1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
35 unsigned llvm::ComputeLinearIndex(Type
*Ty
,
36 const unsigned *Indices
,
37 const unsigned *IndicesEnd
,
39 // Base case: We're done.
40 if (Indices
&& Indices
== IndicesEnd
)
43 // Given a struct type, recursively traverse the elements.
44 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
45 for (StructType::element_iterator EB
= STy
->element_begin(),
47 EE
= STy
->element_end();
49 if (Indices
&& *Indices
== unsigned(EI
- EB
))
50 return ComputeLinearIndex(*EI
, Indices
+1, IndicesEnd
, CurIndex
);
51 CurIndex
= ComputeLinearIndex(*EI
, nullptr, nullptr, CurIndex
);
53 assert(!Indices
&& "Unexpected out of bound");
56 // Given an array type, recursively traverse the elements.
57 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
58 Type
*EltTy
= ATy
->getElementType();
59 unsigned NumElts
= ATy
->getNumElements();
60 // Compute the Linear offset when jumping one element of the array
61 unsigned EltLinearOffset
= ComputeLinearIndex(EltTy
, nullptr, nullptr, 0);
63 assert(*Indices
< NumElts
&& "Unexpected out of bound");
64 // If the indice is inside the array, compute the index to the requested
65 // elt and recurse inside the element with the end of the indices list
66 CurIndex
+= EltLinearOffset
* *Indices
;
67 return ComputeLinearIndex(EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
69 CurIndex
+= EltLinearOffset
*NumElts
;
72 // We haven't found the type we're looking for, so keep searching.
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
83 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
84 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
85 SmallVectorImpl
<EVT
> *MemVTs
,
86 SmallVectorImpl
<uint64_t> *Offsets
,
87 uint64_t StartingOffset
) {
88 // Given a struct type, recursively traverse the elements.
89 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
90 const StructLayout
*SL
= DL
.getStructLayout(STy
);
91 for (StructType::element_iterator EB
= STy
->element_begin(),
93 EE
= STy
->element_end();
95 ComputeValueVTs(TLI
, DL
, *EI
, ValueVTs
, MemVTs
, Offsets
,
96 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
99 // Given an array type, recursively traverse the elements.
100 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
101 Type
*EltTy
= ATy
->getElementType();
102 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
103 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
104 ComputeValueVTs(TLI
, DL
, EltTy
, ValueVTs
, MemVTs
, Offsets
,
105 StartingOffset
+ i
* EltSize
);
108 // Interpret void as zero return values.
111 // Base case: we can get an EVT for this LLVM IR type.
112 ValueVTs
.push_back(TLI
.getValueType(DL
, Ty
));
114 MemVTs
->push_back(TLI
.getMemValueType(DL
, Ty
));
116 Offsets
->push_back(StartingOffset
);
119 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
120 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
121 SmallVectorImpl
<uint64_t> *Offsets
,
122 uint64_t StartingOffset
) {
123 return ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
, /*MemVTs=*/nullptr, Offsets
,
127 void llvm::computeValueLLTs(const DataLayout
&DL
, Type
&Ty
,
128 SmallVectorImpl
<LLT
> &ValueTys
,
129 SmallVectorImpl
<uint64_t> *Offsets
,
130 uint64_t StartingOffset
) {
131 // Given a struct type, recursively traverse the elements.
132 if (StructType
*STy
= dyn_cast
<StructType
>(&Ty
)) {
133 const StructLayout
*SL
= DL
.getStructLayout(STy
);
134 for (unsigned I
= 0, E
= STy
->getNumElements(); I
!= E
; ++I
)
135 computeValueLLTs(DL
, *STy
->getElementType(I
), ValueTys
, Offsets
,
136 StartingOffset
+ SL
->getElementOffset(I
));
139 // Given an array type, recursively traverse the elements.
140 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(&Ty
)) {
141 Type
*EltTy
= ATy
->getElementType();
142 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
143 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
144 computeValueLLTs(DL
, *EltTy
, ValueTys
, Offsets
,
145 StartingOffset
+ i
* EltSize
);
148 // Interpret void as zero return values.
151 // Base case: we can get an LLT for this LLVM IR type.
