1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
67 #define DEBUG_TYPE "branch-folder"
69 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts
, "Number of branches optimized");
71 STATISTIC(NumTailMerge
, "Number of block tails merged");
72 STATISTIC(NumHoist
, "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls
, "Number of tail calls optimized");
75 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
76 cl::init(cl::BOU_UNSET
), cl::Hidden
);
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt
<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81 cl::desc("Max number of predecessors to consider tail merging"),
82 cl::init(150), cl::Hidden
);
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt
<unsigned>
87 TailMergeSize("tail-merge-size",
88 cl::desc("Min number of instructions to consider tail merging"),
89 cl::init(3), cl::Hidden
);
93 /// BranchFolderPass - Wrap branch folder in a machine function pass.
94 class BranchFolderPass
: public MachineFunctionPass
{
98 explicit BranchFolderPass(): MachineFunctionPass(ID
) {}
100 bool runOnMachineFunction(MachineFunction
&MF
) override
;
102 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
103 AU
.addRequired
<MachineBlockFrequencyInfo
>();
104 AU
.addRequired
<MachineBranchProbabilityInfo
>();
105 AU
.addRequired
<TargetPassConfig
>();
106 MachineFunctionPass::getAnalysisUsage(AU
);
110 } // end anonymous namespace
112 char BranchFolderPass::ID
= 0;
114 char &llvm::BranchFolderPassID
= BranchFolderPass::ID
;
116 INITIALIZE_PASS(BranchFolderPass
, DEBUG_TYPE
,
117 "Control Flow Optimizer", false, false)
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction
&MF
) {
120 if (skipFunction(MF
.getFunction()))
123 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
124 // TailMerge can create jump into if branches that make CFG irreducible for
125 // HW that requires structurized CFG.
126 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
127 PassConfig
->getEnableTailMerge();
128 BranchFolder::MBFIWrapper
MBBFreqInfo(
129 getAnalysis
<MachineBlockFrequencyInfo
>());
130 BranchFolder
Folder(EnableTailMerge
, /*CommonHoist=*/true, MBBFreqInfo
,
131 getAnalysis
<MachineBranchProbabilityInfo
>());
132 auto *MMIWP
= getAnalysisIfAvailable
<MachineModuleInfoWrapperPass
>();
133 return Folder
.OptimizeFunction(
134 MF
, MF
.getSubtarget().getInstrInfo(), MF
.getSubtarget().getRegisterInfo(),
135 MMIWP
? &MMIWP
->getMMI() : nullptr);
138 BranchFolder::BranchFolder(bool defaultEnableTailMerge
, bool CommonHoist
,
139 MBFIWrapper
&FreqInfo
,
140 const MachineBranchProbabilityInfo
&ProbInfo
,
141 unsigned MinTailLength
)
142 : EnableHoistCommonCode(CommonHoist
), MinCommonTailLength(MinTailLength
),
143 MBBFreqInfo(FreqInfo
), MBPI(ProbInfo
) {
144 if (MinCommonTailLength
== 0)
145 MinCommonTailLength
= TailMergeSize
;
146 switch (FlagEnableTailMerge
) {
147 case cl::BOU_UNSET
: EnableTailMerge
= defaultEnableTailMerge
; break;
148 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
149 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
154 assert(MBB
->pred_empty() && "MBB must be dead!");
155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB
);
157 MachineFunction
*MF
= MBB
->getParent();
158 // drop all successors.
159 while (!MBB
->succ_empty())
160 MBB
->removeSuccessor(MBB
->succ_end()-1);
162 // Avoid matching if this pointer gets reused.
163 TriedMerging
.erase(MBB
);
165 // Update call site info.
166 std::for_each(MBB
->begin(), MBB
->end(), [MF
](const MachineInstr
&MI
) {
167 if (MI
.isCall(MachineInstr::IgnoreBundle
))
168 MF
->eraseCallSiteInfo(&MI
);
172 EHScopeMembership
.erase(MBB
);
174 MLI
->removeBlock(MBB
);
177 bool BranchFolder::OptimizeFunction(MachineFunction
&MF
,
178 const TargetInstrInfo
*tii
,
179 const TargetRegisterInfo
*tri
,
180 MachineModuleInfo
*mmi
,
181 MachineLoopInfo
*mli
, bool AfterPlacement
) {
182 if (!tii
) return false;
184 TriedMerging
.clear();
186 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
187 AfterBlockPlacement
= AfterPlacement
;
194 UpdateLiveIns
= MRI
.tracksLiveness() && TRI
->trackLivenessAfterRegAlloc(MF
);
196 MRI
.invalidateLiveness();
198 // Fix CFG. The later algorithms expect it to be right.
199 bool MadeChange
= false;
200 for (MachineBasicBlock
&MBB
: MF
) {
201 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
202 SmallVector
<MachineOperand
, 4> Cond
;
203 if (!TII
->analyzeBranch(MBB
, TBB
, FBB
, Cond
, true))
204 MadeChange
|= MBB
.CorrectExtraCFGEdges(TBB
, FBB
, !Cond
.empty());
207 // Recalculate EH scope membership.
208 EHScopeMembership
= getEHScopeMembership(MF
);
210 bool MadeChangeThisIteration
= true;
211 while (MadeChangeThisIteration
) {
212 MadeChangeThisIteration
= TailMergeBlocks(MF
);
213 // No need to clean up if tail merging does not change anything after the
215 if (!AfterBlockPlacement
|| MadeChangeThisIteration
)
216 MadeChangeThisIteration
|= OptimizeBranches(MF
);
217 if (EnableHoistCommonCode
)
218 MadeChangeThisIteration
|= HoistCommonCode(MF
);
219 MadeChange
|= MadeChangeThisIteration
;
222 // See if any jump tables have become dead as the code generator
224 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
228 // Walk the function to find jump tables that are live.
229 BitVector
JTIsLive(JTI
->getJumpTables().size());
230 for (const MachineBasicBlock
&BB
: MF
) {
231 for (const MachineInstr
&I
: BB
)
232 for (const MachineOperand
&Op
: I
.operands()) {
233 if (!Op
.isJTI()) continue;
235 // Remember that this JT is live.
236 JTIsLive
.set(Op
.getIndex());
240 // Finally, remove dead jump tables. This happens when the
241 // indirect jump was unreachable (and thus deleted).
242 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
243 if (!JTIsLive
.test(i
)) {
244 JTI
->RemoveJumpTable(i
);
251 //===----------------------------------------------------------------------===//
252 // Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr
&MI
) {
257 unsigned Hash
= MI
.getOpcode();
258 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
259 const MachineOperand
&Op
= MI
.getOperand(i
);
261 // Merge in bits from the operand if easy. We can't use MachineOperand's
262 // hash_code here because it's not deterministic and we sort by hash value
264 unsigned OperandHash
= 0;
265 switch (Op
.getType()) {
266 case MachineOperand::MO_Register
:
267 OperandHash
= Op
.getReg();
269 case MachineOperand::MO_Immediate
:
270 OperandHash
= Op
.getImm();
272 case MachineOperand::MO_MachineBasicBlock
:
273 OperandHash
= Op
.getMBB()->getNumber();
275 case MachineOperand::MO_FrameIndex
:
276 case MachineOperand::MO_ConstantPoolIndex
:
277 case MachineOperand::MO_JumpTableIndex
:
278 OperandHash
= Op
.getIndex();
280 case MachineOperand::MO_GlobalAddress
:
281 case MachineOperand::MO_ExternalSymbol
:
282 // Global address / external symbol are too hard, don't bother, but do
283 // pull in the offset.
284 OperandHash
= Op
.getOffset();
290 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
& 31);
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock
&MBB
) {
297 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr();
301 return HashMachineInstr(*I
);
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr
&MI
) {
306 return !(MI
.isDebugInstr() || MI
.isCFIInstruction());
309 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
310 /// of instructions they actually have in common together at their end. Return
311 /// iterators for the first shared instruction in each block.
312 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
313 MachineBasicBlock
*MBB2
,
314 MachineBasicBlock::iterator
&I1
,
315 MachineBasicBlock::iterator
&I2
) {
319 unsigned TailLen
= 0;
320 while (I1
!= MBB1
->begin() && I2
!= MBB2
->begin()) {
322 // Skip debugging pseudos; necessary to avoid changing the code.
323 while (!countsAsInstruction(*I1
)) {
324 if (I1
==MBB1
->begin()) {
325 while (!countsAsInstruction(*I2
)) {
326 if (I2
==MBB2
->begin()) {
327 // I1==DBG at begin; I2==DBG at begin
328 goto SkipTopCFIAndReturn
;
333 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
334 goto SkipTopCFIAndReturn
;
338 // I1==first (untested) non-DBG preceding known match
339 while (!countsAsInstruction(*I2
)) {
340 if (I2
==MBB2
->begin()) {
342 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
343 goto SkipTopCFIAndReturn
;
347 // I1, I2==first (untested) non-DBGs preceding known match
348 if (!I1
->isIdenticalTo(*I2
) ||
349 // FIXME: This check is dubious. It's used to get around a problem where
350 // people incorrectly expect inline asm directives to remain in the same
351 // relative order. This is untenable because normal compiler
352 // optimizations (like this one) may reorder and/or merge these
360 // Back past possible debugging pseudos at beginning of block. This matters
361 // when one block differs from the other only by whether debugging pseudos
362 // are present at the beginning. (This way, the various checks later for
363 // I1==MBB1->begin() work as expected.)
