[Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
[llvm-core.git] / lib / CodeGen / IfConversion.cpp
blobd9caa5660695d6633f2bd15e38e4f782409a8912
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSchedule.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <functional>
49 #include <iterator>
50 #include <memory>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "if-converter"
58 // Hidden options for help debugging.
59 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
60 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
61 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
62 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
63 cl::init(false), cl::Hidden);
64 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
65 cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden);
81 STATISTIC(NumSimple, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs, "Number of duplicated blocks");
91 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
93 namespace {
95 class IfConverter : public MachineFunctionPass {
96 enum IfcvtKind {
97 ICNotClassfied, // BB data valid, but not classified.
98 ICSimpleFalse, // Same as ICSimple, but on the false path.
99 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse, // Same as ICTriangle, but on the false path.
103 ICTriangle, // BB is entry of a triangle sub-CFG.
104 ICDiamond, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
124 /// cmp, call, etc.)
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
132 struct BBInfo {
133 bool IsDone : 1;
134 bool IsBeingAnalyzed : 1;
135 bool IsAnalyzed : 1;
136 bool IsEnqueued : 1;
137 bool IsBrAnalyzable : 1;
138 bool IsBrReversible : 1;
139 bool HasFallThrough : 1;
140 bool IsUnpredicable : 1;
141 bool CannotBeCopied : 1;
142 bool ClobbersPred : 1;
143 unsigned NonPredSize = 0;
144 unsigned ExtraCost = 0;
145 unsigned ExtraCost2 = 0;
146 MachineBasicBlock *BB = nullptr;
147 MachineBasicBlock *TrueBB = nullptr;
148 MachineBasicBlock *FalseBB = nullptr;
149 SmallVector<MachineOperand, 4> BrCond;
150 SmallVector<MachineOperand, 4> Predicate;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
163 /// predicated.
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
167 /// paths).
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
170 struct IfcvtToken {
171 BBInfo &BBI;
172 IfcvtKind Kind;
173 unsigned NumDups;
174 unsigned NumDups2;
175 bool NeedSubsumption : 1;
176 bool TClobbersPred : 1;
177 bool FClobbersPred : 1;
179 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
180 bool tc = false, bool fc = false)
181 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
182 TClobbersPred(tc), FClobbersPred(fc) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
186 /// number.
187 std::vector<BBInfo> BBAnalysis;
188 TargetSchedModel SchedModel;
190 const TargetLoweringBase *TLI;
191 const TargetInstrInfo *TII;
192 const TargetRegisterInfo *TRI;
193 const MachineBranchProbabilityInfo *MBPI;
194 MachineRegisterInfo *MRI;
196 LivePhysRegs Redefs;
198 bool PreRegAlloc;
199 bool MadeChange;
200 int FnNum = -1;
201 std::function<bool(const MachineFunction &)> PredicateFtor;
203 public:
204 static char ID;
206 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
207 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.addRequired<MachineBlockFrequencyInfo>();
213 AU.addRequired<MachineBranchProbabilityInfo>();
214 MachineFunctionPass::getAnalysisUsage(AU);
217 bool runOnMachineFunction(MachineFunction &MF) override;
219 MachineFunctionProperties getRequiredProperties() const override {
220 return MachineFunctionProperties().set(
221 MachineFunctionProperties::Property::NoVRegs);
224 private:
225 bool reverseBranchCondition(BBInfo &BBI) const;
226 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
227 BranchProbability Prediction) const;
228 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
229 bool FalseBranch, unsigned &Dups,
230 BranchProbability Prediction) const;
231 bool CountDuplicatedInstructions(
232 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
233 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
234 unsigned &Dups1, unsigned &Dups2,
235 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
236 bool SkipUnconditionalBranches) const;
237 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
238 unsigned &Dups1, unsigned &Dups2,
239 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
240 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
241 unsigned &Dups1, unsigned &Dups2,
242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
243 void AnalyzeBranches(BBInfo &BBI);
244 void ScanInstructions(BBInfo &BBI,
245 MachineBasicBlock::iterator &Begin,
246 MachineBasicBlock::iterator &End,
247 bool BranchUnpredicable = false) const;
248 bool RescanInstructions(
249 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
250 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
251 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
252 void AnalyzeBlock(MachineBasicBlock &MBB,
253 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
254 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
255 bool isTriangle = false, bool RevBranch = false,
256 bool hasCommonTail = false);
257 void AnalyzeBlocks(MachineFunction &MF,
258 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
259 void InvalidatePreds(MachineBasicBlock &MBB);
260 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
261 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
262 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
263 unsigned NumDups1, unsigned NumDups2,
264 bool TClobbersPred, bool FClobbersPred,
265 bool RemoveBranch, bool MergeAddEdges);
266 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
267 unsigned NumDups1, unsigned NumDups2,
268 bool TClobbers, bool FClobbers);
269 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
270 unsigned NumDups1, unsigned NumDups2,
271 bool TClobbers, bool FClobbers);
272 void PredicateBlock(BBInfo &BBI,
273 MachineBasicBlock::iterator E,
274 SmallVectorImpl<MachineOperand> &Cond,
275 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
276 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
277 SmallVectorImpl<MachineOperand> &Cond,
278 bool IgnoreBr = false);
279 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
281 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
282 unsigned Cycle, unsigned Extra,
283 BranchProbability Prediction) const {
284 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
285 Prediction);
288 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
289 MachineBasicBlock &CommBB, unsigned Dups,
290 BranchProbability Prediction, bool Forked) const {
291 const MachineFunction &MF = *TBBInfo.BB->getParent();
292 if (MF.getFunction().hasMinSize()) {
293 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
294 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
295 MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
296 MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
298 unsigned Dups1, Dups2;
299 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
300 *TBBInfo.BB, *FBBInfo.BB,
301 /*SkipUnconditionalBranches*/ true))
302 llvm_unreachable("should already have been checked by ValidDiamond");
304 unsigned BranchBytes = 0;
305 unsigned CommonBytes = 0;
307 // Count common instructions at the start of the true and false blocks.
308 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
309 LLVM_DEBUG(dbgs() << "Common inst: " << I);
310 CommonBytes += TII->getInstSizeInBytes(I);
312 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
313 LLVM_DEBUG(dbgs() << "Common inst: " << I);
314 CommonBytes += TII->getInstSizeInBytes(I);
317 // Count instructions at the end of the true and false blocks, after
318 // the ones we plan to predicate. Analyzable branches will be removed
319 // (unless this is a forked diamond), and all other instructions are
320 // common between the two blocks.
321 for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
322 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
323 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
324 BranchBytes += TII->predictBranchSizeForIfCvt(I);
325 } else {
326 LLVM_DEBUG(dbgs() << "Common inst: " << I);
327 CommonBytes += TII->getInstSizeInBytes(I);
330 for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
331 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
332 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
333 BranchBytes += TII->predictBranchSizeForIfCvt(I);
334 } else {
335 LLVM_DEBUG(dbgs() << "Common inst: " << I);
336 CommonBytes += TII->getInstSizeInBytes(I);
339 for (auto &I : CommBB.terminators()) {
340 if (I.isBranch()) {
341 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
342 BranchBytes += TII->predictBranchSizeForIfCvt(I);
346 // The common instructions in one branch will be eliminated, halving
347 // their code size.
348 CommonBytes /= 2;
350 // Count the instructions which we need to predicate.
351 unsigned NumPredicatedInstructions = 0;
352 for (auto &I : make_range(TIB, TIE)) {
353 if (!I.isDebugInstr()) {
354 LLVM_DEBUG(dbgs() << "Predicating: " << I);
355 NumPredicatedInstructions++;
358 for (auto &I : make_range(FIB, FIE)) {
359 if (!I.isDebugInstr()) {
360 LLVM_DEBUG(dbgs() << "Predicating: " << I);
361 NumPredicatedInstructions++;
365 // Even though we're optimising for size at the expense of performance,
366 // avoid creating really long predicated blocks.
367 if (NumPredicatedInstructions > 15)
368 return false;
370 // Some targets (e.g. Thumb2) need to insert extra instructions to
371 // start predicated blocks.
372 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
373 MF, NumPredicatedInstructions);
375 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
376 << ", CommonBytes=" << CommonBytes
377 << ", NumPredicatedInstructions="
378 << NumPredicatedInstructions
379 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
380 << ")\n");
381 return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
382 } else {
383 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
384 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
385 bool Res = TCycle > 0 && FCycle > 0 &&
386 TII->isProfitableToIfCvt(
387 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
388 FCycle, FBBInfo.ExtraCost2, Prediction);
389 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
390 << ", FCycle=" << FCycle
391 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
392 << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
393 return Res;
397 /// Returns true if Block ends without a terminator.
