1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSchedule.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "machinelicm"
59 AvoidSpeculation("avoid-speculation",
60 cl::desc("MachineLICM should avoid speculation"),
61 cl::init(true), cl::Hidden
);
64 HoistCheapInsts("hoist-cheap-insts",
65 cl::desc("MachineLICM should hoist even cheap instructions"),
66 cl::init(false), cl::Hidden
);
69 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
70 cl::desc("MachineLICM should sink instructions into "
71 "loops to avoid register spills"),
72 cl::init(false), cl::Hidden
);
74 HoistConstStores("hoist-const-stores",
75 cl::desc("Hoist invariant stores"),
76 cl::init(true), cl::Hidden
);
79 "Number of machine instructions hoisted out of loops");
81 "Number of instructions hoisted in low reg pressure situation");
82 STATISTIC(NumHighLatency
,
83 "Number of high latency instructions hoisted");
85 "Number of hoisted machine instructions CSEed");
86 STATISTIC(NumPostRAHoisted
,
87 "Number of machine instructions hoisted out of loops post regalloc");
88 STATISTIC(NumStoreConst
,
89 "Number of stores of const phys reg hoisted out of loops");
93 class MachineLICMBase
: public MachineFunctionPass
{
94 const TargetInstrInfo
*TII
;
95 const TargetLoweringBase
*TLI
;
96 const TargetRegisterInfo
*TRI
;
97 const MachineFrameInfo
*MFI
;
98 MachineRegisterInfo
*MRI
;
99 TargetSchedModel SchedModel
;
102 // Various analyses that we use...
103 AliasAnalysis
*AA
; // Alias analysis info.
104 MachineLoopInfo
*MLI
; // Current MachineLoopInfo
105 MachineDominatorTree
*DT
; // Machine dominator tree for the cur loop
107 // State that is updated as we process loops
108 bool Changed
; // True if a loop is changed.
109 bool FirstInLoop
; // True if it's the first LICM in the loop.
110 MachineLoop
*CurLoop
; // The current loop we are working on.
111 MachineBasicBlock
*CurPreheader
; // The preheader for CurLoop.
113 // Exit blocks for CurLoop.
114 SmallVector
<MachineBasicBlock
*, 8> ExitBlocks
;
116 bool isExitBlock(const MachineBasicBlock
*MBB
) const {
117 return is_contained(ExitBlocks
, MBB
);
120 // Track 'estimated' register pressure.
121 SmallSet
<unsigned, 32> RegSeen
;
122 SmallVector
<unsigned, 8> RegPressure
;
124 // Register pressure "limit" per register pressure set. If the pressure
125 // is higher than the limit, then it's considered high.
126 SmallVector
<unsigned, 8> RegLimit
;
128 // Register pressure on path leading from loop preheader to current BB.
129 SmallVector
<SmallVector
<unsigned, 8>, 16> BackTrace
;
131 // For each opcode, keep a list of potential CSE instructions.
132 DenseMap
<unsigned, std::vector
<const MachineInstr
*>> CSEMap
;
140 // If a MBB does not dominate loop exiting blocks then it may not safe
141 // to hoist loads from this block.
142 // Tri-state: 0 - false, 1 - true, 2 - unknown
143 unsigned SpeculationState
;
146 MachineLICMBase(char &PassID
, bool PreRegAlloc
)
147 : MachineFunctionPass(PassID
), PreRegAlloc(PreRegAlloc
) {}
149 bool runOnMachineFunction(MachineFunction
&MF
) override
;
151 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
152 AU
.addRequired
<MachineLoopInfo
>();
153 AU
.addRequired
<MachineDominatorTree
>();
154 AU
.addRequired
<AAResultsWrapperPass
>();
155 AU
.addPreserved
<MachineLoopInfo
>();
156 MachineFunctionPass::getAnalysisUsage(AU
);
159 void releaseMemory() override
{
168 /// Keep track of information about hoisting candidates.
169 struct CandidateInfo
{
174 CandidateInfo(MachineInstr
*mi
, unsigned def
, int fi
)
175 : MI(mi
), Def(def
), FI(fi
) {}
178 void HoistRegionPostRA();
180 void HoistPostRA(MachineInstr
*MI
, unsigned Def
);
182 void ProcessMI(MachineInstr
*MI
, BitVector
&PhysRegDefs
,
183 BitVector
&PhysRegClobbers
, SmallSet
<int, 32> &StoredFIs
,
184 SmallVectorImpl
<CandidateInfo
> &Candidates
);
186 void AddToLiveIns(unsigned Reg
);
188 bool IsLICMCandidate(MachineInstr
&I
);
190 bool IsLoopInvariantInst(MachineInstr
&I
);
192 bool HasLoopPHIUse(const MachineInstr
*MI
) const;
194 bool HasHighOperandLatency(MachineInstr
&MI
, unsigned DefIdx
,
197 bool IsCheapInstruction(MachineInstr
&MI
) const;
199 bool CanCauseHighRegPressure(const DenseMap
<unsigned, int> &Cost
,
202 void UpdateBackTraceRegPressure(const MachineInstr
*MI
);
204 bool IsProfitableToHoist(MachineInstr
&MI
);
206 bool IsGuaranteedToExecute(MachineBasicBlock
*BB
);
208 void EnterScope(MachineBasicBlock
*MBB
);
210 void ExitScope(MachineBasicBlock
*MBB
);
212 void ExitScopeIfDone(
213 MachineDomTreeNode
*Node
,
214 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
215 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
);
217 void HoistOutOfLoop(MachineDomTreeNode
*HeaderN
);
219 void HoistRegion(MachineDomTreeNode
*N
, bool IsHeader
);
223 void InitRegPressure(MachineBasicBlock
*BB
);
225 DenseMap
<unsigned, int> calcRegisterCost(const MachineInstr
*MI
,
227 bool ConsiderUnseenAsDef
);