364 if (I1
== MBB1
->begin() && I2
!= MBB2
->begin()) {
366 while (I2
->isDebugInstr()) {
367 if (I2
== MBB2
->begin())
373 if (I2
== MBB2
->begin() && I1
!= MBB1
->begin()) {
375 while (I1
->isDebugInstr()) {
376 if (I1
== MBB1
->begin())
384 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
385 // I1 and I2 are non-identical when compared and then one or both of them ends
386 // up pointing to a CFI instruction after being incremented. For example:
391 ADD32ri8 <- last common instruction
397 ADD32ri8 <- last common instruction
400 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
401 // incrementing the iterators, I1 will point to ADD, however I2 will point to
402 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
403 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
405 while (I1
!= MBB1
->end() && I1
->isCFIInstruction()) {
409 while (I2
!= MBB2
->end() && I2
->isCFIInstruction()) {
416 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
417 MachineBasicBlock
&NewDest
) {
419 // OldInst should always point to an instruction.
420 MachineBasicBlock
&OldMBB
= *OldInst
->getParent();
422 LiveRegs
.addLiveOuts(OldMBB
);
423 // Move backward to the place where will insert the jump.
424 MachineBasicBlock::iterator I
= OldMBB
.end();
427 LiveRegs
.stepBackward(*I
);
428 } while (I
!= OldInst
);
430 // Merging the tails may have switched some undef operand to non-undef ones.
431 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
433 for (MachineBasicBlock::RegisterMaskPair P
: NewDest
.liveins()) {
434 // We computed the liveins with computeLiveIn earlier and should only see
436 assert(P
.LaneMask
== LaneBitmask::getAll() &&
437 "Can only handle full register.");
438 MCPhysReg Reg
= P
.PhysReg
;
439 if (!LiveRegs
.available(*MRI
, Reg
))
442 BuildMI(OldMBB
, OldInst
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
), Reg
);
446 TII
->ReplaceTailWithBranchTo(OldInst
, &NewDest
);
450 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
451 MachineBasicBlock::iterator BBI1
,
452 const BasicBlock
*BB
) {
453 if (!TII
->isLegalToSplitMBBAt(CurMBB
, BBI1
))
456 MachineFunction
&MF
= *CurMBB
.getParent();
458 // Create the fall-through block.
459 MachineFunction::iterator MBBI
= CurMBB
.getIterator();
460 MachineBasicBlock
*NewMBB
= MF
.CreateMachineBasicBlock(BB
);
461 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
463 // Move all the successors of this block to the specified block.
464 NewMBB
->transferSuccessors(&CurMBB
);
466 // Add an edge from CurMBB to NewMBB for the fall-through.
467 CurMBB
.addSuccessor(NewMBB
);
469 // Splice the code over.
470 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
472 // NewMBB belongs to the same loop as CurMBB.
474 if (MachineLoop
*ML
= MLI
->getLoopFor(&CurMBB
))
475 ML
->addBasicBlockToLoop(NewMBB
, MLI
->getBase());
477 // NewMBB inherits CurMBB's block frequency.
478 MBBFreqInfo
.setBlockFreq(NewMBB
, MBBFreqInfo
.getBlockFreq(&CurMBB
));
481 computeAndAddLiveIns(LiveRegs
, *NewMBB
);
483 // Add the new block to the EH scope.
484 const auto &EHScopeI
= EHScopeMembership
.find(&CurMBB
);
485 if (EHScopeI
!= EHScopeMembership
.end()) {
486 auto n
= EHScopeI
->second
;
487 EHScopeMembership
[NewMBB
] = n
;
493 /// EstimateRuntime - Make a rough estimate for how long it will take to run
494 /// the specified code.
495 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
496 MachineBasicBlock::iterator E
) {
498 for (; I
!= E
; ++I
) {
499 if (!countsAsInstruction(*I
))
503 else if (I
->mayLoad() || I
->mayStore())
511 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
512 // branches temporarily for tail merging). In the case where CurMBB ends
513 // with a conditional branch to the next block, optimize by reversing the
514 // test and conditionally branching to SuccMBB instead.
515 static void FixTail(MachineBasicBlock
*CurMBB
, MachineBasicBlock
*SuccBB
,
516 const TargetInstrInfo
*TII
) {
517 MachineFunction
*MF
= CurMBB
->getParent();
518 MachineFunction::iterator I
= std::next(MachineFunction::iterator(CurMBB
));
519 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
520 SmallVector
<MachineOperand
, 4> Cond
;
521 DebugLoc dl
= CurMBB
->findBranchDebugLoc();
522 if (I
!= MF
->end() && !TII
->analyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
523 MachineBasicBlock
*NextBB
= &*I
;
524 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
525 if (!TII
->reverseBranchCondition(Cond
)) {
526 TII
->removeBranch(*CurMBB
);
527 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr, Cond
, dl
);
532 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr,
533 SmallVector
<MachineOperand
, 0>(), dl
);
537 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt
&o
) const {
538 if (getHash() < o
.getHash())
540 if (getHash() > o
.getHash())
542 if (getBlock()->getNumber() < o
.getBlock()->getNumber())
544 if (getBlock()->getNumber() > o
.getBlock()->getNumber())
546 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
547 // an object with itself.
548 #ifndef _GLIBCXX_DEBUG
549 llvm_unreachable("Predecessor appears twice");
556 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock
*MBB
) const {
557 auto I
= MergedBBFreq
.find(MBB
);
559 if (I
!= MergedBBFreq
.end())
562 return MBFI
.getBlockFreq(MBB
);
565 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock
*MBB
,
567 MergedBBFreq
[MBB
] = F
;
571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
572 const MachineBasicBlock
*MBB
) const {
573 return MBFI
.printBlockFreq(OS
, getBlockFreq(MBB
));
577 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
578 const BlockFrequency Freq
) const {
579 return MBFI
.printBlockFreq(OS
, Freq
);
582 void BranchFolder::MBFIWrapper::view(const Twine
&Name
, bool isSimple
) {
583 MBFI
.view(Name
, isSimple
);
587 BranchFolder::MBFIWrapper::getEntryFreq() const {
588 return MBFI
.getEntryFreq();
591 /// CountTerminators - Count the number of terminators in the given
592 /// block and set I to the position of the first non-terminator, if there
593 /// is one, or MBB->end() otherwise.
594 static unsigned CountTerminators(MachineBasicBlock
*MBB
,
595 MachineBasicBlock::iterator
&I
) {
597 unsigned NumTerms
= 0;
599 if (I
== MBB
->begin()) {
604 if (!I
->isTerminator()) break;
610 /// A no successor, non-return block probably ends in unreachable and is cold.
611 /// Also consider a block that ends in an indirect branch to be a return block,
612 /// since many targets use plain indirect branches to return.
613 static bool blockEndsInUnreachable(const MachineBasicBlock
*MBB
) {
614 if (!MBB
->succ_empty())
618 return !(MBB
->back().isReturn() || MBB
->back().isIndirectBranch());
621 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
622 /// and decide if it would be profitable to merge those tails. Return the
623 /// length of the common tail and iterators to the first common instruction
625 /// MBB1, MBB2 The blocks to check
626 /// MinCommonTailLength Minimum size of tail block to be merged.
627 /// CommonTailLen Out parameter to record the size of the shared tail between
629 /// I1, I2 Iterator references that will be changed to point to the first
630 /// instruction in the common tail shared by MBB1,MBB2
631 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
632 /// relative to SuccBB
633 /// PredBB The layout predecessor of SuccBB, if any.
634 /// EHScopeMembership map from block to EH scope #.
635 /// AfterPlacement True if we are merging blocks after layout. Stricter
636 /// thresholds apply to prevent undoing tail-duplication.
638 ProfitableToMerge(MachineBasicBlock
*MBB1
, MachineBasicBlock
*MBB2
,
639 unsigned MinCommonTailLength
, unsigned &CommonTailLen
,
640 MachineBasicBlock::iterator
&I1
,
641 MachineBasicBlock::iterator
&I2
, MachineBasicBlock
*SuccBB
,
642 MachineBasicBlock
*PredBB
,
643 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
,
644 bool AfterPlacement
) {
645 // It is never profitable to tail-merge blocks from two different EH scopes.