398 bool blockAlwaysFallThrough(BBInfo &BBI) const {
399 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
402 /// Used to sort if-conversion candidates.
403 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
404 const std::unique_ptr<IfcvtToken> &C2) {
405 int Incr1 = (C1->Kind == ICDiamond)
406 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
407 int Incr2 = (C2->Kind == ICDiamond)
408 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
409 if (Incr1 > Incr2)
410 return true;
411 else if (Incr1 == Incr2) {
412 // Favors subsumption.
413 if (!C1->NeedSubsumption && C2->NeedSubsumption)
414 return true;
415 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
416 // Favors diamond over triangle, etc.
417 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
418 return true;
419 else if (C1->Kind == C2->Kind)
420 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
423 return false;
427 } // end anonymous namespace
429 char IfConverter::ID = 0;
431 char &llvm::IfConverterID = IfConverter::ID;
433 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
434 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
435 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
437 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
438 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
439 return false;
441 const TargetSubtargetInfo &ST = MF.getSubtarget();
442 TLI = ST.getTargetLowering();
443 TII = ST.getInstrInfo();
444 TRI = ST.getRegisterInfo();
445 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
446 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
447 MRI = &MF.getRegInfo();
448 SchedModel.init(&ST);
450 if (!TII) return false;
452 PreRegAlloc = MRI->isSSA();
454 bool BFChange = false;
455 if (!PreRegAlloc) {
456 // Tail merge tend to expose more if-conversion opportunities.
457 BranchFolder BF(true, false, MBFI, *MBPI);
458 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
459 BFChange = BF.OptimizeFunction(
460 MF, TII, ST.getRegisterInfo(),
461 MMIWP ? &MMIWP->getMMI() : nullptr);
464 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
465 << MF.getName() << "\'");
467 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
468 LLVM_DEBUG(dbgs() << " skipped\n");
469 return false;
471 LLVM_DEBUG(dbgs() << "\n");
473 MF.RenumberBlocks();
474 BBAnalysis.resize(MF.getNumBlockIDs());
476 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
477 MadeChange = false;
478 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
479 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
480 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
481 // Do an initial analysis for each basic block and find all the potential
482 // candidates to perform if-conversion.
483 bool Change = false;
484 AnalyzeBlocks(MF, Tokens);
485 while (!Tokens.empty()) {
486 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
487 Tokens.pop_back();
488 BBInfo &BBI = Token->BBI;
489 IfcvtKind Kind = Token->Kind;
490 unsigned NumDups = Token->NumDups;
491 unsigned NumDups2 = Token->NumDups2;
493 // If the block has been evicted out of the queue or it has already been
494 // marked dead (due to it being predicated), then skip it.
495 if (BBI.IsDone)
496 BBI.IsEnqueued = false;
497 if (!BBI.IsEnqueued)
498 continue;
500 BBI.IsEnqueued = false;
502 bool RetVal = false;
503 switch (Kind) {
504 default: llvm_unreachable("Unexpected!");
505 case ICSimple:
506 case ICSimpleFalse: {
507 bool isFalse = Kind == ICSimpleFalse;
508 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
509 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
510 << (Kind == ICSimpleFalse ? " false" : "")
511 << "): " << printMBBReference(*BBI.BB) << " ("
512 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
513 : BBI.TrueBB->getNumber())
514 << ") ");
515 RetVal = IfConvertSimple(BBI, Kind);
516 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
517 if (RetVal) {
518 if (isFalse) ++NumSimpleFalse;
519 else ++NumSimple;
521 break;
523 case ICTriangle:
524 case ICTriangleRev:
525 case ICTriangleFalse:
526 case ICTriangleFRev: {
527 bool isFalse = Kind == ICTriangleFalse;
528 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
529 if (DisableTriangle && !isFalse && !isRev) break;
530 if (DisableTriangleR && !isFalse && isRev) break;
531 if (DisableTriangleF && isFalse && !isRev) break;
532 if (DisableTriangleFR && isFalse && isRev) break;
533 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
534 if (isFalse)
535 LLVM_DEBUG(dbgs() << " false");
536 if (isRev)
537 LLVM_DEBUG(dbgs() << " rev");
538 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
539 << " (T:" << BBI.TrueBB->getNumber()
540 << ",F:" << BBI.FalseBB->getNumber() << ") ");
541 RetVal = IfConvertTriangle(BBI, Kind);
542 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
543 if (RetVal) {
544 if (isFalse) {
545 if (isRev) ++NumTriangleFRev;
546 else ++NumTriangleFalse;
547 } else {
548 if (isRev) ++NumTriangleRev;
549 else ++NumTriangle;
552 break;
554 case ICDiamond:
555 if (DisableDiamond) break;
556 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
557 << " (T:" << BBI.TrueBB->getNumber()
558 << ",F:" << BBI.FalseBB->getNumber() << ") ");
559 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
560 Token->TClobbersPred,
561 Token->FClobbersPred);
562 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
563 if (RetVal) ++NumDiamonds;
564 break;
565 case ICForkedDiamond:
566 if (DisableForkedDiamond) break;
567 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
568 << printMBBReference(*BBI.BB)
569 << " (T:" << BBI.TrueBB->getNumber()
570 << ",F:" << BBI.FalseBB->getNumber() << ") ");
571 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
572 Token->TClobbersPred,
573 Token->FClobbersPred);
574 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
575 if (RetVal) ++NumForkedDiamonds;
576 break;
579 if (RetVal && MRI->tracksLiveness())
580 recomputeLivenessFlags(*BBI.BB);
582 Change |= RetVal;
584 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
585 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
586 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
587 break;
590 if (!Change)
591 break;
592 MadeChange |= Change;
595 Tokens.clear();
596 BBAnalysis.clear();
598 if (MadeChange && IfCvtBranchFold) {
599 BranchFolder BF(false, false, MBFI, *MBPI);
600 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
601 BF.OptimizeFunction(
602 MF, TII, MF.getSubtarget().getRegisterInfo(),
603 MMIWP ? &MMIWP->getMMI() : nullptr);
606 MadeChange |= BFChange;
607 return MadeChange;
610 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
611 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
612 MachineBasicBlock *TrueBB) {
613 for (MachineBasicBlock *SuccBB : BB->successors()) {
614 if (SuccBB != TrueBB)
615 return SuccBB;
617 return nullptr;
620 /// Reverse the condition of the end of the block branch. Swap block's 'true'
621 /// and 'false' successors.
622 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
623 DebugLoc dl; // FIXME: this is nowhere
624 if (!TII->reverseBranchCondition(BBI.BrCond)) {
625 TII->removeBranch(*BBI.BB);
626 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
627 std::swap(BBI.TrueBB, BBI.FalseBB);
628 return true;
630 return false;
633 /// Returns the next block in the function blocks ordering. If it is the end,
634 /// returns NULL.
635 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
636 MachineFunction::iterator I = MBB.getIterator();
637 MachineFunction::iterator E = MBB.getParent()->end();
638 if (++I == E)
639 return nullptr;
640 return &*I;
643 /// Returns true if the 'true' block (along with its predecessor) forms a valid
644 /// simple shape for ifcvt. It also returns the number of instructions that the
645 /// ifcvt would need to duplicate if performed in Dups.
646 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
647 BranchProbability Prediction) const {
648 Dups = 0;
649 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
650 return false;
652 if (TrueBBI.IsBrAnalyzable)
653 return false;
655 if (TrueBBI.BB->pred_size() > 1) {
656 if (TrueBBI.CannotBeCopied ||
657 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
658 Prediction))
659 return false;
660 Dups = TrueBBI.NonPredSize;
663 return true;
666 /// Returns true if the 'true' and 'false' blocks (along with their common
667 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
668 /// true, it checks if 'true' block's false branch branches to the 'false' block
669 /// rather than the other way around. It also returns the number of instructions
670 /// that the ifcvt would need to duplicate if performed in 'Dups'.
671 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
672 bool FalseBranch, unsigned &Dups,
673 BranchProbability Prediction) const {
674 Dups = 0;
675 if (TrueBBI.BB == FalseBBI.BB)
676 return false;
678 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
679 return false;
681 if (TrueBBI.BB->pred_size() > 1) {
682 if (TrueBBI.CannotBeCopied)
683 return false;
685 unsigned Size = TrueBBI.NonPredSize;
686 if (TrueBBI.IsBrAnalyzable) {
687 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
688 // Ends with an unconditional branch. It will be removed.
689 --Size;
690 else {
691 MachineBasicBlock *FExit = FalseBranch
692 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
693 if (FExit)
694 // Require a conditional branch
695 ++Size;
698 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
699 return false;
700 Dups = Size;
703 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
704 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
705 MachineFunction::iterator I = TrueBBI.BB->getIterator();
706 if (++I == TrueBBI.BB->getParent()->end())
707 return false;
708 TExit = &*I;
710 return TExit && TExit == FalseBBI.BB;
713 /// Count duplicated instructions and move the iterators to show where they
714 /// are.