152 ValueTys
.push_back(getLLTForType(Ty
, DL
));
153 if (Offsets
!= nullptr)
154 Offsets
->push_back(StartingOffset
* 8);
157 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
158 GlobalValue
*llvm::ExtractTypeInfo(Value
*V
) {
159 V
= V
->stripPointerCasts();
160 GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
);
161 GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(V
);
163 if (Var
&& Var
->getName() == "llvm.eh.catch.all.value") {
164 assert(Var
->hasInitializer() &&
165 "The EH catch-all value must have an initializer");
166 Value
*Init
= Var
->getInitializer();
167 GV
= dyn_cast
<GlobalValue
>(Init
);
168 if (!GV
) V
= cast
<ConstantPointerNull
>(Init
);
171 assert((GV
|| isa
<ConstantPointerNull
>(V
)) &&
172 "TypeInfo must be a global variable or NULL");
176 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
177 /// processed uses a memory 'm' constraint.
179 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector
&CInfos
,
180 const TargetLowering
&TLI
) {
181 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
182 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
183 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
184 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
185 if (CType
== TargetLowering::C_Memory
)
189 // Indirect operand accesses access memory.
197 /// getFCmpCondCode - Return the ISD condition code corresponding to
198 /// the given LLVM IR floating-point condition code. This includes
199 /// consideration of global floating-point math flags.
201 ISD::CondCode
llvm::getFCmpCondCode(FCmpInst::Predicate Pred
) {
203 case FCmpInst::FCMP_FALSE
: return ISD::SETFALSE
;
204 case FCmpInst::FCMP_OEQ
: return ISD::SETOEQ
;
205 case FCmpInst::FCMP_OGT
: return ISD::SETOGT
;
206 case FCmpInst::FCMP_OGE
: return ISD::SETOGE
;
207 case FCmpInst::FCMP_OLT
: return ISD::SETOLT
;
208 case FCmpInst::FCMP_OLE
: return ISD::SETOLE
;
209 case FCmpInst::FCMP_ONE
: return ISD::SETONE
;
210 case FCmpInst::FCMP_ORD
: return ISD::SETO
;
211 case FCmpInst::FCMP_UNO
: return ISD::SETUO
;
212 case FCmpInst::FCMP_UEQ
: return ISD::SETUEQ
;
213 case FCmpInst::FCMP_UGT
: return ISD::SETUGT
;
214 case FCmpInst::FCMP_UGE
: return ISD::SETUGE
;
215 case FCmpInst::FCMP_ULT
: return ISD::SETULT
;
216 case FCmpInst::FCMP_ULE
: return ISD::SETULE
;
217 case FCmpInst::FCMP_UNE
: return ISD::SETUNE
;
218 case FCmpInst::FCMP_TRUE
: return ISD::SETTRUE
;
219 default: llvm_unreachable("Invalid FCmp predicate opcode!");
223 ISD::CondCode
llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC
) {
225 case ISD::SETOEQ
: case ISD::SETUEQ
: return ISD::SETEQ
;
226 case ISD::SETONE
: case ISD::SETUNE
: return ISD::SETNE
;
227 case ISD::SETOLT
: case ISD::SETULT
: return ISD::SETLT
;
228 case ISD::SETOLE
: case ISD::SETULE
: return ISD::SETLE
;
229 case ISD::SETOGT
: case ISD::SETUGT
: return ISD::SETGT
;
230 case ISD::SETOGE
: case ISD::SETUGE
: return ISD::SETGE
;
235 /// getICmpCondCode - Return the ISD condition code corresponding to
236 /// the given LLVM IR integer condition code.
238 ISD::CondCode
llvm::getICmpCondCode(ICmpInst::Predicate Pred
) {
240 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
241 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
242 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
243 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
244 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
245 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
246 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
247 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
248 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
249 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
251 llvm_unreachable("Invalid ICmp predicate opcode!");
255 static bool isNoopBitcast(Type
*T1
, Type
*T2
,
256 const TargetLoweringBase
& TLI
) {
257 return T1
== T2
|| (T1
->isPointerTy() && T2
->isPointerTy()) ||
258 (isa
<VectorType
>(T1
) && isa
<VectorType
>(T2
) &&
259 TLI
.isTypeLegal(EVT::getEVT(T1
)) && TLI
.isTypeLegal(EVT::getEVT(T2
)));
262 /// Look through operations that will be free to find the earliest source of
265 /// @param ValLoc If V has aggegate type, we will be interested in a particular
266 /// scalar component. This records its address; the reverse of this list gives a
267 /// sequence of indices appropriate for an extractvalue to locate the important
268 /// value. This value is updated during the function and on exit will indicate
269 /// similar information for the Value returned.