646 if (!EHScopeMembership
.empty()) {
647 auto EHScope1
= EHScopeMembership
.find(MBB1
);
648 assert(EHScope1
!= EHScopeMembership
.end());
649 auto EHScope2
= EHScopeMembership
.find(MBB2
);
650 assert(EHScope2
!= EHScopeMembership
.end());
651 if (EHScope1
->second
!= EHScope2
->second
)
655 CommonTailLen
= ComputeCommonTailLength(MBB1
, MBB2
, I1
, I2
);
656 if (CommonTailLen
== 0)
658 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1
)
659 << " and " << printMBBReference(*MBB2
) << " is "
660 << CommonTailLen
<< '\n');
662 // It's almost always profitable to merge any number of non-terminator
663 // instructions with the block that falls through into the common successor.
664 // This is true only for a single successor. For multiple successors, we are
665 // trading a conditional branch for an unconditional one.
666 // TODO: Re-visit successor size for non-layout tail merging.
667 if ((MBB1
== PredBB
|| MBB2
== PredBB
) &&
668 (!AfterPlacement
|| MBB1
->succ_size() == 1)) {
669 MachineBasicBlock::iterator I
;
670 unsigned NumTerms
= CountTerminators(MBB1
== PredBB
? MBB2
: MBB1
, I
);
671 if (CommonTailLen
> NumTerms
)
675 // If these are identical non-return blocks with no successors, merge them.
676 // Such blocks are typically cold calls to noreturn functions like abort, and
677 // are unlikely to become a fallthrough target after machine block placement.
678 // Tail merging these blocks is unlikely to create additional unconditional
679 // branches, and will reduce the size of this cold code.
680 if (I1
== MBB1
->begin() && I2
== MBB2
->begin() &&
681 blockEndsInUnreachable(MBB1
) && blockEndsInUnreachable(MBB2
))
684 // If one of the blocks can be completely merged and happens to be in
685 // a position where the other could fall through into it, merge any number
686 // of instructions, because it can be done without a branch.
687 // TODO: If the blocks are not adjacent, move one of them so that they are?
688 if (MBB1
->isLayoutSuccessor(MBB2
) && I2
== MBB2
->begin())
690 if (MBB2
->isLayoutSuccessor(MBB1
) && I1
== MBB1
->begin())
693 // If both blocks are identical and end in a branch, merge them unless they
694 // both have a fallthrough predecessor and successor.
695 // We can only do this after block placement because it depends on whether
696 // there are fallthroughs, and we don't know until after layout.
697 if (AfterPlacement
&& I1
== MBB1
->begin() && I2
== MBB2
->begin()) {
698 auto BothFallThrough
= [](MachineBasicBlock
*MBB
) {
699 if (MBB
->succ_size() != 0 && !MBB
->canFallThrough())
701 MachineFunction::iterator
I(MBB
);
702 MachineFunction
*MF
= MBB
->getParent();
703 return (MBB
!= &*MF
->begin()) && std::prev(I
)->canFallThrough();
705 if (!BothFallThrough(MBB1
) || !BothFallThrough(MBB2
))
709 // If both blocks have an unconditional branch temporarily stripped out,
710 // count that as an additional common instruction for the following
711 // heuristics. This heuristic is only accurate for single-succ blocks, so to
712 // make sure that during layout merging and duplicating don't crash, we check
713 // for that when merging during layout.
714 unsigned EffectiveTailLen
= CommonTailLen
;
715 if (SuccBB
&& MBB1
!= PredBB
&& MBB2
!= PredBB
&&
716 (MBB1
->succ_size() == 1 || !AfterPlacement
) &&
717 !MBB1
->back().isBarrier() &&
718 !MBB2
->back().isBarrier())
721 // Check if the common tail is long enough to be worthwhile.
722 if (EffectiveTailLen
>= MinCommonTailLength
)
725 // If we are optimizing for code size, 2 instructions in common is enough if
726 // we don't have to split a block. At worst we will be introducing 1 new
727 // branch instruction, which is likely to be smaller than the 2
728 // instructions that would be deleted in the merge.
729 MachineFunction
*MF
= MBB1
->getParent();
730 return EffectiveTailLen
>= 2 && MF
->getFunction().hasOptSize() &&
731 (I1
== MBB1
->begin() || I2
== MBB2
->begin());
734 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
735 unsigned MinCommonTailLength
,
736 MachineBasicBlock
*SuccBB
,
737 MachineBasicBlock
*PredBB
) {
738 unsigned maxCommonTailLength
= 0U;
740 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
741 MPIterator HighestMPIter
= std::prev(MergePotentials
.end());
742 for (MPIterator CurMPIter
= std::prev(MergePotentials
.end()),
743 B
= MergePotentials
.begin();
744 CurMPIter
!= B
&& CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
745 for (MPIterator I
= std::prev(CurMPIter
); I
->getHash() == CurHash
; --I
) {
746 unsigned CommonTailLen
;
747 if (ProfitableToMerge(CurMPIter
->getBlock(), I
->getBlock(),
749 CommonTailLen
, TrialBBI1
, TrialBBI2
,
752 AfterBlockPlacement
)) {
753 if (CommonTailLen
> maxCommonTailLength
) {
755 maxCommonTailLength
= CommonTailLen
;
756 HighestMPIter
= CurMPIter
;
757 SameTails
.push_back(SameTailElt(CurMPIter
, TrialBBI1
));
759 if (HighestMPIter
== CurMPIter
&&
760 CommonTailLen
== maxCommonTailLength
)
761 SameTails
.push_back(SameTailElt(I
, TrialBBI2
));
767 return maxCommonTailLength
;
770 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
771 MachineBasicBlock
*SuccBB
,
772 MachineBasicBlock
*PredBB
) {
773 MPIterator CurMPIter
, B
;
774 for (CurMPIter
= std::prev(MergePotentials
.end()),
775 B
= MergePotentials
.begin();
776 CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
777 // Put the unconditional branch back, if we need one.
778 MachineBasicBlock
*CurMBB
= CurMPIter
->getBlock();
779 if (SuccBB
&& CurMBB
!= PredBB
)
780 FixTail(CurMBB
, SuccBB
, TII
);
784 if (CurMPIter
->getHash() != CurHash
)
786 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
789 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
790 MachineBasicBlock
*SuccBB
,
791 unsigned maxCommonTailLength
,
792 unsigned &commonTailIndex
) {
794 unsigned TimeEstimate
= ~0U;
795 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
796 // Use PredBB if possible; that doesn't require a new branch.
797 if (SameTails
[i
].getBlock() == PredBB
) {
801 // Otherwise, make a (fairly bogus) choice based on estimate of
802 // how long it will take the various blocks to execute.
803 unsigned t
= EstimateRuntime(SameTails
[i
].getBlock()->begin(),
804 SameTails
[i
].getTailStartPos());
805 if (t
<= TimeEstimate
) {
811 MachineBasicBlock::iterator BBI
=
812 SameTails
[commonTailIndex
].getTailStartPos();
813 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
815 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB
) << ", size "
816 << maxCommonTailLength
);
818 // If the split block unconditionally falls-thru to SuccBB, it will be
819 // merged. In control flow terms it should then take SuccBB's name. e.g. If
820 // SuccBB is an inner loop, the common tail is still part of the inner loop.
821 const BasicBlock
*BB
= (SuccBB
&& MBB
->succ_size() == 1) ?
822 SuccBB
->getBasicBlock() : MBB
->getBasicBlock();
823 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
, BB
);
825 LLVM_DEBUG(dbgs() << "... failed!");
829 SameTails
[commonTailIndex
].setBlock(newMBB
);
830 SameTails
[commonTailIndex
].setTailStartPos(newMBB
->begin());
832 // If we split PredBB, newMBB is the new predecessor.
840 mergeOperations(MachineBasicBlock::iterator MBBIStartPos
,
841 MachineBasicBlock
&MBBCommon
) {
842 MachineBasicBlock
*MBB
= MBBIStartPos
->getParent();
843 // Note CommonTailLen does not necessarily matches the size of
844 // the common BB nor all its instructions because of debug
845 // instructions differences.
846 unsigned CommonTailLen
= 0;
847 for (auto E
= MBB
->end(); MBBIStartPos
!= E
; ++MBBIStartPos
)
850 MachineBasicBlock::reverse_iterator MBBI
= MBB
->rbegin();
851 MachineBasicBlock::reverse_iterator MBBIE
= MBB
->rend();
852 MachineBasicBlock::reverse_iterator MBBICommon
= MBBCommon
.rbegin();
853 MachineBasicBlock::reverse_iterator MBBIECommon
= MBBCommon
.rend();
855 while (CommonTailLen
--) {
856 assert(MBBI
!= MBBIE
&& "Reached BB end within common tail length!");
859 if (!countsAsInstruction(*MBBI
)) {
864 while ((MBBICommon
!= MBBIECommon
) && !countsAsInstruction(*MBBICommon
))
867 assert(MBBICommon
!= MBBIECommon
&&
868 "Reached BB end within common tail length!");
869 assert(MBBICommon
->isIdenticalTo(*MBBI
) && "Expected matching MIIs!");
871 // Merge MMOs from memory operations in the common block.