715 /// @param TIB True Iterator Begin
716 /// @param FIB False Iterator Begin
717 /// These two iterators initially point to the first instruction of the two
718 /// blocks, and finally point to the first non-shared instruction.
719 /// @param TIE True Iterator End
720 /// @param FIE False Iterator End
721 /// These two iterators initially point to End() for the two blocks() and
722 /// finally point to the first shared instruction in the tail.
723 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
724 /// two blocks.
725 /// @param Dups1 count of duplicated instructions at the beginning of the 2
726 /// blocks.
727 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
728 /// @param SkipUnconditionalBranches if true, Don't make sure that
729 /// unconditional branches at the end of the blocks are the same. True is
730 /// passed when the blocks are analyzable to allow for fallthrough to be
731 /// handled.
732 /// @return false if the shared portion prevents if conversion.
733 bool IfConverter::CountDuplicatedInstructions(
734 MachineBasicBlock::iterator &TIB,
735 MachineBasicBlock::iterator &FIB,
736 MachineBasicBlock::iterator &TIE,
737 MachineBasicBlock::iterator &FIE,
738 unsigned &Dups1, unsigned &Dups2,
739 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
740 bool SkipUnconditionalBranches) const {
741 while (TIB != TIE && FIB != FIE) {
742 // Skip dbg_value instructions. These do not count.
743 TIB = skipDebugInstructionsForward(TIB, TIE);
744 FIB = skipDebugInstructionsForward(FIB, FIE);
745 if (TIB == TIE || FIB == FIE)
746 break;
747 if (!TIB->isIdenticalTo(*FIB))
748 break;
749 // A pred-clobbering instruction in the shared portion prevents
750 // if-conversion.
751 std::vector<MachineOperand> PredDefs;
752 if (TII->DefinesPredicate(*TIB, PredDefs))
753 return false;
754 // If we get all the way to the branch instructions, don't count them.
755 if (!TIB->isBranch())
756 ++Dups1;
757 ++TIB;
758 ++FIB;
761 // Check for already containing all of the block.
762 if (TIB == TIE || FIB == FIE)
763 return true;
764 // Now, in preparation for counting duplicate instructions at the ends of the
765 // blocks, switch to reverse_iterators. Note that getReverse() returns an
766 // iterator that points to the same instruction, unlike std::reverse_iterator.
767 // We have to do our own shifting so that we get the same range.
768 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
769 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
770 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
771 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
773 if (!TBB.succ_empty() || !FBB.succ_empty()) {
774 if (SkipUnconditionalBranches) {
775 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
776 ++RTIE;
777 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
778 ++RFIE;
782 // Count duplicate instructions at the ends of the blocks.
783 while (RTIE != RTIB && RFIE != RFIB) {
784 // Skip dbg_value instructions. These do not count.
785 // Note that these are reverse iterators going forward.
786 RTIE = skipDebugInstructionsForward(RTIE, RTIB);
787 RFIE = skipDebugInstructionsForward(RFIE, RFIB);
788 if (RTIE == RTIB || RFIE == RFIB)
789 break;
790 if (!RTIE->isIdenticalTo(*RFIE))
791 break;
792 // We have to verify that any branch instructions are the same, and then we
793 // don't count them toward the # of duplicate instructions.
794 if (!RTIE->isBranch())
795 ++Dups2;
796 ++RTIE;
797 ++RFIE;
799 TIE = std::next(RTIE.getReverse());
800 FIE = std::next(RFIE.getReverse());
801 return true;
804 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
805 /// @param TIB - True Iterator Begin, points to first non-shared instruction
806 /// @param FIB - False Iterator Begin, points to first non-shared instruction
807 /// @param TIE - True Iterator End, points past last non-shared instruction
808 /// @param FIE - False Iterator End, points past last non-shared instruction
809 /// @param TrueBBI - BBInfo to update for the true block.
810 /// @param FalseBBI - BBInfo to update for the false block.
811 /// @returns - false if either block cannot be predicated or if both blocks end
812 /// with a predicate-clobbering instruction.
813 bool IfConverter::RescanInstructions(
814 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
815 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
816 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
817 bool BranchUnpredicable = true;
818 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
819 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
820 if (TrueBBI.IsUnpredicable)
821 return false;
822 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
823 if (FalseBBI.IsUnpredicable)
824 return false;
825 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
826 return false;
827 return true;
830 #ifndef NDEBUG
831 static void verifySameBranchInstructions(
832 MachineBasicBlock *MBB1,
833 MachineBasicBlock *MBB2) {
834 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
835 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
836 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
837 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
838 while (E1 != B1 && E2 != B2) {
839 skipDebugInstructionsForward(E1, B1);
840 skipDebugInstructionsForward(E2, B2);
841 if (E1 == B1 && E2 == B2)
842 break;
844 if (E1 == B1) {
845 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
846 break;
848 if (E2 == B2) {
849 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
850 break;
853 if (E1->isBranch() || E2->isBranch())
854 assert(E1->isIdenticalTo(*E2) &&
855 "Branch mis-match, branch instructions don't match.");
856 else
857 break;
858 ++E1;
859 ++E2;
862 #endif
864 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
865 /// with their common predecessor) form a diamond if a common tail block is
866 /// extracted.
867 /// While not strictly a diamond, this pattern would form a diamond if
868 /// tail-merging had merged the shared tails.
869 /// EBB
870 /// _/ \_
871 /// | |
872 /// TBB FBB
873 /// / \ / \
874 /// FalseBB TrueBB FalseBB
875 /// Currently only handles analyzable branches.
876 /// Specifically excludes actual diamonds to avoid overlap.
877 bool IfConverter::ValidForkedDiamond(
878 BBInfo &TrueBBI, BBInfo &FalseBBI,
879 unsigned &Dups1, unsigned &Dups2,
880 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
881 Dups1 = Dups2 = 0;
882 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
883 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
884 return false;
886 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
887 return false;
888 // Don't IfConvert blocks that can't be folded into their predecessor.
889 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
890 return false;
892 // This function is specifically looking for conditional tails, as
893 // unconditional tails are already handled by the standard diamond case.
894 if (TrueBBI.BrCond.size() == 0 ||
895 FalseBBI.BrCond.size() == 0)
896 return false;
898 MachineBasicBlock *TT = TrueBBI.TrueBB;
899 MachineBasicBlock *TF = TrueBBI.FalseBB;
900 MachineBasicBlock *FT = FalseBBI.TrueBB;
901 MachineBasicBlock *FF = FalseBBI.FalseBB;
903 if (!TT)
904 TT = getNextBlock(*TrueBBI.BB);
905 if (!TF)
906 TF = getNextBlock(*TrueBBI.BB);
907 if (!FT)
908 FT = getNextBlock(*FalseBBI.BB);
909 if (!FF)
910 FF = getNextBlock(*FalseBBI.BB);
912 if (!TT || !TF)
913 return false;
915 // Check successors. If they don't match, bail.
916 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
917 return false;
919 bool FalseReversed = false;
920 if (TF == FT && TT == FF) {
921 // If the branches are opposing, but we can't reverse, don't do it.
922 if (!FalseBBI.IsBrReversible)
923 return false;
924 FalseReversed = true;
925 reverseBranchCondition(FalseBBI);
927 auto UnReverseOnExit = make_scope_exit([&]() {
928 if (FalseReversed)
929 reverseBranchCondition(FalseBBI);
932 // Count duplicate instructions at the beginning of the true and false blocks.
933 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
934 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
935 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
936 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
937 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
938 *TrueBBI.BB, *FalseBBI.BB,
939 /* SkipUnconditionalBranches */ true))
940 return false;
942 TrueBBICalc.BB = TrueBBI.BB;
943 FalseBBICalc.BB = FalseBBI.BB;
944 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
945 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
946 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
947 return false;
949 // The size is used to decide whether to if-convert, and the shared portions
950 // are subtracted off. Because of the subtraction, we just use the size that
951 // was calculated by the original ScanInstructions, as it is correct.
952 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
953 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
954 return true;
957 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
958 /// with their common predecessor) forms a valid diamond shape for ifcvt.