271 /// @param DataBits If this function looks through truncate instructions, this
272 /// will record the smallest size attained.
273 static const Value
*getNoopInput(const Value
*V
,
274 SmallVectorImpl
<unsigned> &ValLoc
,
276 const TargetLoweringBase
&TLI
,
277 const DataLayout
&DL
) {
279 // Try to look through V1; if V1 is not an instruction, it can't be looked
281 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
282 if (!I
|| I
->getNumOperands() == 0) return V
;
283 const Value
*NoopInput
= nullptr;
285 Value
*Op
= I
->getOperand(0);
286 if (isa
<BitCastInst
>(I
)) {
287 // Look through truly no-op bitcasts.
288 if (isNoopBitcast(Op
->getType(), I
->getType(), TLI
))
290 } else if (isa
<GetElementPtrInst
>(I
)) {
291 // Look through getelementptr
292 if (cast
<GetElementPtrInst
>(I
)->hasAllZeroIndices())
294 } else if (isa
<IntToPtrInst
>(I
)) {
295 // Look through inttoptr.
296 // Make sure this isn't a truncating or extending cast. We could
297 // support this eventually, but don't bother for now.
298 if (!isa
<VectorType
>(I
->getType()) &&
299 DL
.getPointerSizeInBits() ==
300 cast
<IntegerType
>(Op
->getType())->getBitWidth())
302 } else if (isa
<PtrToIntInst
>(I
)) {
303 // Look through ptrtoint.
304 // Make sure this isn't a truncating or extending cast. We could
305 // support this eventually, but don't bother for now.
306 if (!isa
<VectorType
>(I
->getType()) &&
307 DL
.getPointerSizeInBits() ==
308 cast
<IntegerType
>(I
->getType())->getBitWidth())
310 } else if (isa
<TruncInst
>(I
) &&
311 TLI
.allowTruncateForTailCall(Op
->getType(), I
->getType())) {
312 DataBits
= std::min((uint64_t)DataBits
,
313 I
->getType()->getPrimitiveSizeInBits().getFixedSize());
315 } else if (auto CS
= ImmutableCallSite(I
)) {
316 const Value
*ReturnedOp
= CS
.getReturnedArgOperand();
317 if (ReturnedOp
&& isNoopBitcast(ReturnedOp
->getType(), I
->getType(), TLI
))
318 NoopInput
= ReturnedOp
;
319 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(V
)) {
320 // Value may come from either the aggregate or the scalar
321 ArrayRef
<unsigned> InsertLoc
= IVI
->getIndices();
322 if (ValLoc
.size() >= InsertLoc
.size() &&
323 std::equal(InsertLoc
.begin(), InsertLoc
.end(), ValLoc
.rbegin())) {
324 // The type being inserted is a nested sub-type of the aggregate; we
325 // have to remove those initial indices to get the location we're
326 // interested in for the operand.
327 ValLoc
.resize(ValLoc
.size() - InsertLoc
.size());
328 NoopInput
= IVI
->getInsertedValueOperand();
330 // The struct we're inserting into has the value we're interested in, no
331 // change of address.
334 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(V
)) {
335 // The part we're interested in will inevitably be some sub-section of the
336 // previous aggregate. Combine the two paths to obtain the true address of
338 ArrayRef
<unsigned> ExtractLoc
= EVI
->getIndices();
339 ValLoc
.append(ExtractLoc
.rbegin(), ExtractLoc
.rend());
342 // Terminate if we couldn't find anything to look through.
350 /// Return true if this scalar return value only has bits discarded on its path
351 /// from the "tail call" to the "ret". This includes the obvious noop
352 /// instructions handled by getNoopInput above as well as free truncations (or
353 /// extensions prior to the call).
354 static bool slotOnlyDiscardsData(const Value
*RetVal
, const Value
*CallVal
,
355 SmallVectorImpl
<unsigned> &RetIndices
,
356 SmallVectorImpl
<unsigned> &CallIndices
,
357 bool AllowDifferingSizes
,
358 const TargetLoweringBase
&TLI
,
359 const DataLayout
&DL
) {
361 // Trace the sub-value needed by the return value as far back up the graph as
362 // possible, in the hope that it will intersect with the value produced by the
363 // call. In the simple case with no "returned" attribute, the hope is actually
364 // that we end up back at the tail call instruction itself.
