, "expected '(' here"))
7983 GlobalValue::GUID GUID
= 0;
7984 switch (Lex
.getKind()) {
7985 case lltok::kw_name
:
7987 if (ParseToken(lltok::colon
, "expected ':' here") ||
7988 ParseStringConstant(Name
))
7990 // Can't create GUID/ValueInfo until we have the linkage.
7992 case lltok::kw_guid
:
7994 if (ParseToken(lltok::colon
, "expected ':' here") || ParseUInt64(GUID
))
7998 return Error(Lex
.getLoc(), "expected name or guid tag");
8001 if (!EatIfPresent(lltok::comma
)) {
8002 // No summaries. Wrap up.
8003 if (ParseToken(lltok::rparen
, "expected ')' here"))
8005 // This was created for a call to an external or indirect target.
8006 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8007 // created for indirect calls with VP. A Name with no GUID came from
8008 // an external definition. We pass ExternalLinkage since that is only
8009 // used when the GUID must be computed from Name, and in that case
8010 // the symbol must have external linkage.
8011 AddGlobalValueToIndex(Name
, GUID
, GlobalValue::ExternalLinkage
, ID
,
8016 // Have a list of summaries
8017 if (ParseToken(lltok::kw_summaries
, "expected 'summaries' here") ||
8018 ParseToken(lltok::colon
, "expected ':' here"))
8022 if (ParseToken(lltok::lparen
, "expected '(' here"))
8024 switch (Lex
.getKind()) {
8025 case lltok::kw_function
:
8026 if (ParseFunctionSummary(Name
, GUID
, ID
))
8029 case lltok::kw_variable
:
8030 if (ParseVariableSummary(Name
, GUID
, ID
))
8033 case lltok::kw_alias
:
8034 if (ParseAliasSummary(Name
, GUID
, ID
))
8038 return Error(Lex
.getLoc(), "expected summary type");
8040 if (ParseToken(lltok::rparen
, "expected ')' here"))
8042 } while (EatIfPresent(lltok::comma
));
8044 if (ParseToken(lltok::rparen
, "expected ')' here"))
8051 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8052 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8053 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8054 bool LLParser::ParseFunctionSummary(std::string Name
, GlobalValue::GUID GUID
,
8056 assert(Lex
.getKind() == lltok::kw_function
);
8059 StringRef ModulePath
;
8060 GlobalValueSummary::GVFlags GVFlags
= GlobalValueSummary::GVFlags(
8061 /*Linkage=*/GlobalValue::ExternalLinkage
, /*NotEligibleToImport=*/false,
8062 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8064 std::vector
<FunctionSummary::EdgeTy
> Calls
;
8065 FunctionSummary::TypeIdInfo TypeIdInfo
;
8066 std::vector
<ValueInfo
> Refs
;
8067 // Default is all-zeros (conservative values).