872 if (MBBICommon
->mayLoad() || MBBICommon
->mayStore())
873 MBBICommon
->cloneMergedMemRefs(*MBB
->getParent(), {&*MBBICommon
, &*MBBI
});
874 // Drop undef flags if they aren't present in all merged instructions.
875 for (unsigned I
= 0, E
= MBBICommon
->getNumOperands(); I
!= E
; ++I
) {
876 MachineOperand
&MO
= MBBICommon
->getOperand(I
);
877 if (MO
.isReg() && MO
.isUndef()) {
878 const MachineOperand
&OtherMO
= MBBI
->getOperand(I
);
879 if (!OtherMO
.isUndef())
880 MO
.setIsUndef(false);
889 void BranchFolder::mergeCommonTails(unsigned commonTailIndex
) {
890 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
892 std::vector
<MachineBasicBlock::iterator
> NextCommonInsts(SameTails
.size());
893 for (unsigned int i
= 0 ; i
!= SameTails
.size() ; ++i
) {
894 if (i
!= commonTailIndex
) {
895 NextCommonInsts
[i
] = SameTails
[i
].getTailStartPos();
896 mergeOperations(SameTails
[i
].getTailStartPos(), *MBB
);
898 assert(SameTails
[i
].getTailStartPos() == MBB
->begin() &&
899 "MBB is not a common tail only block");
903 for (auto &MI
: *MBB
) {
904 if (!countsAsInstruction(MI
))
906 DebugLoc DL
= MI
.getDebugLoc();
907 for (unsigned int i
= 0 ; i
< NextCommonInsts
.size() ; i
++) {
908 if (i
== commonTailIndex
)
911 auto &Pos
= NextCommonInsts
[i
];
912 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
913 "Reached BB end within common tail");
914 while (!countsAsInstruction(*Pos
)) {
916 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
917 "Reached BB end within common tail");
919 assert(MI
.isIdenticalTo(*Pos
) && "Expected matching MIIs!");
920 DL
= DILocation::getMergedLocation(DL
, Pos
->getDebugLoc());
921 NextCommonInsts
[i
] = ++Pos
;
927 LivePhysRegs
NewLiveIns(*TRI
);
928 computeLiveIns(NewLiveIns
, *MBB
);
931 // The flag merging may lead to some register uses no longer using the
932 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
933 for (MachineBasicBlock
*Pred
: MBB
->predecessors()) {
935 LiveRegs
.addLiveOuts(*Pred
);
936 MachineBasicBlock::iterator InsertBefore
= Pred
->getFirstTerminator();
937 for (unsigned Reg
: NewLiveIns
) {
938 if (!LiveRegs
.available(*MRI
, Reg
))
941 BuildMI(*Pred
, InsertBefore
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
),
947 addLiveIns(*MBB
, NewLiveIns
);
951 // See if any of the blocks in MergePotentials (which all have SuccBB as a
952 // successor, or all have no successor if it is null) can be tail-merged.
953 // If there is a successor, any blocks in MergePotentials that are not
954 // tail-merged and are not immediately before Succ must have an unconditional
955 // branch to Succ added (but the predecessor/successor lists need no
956 // adjustment). The lone predecessor of Succ that falls through into Succ,
957 // if any, is given in PredBB.
958 // MinCommonTailLength - Except for the special cases below, tail-merge if
959 // there are at least this many instructions in common.
960 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock
*SuccBB
,
961 MachineBasicBlock
*PredBB
,
962 unsigned MinCommonTailLength
) {
963 bool MadeChange
= false;
966 dbgs() << "\nTryTailMergeBlocks: ";
967 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
) dbgs()
968 << printMBBReference(*MergePotentials
[i
].getBlock())
969 << (i
== e
- 1 ? "" : ", ");
970 dbgs() << "\n"; if (SuccBB
) {
971 dbgs() << " with successor " << printMBBReference(*SuccBB
) << '\n';
973 dbgs() << " which has fall-through from "
974 << printMBBReference(*PredBB
) << "\n";
975 } dbgs() << "Looking for common tails of at least "
976 << MinCommonTailLength
<< " instruction"
977 << (MinCommonTailLength
== 1 ? "" : "s") << '\n';);
979 // Sort by hash value so that blocks with identical end sequences sort
981 array_pod_sort(MergePotentials
.begin(), MergePotentials
.end());
983 // Walk through equivalence sets looking for actual exact matches.
984 while (MergePotentials
.size() > 1) {
985 unsigned CurHash
= MergePotentials
.back().getHash();
987 // Build SameTails, identifying the set of blocks with this hash code
988 // and with the maximum number of instructions in common.
989 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
993 // If we didn't find any pair that has at least MinCommonTailLength
994 // instructions in common, remove all blocks with this hash code and retry.
995 if (SameTails
.empty()) {
996 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
1000 // If one of the blocks is the entire common tail (and not the entry
1001 // block, which we can't jump to), we can treat all blocks with this same
1002 // tail at once. Use PredBB if that is one of the possibilities, as that
1003 // will not introduce any extra branches.
1004 MachineBasicBlock
*EntryBB
=
1005 &MergePotentials
.front().getBlock()->getParent()->front();
1006 unsigned commonTailIndex
= SameTails
.size();
1007 // If there are two blocks, check to see if one can be made to fall through
1009 if (SameTails
.size() == 2 &&
1010 SameTails
[0].getBlock()->isLayoutSuccessor(SameTails
[1].getBlock()) &&
1011 SameTails
[1].tailIsWholeBlock())
1012 commonTailIndex
= 1;
1013 else if (SameTails
.size() == 2 &&
1014 SameTails
[1].getBlock()->isLayoutSuccessor(
1015 SameTails
[0].getBlock()) &&
1016 SameTails
[0].tailIsWholeBlock())
1017 commonTailIndex
= 0;
1019 // Otherwise just pick one, favoring the fall-through predecessor if
1021 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
1022 MachineBasicBlock
*MBB
= SameTails
[i
].getBlock();
1023 if (MBB
== EntryBB
&& SameTails
[i
].tailIsWholeBlock())
1025 if (MBB
== PredBB
) {
1026 commonTailIndex
= i
;
1029 if (SameTails
[i
].tailIsWholeBlock())
1030 commonTailIndex
= i
;
1034 if (commonTailIndex
== SameTails
.size() ||
1035 (SameTails
[commonTailIndex
].getBlock() == PredBB
&&
1036 !SameTails
[commonTailIndex
].tailIsWholeBlock())) {
1037 // None of the blocks consist entirely of the common tail.
1038 // Split a block so that one does.
1039 if (!CreateCommonTailOnlyBlock(PredBB
, SuccBB
,
1040 maxCommonTailLength
, commonTailIndex
)) {
1041 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
1046 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
1048 // Recompute common tail MBB's edge weights and block frequency.
1049 setCommonTailEdgeWeights(*MBB
);
1051 // Merge debug locations, MMOs and undef flags across identical instructions
1053 mergeCommonTails(commonTailIndex
);
1055 // MBB is common tail. Adjust all other BB's to jump to this one.
1056 // Traversal must be forwards so erases work.
1057 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB
)
1059 for (unsigned int i
=0, e
= SameTails
.size(); i
!= e
; ++i
) {
1060 if (commonTailIndex
== i
)
1062 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails
[i
].getBlock())
1063 << (i
== e
- 1 ? "" : ", "));
1064 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1065 replaceTailWithBranchTo(SameTails
[i
].getTailStartPos(), *MBB
);
1066 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1067 MergePotentials
.erase(SameTails
[i
].getMPIter());
1069 LLVM_DEBUG(dbgs() << "\n");
1070 // We leave commonTailIndex in the worklist in case there are other blocks
1071 // that match it with a smaller number of instructions.
1077 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
1078 bool MadeChange
= false;
1079 if (!EnableTailMerge
)
1082 // First find blocks with no successors.
1083 // Block placement may create new tail merging opportunities for these blocks.
1084 MergePotentials
.clear();
1085 for (MachineBasicBlock
&MBB
: MF
) {
1086 if (MergePotentials
.size() == TailMergeThreshold
)
1088 if (!TriedMerging
.count(&MBB
) && MBB
.succ_empty())
1089 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(MBB
), &MBB
));
1092 // If this is a large problem, avoid visiting the same basic blocks
1094 if (MergePotentials
.size() == TailMergeThreshold
)
1095 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1096 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1098 // See if we can do any tail merging on those.
1099 if (MergePotentials
.size() >= 2)
1100 MadeChange
|= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength
);
1102 // Look at blocks (IBB) with multiple predecessors (PBB).
1103 // We change each predecessor to a canonical form, by
1104 // (1) temporarily removing any unconditional branch from the predecessor
1106 // (2) alter conditional branches so they branch to the other block
1107 // not IBB; this may require adding back an unconditional branch to IBB
1108 // later, where there wasn't one coming in. E.g.
1110 // fallthrough to QBB
1113 // with a conceptual B to IBB after that, which never actually exists.