365 unsigned BitsRequired
= UINT_MAX
;
366 RetVal
= getNoopInput(RetVal
, RetIndices
, BitsRequired
, TLI
, DL
);
368 // If this slot in the value returned is undef, it doesn't matter what the
369 // call puts there, it'll be fine.
370 if (isa
<UndefValue
>(RetVal
))
373 // Now do a similar search up through the graph to find where the value
374 // actually returned by the "tail call" comes from. In the simple case without
375 // a "returned" attribute, the search will be blocked immediately and the loop
377 unsigned BitsProvided
= UINT_MAX
;
378 CallVal
= getNoopInput(CallVal
, CallIndices
, BitsProvided
, TLI
, DL
);
380 // There's no hope if we can't actually trace them to (the same part of!) the
382 if (CallVal
!= RetVal
|| CallIndices
!= RetIndices
)
385 // However, intervening truncates may have made the call non-tail. Make sure
386 // all the bits that are needed by the "ret" have been provided by the "tail
387 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
389 if (BitsProvided
< BitsRequired
||
390 (!AllowDifferingSizes
&& BitsProvided
!= BitsRequired
))
396 /// For an aggregate type, determine whether a given index is within bounds or
398 static bool indexReallyValid(CompositeType
*T
, unsigned Idx
) {
399 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
400 return Idx
< AT
->getNumElements();
402 return Idx
< cast
<StructType
>(T
)->getNumElements();
405 /// Move the given iterators to the next leaf type in depth first traversal.
407 /// Performs a depth-first traversal of the type as specified by its arguments,
408 /// stopping at the next leaf node (which may be a legitimate scalar type or an
409 /// empty struct or array).
411 /// @param SubTypes List of the partial components making up the type from
412 /// outermost to innermost non-empty aggregate. The element currently
413 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
415 /// @param Path Set of extractvalue indices leading from the outermost type
416 /// (SubTypes[0]) to the leaf node currently represented.
418 /// @returns true if a new type was found, false otherwise. Calling this
419 /// function again on a finished iterator will repeatedly return
420 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
421 /// aggregate or a non-aggregate
422 static bool advanceToNextLeafType(SmallVectorImpl
<CompositeType
*> &SubTypes
,
423 SmallVectorImpl
<unsigned> &Path
) {
424 // First march back up the tree until we can successfully increment one of the
425 // coordinates in Path.
426 while (!Path
.empty() && !indexReallyValid(SubTypes
.back(), Path
.back() + 1)) {
431 // If we reached the top, then the iterator is done.
435 // We know there's *some* valid leaf now, so march back down the tree picking
436 // out the left-most element at each node.
438 Type
*DeeperType
= SubTypes
.back()->getTypeAtIndex(Path
.back());
439 while (DeeperType
->isAggregateType()) {
440 CompositeType
*CT
= cast
<CompositeType
>(DeeperType
);
441 if (!indexReallyValid(CT
, 0))
444 SubTypes
.push_back(CT
);
447 DeeperType
= CT
->getTypeAtIndex(0U);
453 /// Find the first non-empty, scalar-like type in Next and setup the iterator
456 /// Assuming Next is an aggregate of some kind, this function will traverse the
457 /// tree from left to right (i.e. depth-first) looking for the first
458 /// non-aggregate type which will play a role in function return.
460 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
461 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
462 /// i32 in that type.
463 static bool firstRealType(Type
*Next
,
464 SmallVectorImpl
<CompositeType
*> &SubTypes
,
465 SmallVectorImpl
<unsigned> &Path
) {
466 // First initialise the iterator components to the first "leaf" node
467 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
468 // despite nominally being an aggregate).
469 while (Next
->isAggregateType() &&
470 indexReallyValid(cast
<CompositeType
>(Next
), 0)) {
471 SubTypes
.push_back(cast
<CompositeType
>(Next
));
473 Next
= cast
<CompositeType
>(Next
)->getTypeAtIndex(0U);
476 // If there's no Path now, Next was originally scalar already (or empty
477 // leaf). We're done.
481 // Otherwise, use normal iteration to keep looking through the tree until we
482 // find a non-aggregate type.