8068 FunctionSummary::FFlags FFlags
= {};
8069 if (ParseToken(lltok::colon
, "expected ':' here") ||
8070 ParseToken(lltok::lparen
, "expected '(' here") ||
8071 ParseModuleReference(ModulePath
) ||
8072 ParseToken(lltok::comma
, "expected ',' here") || ParseGVFlags(GVFlags
) ||
8073 ParseToken(lltok::comma
, "expected ',' here") ||
8074 ParseToken(lltok::kw_insts
, "expected 'insts' here") ||
8075 ParseToken(lltok::colon
, "expected ':' here") || ParseUInt32(InstCount
))
8078 // Parse optional fields
8079 while (EatIfPresent(lltok::comma
)) {
8080 switch (Lex
.getKind()) {
8081 case lltok::kw_funcFlags
:
8082 if (ParseOptionalFFlags(FFlags
))
8085 case lltok::kw_calls
:
8086 if (ParseOptionalCalls(Calls
))
8089 case lltok::kw_typeIdInfo
:
8090 if (ParseOptionalTypeIdInfo(TypeIdInfo
))
8093 case lltok::kw_refs
:
8094 if (ParseOptionalRefs(Refs
))
8098 return Error(Lex
.getLoc(), "expected optional function summary field");
8102 if (ParseToken(lltok::rparen
, "expected ')' here"))
8105 auto FS
= std::make_unique
<FunctionSummary
>(
8106 GVFlags
, InstCount
, FFlags
, /*EntryCount=*/0, std::move(Refs
),
8107 std::move(Calls
), std::move(TypeIdInfo
.TypeTests
),
8108 std::move(TypeIdInfo
.TypeTestAssumeVCalls
),
8109 std::move(TypeIdInfo
.TypeCheckedLoadVCalls
),
8110 std::move(TypeIdInfo
.TypeTestAssumeConstVCalls
),
8111 std::move(TypeIdInfo
.TypeCheckedLoadConstVCalls
));
8113 FS
->setModulePath(ModulePath
);
8115 AddGlobalValueToIndex(Name
, GUID
, (GlobalValue::LinkageTypes
)GVFlags
.Linkage
,
8122 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8123 /// [',' OptionalRefs]? ')'
8124 bool LLParser::ParseVariableSummary(std::string Name
, GlobalValue::GUID GUID
,
8126 assert(Lex
.getKind() == lltok::kw_variable
);
8129 StringRef ModulePath
;
8130 GlobalValueSummary::GVFlags GVFlags
= GlobalValueSummary::GVFlags(
8131 /*Linkage=*/GlobalValue::ExternalLinkage
, /*NotEligibleToImport=*/false,
8132 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8133 GlobalVarSummary::GVarFlags
GVarFlags(/*ReadOnly*/ false,
8134 /* WriteOnly */ false);
8135 std::vector
<ValueInfo
> Refs
;
8136 VTableFuncList VTableFuncs
;
8137 if (ParseToken(lltok::colon
, "expected ':' here") ||
8138 ParseToken(lltok::lparen
, "expected '(' here") ||
8139 ParseModuleReference(ModulePath
) ||
8140 ParseToken(lltok::comma
, "expected ',' here") || ParseGVFlags(GVFlags
) ||
8141 ParseToken(lltok::comma
, "expected ',' here") ||
8142 ParseGVarFlags(GVarFlags
))
8145 // Parse optional fields
8146 while (EatIfPresent(lltok::comma
)) {
8147 switch (Lex
.getKind()) {
8148 case lltok::kw_vTableFuncs
:
8149 if (ParseOptionalVTableFuncs(VTableFuncs
))
8152 case lltok::kw_refs
:
8153 if (ParseOptionalRefs(Refs
))
8157 return Error(Lex
.getLoc(), "expected optional variable summary field");
8161 if (ParseToken(lltok::rparen
, "expected ')' here"))
8165 std::make_unique
<GlobalVarSummary
>(GVFlags
, GVarFlags
, std::move(Refs
));
8167 GS
->setModulePath(ModulePath
);
8168 GS
->setVTableFuncs(std::move(VTableFuncs
));
8170 AddGlobalValueToIndex(Name
, GUID
, (GlobalValue::LinkageTypes
)GVFlags
.Linkage
,
8177 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8178 /// 'aliasee' ':' GVReference ')'
8179 bool LLParser::ParseAliasSummary(std::string Name
, GlobalValue::GUID GUID
,
8181 assert(Lex
.getKind() == lltok::kw_alias
);
8182 LocTy Loc
= Lex
.getLoc();
8185 StringRef ModulePath
;
8186 GlobalValueSummary::GVFlags GVFlags
= GlobalValueSummary::GVFlags(
8187 /*Linkage=*/GlobalValue::ExternalLinkage
, /*NotEligibleToImport=*/false,
8188 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8189 if (ParseToken(lltok::colon
, "expected ':' here") ||
8190 ParseToken(lltok::lparen
, "expected '(' here") ||
8191 ParseModuleReference(ModulePath
) ||
8192 ParseToken(lltok::comma
, "expected ',' here") || ParseGVFlags(GVFlags
) ||
8193 ParseToken(lltok::comma
, "expected ',' here") ||
8194 ParseToken(lltok::kw_aliasee
, "expected 'aliasee' here") ||
8195 ParseToken(lltok::colon
, "expected ':' here"))
8198 ValueInfo AliaseeVI
;
8200 if (ParseGVReference(AliaseeVI
, GVId
))
8203 if (ParseToken(lltok::rparen
, "expected ')' here"))
8206 auto AS
= std::make_unique
<AliasSummary
>(GVFlags
);
8208 AS
->setModulePath(ModulePath
);
8210 // Record forward reference if the aliasee is not parsed yet.