959 bool IfConverter::ValidDiamond(
960 BBInfo &TrueBBI, BBInfo &FalseBBI,
961 unsigned &Dups1, unsigned &Dups2,
962 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
963 Dups1 = Dups2 = 0;
964 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
965 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
966 return false;
968 MachineBasicBlock *TT = TrueBBI.TrueBB;
969 MachineBasicBlock *FT = FalseBBI.TrueBB;
971 if (!TT && blockAlwaysFallThrough(TrueBBI))
972 TT = getNextBlock(*TrueBBI.BB);
973 if (!FT && blockAlwaysFallThrough(FalseBBI))
974 FT = getNextBlock(*FalseBBI.BB);
975 if (TT != FT)
976 return false;
977 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
978 return false;
979 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
980 return false;
982 // FIXME: Allow true block to have an early exit?
983 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
984 return false;
986 // Count duplicate instructions at the beginning and end of the true and
987 // false blocks.
988 // Skip unconditional branches only if we are considering an analyzable
989 // diamond. Otherwise the branches must be the same.
990 bool SkipUnconditionalBranches =
991 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
992 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
993 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
994 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
995 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
996 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
997 *TrueBBI.BB, *FalseBBI.BB,
998 SkipUnconditionalBranches))
999 return false;
1001 TrueBBICalc.BB = TrueBBI.BB;
1002 FalseBBICalc.BB = FalseBBI.BB;
1003 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1004 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1005 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1006 return false;
1007 // The size is used to decide whether to if-convert, and the shared portions
1008 // are subtracted off. Because of the subtraction, we just use the size that
1009 // was calculated by the original ScanInstructions, as it is correct.
1010 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1011 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1012 return true;
1015 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1016 /// the block is predicable.
1017 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1018 if (BBI.IsDone)
1019 return;
1021 BBI.TrueBB = BBI.FalseBB = nullptr;
1022 BBI.BrCond.clear();
1023 BBI.IsBrAnalyzable =
1024 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1025 if (!BBI.IsBrAnalyzable) {
1026 BBI.TrueBB = nullptr;
1027 BBI.FalseBB = nullptr;
1028 BBI.BrCond.clear();
1031 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1032 BBI.IsBrReversible = (RevCond.size() == 0) ||
1033 !TII->reverseBranchCondition(RevCond);
1034 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1036 if (BBI.BrCond.size()) {
1037 // No false branch. This BB must end with a conditional branch and a
1038 // fallthrough.
1039 if (!BBI.FalseBB)
1040 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1041 if (!BBI.FalseBB) {
1042 // Malformed bcc? True and false blocks are the same?
1043 BBI.IsUnpredicable = true;
1048 /// ScanInstructions - Scan all the instructions in the block to determine if
1049 /// the block is predicable. In most cases, that means all the instructions
1050 /// in the block are isPredicable(). Also checks if the block contains any
1051 /// instruction which can clobber a predicate (e.g. condition code register).
1052 /// If so, the block is not predicable unless it's the last instruction.
1053 void IfConverter::ScanInstructions(BBInfo &BBI,
1054 MachineBasicBlock::iterator &Begin,
1055 MachineBasicBlock::iterator &End,
1056 bool BranchUnpredicable) const {
1057 if (BBI.IsDone || BBI.IsUnpredicable)
1058 return;
1060 bool AlreadyPredicated = !BBI.Predicate.empty();
1062 BBI.NonPredSize = 0;
1063 BBI.ExtraCost = 0;
1064 BBI.ExtraCost2 = 0;
1065 BBI.ClobbersPred = false;
1066 for (MachineInstr &MI : make_range(Begin, End)) {
1067 if (MI.isDebugInstr())
1068 continue;
1070 // It's unsafe to duplicate convergent instructions in this context, so set
1071 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1072 // following CFG, which is subject to our "simple" transformation.
1074 // BB0 // if (c1) goto BB1; else goto BB2;
1075 // / \
1076 // BB1 |
1077 // | BB2 // if (c2) goto TBB; else goto FBB;
1078 // | / |
1079 // | / |
1080 // TBB |
1081 // | |
1082 // | FBB
1083 // |
1084 // exit
1086 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1087 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1088 // TBB contains a convergent instruction. This is safe iff doing so does
1089 // not add a control-flow dependency to the convergent instruction -- i.e.,
1090 // it's safe iff the set of control flows that leads us to the convergent
1091 // instruction does not get smaller after the transformation.
1093 // Originally we executed TBB if c1 || c2. After the transformation, there
1094 // are two copies of TBB's instructions. We get to the first if c1, and we
1095 // get to the second if !c1 && c2.
1097 // There are clearly fewer ways to satisfy the condition "c1" than
1098 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1099 // our convergent instruction, the transformation is unsafe.
1100 if (MI.isNotDuplicable() || MI.isConvergent())
1101 BBI.CannotBeCopied = true;
1103 bool isPredicated = TII->isPredicated(MI);
1104 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1106 if (BranchUnpredicable && MI.isBranch()) {
1107 BBI.IsUnpredicable = true;
1108 return;
1111 // A conditional branch is not predicable, but it may be eliminated.
1112 if (isCondBr)
1113 continue;
1115 if (!isPredicated) {
1116 BBI.NonPredSize++;
1117 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1118 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1119 if (NumCycles > 1)
1120 BBI.ExtraCost += NumCycles-1;
1121 BBI.ExtraCost2 += ExtraPredCost;
1122 } else if (!AlreadyPredicated) {
1123 // FIXME: This instruction is already predicated before the
1124 // if-conversion pass. It's probably something like a conditional move.
1125 // Mark this block unpredicable for now.
1126 BBI.IsUnpredicable = true;
1127 return;
1130 if (BBI.ClobbersPred && !isPredicated) {
1131 // Predicate modification instruction should end the block (except for
1132 // already predicated instructions and end of block branches).
1133 // Predicate may have been modified, the subsequent (currently)
1134 // unpredicated instructions cannot be correctly predicated.
1135 BBI.IsUnpredicable = true;
1136 return;
1139 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1140 // still potentially predicable.
1141 std::vector<MachineOperand> PredDefs;
1142 if (TII->DefinesPredicate(MI, PredDefs))
1143 BBI.ClobbersPred = true;
1145 if (!TII->isPredicable(MI)) {
1146 BBI.IsUnpredicable = true;
1147 return;
1152 /// Determine if the block is a suitable candidate to be predicated by the
1153 /// specified predicate.
1154 /// @param BBI BBInfo for the block to check
1155 /// @param Pred Predicate array for the branch that leads to BBI
1156 /// @param isTriangle true if the Analysis is for a triangle
1157 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1158 /// case
1159 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1160 /// contains any instruction that would make the block unpredicable.
1161 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1162 SmallVectorImpl<MachineOperand> &Pred,
1163 bool isTriangle, bool RevBranch,
1164 bool hasCommonTail) {
1165 // If the block is dead or unpredicable, then it cannot be predicated.
1166 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1167 // them from being if-converted. The non-shared portion is assumed to have
1168 // been checked
1169 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1170 return false;
1172 // If it is already predicated but we couldn't analyze its terminator, the
1173 // latter might fallthrough, but we can't determine where to.
1174 // Conservatively avoid if-converting again.
1175 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1176 return false;
1178 // If it is already predicated, check if the new predicate subsumes
1179 // its predicate.
1180 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1181 return false;
1183 if (!hasCommonTail && BBI.BrCond.size()) {
1184 if (!isTriangle)
1185 return false;
1187 // Test predicate subsumption.
1188 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1189 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1190 if (RevBranch) {
1191 if (TII->reverseBranchCondition(Cond))
1192 return false;
1194 if (TII->reverseBranchCondition(RevPred) ||
1195 !TII->SubsumesPredicate(Cond, RevPred))
1196 return false;
1199 return true;
1202 /// Analyze the structure of the sub-CFG starting from the specified block.
1203 /// Record its successors and whether it looks like an if-conversion candidate.
1204 void IfConverter::AnalyzeBlock(
1205 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1206 struct BBState {
1207 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1208 MachineBasicBlock *MBB;
1210 /// This flag is true if MBB's successors have been analyzed.
1211 bool SuccsAnalyzed;
1214 // Push MBB to the stack.
1215 SmallVector<BBState, 16> BBStack(1, MBB);
1217 while (!BBStack.empty()) {
1218 BBState &State = BBStack.back();
1219 MachineBasicBlock *BB = State.MBB;
1220 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1222 if (!State.SuccsAnalyzed) {
1223 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1224 BBStack.pop_back();
1225 continue;
1228 BBI.BB = BB;
1229 BBI.IsBeingAnalyzed = true;
1231 AnalyzeBranches(BBI);
1232 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1233 MachineBasicBlock::iterator End = BBI.BB->end();
1234 ScanInstructions(BBI, Begin, End);
1236 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1237 // not considered for ifcvt anymore.
1238 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1239 BBI.IsBeingAnalyzed = false;
1240 BBI.IsAnalyzed = true;
1241 BBStack.pop_back();
1242 continue;
1245 // Do not ifcvt if either path is a back edge to the entry block.