483 while (SubTypes
.back()->getTypeAtIndex(Path
.back())->isAggregateType()) {
484 if (!advanceToNextLeafType(SubTypes
, Path
))
491 /// Set the iterator data-structures to the next non-empty, non-aggregate
493 static bool nextRealType(SmallVectorImpl
<CompositeType
*> &SubTypes
,
494 SmallVectorImpl
<unsigned> &Path
) {
496 if (!advanceToNextLeafType(SubTypes
, Path
))
499 assert(!Path
.empty() && "found a leaf but didn't set the path?");
500 } while (SubTypes
.back()->getTypeAtIndex(Path
.back())->isAggregateType());
506 /// Test if the given instruction is in a position to be optimized
507 /// with a tail-call. This roughly means that it's in a block with
508 /// a return and there's nothing that needs to be scheduled
509 /// between it and the return.
511 /// This function only tests target-independent requirements.
512 bool llvm::isInTailCallPosition(ImmutableCallSite CS
, const TargetMachine
&TM
) {
513 const Instruction
*I
= CS
.getInstruction();
514 const BasicBlock
*ExitBB
= I
->getParent();
515 const Instruction
*Term
= ExitBB
->getTerminator();
516 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
518 // The block must end in a return statement or unreachable.
520 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
521 // an unreachable, for now. The way tailcall optimization is currently
522 // implemented means it will add an epilogue followed by a jump. That is
523 // not profitable. Also, if the callee is a special function (e.g.
524 // longjmp on x86), it can end up causing miscompilation that has not
525 // been fully understood.
527 ((!TM
.Options
.GuaranteedTailCallOpt
&&
528 CS
.getCallingConv() != CallingConv::Tail
) || !isa
<UnreachableInst
>(Term
)))
531 // If I will have a chain, make sure no other instruction that will have a
532 // chain interposes between I and the return.
533 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory() ||
534 !isSafeToSpeculativelyExecute(I
))
535 for (BasicBlock::const_iterator BBI
= std::prev(ExitBB
->end(), 2);; --BBI
) {
538 // Debug info intrinsics do not get in the way of tail call optimization.
539 if (isa
<DbgInfoIntrinsic
>(BBI
))
541 // A lifetime end or assume intrinsic should not stop tail call
543 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(BBI
))
544 if (II
->getIntrinsicID() == Intrinsic::lifetime_end
||
545 II
->getIntrinsicID() == Intrinsic::assume
)
547 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
548 !isSafeToSpeculativelyExecute(&*BBI
))
552 const Function
*F
= ExitBB
->getParent();
553 return returnTypeIsEligibleForTailCall(
554 F
, I
, Ret
, *TM
.getSubtargetImpl(*F
)->getTargetLowering());
557 bool llvm::attributesPermitTailCall(const Function
*F
, const Instruction
*I
,
558 const ReturnInst
*Ret
,
559 const TargetLoweringBase
&TLI
,
560 bool *AllowDifferingSizes
) {
561 // ADS may be null, so don't write to it directly.
563 bool &ADS
= AllowDifferingSizes
? *AllowDifferingSizes
: DummyADS
;
566 AttrBuilder
CallerAttrs(F
->getAttributes(), AttributeList::ReturnIndex
);
567 AttrBuilder
CalleeAttrs(cast
<CallInst
>(I
)->getAttributes(),
568 AttributeList::ReturnIndex
);
570 // NoAlias and NonNull are completely benign as far as calling convention
571 // goes, they shouldn't affect whether the call is a tail call.
572 CallerAttrs
.removeAttribute(Attribute::NoAlias
);
573 CalleeAttrs
.removeAttribute(Attribute::NoAlias
);
574 CallerAttrs
.removeAttribute(Attribute::NonNull
);
575 CalleeAttrs
.removeAttribute(Attribute::NonNull
);
577 if (CallerAttrs
.contains(Attribute::ZExt
)) {
578 if (!CalleeAttrs
.contains(Attribute::ZExt
))
582 CallerAttrs
.removeAttribute(Attribute::ZExt
);
583 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
584 } else if (CallerAttrs
.contains(Attribute::SExt
)) {
585 if (!CalleeAttrs
.contains(Attribute::SExt
))
589 CallerAttrs
.removeAttribute(Attribute::SExt
);
590 CalleeAttrs
.removeAttribute(Attribute::SExt
);
593 // Drop sext and zext return attributes if the result is not used.