8211 if (AliaseeVI
.getRef() == FwdVIRef
) {
8212 auto FwdRef
= ForwardRefAliasees
.insert(
8213 std::make_pair(GVId
, std::vector
<std::pair
<AliasSummary
*, LocTy
>>()));
8214 FwdRef
.first
->second
.push_back(std::make_pair(AS
.get(), Loc
));
8216 auto Summary
= Index
->findSummaryInModule(AliaseeVI
, ModulePath
);
8217 assert(Summary
&& "Aliasee must be a definition");
8218 AS
->setAliasee(AliaseeVI
, Summary
);
8221 AddGlobalValueToIndex(Name
, GUID
, (GlobalValue::LinkageTypes
)GVFlags
.Linkage
,
8229 bool LLParser::ParseFlag(unsigned &Val
) {
8230 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
8231 return TokError("expected integer");
8232 Val
= (unsigned)Lex
.getAPSIntVal().getBoolValue();
8238 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8239 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8240 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8241 /// [',' 'noInline' ':' Flag]? ')'
8242 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags
&FFlags
) {
8243 assert(Lex
.getKind() == lltok::kw_funcFlags
);
8246 if (ParseToken(lltok::colon
, "expected ':' in funcFlags") |
8247 ParseToken(lltok::lparen
, "expected '(' in funcFlags"))
8252 switch (Lex
.getKind()) {
8253 case lltok::kw_readNone
:
8255 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Val
))
8257 FFlags
.ReadNone
= Val
;
8259 case lltok::kw_readOnly
:
8261 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Val
))
8263 FFlags
.ReadOnly
= Val
;
8265 case lltok::kw_noRecurse
:
8267 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Val
))
8269 FFlags
.NoRecurse
= Val
;
8271 case lltok::kw_returnDoesNotAlias
:
8273 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Val
))
8275 FFlags
.ReturnDoesNotAlias
= Val
;
8277 case lltok::kw_noInline
:
8279 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Val
))
8281 FFlags
.NoInline
= Val
;
8284 return Error(Lex
.getLoc(), "expected function flag type");
8286 } while (EatIfPresent(lltok::comma
));
8288 if (ParseToken(lltok::rparen
, "expected ')' in funcFlags"))
8295 /// := 'calls' ':' '(' Call [',' Call]* ')'
8296 /// Call ::= '(' 'callee' ':' GVReference
8297 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8298 bool LLParser::ParseOptionalCalls(std::vector
<FunctionSummary::EdgeTy
> &Calls
) {
8299 assert(Lex
.getKind() == lltok::kw_calls
);
8302 if (ParseToken(lltok::colon
, "expected ':' in calls") |
8303 ParseToken(lltok::lparen
, "expected '(' in calls"))
8306 IdToIndexMapType IdToIndexMap
;
8307 // Parse each call edge
8310 if (ParseToken(lltok::lparen
, "expected '(' in call") ||
8311 ParseToken(lltok::kw_callee
, "expected 'callee' in call") ||
8312 ParseToken(lltok::colon
, "expected ':'"))
8315 LocTy Loc
= Lex
.getLoc();
8317 if (ParseGVReference(VI
, GVId
))
8320 CalleeInfo::HotnessType Hotness
= CalleeInfo::HotnessType::Unknown
;
8322 if (EatIfPresent(lltok::comma
)) {
8323 // Expect either hotness or relbf
8324 if (EatIfPresent(lltok::kw_hotness
)) {
8325 if (ParseToken(lltok::colon
, "expected ':'") || ParseHotness(Hotness
))
8328 if (ParseToken(lltok::kw_relbf
, "expected relbf") ||
8329 ParseToken(lltok::colon
, "expected ':'") || ParseUInt32(RelBF
))
8333 // Keep track of the Call array index needing a forward reference.