1246 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1247 BBI.IsBeingAnalyzed = false;
1248 BBI.IsAnalyzed = true;
1249 BBStack.pop_back();
1250 continue;
1253 // Do not ifcvt if true and false fallthrough blocks are the same.
1254 if (!BBI.FalseBB) {
1255 BBI.IsBeingAnalyzed = false;
1256 BBI.IsAnalyzed = true;
1257 BBStack.pop_back();
1258 continue;
1261 // Push the False and True blocks to the stack.
1262 State.SuccsAnalyzed = true;
1263 BBStack.push_back(*BBI.FalseBB);
1264 BBStack.push_back(*BBI.TrueBB);
1265 continue;
1268 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1269 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1271 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1272 BBI.IsBeingAnalyzed = false;
1273 BBI.IsAnalyzed = true;
1274 BBStack.pop_back();
1275 continue;
1278 SmallVector<MachineOperand, 4>
1279 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1280 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1282 unsigned Dups = 0;
1283 unsigned Dups2 = 0;
1284 bool TNeedSub = !TrueBBI.Predicate.empty();
1285 bool FNeedSub = !FalseBBI.Predicate.empty();
1286 bool Enqueued = false;
1288 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1290 if (CanRevCond) {
1291 BBInfo TrueBBICalc, FalseBBICalc;
1292 auto feasibleDiamond = [&](bool Forked) {
1293 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1294 Dups + Dups2, Prediction, Forked);
1295 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1296 /* IsTriangle */ false, /* RevCond */ false,
1297 /* hasCommonTail */ true);
1298 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1299 /* IsTriangle */ false, /* RevCond */ false,
1300 /* hasCommonTail */ true);
1301 return MeetsSize && TrueFeasible && FalseFeasible;
1304 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1305 TrueBBICalc, FalseBBICalc)) {
1306 if (feasibleDiamond(false)) {
1307 // Diamond:
1308 // EBB
1309 // / \_
1310 // | |
1311 // TBB FBB
1312 // \ /
1313 // TailBB
1314 // Note TailBB can be empty.
1315 Tokens.push_back(std::make_unique<IfcvtToken>(
1316 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1317 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1318 Enqueued = true;
1320 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1321 TrueBBICalc, FalseBBICalc)) {
1322 if (feasibleDiamond(true)) {
1323 // ForkedDiamond:
1324 // if TBB and FBB have a common tail that includes their conditional
1325 // branch instructions, then we can If Convert this pattern.
1326 // EBB
1327 // _/ \_
1328 // | |
1329 // TBB FBB
1330 // / \ / \
1331 // FalseBB TrueBB FalseBB
1333 Tokens.push_back(std::make_unique<IfcvtToken>(
1334 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1335 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1336 Enqueued = true;
1341 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1342 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1343 TrueBBI.ExtraCost2, Prediction) &&
1344 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1345 // Triangle:
1346 // EBB
1347 // | \_
1348 // | |
1349 // | TBB
1350 // | /
1351 // FBB
1352 Tokens.push_back(
1353 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1354 Enqueued = true;
1357 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1358 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1359 TrueBBI.ExtraCost2, Prediction) &&
1360 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1361 Tokens.push_back(
1362 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1363 Enqueued = true;
1366 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1367 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1368 TrueBBI.ExtraCost2, Prediction) &&
1369 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1370 // Simple (split, no rejoin):
1371 // EBB
1372 // | \_
1373 // | |
1374 // | TBB---> exit
1375 // |
1376 // FBB
1377 Tokens.push_back(
1378 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1379 Enqueued = true;
1382 if (CanRevCond) {
1383 // Try the other path...
1384 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1385 Prediction.getCompl()) &&
1386 MeetIfcvtSizeLimit(*FalseBBI.BB,
1387 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1388 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1389 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1390 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1391 FNeedSub, Dups));
1392 Enqueued = true;
1395 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1396 Prediction.getCompl()) &&
1397 MeetIfcvtSizeLimit(*FalseBBI.BB,
1398 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1399 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1400 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1401 Tokens.push_back(
1402 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1403 Enqueued = true;
1406 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1407 MeetIfcvtSizeLimit(*FalseBBI.BB,
1408 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1409 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1410 FeasibilityAnalysis(FalseBBI, RevCond)) {
1411 Tokens.push_back(
1412 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1413 Enqueued = true;
1417 BBI.IsEnqueued = Enqueued;
1418 BBI.IsBeingAnalyzed = false;
1419 BBI.IsAnalyzed = true;
1420 BBStack.pop_back();
1424 /// Analyze all blocks and find entries for all if-conversion candidates.
1425 void IfConverter::AnalyzeBlocks(
1426 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1427 for (MachineBasicBlock &MBB : MF)
1428 AnalyzeBlock(MBB, Tokens);
1430 // Sort to favor more complex ifcvt scheme.
1431 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1434 /// Returns true either if ToMBB is the next block after MBB or that all the
1435 /// intervening blocks are empty (given MBB can fall through to its next block).
1436 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1437 MachineFunction::iterator PI = MBB.getIterator();
1438 MachineFunction::iterator I = std::next(PI);
1439 MachineFunction::iterator TI = ToMBB.getIterator();
1440 MachineFunction::iterator E = MBB.getParent()->end();
1441 while (I != TI) {
1442 // Check isSuccessor to avoid case where the next block is empty, but
1443 // it's not a successor.
1444 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1445 return false;
1446 PI = I++;
1448 // Finally see if the last I is indeed a successor to PI.
1449 return PI->isSuccessor(&*I);
1452 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1453 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1454 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1455 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1456 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1457 if (PBBI.IsDone || PBBI.BB == &MBB)
1458 continue;
1459 PBBI.IsAnalyzed = false;
1460 PBBI.IsEnqueued = false;
1464 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1465 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1466 const TargetInstrInfo *TII) {
1467 DebugLoc dl; // FIXME: this is nowhere
1468 SmallVector<MachineOperand, 0> NoCond;
1469 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1472 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1473 /// values defined in MI which are also live/used by MI.
1474 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1475 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1477 // Before stepping forward past MI, remember which regs were live
1478 // before MI. This is needed to set the Undef flag only when reg is
1479 // dead.
1480 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1481 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1482 for (unsigned Reg : Redefs)
1483 LiveBeforeMI.insert(Reg);
1485 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1486 Redefs.stepForward(MI, Clobbers);
1488 // Now add the implicit uses for each of the clobbered values.
1489 for (auto Clobber : Clobbers) {
1490 // FIXME: Const cast here is nasty, but better than making StepForward
1491 // take a mutable instruction instead of const.
1492 unsigned Reg = Clobber.first;
1493 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1494 MachineInstr *OpMI = Op.getParent();
1495 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1496 if (Op.isRegMask()) {
1497 // First handle regmasks. They clobber any entries in the mask which
1498 // means that we need a def for those registers.
1499 if (LiveBeforeMI.count(Reg))
1500 MIB.addReg(Reg, RegState::Implicit);
1502 // We also need to add an implicit def of this register for the later
1503 // use to read from.
1504 // For the register allocator to have allocated a register clobbered
1505 // by the call which is used later, it must be the case that
1506 // the call doesn't return.
1507 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1508 continue;
1510 if (LiveBeforeMI.count(Reg))
1511 MIB.addReg(Reg, RegState::Implicit);
1512 else {
1513 bool HasLiveSubReg = false;
1514 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1515 if (!LiveBeforeMI.count(*S))
1516 continue;
1517 HasLiveSubReg = true;
1518 break;
1520 if (HasLiveSubReg)
1521 MIB.addReg(Reg, RegState::Implicit);
1526 /// If convert a simple (split, no rejoin) sub-CFG.
1527 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1528 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1529 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1530 BBInfo *CvtBBI = &TrueBBI;
1531 BBInfo *NextBBI = &FalseBBI;
1533 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1534 if (Kind == ICSimpleFalse)
1535 std::swap(CvtBBI, NextBBI);
1537 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1538 MachineBasicBlock &NextMBB = *NextBBI->BB;
1539 if (CvtBBI->IsDone ||
1540 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1541 // Something has changed. It's no longer safe to predicate this block.
1542 BBI.IsAnalyzed = false;
1543 CvtBBI->IsAnalyzed = false;
1544 return false;
1547 if (CvtMBB.hasAddressTaken())
1548 // Conservatively abort if-conversion if BB's address is taken.
1549 return false;
1551 if (Kind == ICSimpleFalse)
1552 if (TII->reverseBranchCondition(Cond))
1553 llvm_unreachable("Unable to reverse branch condition!");
1555 Redefs.init(*TRI);
1557 if (MRI->tracksLiveness()) {
1558 // Initialize liveins to the first BB. These are potentially redefined by
1559 // predicated instructions.