1114 // With those changes, we see whether the predecessors' tails match,
1115 // and merge them if so. We change things out of canonical form and
1116 // back to the way they were later in the process. (OptimizeBranches
1117 // would undo some of this, but we can't use it, because we'd get into
1118 // a compile-time infinite loop repeatedly doing and undoing the same
1119 // transformations.)
1121 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1123 if (I
->pred_size() < 2) continue;
1124 SmallPtrSet
<MachineBasicBlock
*, 8> UniquePreds
;
1125 MachineBasicBlock
*IBB
= &*I
;
1126 MachineBasicBlock
*PredBB
= &*std::prev(I
);
1127 MergePotentials
.clear();
1130 // Bail if merging after placement and IBB is the loop header because
1131 // -- If merging predecessors that belong to the same loop as IBB, the
1132 // common tail of merged predecessors may become the loop top if block
1133 // placement is called again and the predecessors may branch to this common
1134 // tail and require more branches. This can be relaxed if
1135 // MachineBlockPlacement::findBestLoopTop is more flexible.
1136 // --If merging predecessors that do not belong to the same loop as IBB, the
1137 // loop info of IBB's loop and the other loops may be affected. Calling the
1138 // block placement again may make big change to the layout and eliminate the
1139 // reason to do tail merging here.
1140 if (AfterBlockPlacement
&& MLI
) {
1141 ML
= MLI
->getLoopFor(IBB
);
1142 if (ML
&& IBB
== ML
->getHeader())
1146 for (MachineBasicBlock
*PBB
: I
->predecessors()) {
1147 if (MergePotentials
.size() == TailMergeThreshold
)
1150 if (TriedMerging
.count(PBB
))
1153 // Skip blocks that loop to themselves, can't tail merge these.
1157 // Visit each predecessor only once.
1158 if (!UniquePreds
.insert(PBB
).second
)
1161 // Skip blocks which may jump to a landing pad. Can't tail merge these.
1162 if (PBB
->hasEHPadSuccessor())
1165 // After block placement, only consider predecessors that belong to the
1166 // same loop as IBB. The reason is the same as above when skipping loop
1168 if (AfterBlockPlacement
&& MLI
)
1169 if (ML
!= MLI
->getLoopFor(PBB
))
1172 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1173 SmallVector
<MachineOperand
, 4> Cond
;
1174 if (!TII
->analyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
1175 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1177 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
1178 if (!Cond
.empty() && TBB
== IBB
) {
1179 if (TII
->reverseBranchCondition(NewCond
))
1181 // This is the QBB case described above
1183 auto Next
= ++PBB
->getIterator();
1184 if (Next
!= MF
.end())
1189 // Remove the unconditional branch at the end, if any.
1190 if (TBB
&& (Cond
.empty() || FBB
)) {
1191 DebugLoc dl
= PBB
->findBranchDebugLoc();
1192 TII
->removeBranch(*PBB
);
1194 // reinsert conditional branch only, for now
1195 TII
->insertBranch(*PBB
, (TBB
== IBB
) ? FBB
: TBB
, nullptr,
1199 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(*PBB
), PBB
));
1203 // If this is a large problem, avoid visiting the same basic blocks multiple
1205 if (MergePotentials
.size() == TailMergeThreshold
)
1206 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1207 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1209 if (MergePotentials
.size() >= 2)
1210 MadeChange
|= TryTailMergeBlocks(IBB
, PredBB
, MinCommonTailLength
);
1212 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1213 // result of removing blocks in TryTailMergeBlocks.
1214 PredBB
= &*std::prev(I
); // this may have been changed in TryTailMergeBlocks
1215 if (MergePotentials
.size() == 1 &&
1216 MergePotentials
.begin()->getBlock() != PredBB
)
1217 FixTail(MergePotentials
.begin()->getBlock(), IBB
, TII
);
1223 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock
&TailMBB
) {
1224 SmallVector
<BlockFrequency
, 2> EdgeFreqLs(TailMBB
.succ_size());
1225 BlockFrequency AccumulatedMBBFreq
;
1227 // Aggregate edge frequency of successor edge j:
1228 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1229 // where bb is a basic block that is in SameTails.
1230 for (const auto &Src
: SameTails
) {
1231 const MachineBasicBlock
*SrcMBB
= Src
.getBlock();
1232 BlockFrequency BlockFreq
= MBBFreqInfo
.getBlockFreq(SrcMBB
);
1233 AccumulatedMBBFreq
+= BlockFreq
;
1235 // It is not necessary to recompute edge weights if TailBB has less than two
1237 if (TailMBB
.succ_size() <= 1)
1240 auto EdgeFreq
= EdgeFreqLs
.begin();
1242 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1243 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
)
1244 *EdgeFreq
+= BlockFreq
* MBPI
.getEdgeProbability(SrcMBB
, *SuccI
);
1247 MBBFreqInfo
.setBlockFreq(&TailMBB
, AccumulatedMBBFreq
);
1249 if (TailMBB
.succ_size() <= 1)
1253 std::accumulate(EdgeFreqLs
.begin(), EdgeFreqLs
.end(), BlockFrequency(0))
1255 auto EdgeFreq
= EdgeFreqLs
.begin();
1257 if (SumEdgeFreq
> 0) {
1258 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1259 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
) {
1260 auto Prob
= BranchProbability::getBranchProbability(
1261 EdgeFreq
->getFrequency(), SumEdgeFreq
);
1262 TailMBB
.setSuccProbability(SuccI
, Prob
);
1267 //===----------------------------------------------------------------------===//
1268 // Branch Optimization
1269 //===----------------------------------------------------------------------===//
1271 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
1272 bool MadeChange
= false;
1274 // Make sure blocks are numbered in order
1275 MF
.RenumberBlocks();
1276 // Renumbering blocks alters EH scope membership, recalculate it.
1277 EHScopeMembership
= getEHScopeMembership(MF
);
1279 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1281 MachineBasicBlock
*MBB
= &*I
++;
1282 MadeChange
|= OptimizeBlock(MBB
);
1284 // If it is dead, remove it.
1285 if (MBB
->pred_empty()) {
1286 RemoveDeadBlock(MBB
);
1295 // Blocks should be considered empty if they contain only debug info;
1296 // else the debug info would affect codegen.
1297 static bool IsEmptyBlock(MachineBasicBlock
*MBB
) {
1298 return MBB
->getFirstNonDebugInstr() == MBB
->end();
1301 // Blocks with only debug info and branches should be considered the same
1302 // as blocks with only branches.
1303 static bool IsBranchOnlyBlock(MachineBasicBlock
*MBB
) {
1304 MachineBasicBlock::iterator I
= MBB
->getFirstNonDebugInstr();
1305 assert(I
!= MBB
->end() && "empty block!");
1306 return I
->isBranch();
1309 /// IsBetterFallthrough - Return true if it would be clearly better to
1310 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1311 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1312 /// result in infinite loops.
1313 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
1314 MachineBasicBlock
*MBB2
) {
1315 assert(MBB1
&& MBB2
&& "Unknown MachineBasicBlock");
1317 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1318 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1319 // optimize branches that branch to either a return block or an assert block
1320 // into a fallthrough to the return.
1321 MachineBasicBlock::iterator MBB1I
= MBB1
->getLastNonDebugInstr();
1322 MachineBasicBlock::iterator MBB2I
= MBB2
->getLastNonDebugInstr();
1323 if (MBB1I
== MBB1
->end() || MBB2I
== MBB2
->end())
1326 // If there is a clear successor ordering we make sure that one block
1327 // will fall through to the next
1328 if (MBB1
->isSuccessor(MBB2
)) return true;
1329 if (MBB2
->isSuccessor(MBB1
)) return false;
1331 return MBB2I
->isCall() && !MBB1I
->isCall();
1334 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1335 /// instructions on the block.
1336 static DebugLoc
getBranchDebugLoc(MachineBasicBlock
&MBB
) {
1337 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1338 if (I
!= MBB
.end() && I
->isBranch())
1339 return I
->getDebugLoc();
1343 static void copyDebugInfoToPredecessor(const TargetInstrInfo
*TII
,
1344 MachineBasicBlock
&MBB
,
1345 MachineBasicBlock
&PredMBB
) {
1346 auto InsertBefore
= PredMBB
.getFirstTerminator();
1347 for (MachineInstr
&MI
: MBB
.instrs())
1348 if (MI
.isDebugInstr()) {
1349 TII
->duplicate(PredMBB
, InsertBefore
, MI
);
1350 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1355 static void copyDebugInfoToSuccessor(const TargetInstrInfo
*TII
,
1356 MachineBasicBlock
&MBB
,
1357 MachineBasicBlock
&SuccMBB
) {
1358 auto InsertBefore
= SuccMBB
.SkipPHIsAndLabels(SuccMBB
.begin());
1359 for (MachineInstr
&MI
: MBB
.instrs())
1360 if (MI
.isDebugInstr()) {
1361 TII
->duplicate(SuccMBB
, InsertBefore
, MI
);
1362 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1367 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1368 // a basic block is removed we would lose the debug information unless we have
1369 // copied the information to a predecessor/successor.