8334 // We will save the location of the ValueInfo needing an update, but
8335 // can only do so once the std::vector is finalized.
8336 if (VI
.getRef() == FwdVIRef
)
8337 IdToIndexMap
[GVId
].push_back(std::make_pair(Calls
.size(), Loc
));
8338 Calls
.push_back(FunctionSummary::EdgeTy
{VI
, CalleeInfo(Hotness
, RelBF
)});
8340 if (ParseToken(lltok::rparen
, "expected ')' in call"))
8342 } while (EatIfPresent(lltok::comma
));
8344 // Now that the Calls vector is finalized, it is safe to save the locations
8345 // of any forward GV references that need updating later.
8346 for (auto I
: IdToIndexMap
) {
8347 for (auto P
: I
.second
) {
8348 assert(Calls
[P
.first
].first
.getRef() == FwdVIRef
&&
8349 "Forward referenced ValueInfo expected to be empty");
8350 auto FwdRef
= ForwardRefValueInfos
.insert(std::make_pair(
8351 I
.first
, std::vector
<std::pair
<ValueInfo
*, LocTy
>>()));
8352 FwdRef
.first
->second
.push_back(
8353 std::make_pair(&Calls
[P
.first
].first
, P
.second
));
8357 if (ParseToken(lltok::rparen
, "expected ')' in calls"))
8364 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
8365 bool LLParser::ParseHotness(CalleeInfo::HotnessType
&Hotness
) {
8366 switch (Lex
.getKind()) {
8367 case lltok::kw_unknown
:
8368 Hotness
= CalleeInfo::HotnessType::Unknown
;
8370 case lltok::kw_cold
:
8371 Hotness
= CalleeInfo::HotnessType::Cold
;
8373 case lltok::kw_none
:
8374 Hotness
= CalleeInfo::HotnessType::None
;
8377 Hotness
= CalleeInfo::HotnessType::Hot
;
8379 case lltok::kw_critical
:
8380 Hotness
= CalleeInfo::HotnessType::Critical
;
8383 return Error(Lex
.getLoc(), "invalid call edge hotness");
8389 /// OptionalVTableFuncs
8390 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8391 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8392 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList
&VTableFuncs
) {
8393 assert(Lex
.getKind() == lltok::kw_vTableFuncs
);
8396 if (ParseToken(lltok::colon
, "expected ':' in vTableFuncs") |
8397 ParseToken(lltok::lparen
, "expected '(' in vTableFuncs"))
8400 IdToIndexMapType IdToIndexMap
;
8401 // Parse each virtual function pair
8404 if (ParseToken(lltok::lparen
, "expected '(' in vTableFunc") ||
8405 ParseToken(lltok::kw_virtFunc
, "expected 'callee' in vTableFunc") ||
8406 ParseToken(lltok::colon
, "expected ':'"))
8409 LocTy Loc
= Lex
.getLoc();
8411 if (ParseGVReference(VI
, GVId
))
8415 if (ParseToken(lltok::comma
, "expected comma") ||
8416 ParseToken(lltok::kw_offset
, "expected offset") ||
8417 ParseToken(lltok::colon
, "expected ':'") || ParseUInt64(Offset
))
8420 // Keep track of the VTableFuncs array index needing a forward reference.
8421 // We will save the location of the ValueInfo needing an update, but
8422 // can only do so once the std::vector is finalized.