594 // This enables tail calls for code like:
596 // define void @caller() {
598 // %unused_result = tail call zeroext i1 @callee()
599 // br label %retlabel
603 if (I
->use_empty()) {
604 CalleeAttrs
.removeAttribute(Attribute::SExt
);
605 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
608 // If they're still different, there's some facet we don't understand
609 // (currently only "inreg", but in future who knows). It may be OK but the
610 // only safe option is to reject the tail call.
611 return CallerAttrs
== CalleeAttrs
;
614 bool llvm::returnTypeIsEligibleForTailCall(const Function
*F
,
615 const Instruction
*I
,
616 const ReturnInst
*Ret
,
617 const TargetLoweringBase
&TLI
) {
618 // If the block ends with a void return or unreachable, it doesn't matter
619 // what the call's return type is.
620 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
622 // If the return value is undef, it doesn't matter what the call's
624 if (isa
<UndefValue
>(Ret
->getOperand(0))) return true;
626 // Make sure the attributes attached to each return are compatible.
627 bool AllowDifferingSizes
;
628 if (!attributesPermitTailCall(F
, I
, Ret
, TLI
, &AllowDifferingSizes
))
631 const Value
*RetVal
= Ret
->getOperand(0), *CallVal
= I
;
632 // Intrinsic like llvm.memcpy has no return value, but the expanded
633 // libcall may or may not have return value. On most platforms, it
634 // will be expanded as memcpy in libc, which returns the first
635 // argument. On other platforms like arm-none-eabi, memcpy may be
636 // expanded as library call without return value, like __aeabi_memcpy.
637 const CallInst
*Call
= cast
<CallInst
>(I
);
638 if (Function
*F
= Call
->getCalledFunction()) {
639 Intrinsic::ID IID
= F
->getIntrinsicID();
640 if (((IID
== Intrinsic::memcpy
&&
641 TLI
.getLibcallName(RTLIB::MEMCPY
) == StringRef("memcpy")) ||
642 (IID
== Intrinsic::memmove
&&
643 TLI
.getLibcallName(RTLIB::MEMMOVE
) == StringRef("memmove")) ||
644 (IID
== Intrinsic::memset
&&
645 TLI
.getLibcallName(RTLIB::MEMSET
) == StringRef("memset"))) &&
646 RetVal
== Call
->getArgOperand(0))
650 SmallVector
<unsigned, 4> RetPath
, CallPath
;
651 SmallVector
<CompositeType
*, 4> RetSubTypes
, CallSubTypes
;
653 bool RetEmpty
= !firstRealType(RetVal
->getType(), RetSubTypes
, RetPath
);
654 bool CallEmpty
= !firstRealType(CallVal
->getType(), CallSubTypes
, CallPath
);
656 // Nothing's actually returned, it doesn't matter what the callee put there
657 // it's a valid tail call.
661 // Iterate pairwise through each of the value types making up the tail call
662 // and the corresponding return. For each one we want to know whether it's
663 // essentially going directly from the tail call to the ret, via operations
664 // that end up not generating any code.
666 // We allow a certain amount of covariance here. For example it's permitted
667 // for the tail call to define more bits than the ret actually cares about
668 // (e.g. via a truncate).
671 // We've exhausted the values produced by the tail call instruction, the
672 // rest are essentially undef. The type doesn't really matter, but we need
674 Type
*SlotType
= RetSubTypes
.back()->getTypeAtIndex(RetPath
.back());
675 CallVal
= UndefValue::get(SlotType
);
678 // The manipulations performed when we're looking through an insertvalue or
679 // an extractvalue would happen at the front of the RetPath list, so since
680 // we have to copy it anyway it's more efficient to create a reversed copy.
681 SmallVector
<unsigned, 4> TmpRetPath(RetPath
.rbegin(), RetPath
.rend());
682 SmallVector
<unsigned, 4> TmpCallPath(CallPath
.rbegin(), CallPath
.rend());
684 // Finally, we can check whether the value produced by the tail call at this
685 // index is compatible with the value we return.