1560 Redefs.addLiveIns(CvtMBB);
1561 Redefs.addLiveIns(NextMBB);
1564 // Remove the branches from the entry so we can add the contents of the true
1565 // block to it.
1566 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1568 if (CvtMBB.pred_size() > 1) {
1569 // Copy instructions in the true block, predicate them, and add them to
1570 // the entry block.
1571 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1573 // Keep the CFG updated.
1574 BBI.BB->removeSuccessor(&CvtMBB, true);
1575 } else {
1576 // Predicate the instructions in the true block.
1577 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1579 // Merge converted block into entry block. The BB to Cvt edge is removed
1580 // by MergeBlocks.
1581 MergeBlocks(BBI, *CvtBBI);
1584 bool IterIfcvt = true;
1585 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1586 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1587 BBI.HasFallThrough = false;
1588 // Now ifcvt'd block will look like this:
1589 // BB:
1590 // ...
1591 // t, f = cmp
1592 // if t op
1593 // b BBf
1595 // We cannot further ifcvt this block because the unconditional branch
1596 // will have to be predicated on the new condition, that will not be
1597 // available if cmp executes.
1598 IterIfcvt = false;
1601 // Update block info. BB can be iteratively if-converted.
1602 if (!IterIfcvt)
1603 BBI.IsDone = true;
1604 InvalidatePreds(*BBI.BB);
1605 CvtBBI->IsDone = true;
1607 // FIXME: Must maintain LiveIns.
1608 return true;
1611 /// If convert a triangle sub-CFG.
1612 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1613 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1614 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1615 BBInfo *CvtBBI = &TrueBBI;
1616 BBInfo *NextBBI = &FalseBBI;
1617 DebugLoc dl; // FIXME: this is nowhere
1619 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1620 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1621 std::swap(CvtBBI, NextBBI);
1623 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1624 MachineBasicBlock &NextMBB = *NextBBI->BB;
1625 if (CvtBBI->IsDone ||
1626 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1627 // Something has changed. It's no longer safe to predicate this block.
1628 BBI.IsAnalyzed = false;
1629 CvtBBI->IsAnalyzed = false;
1630 return false;
1633 if (CvtMBB.hasAddressTaken())
1634 // Conservatively abort if-conversion if BB's address is taken.
1635 return false;
1637 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1638 if (TII->reverseBranchCondition(Cond))
1639 llvm_unreachable("Unable to reverse branch condition!");
1641 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1642 if (reverseBranchCondition(*CvtBBI)) {
1643 // BB has been changed, modify its predecessors (except for this
1644 // one) so they don't get ifcvt'ed based on bad intel.
1645 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1646 if (PBB == BBI.BB)
1647 continue;
1648 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1649 if (PBBI.IsEnqueued) {
1650 PBBI.IsAnalyzed = false;
1651 PBBI.IsEnqueued = false;
1657 // Initialize liveins to the first BB. These are potentially redefined by
1658 // predicated instructions.
1659 Redefs.init(*TRI);
1660 if (MRI->tracksLiveness()) {
1661 Redefs.addLiveIns(CvtMBB);
1662 Redefs.addLiveIns(NextMBB);
1665 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1666 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1668 if (HasEarlyExit) {
1669 // Get probabilities before modifying CvtMBB and BBI.BB.
1670 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1671 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1672 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1673 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1676 // Remove the branches from the entry so we can add the contents of the true
1677 // block to it.
1678 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1680 if (CvtMBB.pred_size() > 1) {
1681 // Copy instructions in the true block, predicate them, and add them to
1682 // the entry block.
1683 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1684 } else {
1685 // Predicate the 'true' block after removing its branch.
1686 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1687 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1689 // Now merge the entry of the triangle with the true block.
1690 MergeBlocks(BBI, *CvtBBI, false);
1693 // Keep the CFG updated.
1694 BBI.BB->removeSuccessor(&CvtMBB, true);
1696 // If 'true' block has a 'false' successor, add an exit branch to it.
1697 if (HasEarlyExit) {
1698 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1699 CvtBBI->BrCond.end());
1700 if (TII->reverseBranchCondition(RevCond))
1701 llvm_unreachable("Unable to reverse branch condition!");
1703 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1704 // NewNext = New_Prob(BBI.BB, NextMBB) =
1705 // Prob(BBI.BB, NextMBB) +
1706 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1707 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1708 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1709 auto NewTrueBB = getNextBlock(*BBI.BB);
1710 auto NewNext = BBNext + BBCvt * CvtNext;
1711 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1712 if (NewTrueBBIter != BBI.BB->succ_end())
1713 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1715 auto NewFalse = BBCvt * CvtFalse;
1716 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1717 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1720 // Merge in the 'false' block if the 'false' block has no other
1721 // predecessors. Otherwise, add an unconditional branch to 'false'.
1722 bool FalseBBDead = false;
1723 bool IterIfcvt = true;
1724 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1725 if (!isFallThrough) {
1726 // Only merge them if the true block does not fallthrough to the false
1727 // block. By not merging them, we make it possible to iteratively
1728 // ifcvt the blocks.
1729 if (!HasEarlyExit &&
1730 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1731 !NextMBB.hasAddressTaken()) {
1732 MergeBlocks(BBI, *NextBBI);
1733 FalseBBDead = true;
1734 } else {
1735 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1736 BBI.HasFallThrough = false;
1738 // Mixed predicated and unpredicated code. This cannot be iteratively
1739 // predicated.
1740 IterIfcvt = false;
1743 // Update block info. BB can be iteratively if-converted.
1744 if (!IterIfcvt)
1745 BBI.IsDone = true;
1746 InvalidatePreds(*BBI.BB);
1747 CvtBBI->IsDone = true;
1748 if (FalseBBDead)
1749 NextBBI->IsDone = true;
1751 // FIXME: Must maintain LiveIns.
1752 return true;
1755 /// Common code shared between diamond conversions.
1756 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1757 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1758 /// and FalseBBI
1759 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1760 /// and \p FalseBBI
1761 /// \p RemoveBranch - Remove the common branch of the two blocks before
1762 /// predicating. Only false for unanalyzable fallthrough
1763 /// cases. The caller will replace the branch if necessary.
1764 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1765 /// unanalyzable fallthrough
1766 bool IfConverter::IfConvertDiamondCommon(
1767 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1768 unsigned NumDups1, unsigned NumDups2,
1769 bool TClobbersPred, bool FClobbersPred,
1770 bool RemoveBranch, bool MergeAddEdges) {
1772 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1773 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1774 // Something has changed. It's no longer safe to predicate these blocks.
1775 BBI.IsAnalyzed = false;
1776 TrueBBI.IsAnalyzed = false;
1777 FalseBBI.IsAnalyzed = false;
1778 return false;
1781 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1782 // Conservatively abort if-conversion if either BB has its address taken.
1783 return false;
1785 // Put the predicated instructions from the 'true' block before the
1786 // instructions from the 'false' block, unless the true block would clobber
1787 // the predicate, in which case, do the opposite.
1788 BBInfo *BBI1 = &TrueBBI;
1789 BBInfo *BBI2 = &FalseBBI;
1790 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1791 if (TII->reverseBranchCondition(RevCond))
1792 llvm_unreachable("Unable to reverse branch condition!");
1793 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1794 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1796 // Figure out the more profitable ordering.
1797 bool DoSwap = false;
1798 if (TClobbersPred && !FClobbersPred)
1799 DoSwap = true;
1800 else if (!TClobbersPred && !FClobbersPred) {
1801 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1802 DoSwap = true;
1803 } else if (TClobbersPred && FClobbersPred)
1804 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1805 if (DoSwap) {
1806 std::swap(BBI1, BBI2);
1807 std::swap(Cond1, Cond2);
1810 // Remove the conditional branch from entry to the blocks.
1811 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1813 MachineBasicBlock &MBB1 = *BBI1->BB;
1814 MachineBasicBlock &MBB2 = *BBI2->BB;
1816 // Initialize the Redefs:
1817 // - BB2 live-in regs need implicit uses before being redefined by BB1
1818 // instructions.
1819 // - BB1 live-out regs need implicit uses before being redefined by BB2
1820 // instructions. We start with BB1 live-ins so we have the live-out regs
1821 // after tracking the BB1 instructions.
1822 Redefs.init(*TRI);
1823 if (MRI->tracksLiveness()) {
1824 Redefs.addLiveIns(MBB1);
1825 Redefs.addLiveIns(MBB2);
1828 // Remove the duplicated instructions at the beginnings of both paths.
1829 // Skip dbg_value instructions.