8424 IdToIndexMap
[GVId
].push_back(std::make_pair(VTableFuncs
.size(), Loc
));
8425 VTableFuncs
.push_back({VI
, Offset
});
8427 if (ParseToken(lltok::rparen
, "expected ')' in vTableFunc"))
8429 } while (EatIfPresent(lltok::comma
));
8431 // Now that the VTableFuncs vector is finalized, it is safe to save the
8432 // locations of any forward GV references that need updating later.
8433 for (auto I
: IdToIndexMap
) {
8434 for (auto P
: I
.second
) {
8435 assert(VTableFuncs
[P
.first
].FuncVI
== EmptyVI
&&
8436 "Forward referenced ValueInfo expected to be empty");
8437 auto FwdRef
= ForwardRefValueInfos
.insert(std::make_pair(
8438 I
.first
, std::vector
<std::pair
<ValueInfo
*, LocTy
>>()));
8439 FwdRef
.first
->second
.push_back(
8440 std::make_pair(&VTableFuncs
[P
.first
].FuncVI
, P
.second
));
8444 if (ParseToken(lltok::rparen
, "expected ')' in vTableFuncs"))
8451 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8452 bool LLParser::ParseOptionalRefs(std::vector
<ValueInfo
> &Refs
) {
8453 assert(Lex
.getKind() == lltok::kw_refs
);
8456 if (ParseToken(lltok::colon
, "expected ':' in refs") |
8457 ParseToken(lltok::lparen
, "expected '(' in refs"))
8460 struct ValueContext
{
8465 std::vector
<ValueContext
> VContexts
;
8466 // Parse each ref edge
8469 VC
.Loc
= Lex
.getLoc();
8470 if (ParseGVReference(VC
.VI
, VC
.GVId
))
8472 VContexts
.push_back(VC
);
8473 } while (EatIfPresent(lltok::comma
));
8475 // Sort value contexts so that ones with writeonly
8476 // and readonly ValueInfo are at the end of VContexts vector.
8477 // See FunctionSummary::specialRefCounts()
8478 llvm::sort(VContexts
, [](const ValueContext
&VC1
, const ValueContext
&VC2
) {
8479 return VC1
.VI
.getAccessSpecifier() < VC2
.VI
.getAccessSpecifier();
8482 IdToIndexMapType IdToIndexMap
;
8483 for (auto &VC
: VContexts
) {
8484 // Keep track of the Refs array index needing a forward reference.
8485 // We will save the location of the ValueInfo needing an update, but
8486 // can only do so once the std::vector is finalized.
8487 if (VC
.VI
.getRef() == FwdVIRef
)
8488 IdToIndexMap
[VC
.GVId
].push_back(std::make_pair(Refs
.size(), VC
.Loc
));
8489 Refs
.push_back(VC
.VI
);
8492 // Now that the Refs vector is finalized, it is safe to save the locations
8493 // of any forward GV references that need updating later.
8494 for (auto I
: IdToIndexMap
) {
8495 for (auto P
: I
.second
) {
8496 assert(Refs
[P
.first
].getRef() == FwdVIRef
&&
8497 "Forward referenced ValueInfo expected to be empty");
8498 auto FwdRef
= ForwardRefValueInfos
.insert(std::make_pair(
8499 I
.first
, std::vector
<std::pair
<ValueInfo
*, LocTy
>>()));
8500 FwdRef
.first
->second
.push_back(std::make_pair(&Refs
[P
.first
], P
.second
));
8504 if (ParseToken(lltok::rparen
, "expected ')' in refs"))
8510 /// OptionalTypeIdInfo
8511 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8512 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8513 /// [',' TypeCheckedLoadConstVCalls]? ')'
8514 bool LLParser::ParseOptionalTypeIdInfo(
8515 FunctionSummary::TypeIdInfo
&TypeIdInfo
) {
8516 assert(Lex
.getKind() == lltok::kw_typeIdInfo
);
8519 if (ParseToken(lltok::colon
, "expected ':' here") ||
8520 ParseToken(lltok::lparen
, "expected '(' in typeIdInfo"))