1371 // TODO: This function only handles some simple cases. An alternative would be
1372 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1374 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo
*TII
,
1375 MachineBasicBlock
&MBB
) {
1376 assert(IsEmptyBlock(&MBB
) && "Expected an empty block (except debug info).");
1377 // If this MBB is the only predecessor of a successor it is legal to copy
1378 // DBG_VALUE instructions to the beginning of the successor.
1379 for (MachineBasicBlock
*SuccBB
: MBB
.successors())
1380 if (SuccBB
->pred_size() == 1)
1381 copyDebugInfoToSuccessor(TII
, MBB
, *SuccBB
);
1382 // If this MBB is the only successor of a predecessor it is legal to copy the
1383 // DBG_VALUE instructions to the end of the predecessor (just before the
1384 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1385 for (MachineBasicBlock
*PredBB
: MBB
.predecessors())
1386 if (PredBB
->succ_size() == 1)
1387 copyDebugInfoToPredecessor(TII
, MBB
, *PredBB
);
1390 bool BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
1391 bool MadeChange
= false;
1392 MachineFunction
&MF
= *MBB
->getParent();
1395 MachineFunction::iterator FallThrough
= MBB
->getIterator();
1398 // Make sure MBB and FallThrough belong to the same EH scope.
1399 bool SameEHScope
= true;
1400 if (!EHScopeMembership
.empty() && FallThrough
!= MF
.end()) {
1401 auto MBBEHScope
= EHScopeMembership
.find(MBB
);
1402 assert(MBBEHScope
!= EHScopeMembership
.end());
1403 auto FallThroughEHScope
= EHScopeMembership
.find(&*FallThrough
);
1404 assert(FallThroughEHScope
!= EHScopeMembership
.end());
1405 SameEHScope
= MBBEHScope
->second
== FallThroughEHScope
->second
;
1408 // If this block is empty, make everyone use its fall-through, not the block
1409 // explicitly. Landing pads should not do this since the landing-pad table
1410 // points to this block. Blocks with their addresses taken shouldn't be
1412 if (IsEmptyBlock(MBB
) && !MBB
->isEHPad() && !MBB
->hasAddressTaken() &&
1414 salvageDebugInfoFromEmptyBlock(TII
, *MBB
);
1415 // Dead block? Leave for cleanup later.
1416 if (MBB
->pred_empty()) return MadeChange
;
1418 if (FallThrough
== MF
.end()) {
1419 // TODO: Simplify preds to not branch here if possible!
1420 } else if (FallThrough
->isEHPad()) {
1421 // Don't rewrite to a landing pad fallthough. That could lead to the case
1422 // where a BB jumps to more than one landing pad.
1423 // TODO: Is it ever worth rewriting predecessors which don't already
1424 // jump to a landing pad, and so can safely jump to the fallthrough?
1425 } else if (MBB
->isSuccessor(&*FallThrough
)) {
1426 // Rewrite all predecessors of the old block to go to the fallthrough
1428 while (!MBB
->pred_empty()) {
1429 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
1430 Pred
->ReplaceUsesOfBlockWith(MBB
, &*FallThrough
);
1432 // If MBB was the target of a jump table, update jump tables to go to the
1433 // fallthrough instead.
1434 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1435 MJTI
->ReplaceMBBInJumpTables(MBB
, &*FallThrough
);
1441 // Check to see if we can simplify the terminator of the block before this
1443 MachineBasicBlock
&PrevBB
= *std::prev(MachineFunction::iterator(MBB
));
1445 MachineBasicBlock
*PriorTBB
= nullptr, *PriorFBB
= nullptr;
1446 SmallVector
<MachineOperand
, 4> PriorCond
;
1447 bool PriorUnAnalyzable
=
1448 TII
->analyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
1449 if (!PriorUnAnalyzable
) {
1450 // If the CFG for the prior block has extra edges, remove them.
1451 MadeChange
|= PrevBB
.CorrectExtraCFGEdges(PriorTBB
, PriorFBB
,
1452 !PriorCond
.empty());
1454 // If the previous branch is conditional and both conditions go to the same
1455 // destination, remove the branch, replacing it with an unconditional one or
1457 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
1458 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1459 TII
->removeBranch(PrevBB
);
1461 if (PriorTBB
!= MBB
)
1462 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1465 goto ReoptimizeBlock
;
1468 // If the previous block unconditionally falls through to this block and
1469 // this block has no other predecessors, move the contents of this block
1470 // into the prior block. This doesn't usually happen when SimplifyCFG
1471 // has been used, but it can happen if tail merging splits a fall-through
1472 // predecessor of a block.
1473 // This has to check PrevBB->succ_size() because EH edges are ignored by
1475 if (PriorCond
.empty() && !PriorTBB
&& MBB
->pred_size() == 1 &&
1476 PrevBB
.succ_size() == 1 &&
1477 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1478 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1479 << "From MBB: " << *MBB
);
1480 // Remove redundant DBG_VALUEs first.
1481 if (PrevBB
.begin() != PrevBB
.end()) {
1482 MachineBasicBlock::iterator PrevBBIter
= PrevBB
.end();
1484 MachineBasicBlock::iterator MBBIter
= MBB
->begin();
1485 // Check if DBG_VALUE at the end of PrevBB is identical to the
1486 // DBG_VALUE at the beginning of MBB.
1487 while (PrevBBIter
!= PrevBB
.begin() && MBBIter
!= MBB
->end()
1488 && PrevBBIter
->isDebugInstr() && MBBIter
->isDebugInstr()) {
1489 if (!MBBIter
->isIdenticalTo(*PrevBBIter
))
1491 MachineInstr
&DuplicateDbg
= *MBBIter
;
1492 ++MBBIter
; -- PrevBBIter
;
1493 DuplicateDbg
.eraseFromParent();
1496 PrevBB
.splice(PrevBB
.end(), MBB
, MBB
->begin(), MBB
->end());
1497 PrevBB
.removeSuccessor(PrevBB
.succ_begin());
1498 assert(PrevBB
.succ_empty());
1499 PrevBB
.transferSuccessors(MBB
);
1504 // If the previous branch *only* branches to *this* block (conditional or
1505 // not) remove the branch.
1506 if (PriorTBB
== MBB
&& !PriorFBB
) {
1507 TII
->removeBranch(PrevBB
);
1510 goto ReoptimizeBlock
;
1513 // If the prior block branches somewhere else on the condition and here if
1514 // the condition is false, remove the uncond second branch.
1515 if (PriorFBB
== MBB
) {
1516 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1517 TII
->removeBranch(PrevBB
);
1518 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1521 goto ReoptimizeBlock
;
1524 // If the prior block branches here on true and somewhere else on false, and
1525 // if the branch condition is reversible, reverse the branch to create a
1527 if (PriorTBB
== MBB
) {
1528 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1529 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1530 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1531 TII
->removeBranch(PrevBB
);
1532 TII
->insertBranch(PrevBB
, PriorFBB
, nullptr, NewPriorCond
, dl
);
1535 goto ReoptimizeBlock
;
1539 // If this block has no successors (e.g. it is a return block or ends with
1540 // a call to a no-return function like abort or __cxa_throw) and if the pred
1541 // falls through into this block, and if it would otherwise fall through
1542 // into the block after this, move this block to the end of the function.
1544 // We consider it more likely that execution will stay in the function (e.g.
1545 // due to loops) than it is to exit it. This asserts in loops etc, moving
1546 // the assert condition out of the loop body.
1547 if (MBB
->succ_empty() && !PriorCond
.empty() && !PriorFBB
&&
1548 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
1549 !MBB
->canFallThrough()) {
1550 bool DoTransform
= true;
1552 // We have to be careful that the succs of PredBB aren't both no-successor
1553 // blocks. If neither have successors and if PredBB is the second from
1554 // last block in the function, we'd just keep swapping the two blocks for
1555 // last. Only do the swap if one is clearly better to fall through than
1557 if (FallThrough
== --MF
.end() &&
1558 !IsBetterFallthrough(PriorTBB
, MBB
))
1559 DoTransform
= false;
1562 // Reverse the branch so we will fall through on the previous true cond.
1563 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1564 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1565 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1566 << "To make fallthrough to: " << *PriorTBB
<< "\n");
1568 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1569 TII
->removeBranch(PrevBB
);
1570 TII
->insertBranch(PrevBB
, MBB
, nullptr, NewPriorCond
, dl
);
1572 // Move this block to the end of the function.
1573 MBB
->moveAfter(&MF
.back());
1582 if (!IsEmptyBlock(MBB
) && MBB
->pred_size() == 1 &&
1583 MF
.getFunction().hasOptSize()) {
1584 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1585 // direction, thereby defeating careful block placement and regressing
1586 // performance. Therefore, only consider this for optsize functions.