1830 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1831 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1832 BBI1->NonPredSize -= NumDups1;
1833 BBI2->NonPredSize -= NumDups1;
1835 // Skip past the dups on each side separately since there may be
1836 // differing dbg_value entries. NumDups1 can include a "return"
1837 // instruction, if it's not marked as "branch".
1838 for (unsigned i = 0; i < NumDups1; ++DI1) {
1839 if (DI1 == MBB1.end())
1840 break;
1841 if (!DI1->isDebugInstr())
1842 ++i;
1844 while (NumDups1 != 0) {
1845 // Since this instruction is going to be deleted, update call
1846 // site info state if the instruction is call instruction.
1847 if (DI2->isCall(MachineInstr::IgnoreBundle))
1848 MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1850 ++DI2;
1851 if (DI2 == MBB2.end())
1852 break;
1853 if (!DI2->isDebugInstr())
1854 --NumDups1;
1857 if (MRI->tracksLiveness()) {
1858 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1859 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1860 Redefs.stepForward(MI, Dummy);
1864 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1865 MBB2.erase(MBB2.begin(), DI2);
1867 // The branches have been checked to match, so it is safe to remove the
1868 // branch in BB1 and rely on the copy in BB2. The complication is that
1869 // the blocks may end with a return instruction, which may or may not
1870 // be marked as "branch". If it's not, then it could be included in
1871 // "dups1", leaving the blocks potentially empty after moving the common
1872 // duplicates.
1873 #ifndef NDEBUG
1874 // Unanalyzable branches must match exactly. Check that now.
1875 if (!BBI1->IsBrAnalyzable)
1876 verifySameBranchInstructions(&MBB1, &MBB2);
1877 #endif
1878 // Remove duplicated instructions from the tail of MBB1: any branch
1879 // instructions, and the common instructions counted by NumDups2.
1880 DI1 = MBB1.end();
1881 while (DI1 != MBB1.begin()) {
1882 MachineBasicBlock::iterator Prev = std::prev(DI1);
1883 if (!Prev->isBranch() && !Prev->isDebugInstr())
1884 break;
1885 DI1 = Prev;
1887 for (unsigned i = 0; i != NumDups2; ) {
1888 // NumDups2 only counted non-dbg_value instructions, so this won't
1889 // run off the head of the list.
1890 assert(DI1 != MBB1.begin());
1892 --DI1;
1894 // Since this instruction is going to be deleted, update call
1895 // site info state if the instruction is call instruction.
1896 if (DI1->isCall(MachineInstr::IgnoreBundle))
1897 MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1899 // skip dbg_value instructions
1900 if (!DI1->isDebugInstr())
1901 ++i;
1903 MBB1.erase(DI1, MBB1.end());
1905 DI2 = BBI2->BB->end();
1906 // The branches have been checked to match. Skip over the branch in the false
1907 // block so that we don't try to predicate it.
1908 if (RemoveBranch)
1909 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1910 else {
1911 // Make DI2 point to the end of the range where the common "tail"
1912 // instructions could be found.
1913 while (DI2 != MBB2.begin()) {
1914 MachineBasicBlock::iterator Prev = std::prev(DI2);
1915 if (!Prev->isBranch() && !Prev->isDebugInstr())
1916 break;
1917 DI2 = Prev;
1920 while (NumDups2 != 0) {
1921 // NumDups2 only counted non-dbg_value instructions, so this won't
1922 // run off the head of the list.
1923 assert(DI2 != MBB2.begin());
1924 --DI2;
1925 // skip dbg_value instructions
1926 if (!DI2->isDebugInstr())
1927 --NumDups2;
1930 // Remember which registers would later be defined by the false block.
1931 // This allows us not to predicate instructions in the true block that would
1932 // later be re-defined. That is, rather than
1933 // subeq r0, r1, #1
1934 // addne r0, r1, #1
1935 // generate:
1936 // sub r0, r1, #1
1937 // addne r0, r1, #1
1938 SmallSet<MCPhysReg, 4> RedefsByFalse;
1939 SmallSet<MCPhysReg, 4> ExtUses;
1940 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1941 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1942 if (FI.isDebugInstr())
1943 continue;
1944 SmallVector<MCPhysReg, 4> Defs;
1945 for (const MachineOperand &MO : FI.operands()) {
1946 if (!MO.isReg())
1947 continue;
1948 Register Reg = MO.getReg();
1949 if (!Reg)
1950 continue;
1951 if (MO.isDef()) {
1952 Defs.push_back(Reg);
1953 } else if (!RedefsByFalse.count(Reg)) {
1954 // These are defined before ctrl flow reach the 'false' instructions.
1955 // They cannot be modified by the 'true' instructions.
1956 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1957 SubRegs.isValid(); ++SubRegs)
1958 ExtUses.insert(*SubRegs);
1962 for (MCPhysReg Reg : Defs) {
1963 if (!ExtUses.count(Reg)) {
1964 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1965 SubRegs.isValid(); ++SubRegs)
1966 RedefsByFalse.insert(*SubRegs);
1972 // Predicate the 'true' block.
1973 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1975 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1976 // a non-predicated in BBI2, then we don't want to predicate the one from
1977 // BBI2. The reason is that if we merged these blocks, we would end up with
1978 // two predicated terminators in the same block.
1979 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1980 // predicate them either. They were checked to be identical, and so the
1981 // same branch would happen regardless of which path was taken.
1982 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1983 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1984 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1985 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1986 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1987 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1988 --DI2;
1991 // Predicate the 'false' block.
1992 PredicateBlock(*BBI2, DI2, *Cond2);
1994 // Merge the true block into the entry of the diamond.
1995 MergeBlocks(BBI, *BBI1, MergeAddEdges);
1996 MergeBlocks(BBI, *BBI2, MergeAddEdges);
1997 return true;
2000 /// If convert an almost-diamond sub-CFG where the true
2001 /// and false blocks share a common tail.
2002 bool IfConverter::IfConvertForkedDiamond(
2003 BBInfo &BBI, IfcvtKind Kind,
2004 unsigned NumDups1, unsigned NumDups2,
2005 bool TClobbersPred, bool FClobbersPred) {
2006 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2007 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2009 // Save the debug location for later.
2010 DebugLoc dl;
2011 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2012 if (TIE != TrueBBI.BB->end())
2013 dl = TIE->getDebugLoc();
2014 // Removing branches from both blocks is safe, because we have already
2015 // determined that both blocks have the same branch instructions. The branch
2016 // will be added back at the end, unpredicated.
2017 if (!IfConvertDiamondCommon(
2018 BBI, TrueBBI, FalseBBI,
2019 NumDups1, NumDups2,
2020 TClobbersPred, FClobbersPred,
2021 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2022 return false;
2024 // Add back the branch.
2025 // Debug location saved above when removing the branch from BBI2
2026 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2027 TrueBBI.BrCond, dl);
2029 // Update block info.
2030 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2031 InvalidatePreds(*BBI.BB);
2033 // FIXME: Must maintain LiveIns.
2034 return true;
2037 /// If convert a diamond sub-CFG.
2038 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2039 unsigned NumDups1, unsigned NumDups2,
2040 bool TClobbersPred, bool FClobbersPred) {
2041 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2042 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2043 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2045 // True block must fall through or end with an unanalyzable terminator.
2046 if (!TailBB) {
2047 if (blockAlwaysFallThrough(TrueBBI))
2048 TailBB = FalseBBI.TrueBB;
2049 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2052 if (!IfConvertDiamondCommon(
2053 BBI, TrueBBI, FalseBBI,
2054 NumDups1, NumDups2,
2055 TClobbersPred, FClobbersPred,
2056 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2057 /* MergeAddEdges */ TailBB == nullptr))
2058 return false;
2060 // If the if-converted block falls through or unconditionally branches into
2061 // the tail block, and the tail block does not have other predecessors, then
2062 // fold the tail block in as well. Otherwise, unless it falls through to the
2063 // tail, add a unconditional branch to it.
2064 if (TailBB) {
2065 // We need to remove the edges to the true and false blocks manually since
2066 // we didn't let IfConvertDiamondCommon update the CFG.
2067 BBI.BB->removeSuccessor(TrueBBI.BB);
2068 BBI.BB->removeSuccessor(FalseBBI.BB, true);
2070 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2071 bool CanMergeTail = !TailBBI.HasFallThrough &&
2072 !TailBBI.BB->hasAddressTaken();
2073 // The if-converted block can still have a predicated terminator
2074 // (e.g. a predicated return). If that is the case, we cannot merge
2075 // it with the tail block.
2076 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2077 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2078 CanMergeTail = false;
2079 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2080 // check if there are any other predecessors besides those.