8524 switch (Lex
.getKind()) {
8525 case lltok::kw_typeTests
:
8526 if (ParseTypeTests(TypeIdInfo
.TypeTests
))
8529 case lltok::kw_typeTestAssumeVCalls
:
8530 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls
,
8531 TypeIdInfo
.TypeTestAssumeVCalls
))
8534 case lltok::kw_typeCheckedLoadVCalls
:
8535 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls
,
8536 TypeIdInfo
.TypeCheckedLoadVCalls
))
8539 case lltok::kw_typeTestAssumeConstVCalls
:
8540 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls
,
8541 TypeIdInfo
.TypeTestAssumeConstVCalls
))
8544 case lltok::kw_typeCheckedLoadConstVCalls
:
8545 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls
,
8546 TypeIdInfo
.TypeCheckedLoadConstVCalls
))
8550 return Error(Lex
.getLoc(), "invalid typeIdInfo list type");
8552 } while (EatIfPresent(lltok::comma
));
8554 if (ParseToken(lltok::rparen
, "expected ')' in typeIdInfo"))
8561 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8562 /// [',' (SummaryID | UInt64)]* ')'
8563 bool LLParser::ParseTypeTests(std::vector
<GlobalValue::GUID
> &TypeTests
) {
8564 assert(Lex
.getKind() == lltok::kw_typeTests
);
8567 if (ParseToken(lltok::colon
, "expected ':' here") ||
8568 ParseToken(lltok::lparen
, "expected '(' in typeIdInfo"))
8571 IdToIndexMapType IdToIndexMap
;
8573 GlobalValue::GUID GUID
= 0;
8574 if (Lex
.getKind() == lltok::SummaryID
) {
8575 unsigned ID
= Lex
.getUIntVal();
8576 LocTy Loc
= Lex
.getLoc();
8577 // Keep track of the TypeTests array index needing a forward reference.
8578 // We will save the location of the GUID needing an update, but
8579 // can only do so once the std::vector is finalized.
8580 IdToIndexMap
[ID
].push_back(std::make_pair(TypeTests
.size(), Loc
));
8582 } else if (ParseUInt64(GUID
))
8584 TypeTests
.push_back(GUID
);
8585 } while (EatIfPresent(lltok::comma
));
8587 // Now that the TypeTests vector is finalized, it is safe to save the
8588 // locations of any forward GV references that need updating later.
8589 for (auto I
: IdToIndexMap
) {
8590 for (auto P
: I
.second
) {
8591 assert(TypeTests
[P
.first
] == 0 &&
8592 "Forward referenced type id GUID expected to be 0");
8593 auto FwdRef
= ForwardRefTypeIds
.insert(std::make_pair(
8594 I
.first
, std::vector
<std::pair
<GlobalValue::GUID
*, LocTy
>>()));
8595 FwdRef
.first
->second
.push_back(
8596 std::make_pair(&TypeTests
[P
.first
], P
.second
));
8600 if (ParseToken(lltok::rparen
, "expected ')' in typeIdInfo"))
8607 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8608 bool LLParser::ParseVFuncIdList(
8609 lltok::Kind Kind
, std::vector
<FunctionSummary::VFuncId
> &VFuncIdList
) {
8610 assert(Lex
.getKind() == Kind
);
8613 if (ParseToken(lltok::colon
, "expected ':' here") ||
8614 ParseToken(lltok::lparen
, "expected '(' here"))
8617 IdToIndexMapType IdToIndexMap
;
8619 FunctionSummary::VFuncId VFuncId
;
8620 if (ParseVFuncId(VFuncId
, IdToIndexMap
, VFuncIdList
.size()))
8622 VFuncIdList
.push_back(VFuncId
);
8623 } while (EatIfPresent(lltok::comma
));
8625 if (ParseToken(lltok::rparen
, "expected ')' here"))
8628 // Now that the VFuncIdList vector is finalized, it is safe to save the
8629 // locations of any forward GV references that need updating later.