1587 MachineInstr
&TailCall
= *MBB
->getFirstNonDebugInstr();
1588 if (TII
->isUnconditionalTailCall(TailCall
)) {
1589 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1590 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1591 SmallVector
<MachineOperand
, 4> PredCond
;
1592 bool PredAnalyzable
=
1593 !TII
->analyzeBranch(*Pred
, PredTBB
, PredFBB
, PredCond
, true);
1595 if (PredAnalyzable
&& !PredCond
.empty() && PredTBB
== MBB
&&
1596 PredTBB
!= PredFBB
) {
1597 // The predecessor has a conditional branch to this block which consists
1598 // of only a tail call. Try to fold the tail call into the conditional
1600 if (TII
->canMakeTailCallConditional(PredCond
, TailCall
)) {
1601 // TODO: It would be nice if analyzeBranch() could provide a pointer
1602 // to the branch instruction so replaceBranchWithTailCall() doesn't
1603 // have to search for it.
1604 TII
->replaceBranchWithTailCall(*Pred
, PredCond
, TailCall
);
1606 Pred
->removeSuccessor(MBB
);
1611 // If the predecessor is falling through to this block, we could reverse
1612 // the branch condition and fold the tail call into that. However, after
1613 // that we might have to re-arrange the CFG to fall through to the other
1614 // block and there is a high risk of regressing code size rather than
1619 // Analyze the branch in the current block.
1620 MachineBasicBlock
*CurTBB
= nullptr, *CurFBB
= nullptr;
1621 SmallVector
<MachineOperand
, 4> CurCond
;
1622 bool CurUnAnalyzable
=
1623 TII
->analyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1624 if (!CurUnAnalyzable
) {
1625 // If the CFG for the prior block has extra edges, remove them.
1626 MadeChange
|= MBB
->CorrectExtraCFGEdges(CurTBB
, CurFBB
, !CurCond
.empty());
1628 // If this is a two-way branch, and the FBB branches to this block, reverse
1629 // the condition so the single-basic-block loop is faster. Instead of:
1630 // Loop: xxx; jcc Out; jmp Loop
1632 // Loop: xxx; jncc Loop; jmp Out
1633 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1634 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1635 if (!TII
->reverseBranchCondition(NewCond
)) {
1636 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1637 TII
->removeBranch(*MBB
);
1638 TII
->insertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
, dl
);
1641 goto ReoptimizeBlock
;
1645 // If this branch is the only thing in its block, see if we can forward
1646 // other blocks across it.
1647 if (CurTBB
&& CurCond
.empty() && !CurFBB
&&
1648 IsBranchOnlyBlock(MBB
) && CurTBB
!= MBB
&&
1649 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1650 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1651 // This block may contain just an unconditional branch. Because there can
1652 // be 'non-branch terminators' in the block, try removing the branch and
1653 // then seeing if the block is empty.
1654 TII
->removeBranch(*MBB
);
1655 // If the only things remaining in the block are debug info, remove these
1656 // as well, so this will behave the same as an empty block in non-debug
1658 if (IsEmptyBlock(MBB
)) {
1659 // Make the block empty, losing the debug info (we could probably
1660 // improve this in some cases.)
1661 MBB
->erase(MBB
->begin(), MBB
->end());
1663 // If this block is just an unconditional branch to CurTBB, we can
1664 // usually completely eliminate the block. The only case we cannot
1665 // completely eliminate the block is when the block before this one
1666 // falls through into MBB and we can't understand the prior block's branch
1669 bool PredHasNoFallThrough
= !PrevBB
.canFallThrough();
1670 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1671 !PrevBB
.isSuccessor(MBB
)) {
1672 // If the prior block falls through into us, turn it into an
1673 // explicit branch to us to make updates simpler.
1674 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1675 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1677 assert(PriorCond
.empty() && !PriorFBB
&&
1678 "Bad branch analysis");
1681 assert(!PriorFBB
&& "Machine CFG out of date!");
1684 DebugLoc pdl
= getBranchDebugLoc(PrevBB
);
1685 TII
->removeBranch(PrevBB
);
1686 TII
->insertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, pdl
);
1689 // Iterate through all the predecessors, revectoring each in-turn.
1691 bool DidChange
= false;
1692 bool HasBranchToSelf
= false;
1693 while(PI
!= MBB
->pred_size()) {
1694 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1696 // If this block has an uncond branch to itself, leave it.
1698 HasBranchToSelf
= true;
1701 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1702 // If this change resulted in PMBB ending in a conditional
1703 // branch where both conditions go to the same destination,
1704 // change this to an unconditional branch (and fix the CFG).
1705 MachineBasicBlock
*NewCurTBB
= nullptr, *NewCurFBB
= nullptr;
1706 SmallVector
<MachineOperand
, 4> NewCurCond
;
1707 bool NewCurUnAnalyzable
= TII
->analyzeBranch(
1708 *PMBB
, NewCurTBB
, NewCurFBB
, NewCurCond
, true);
1709 if (!NewCurUnAnalyzable
&& NewCurTBB
&& NewCurTBB
== NewCurFBB
) {
1710 DebugLoc pdl
= getBranchDebugLoc(*PMBB
);
1711 TII
->removeBranch(*PMBB
);
1713 TII
->insertBranch(*PMBB
, NewCurTBB
, nullptr, NewCurCond
, pdl
);
1716 PMBB
->CorrectExtraCFGEdges(NewCurTBB
, nullptr, false);
1721 // Change any jumptables to go to the new MBB.
1722 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1723 MJTI
->ReplaceMBBInJumpTables(MBB
, CurTBB
);
1727 if (!HasBranchToSelf
) return MadeChange
;
1732 // Add the branch back if the block is more than just an uncond branch.
1733 TII
->insertBranch(*MBB
, CurTBB
, nullptr, CurCond
, dl
);
1737 // If the prior block doesn't fall through into this block, and if this
1738 // block doesn't fall through into some other block, see if we can find a
1739 // place to move this block where a fall-through will happen.
1740 if (!PrevBB
.canFallThrough()) {
1741 // Now we know that there was no fall-through into this block, check to
1742 // see if it has a fall-through into its successor.
1743 bool CurFallsThru
= MBB
->canFallThrough();
1745 if (!MBB
->isEHPad()) {
1746 // Check all the predecessors of this block. If one of them has no fall
1747 // throughs, move this block right after it.
1748 for (MachineBasicBlock
*PredBB
: MBB
->predecessors()) {
1749 // Analyze the branch at the end of the pred.
1750 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1751 SmallVector
<MachineOperand
, 4> PredCond
;
1752 if (PredBB
!= MBB
&& !PredBB
->canFallThrough() &&
1753 !TII
->analyzeBranch(*PredBB
, PredTBB
, PredFBB
, PredCond
, true) &&
1754 (!CurFallsThru
|| !CurTBB
|| !CurFBB
) &&
1755 (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1756 // If the current block doesn't fall through, just move it.
1757 // If the current block can fall through and does not end with a
1758 // conditional branch, we need to append an unconditional jump to
1759 // the (current) next block. To avoid a possible compile-time
1760 // infinite loop, move blocks only backward in this case.
1761 // Also, if there are already 2 branches here, we cannot add a third;
1762 // this means we have the case
1767 MachineBasicBlock
*NextBB
= &*std::next(MBB
->getIterator());
1769 TII
->insertBranch(*MBB
, NextBB
, nullptr, CurCond
, DebugLoc());
1771 MBB
->moveAfter(PredBB
);
1773 goto ReoptimizeBlock
;
1778 if (!CurFallsThru
) {
1779 // Check all successors to see if we can move this block before it.
1780 for (MachineBasicBlock
*SuccBB
: MBB
->successors()) {
1781 // Analyze the branch at the end of the block before the succ.
1782 MachineFunction::iterator SuccPrev
= --SuccBB
->getIterator();
1784 // If this block doesn't already fall-through to that successor, and if
1785 // the succ doesn't already have a block that can fall through into it,
1786 // and if the successor isn't an EH destination, we can arrange for the
1787 // fallthrough to happen.
1788 if (SuccBB
!= MBB
&& &*SuccPrev
!= MBB
&&
1789 !SuccPrev
->canFallThrough() && !CurUnAnalyzable
&&
1790 !SuccBB
->isEHPad()) {
1791 MBB
->moveBefore(SuccBB
);
1793 goto ReoptimizeBlock
;
1797 // Okay, there is no really great place to put this block. If, however,
1798 // the block before this one would be a fall-through if this block were
1799 // removed, move this block to the end of the function. There is no real
1800 // advantage in "falling through" to an EH block, so we don't want to
1801 // perform this transformation for that case.