2081 unsigned NumPreds = TailBB->pred_size();
2082 if (NumPreds > 1)
2083 CanMergeTail = false;
2084 else if (NumPreds == 1 && CanMergeTail) {
2085 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2086 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2087 CanMergeTail = false;
2089 if (CanMergeTail) {
2090 MergeBlocks(BBI, TailBBI);
2091 TailBBI.IsDone = true;
2092 } else {
2093 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2094 InsertUncondBranch(*BBI.BB, *TailBB, TII);
2095 BBI.HasFallThrough = false;
2099 // Update block info.
2100 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2101 InvalidatePreds(*BBI.BB);
2103 // FIXME: Must maintain LiveIns.
2104 return true;
2107 static bool MaySpeculate(const MachineInstr &MI,
2108 SmallSet<MCPhysReg, 4> &LaterRedefs) {
2109 bool SawStore = true;
2110 if (!MI.isSafeToMove(nullptr, SawStore))
2111 return false;
2113 for (const MachineOperand &MO : MI.operands()) {
2114 if (!MO.isReg())
2115 continue;
2116 Register Reg = MO.getReg();
2117 if (!Reg)
2118 continue;
2119 if (MO.isDef() && !LaterRedefs.count(Reg))
2120 return false;
2123 return true;
2126 /// Predicate instructions from the start of the block to the specified end with
2127 /// the specified condition.
2128 void IfConverter::PredicateBlock(BBInfo &BBI,
2129 MachineBasicBlock::iterator E,
2130 SmallVectorImpl<MachineOperand> &Cond,
2131 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2132 bool AnyUnpred = false;
2133 bool MaySpec = LaterRedefs != nullptr;
2134 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2135 if (I.isDebugInstr() || TII->isPredicated(I))
2136 continue;
2137 // It may be possible not to predicate an instruction if it's the 'true'
2138 // side of a diamond and the 'false' side may re-define the instruction's
2139 // defs.
2140 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2141 AnyUnpred = true;
2142 continue;
2144 // If any instruction is predicated, then every instruction after it must
2145 // be predicated.
2146 MaySpec = false;
2147 if (!TII->PredicateInstruction(I, Cond)) {
2148 #ifndef NDEBUG
2149 dbgs() << "Unable to predicate " << I << "!\n";
2150 #endif
2151 llvm_unreachable(nullptr);
2154 // If the predicated instruction now redefines a register as the result of
2155 // if-conversion, add an implicit kill.
2156 UpdatePredRedefs(I, Redefs);
2159 BBI.Predicate.append(Cond.begin(), Cond.end());
2161 BBI.IsAnalyzed = false;
2162 BBI.NonPredSize = 0;
2164 ++NumIfConvBBs;
2165 if (AnyUnpred)
2166 ++NumUnpred;
2169 /// Copy and predicate instructions from source BB to the destination block.
2170 /// Skip end of block branches if IgnoreBr is true.
2171 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2172 SmallVectorImpl<MachineOperand> &Cond,
2173 bool IgnoreBr) {
2174 MachineFunction &MF = *ToBBI.BB->getParent();
2176 MachineBasicBlock &FromMBB = *FromBBI.BB;
2177 for (MachineInstr &I : FromMBB) {
2178 // Do not copy the end of the block branches.
2179 if (IgnoreBr && I.isBranch())
2180 break;
2182 MachineInstr *MI = MF.CloneMachineInstr(&I);
2183 // Make a copy of the call site info.
2184 if (MI->isCall(MachineInstr::IgnoreBundle))
2185 MF.copyCallSiteInfo(&I,MI);
2187 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2188 ToBBI.NonPredSize++;
2189 unsigned ExtraPredCost = TII->getPredicationCost(I);
2190 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2191 if (NumCycles > 1)
2192 ToBBI.ExtraCost += NumCycles-1;
2193 ToBBI.ExtraCost2 += ExtraPredCost;
2195 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2196 if (!TII->PredicateInstruction(*MI, Cond)) {
2197 #ifndef NDEBUG
2198 dbgs() << "Unable to predicate " << I << "!\n";
2199 #endif
2200 llvm_unreachable(nullptr);
2204 // If the predicated instruction now redefines a register as the result of
2205 // if-conversion, add an implicit kill.
2206 UpdatePredRedefs(*MI, Redefs);
2209 if (!IgnoreBr) {
2210 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2211 FromMBB.succ_end());
2212 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2213 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2215 for (MachineBasicBlock *Succ : Succs) {
2216 // Fallthrough edge can't be transferred.
2217 if (Succ == FallThrough)
2218 continue;
2219 ToBBI.BB->addSuccessor(Succ);
2223 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2224 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2226 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2227 ToBBI.IsAnalyzed = false;
2229 ++NumDupBBs;
2232 /// Move all instructions from FromBB to the end of ToBB. This will leave
2233 /// FromBB as an empty block, so remove all of its successor edges except for
2234 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2235 /// being moved, add those successor edges to ToBBI and remove the old edge
2236 /// from ToBBI to FromBBI.
2237 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2238 MachineBasicBlock &FromMBB = *FromBBI.BB;
2239 assert(!FromMBB.hasAddressTaken() &&
2240 "Removing a BB whose address is taken!");
2242 // In case FromMBB contains terminators (e.g. return instruction),
2243 // first move the non-terminator instructions, then the terminators.
2244 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2245 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2246 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2248 // If FromBB has non-predicated terminator we should copy it at the end.
2249 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2250 ToTI = ToBBI.BB->end();
2251 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2253 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2254 // unknown probabilities into known ones.
2255 // FIXME: This usage is too tricky and in the future we would like to
2256 // eliminate all unknown probabilities in MBB.
2257 if (ToBBI.IsBrAnalyzable)
2258 ToBBI.BB->normalizeSuccProbs();
2260 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2261 FromMBB.succ_end());
2262 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2263 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2264 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2265 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2266 auto To2FromProb = BranchProbability::getZero();
2267 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2268 // Remove the old edge but remember the edge probability so we can calculate
2269 // the correct weights on the new edges being added further down.
2270 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2271 ToBBI.BB->removeSuccessor(&FromMBB);
2274 for (MachineBasicBlock *Succ : FromSuccs) {
2275 // Fallthrough edge can't be transferred.
2276 if (Succ == FallThrough)
2277 continue;
2279 auto NewProb = BranchProbability::getZero();
2280 if (AddEdges) {
2281 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2282 // which is a portion of the edge probability from FromMBB to Succ. The
2283 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2284 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2285 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2287 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2288 // only happens when if-converting a diamond CFG and FromMBB is the
2289 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2290 // could just use the probabilities on FromMBB's out-edges when adding
2291 // new successors.
2292 if (!To2FromProb.isZero())
2293 NewProb *= To2FromProb;
2296 FromMBB.removeSuccessor(Succ);
2298 if (AddEdges) {
2299 // If the edge from ToBBI.BB to Succ already exists, update the
2300 // probability of this edge by adding NewProb to it. An example is shown
2301 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2302 // don't have to set C as A's successor as it already is. We only need to
2303 // update the edge probability on A->C. Note that B will not be
2304 // immediately removed from A's successors. It is possible that B->D is
2305 // not removed either if D is a fallthrough of B. Later the edge A->D
2306 // (generated here) and B->D will be combined into one edge. To maintain
2307 // correct edge probability of this combined edge, we need to set the edge
2308 // probability of A->B to zero, which is already done above. The edge
2309 // probability on A->D is calculated by scaling the original probability
2310 // on A->B by the probability of B->D.
2312 // Before ifcvt: After ifcvt (assume B->D is kept):
2314 // A A
2315 // /| /|\
2316 // / B / B|
2317 // | /| | ||
2318 // |/ | | |/
2319 // C D C D
2321 if (ToBBI.BB->isSuccessor(Succ))
2322 ToBBI.BB->setSuccProbability(
2323 find(ToBBI.BB->successors(), Succ),
2324 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2325 else
2326 ToBBI.BB->addSuccessor(Succ, NewProb);
2330 // Move the now empty FromMBB out of the way to the end of the function so
2331 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2332 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2333 if (Last != &FromMBB)
2334 FromMBB.moveAfter(Last);
2336 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2337 // we've done above.
2338 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2339 ToBBI.BB->normalizeSuccProbs();
2341 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2342 FromBBI.Predicate.clear();
2344 ToBBI.NonPredSize += FromBBI.NonPredSize;
2345 ToBBI.ExtraCost += FromBBI.ExtraCost;
2346 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2347 FromBBI.NonPredSize = 0;
2348 FromBBI.ExtraCost = 0;
2349 FromBBI.ExtraCost2 = 0;
2351 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2352 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2353 ToBBI.IsAnalyzed = false;
2354 FromBBI.IsAnalyzed = false;
2357 FunctionPass *
2358 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2359 return new IfConverter(std::move(Ftor));