8630 for (auto I
: IdToIndexMap
) {
8631 for (auto P
: I
.second
) {
8632 assert(VFuncIdList
[P
.first
].GUID
== 0 &&
8633 "Forward referenced type id GUID expected to be 0");
8634 auto FwdRef
= ForwardRefTypeIds
.insert(std::make_pair(
8635 I
.first
, std::vector
<std::pair
<GlobalValue::GUID
*, LocTy
>>()));
8636 FwdRef
.first
->second
.push_back(
8637 std::make_pair(&VFuncIdList
[P
.first
].GUID
, P
.second
));
8645 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8646 bool LLParser::ParseConstVCallList(
8648 std::vector
<FunctionSummary::ConstVCall
> &ConstVCallList
) {
8649 assert(Lex
.getKind() == Kind
);
8652 if (ParseToken(lltok::colon
, "expected ':' here") ||
8653 ParseToken(lltok::lparen
, "expected '(' here"))
8656 IdToIndexMapType IdToIndexMap
;
8658 FunctionSummary::ConstVCall ConstVCall
;
8659 if (ParseConstVCall(ConstVCall
, IdToIndexMap
, ConstVCallList
.size()))
8661 ConstVCallList
.push_back(ConstVCall
);
8662 } while (EatIfPresent(lltok::comma
));
8664 if (ParseToken(lltok::rparen
, "expected ')' here"))
8667 // Now that the ConstVCallList vector is finalized, it is safe to save the
8668 // locations of any forward GV references that need updating later.
8669 for (auto I
: IdToIndexMap
) {
8670 for (auto P
: I
.second
) {
8671 assert(ConstVCallList
[P
.first
].VFunc
.GUID
== 0 &&
8672 "Forward referenced type id GUID expected to be 0");
8673 auto FwdRef
= ForwardRefTypeIds
.insert(std::make_pair(
8674 I
.first
, std::vector
<std::pair
<GlobalValue::GUID
*, LocTy
>>()));
8675 FwdRef
.first
->second
.push_back(
8676 std::make_pair(&ConstVCallList
[P
.first
].VFunc
.GUID
, P
.second
));
8684 /// ::= '(' VFuncId ',' Args ')'
8685 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall
&ConstVCall
,
8686 IdToIndexMapType
&IdToIndexMap
, unsigned Index
) {
8687 if (ParseToken(lltok::lparen
, "expected '(' here") ||
8688 ParseVFuncId(ConstVCall
.VFunc
, IdToIndexMap
, Index
))
8691 if (EatIfPresent(lltok::comma
))
8692 if (ParseArgs(ConstVCall
.Args
))
8695 if (ParseToken(lltok::rparen
, "expected ')' here"))
8702 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8703 /// 'offset' ':' UInt64 ')'
8704 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId
&VFuncId
,
8705 IdToIndexMapType
&IdToIndexMap
, unsigned Index
) {
8706 assert(Lex
.getKind() == lltok::kw_vFuncId
);
8709 if (ParseToken(lltok::colon
, "expected ':' here") ||
8710 ParseToken(lltok::lparen
, "expected '(' here"))
8713 if (Lex
.getKind() == lltok::SummaryID
) {
8715 unsigned ID
= Lex
.getUIntVal();
8716 LocTy Loc
= Lex
.getLoc();
8717 // Keep track of the array index needing a forward reference.
8718 // We will save the location of the GUID needing an update, but
8719 // can only do so once the caller's std::vector is finalized.