1803 // Also, Windows EH introduced the possibility of an arbitrary number of
1804 // successors to a given block. The analyzeBranch call does not consider
1805 // exception handling and so we can get in a state where a block
1806 // containing a call is followed by multiple EH blocks that would be
1807 // rotated infinitely at the end of the function if the transformation
1808 // below were performed for EH "FallThrough" blocks. Therefore, even if
1809 // that appears not to be happening anymore, we should assume that it is
1810 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1811 MachineBasicBlock
*PrevTBB
= nullptr, *PrevFBB
= nullptr;
1812 SmallVector
<MachineOperand
, 4> PrevCond
;
1813 if (FallThrough
!= MF
.end() &&
1814 !FallThrough
->isEHPad() &&
1815 !TII
->analyzeBranch(PrevBB
, PrevTBB
, PrevFBB
, PrevCond
, true) &&
1816 PrevBB
.isSuccessor(&*FallThrough
)) {
1817 MBB
->moveAfter(&MF
.back());
1827 //===----------------------------------------------------------------------===//
1828 // Hoist Common Code
1829 //===----------------------------------------------------------------------===//
1831 bool BranchFolder::HoistCommonCode(MachineFunction
&MF
) {
1832 bool MadeChange
= false;
1833 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ) {
1834 MachineBasicBlock
*MBB
= &*I
++;
1835 MadeChange
|= HoistCommonCodeInSuccs(MBB
);
1841 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1842 /// its 'true' successor.
1843 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
1844 MachineBasicBlock
*TrueBB
) {
1845 for (MachineBasicBlock
*SuccBB
: BB
->successors())
1846 if (SuccBB
!= TrueBB
)
1851 template <class Container
>
1852 static void addRegAndItsAliases(unsigned Reg
, const TargetRegisterInfo
*TRI
,
1854 if (Register::isPhysicalRegister(Reg
)) {
1855 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
1862 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1863 /// in successors to. The location is usually just before the terminator,
1864 /// however if the terminator is a conditional branch and its previous
1865 /// instruction is the flag setting instruction, the previous instruction is
1866 /// the preferred location. This function also gathers uses and defs of the
1867 /// instructions from the insertion point to the end of the block. The data is
1868 /// used by HoistCommonCodeInSuccs to ensure safety.
1870 MachineBasicBlock::iterator
findHoistingInsertPosAndDeps(MachineBasicBlock
*MBB
,
1871 const TargetInstrInfo
*TII
,
1872 const TargetRegisterInfo
*TRI
,
1873 SmallSet
<unsigned,4> &Uses
,
1874 SmallSet
<unsigned,4> &Defs
) {
1875 MachineBasicBlock::iterator Loc
= MBB
->getFirstTerminator();
1876 if (!TII
->isUnpredicatedTerminator(*Loc
))
1879 for (const MachineOperand
&MO
: Loc
->operands()) {
1882 Register Reg
= MO
.getReg();
1886 addRegAndItsAliases(Reg
, TRI
, Uses
);
1889 // Don't try to hoist code in the rare case the terminator defines a
1890 // register that is later used.
1893 // If the terminator defines a register, make sure we don't hoist
1894 // the instruction whose def might be clobbered by the terminator.
1895 addRegAndItsAliases(Reg
, TRI
, Defs
);
1901 // If the terminator is the only instruction in the block and Uses is not
1902 // empty (or we would have returned above), we can still safely hoist
1903 // instructions just before the terminator as long as the Defs/Uses are not
1904 // violated (which is checked in HoistCommonCodeInSuccs).
1905 if (Loc
== MBB
->begin())
1908 // The terminator is probably a conditional branch, try not to separate the
1909 // branch from condition setting instruction.
1910 MachineBasicBlock::iterator PI
=
1911 skipDebugInstructionsBackward(std::prev(Loc
), MBB
->begin());
1914 for (const MachineOperand
&MO
: PI
->operands()) {
1915 // If PI has a regmask operand, it is probably a call. Separate away.
1918 if (!MO
.isReg() || MO
.isUse())
1920 Register Reg
= MO
.getReg();
1923 if (Uses
.count(Reg
)) {
1929 // The condition setting instruction is not just before the conditional
1933 // Be conservative, don't insert instruction above something that may have
1934 // side-effects. And since it's potentially bad to separate flag setting
1935 // instruction from the conditional branch, just abort the optimization
1937 // Also avoid moving code above predicated instruction since it's hard to
1938 // reason about register liveness with predicated instruction.
1939 bool DontMoveAcrossStore
= true;
1940 if (!PI
->isSafeToMove(nullptr, DontMoveAcrossStore
) || TII
->isPredicated(*PI
))
1943 // Find out what registers are live. Note this routine is ignoring other live
1944 // registers which are only used by instructions in successor blocks.
1945 for (const MachineOperand
&MO
: PI
->operands()) {
1948 Register Reg
= MO
.getReg();
1952 addRegAndItsAliases(Reg
, TRI
, Uses
);
1954 if (Uses
.erase(Reg
)) {
1955 if (Register::isPhysicalRegister(Reg
)) {
1956 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
)
1957 Uses
.erase(*SubRegs
); // Use sub-registers to be conservative
1960 addRegAndItsAliases(Reg
, TRI
, Defs
);
1967 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock
*MBB
) {
1968 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1969 SmallVector
<MachineOperand
, 4> Cond
;
1970 if (TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
, true) || !TBB
|| Cond
.empty())
1973 if (!FBB
) FBB
= findFalseBlock(MBB
, TBB
);
1975 // Malformed bcc? True and false blocks are the same?
1978 // Restrict the optimization to cases where MBB is the only predecessor,
1979 // it is an obvious win.
1980 if (TBB
->pred_size() > 1 || FBB
->pred_size() > 1)
1983 // Find a suitable position to hoist the common instructions to. Also figure
1984 // out which registers are used or defined by instructions from the insertion
1985 // point to the end of the block.
1986 SmallSet
<unsigned, 4> Uses
, Defs
;
1987 MachineBasicBlock::iterator Loc
=
1988 findHoistingInsertPosAndDeps(MBB
, TII
, TRI
, Uses
, Defs
);
1989 if (Loc
== MBB
->end())
1992 bool HasDups
= false;
1993 SmallSet
<unsigned, 4> ActiveDefsSet
, AllDefsSet
;
1994 MachineBasicBlock::iterator TIB
= TBB
->begin();
1995 MachineBasicBlock::iterator FIB
= FBB
->begin();
1996 MachineBasicBlock::iterator TIE
= TBB
->end();
1997 MachineBasicBlock::iterator FIE
= FBB
->end();
1998 while (TIB
!= TIE
&& FIB
!= FIE
) {
1999 // Skip dbg_value instructions. These do not count.
2000 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
2001 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
2002 if (TIB
== TIE
|| FIB
== FIE
)
2005 if (!TIB
->isIdenticalTo(*FIB
, MachineInstr::CheckKillDead
))
2008 if (TII
->isPredicated(*TIB
))
2009 // Hard to reason about register liveness with predicated instruction.
2013 for (MachineOperand
&MO
: TIB
->operands()) {
2014 // Don't attempt to hoist instructions with register masks.
2015 if (MO
.isRegMask()) {
2021 Register Reg
= MO
.getReg();
2025 if (Uses
.count(Reg
)) {
2026 // Avoid clobbering a register that's used by the instruction at
2027 // the point of insertion.
2032 if (Defs
.count(Reg
) && !MO
.isDead()) {
2033 // Don't hoist the instruction if the def would be clobber by the
2034 // instruction at the point insertion. FIXME: This is overly
2035 // conservative. It should be possible to hoist the instructions
2036 // in BB2 in the following example:
2038 // r1, eflag = op1 r2, r3
2047 } else if (!ActiveDefsSet
.count(Reg
)) {
2048 if (Defs
.count(Reg
)) {
2049 // Use is defined by the instruction at the point of insertion.
2054 if (MO
.isKill() && Uses
.count(Reg
))
2055 // Kills a register that's read by the instruction at the point of
2056 // insertion. Remove the kill marker.
2057 MO
.setIsKill(false);
2063 bool DontMoveAcrossStore
= true;
2064 if (!TIB
->isSafeToMove(nullptr, DontMoveAcrossStore
))
2067 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2068 for (const MachineOperand
&MO
: TIB
->operands()) {
2069 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
2071 Register Reg
= MO
.getReg();
2074 if (!AllDefsSet
.count(Reg
)) {
2077 if (Register::isPhysicalRegister(Reg
)) {
2078 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
2079 ActiveDefsSet
.erase(*AI
);
2081 ActiveDefsSet
.erase(Reg
);
2085 // Track local defs so we can update liveins.
2086 for (const MachineOperand
&MO
: TIB
->operands()) {
2087 if (!MO
.isReg() || !MO
.isDef() || MO
.isDead())
2089 Register Reg
= MO
.getReg();
2090 if (!Reg
|| Register::isVirtualRegister(Reg
))
2092 addRegAndItsAliases(Reg
, TRI
, ActiveDefsSet
);
2093 addRegAndItsAliases(Reg
, TRI
, AllDefsSet
);
2104 MBB
->splice(Loc
, TBB
, TBB
->begin(), TIB
);
2105 FBB
->erase(FBB
->begin(), FIB
);
2107 if (UpdateLiveIns
) {
2108 recomputeLiveIns(*TBB
);
2109 recomputeLiveIns(*FBB
);