686 if (!slotOnlyDiscardsData(RetVal
, CallVal
, TmpRetPath
, TmpCallPath
,
687 AllowDifferingSizes
, TLI
,
688 F
->getParent()->getDataLayout()))
691 CallEmpty
= !nextRealType(CallSubTypes
, CallPath
);
692 } while(nextRealType(RetSubTypes
, RetPath
));
697 static void collectEHScopeMembers(
698 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
, int EHScope
,
699 const MachineBasicBlock
*MBB
) {
700 SmallVector
<const MachineBasicBlock
*, 16> Worklist
= {MBB
};
701 while (!Worklist
.empty()) {
702 const MachineBasicBlock
*Visiting
= Worklist
.pop_back_val();
703 // Don't follow blocks which start new scopes.
704 if (Visiting
->isEHPad() && Visiting
!= MBB
)
707 // Add this MBB to our scope.
708 auto P
= EHScopeMembership
.insert(std::make_pair(Visiting
, EHScope
));
710 // Don't revisit blocks.
712 assert(P
.first
->second
== EHScope
&& "MBB is part of two scopes!");
716 // Returns are boundaries where scope transfer can occur, don't follow
718 if (Visiting
->isEHScopeReturnBlock())
721 for (const MachineBasicBlock
*Succ
: Visiting
->successors())
722 Worklist
.push_back(Succ
);
726 DenseMap
<const MachineBasicBlock
*, int>
727 llvm::getEHScopeMembership(const MachineFunction
&MF
) {
728 DenseMap
<const MachineBasicBlock
*, int> EHScopeMembership
;
730 // We don't have anything to do if there aren't any EH pads.
731 if (!MF
.hasEHScopes())
732 return EHScopeMembership
;
734 int EntryBBNumber
= MF
.front().getNumber();
735 bool IsSEH
= isAsynchronousEHPersonality(
736 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
738 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
739 SmallVector
<const MachineBasicBlock
*, 16> EHScopeBlocks
;
740 SmallVector
<const MachineBasicBlock
*, 16> UnreachableBlocks
;
741 SmallVector
<const MachineBasicBlock
*, 16> SEHCatchPads
;
742 SmallVector
<std::pair
<const MachineBasicBlock
*, int>, 16> CatchRetSuccessors
;
743 for (const MachineBasicBlock
&MBB
: MF
) {
744 if (MBB
.isEHScopeEntry()) {
745 EHScopeBlocks
.push_back(&MBB
);
746 } else if (IsSEH
&& MBB
.isEHPad()) {
747 SEHCatchPads
.push_back(&MBB
);
748 } else if (MBB
.pred_empty()) {
749 UnreachableBlocks
.push_back(&MBB
);
752 MachineBasicBlock::const_iterator MBBI
= MBB
.getFirstTerminator();
754 // CatchPads are not scopes for SEH so do not consider CatchRet to
755 // transfer control to another scope.
756 if (MBBI
== MBB
.end() || MBBI
->getOpcode() != TII
->getCatchReturnOpcode())
759 // FIXME: SEH CatchPads are not necessarily in the parent function:
760 // they could be inside a finally block.
761 const MachineBasicBlock
*Successor
= MBBI
->getOperand(0).getMBB();
762 const MachineBasicBlock
*SuccessorColor
= MBBI
->getOperand(1).getMBB();
763 CatchRetSuccessors
.push_back(
764 {Successor
, IsSEH
? EntryBBNumber
: SuccessorColor
->getNumber()});
767 // We don't have anything to do if there aren't any EH pads.
768 if (EHScopeBlocks
.empty())
769 return EHScopeMembership
;
771 // Identify all the basic blocks reachable from the function entry.
772 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, &MF
.front());
773 // All blocks not part of a scope are in the parent function.
774 for (const MachineBasicBlock
*MBB
: UnreachableBlocks
)
775 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
776 // Next, identify all the blocks inside the scopes.
777 for (const MachineBasicBlock
*MBB
: EHScopeBlocks
)
778 collectEHScopeMembers(EHScopeMembership
, MBB
->getNumber(), MBB
);
779 // SEH CatchPads aren't really scopes, handle them separately.
780 for (const MachineBasicBlock
*MBB
: SEHCatchPads
)
781 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
782 // Finally, identify all the targets of a catchret.
783 for (std::pair
<const MachineBasicBlock
*, int> CatchRetPair
:
785 collectEHScopeMembers(EHScopeMembership
, CatchRetPair
.second
,
787 return EHScopeMembership
;