8720 IdToIndexMap
[ID
].push_back(std::make_pair(Index
, Loc
));
8722 } else if (ParseToken(lltok::kw_guid
, "expected 'guid' here") ||
8723 ParseToken(lltok::colon
, "expected ':' here") ||
8724 ParseUInt64(VFuncId
.GUID
))
8727 if (ParseToken(lltok::comma
, "expected ',' here") ||
8728 ParseToken(lltok::kw_offset
, "expected 'offset' here") ||
8729 ParseToken(lltok::colon
, "expected ':' here") ||
8730 ParseUInt64(VFuncId
.Offset
) ||
8731 ParseToken(lltok::rparen
, "expected ')' here"))
8738 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8739 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8740 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8741 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags
&GVFlags
) {
8742 assert(Lex
.getKind() == lltok::kw_flags
);
8745 if (ParseToken(lltok::colon
, "expected ':' here") ||
8746 ParseToken(lltok::lparen
, "expected '(' here"))
8751 switch (Lex
.getKind()) {
8752 case lltok::kw_linkage
:
8754 if (ParseToken(lltok::colon
, "expected ':'"))
8757 GVFlags
.Linkage
= parseOptionalLinkageAux(Lex
.getKind(), HasLinkage
);
8758 assert(HasLinkage
&& "Linkage not optional in summary entry");
8761 case lltok::kw_notEligibleToImport
:
8763 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Flag
))
8765 GVFlags
.NotEligibleToImport
= Flag
;
8767 case lltok::kw_live
:
8769 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Flag
))
8771 GVFlags
.Live
= Flag
;
8773 case lltok::kw_dsoLocal
:
8775 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Flag
))
8777 GVFlags
.DSOLocal
= Flag
;
8779 case lltok::kw_canAutoHide
:
8781 if (ParseToken(lltok::colon
, "expected ':'") || ParseFlag(Flag
))
8783 GVFlags
.CanAutoHide
= Flag
;
8786 return Error(Lex
.getLoc(), "expected gv flag type");
8788 } while (EatIfPresent(lltok::comma
));
8790 if (ParseToken(lltok::rparen
, "expected ')' here"))
8797 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8798 /// ',' 'writeonly' ':' Flag ')'
8799 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags
&GVarFlags
) {
8800 assert(Lex
.getKind() == lltok::kw_varFlags
);
8803 if (ParseToken(lltok::colon
, "expected ':' here") ||
8804 ParseToken(lltok::lparen
, "expected '(' here"))
8807 auto ParseRest
= [this](unsigned int &Val
) {
8809 if (ParseToken(lltok::colon
, "expected ':'"))
8811 return ParseFlag(Val
);
8816 switch (Lex
.getKind()) {
8817 case lltok::kw_readonly
:
8818 if (ParseRest(Flag
))
8820 GVarFlags
.MaybeReadOnly
= Flag
;
8822 case lltok::kw_writeonly
:
8823 if (ParseRest(Flag
))
8825 GVarFlags
.MaybeWriteOnly
= Flag
;
8828 return Error(Lex
.getLoc(), "expected gvar flag type");
8830 } while (EatIfPresent(lltok::comma
));
8831 return ParseToken(lltok::rparen
, "expected ')' here");
8835 /// ::= 'module' ':' UInt
8836 bool LLParser::ParseModuleReference(StringRef
&ModulePath
) {
8838 if (ParseToken(lltok::kw_module
, "expected 'module' here") ||
8839 ParseToken(lltok::colon
, "expected ':' here") ||
8840 ParseToken(lltok::SummaryID
, "expected module ID"))
8843 unsigned ModuleID
= Lex
.getUIntVal();
8844 auto I
= ModuleIdMap
.find(ModuleID
);
8845 // We should have already parsed all module IDs
8846 assert(I
!= ModuleIdMap
.end());
8847 ModulePath
= I
->second
;
8853 bool LLParser::ParseGVReference(ValueInfo
&VI
, unsigned &GVId
) {
8854 bool WriteOnly
= false, ReadOnly
= EatIfPresent(lltok::kw_readonly
);
8856 WriteOnly
= EatIfPresent(lltok::kw_writeonly
);
8857 if (ParseToken(lltok::SummaryID
, "expected GV ID"))
8860 GVId
= Lex
.getUIntVal();
8861 // Check if we already have a VI for this GV
8862 if (GVId
< NumberedValueInfos
.size()) {
8863 assert(NumberedValueInfos
[GVId
].getRef() != FwdVIRef
);
8864 VI
= NumberedValueInfos
[GVId
];
8866 // We will create a forward reference to the stored location.
8867 VI
= ValueInfo(false, FwdVIRef
);