229 void UpdateRegPressure(const MachineInstr
*MI
,
230 bool ConsiderUnseenAsDef
= false);
232 MachineInstr
*ExtractHoistableLoad(MachineInstr
*MI
);
235 LookForDuplicate(const MachineInstr
*MI
,
236 std::vector
<const MachineInstr
*> &PrevMIs
);
240 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
&CI
);
242 bool MayCSE(MachineInstr
*MI
);
244 bool Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
);
246 void InitCSEMap(MachineBasicBlock
*BB
);
248 MachineBasicBlock
*getCurPreheader();
251 class MachineLICM
: public MachineLICMBase
{
254 MachineLICM() : MachineLICMBase(ID
, false) {
255 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
259 class EarlyMachineLICM
: public MachineLICMBase
{
262 EarlyMachineLICM() : MachineLICMBase(ID
, true) {
263 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
267 } // end anonymous namespace
269 char MachineLICM::ID
;
270 char EarlyMachineLICM::ID
;
272 char &llvm::MachineLICMID
= MachineLICM::ID
;
273 char &llvm::EarlyMachineLICMID
= EarlyMachineLICM::ID
;
275 INITIALIZE_PASS_BEGIN(MachineLICM
, DEBUG_TYPE
,
276 "Machine Loop Invariant Code Motion", false, false)
277 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
278 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
280 INITIALIZE_PASS_END(MachineLICM
, DEBUG_TYPE
,
281 "Machine Loop Invariant Code Motion", false, false)
283 INITIALIZE_PASS_BEGIN(EarlyMachineLICM
, "early-machinelicm",
284 "Early Machine Loop Invariant Code Motion", false, false)
285 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
286 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
287 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
288 INITIALIZE_PASS_END(EarlyMachineLICM
, "early-machinelicm",
289 "Early Machine Loop Invariant Code Motion", false, false)
291 /// Test if the given loop is the outer-most loop that has a unique predecessor.
292 static bool LoopIsOuterMostWithPredecessor(MachineLoop
*CurLoop
) {
293 // Check whether this loop even has a unique predecessor.
294 if (!CurLoop
->getLoopPredecessor())
296 // Ok, now check to see if any of its outer loops do.
297 for (MachineLoop
*L
= CurLoop
->getParentLoop(); L
; L
= L
->getParentLoop())
298 if (L
->getLoopPredecessor())
300 // None of them did, so this is the outermost with a unique predecessor.
304 bool MachineLICMBase::runOnMachineFunction(MachineFunction
&MF
) {
305 if (skipFunction(MF
.getFunction()))
308 Changed
= FirstInLoop
= false;
309 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
310 TII
= ST
.getInstrInfo();
311 TLI
= ST
.getTargetLowering();
312 TRI
= ST
.getRegisterInfo();
313 MFI
= &MF
.getFrameInfo();
314 MRI
= &MF
.getRegInfo();
315 SchedModel
.init(&ST
);
317 PreRegAlloc
= MRI
->isSSA();
320 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
322 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
323 LLVM_DEBUG(dbgs() << MF
.getName() << " ********\n");
326 // Estimate register pressure during pre-regalloc pass.
327 unsigned NumRPS
= TRI
->getNumRegPressureSets();
328 RegPressure
.resize(NumRPS
);
329 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
330 RegLimit
.resize(NumRPS
);
331 for (unsigned i
= 0, e
= NumRPS
; i
!= e
; ++i
)
332 RegLimit
[i
] = TRI
->getRegPressureSetLimit(MF
, i
);
335 // Get our Loop information...
336 MLI
= &getAnalysis
<MachineLoopInfo
>();
337 DT
= &getAnalysis
<MachineDominatorTree
>();
338 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
340 SmallVector
<MachineLoop
*, 8> Worklist(MLI
->begin(), MLI
->end());
341 while (!Worklist
.empty()) {
342 CurLoop
= Worklist
.pop_back_val();
343 CurPreheader
= nullptr;
346 // If this is done before regalloc, only visit outer-most preheader-sporting
348 if (PreRegAlloc
&& !LoopIsOuterMostWithPredecessor(CurLoop
)) {
349 Worklist
.append(CurLoop
->begin(), CurLoop
->end());
353 CurLoop
->getExitBlocks(ExitBlocks
);
358 // CSEMap is initialized for loop header when the first instruction is
360 MachineDomTreeNode
*N
= DT
->getNode(CurLoop
->getHeader());
365 if (SinkInstsToAvoidSpills
)
373 /// Return true if instruction stores to the specified frame.
374 static bool InstructionStoresToFI(const MachineInstr
*MI
, int FI
) {
375 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
376 // true since they have no memory operands.
379 // If we lost memory operands, conservatively assume that the instruction
380 // writes to all slots.
381 if (MI
->memoperands_empty())
383 for (const MachineMemOperand
*MemOp
: MI
->memoperands()) {
384 if (!MemOp
->isStore() || !MemOp
->getPseudoValue())
386 if (const FixedStackPseudoSourceValue
*Value
=
387 dyn_cast
<FixedStackPseudoSourceValue
>(MemOp
->getPseudoValue())) {
388 if (Value
->getFrameIndex() == FI
)
395 /// Examine the instruction for potentai LICM candidate. Also
396 /// gather register def and frame object update information.
397 void MachineLICMBase::ProcessMI(MachineInstr
*MI
,
398 BitVector
&PhysRegDefs
,
399 BitVector
&PhysRegClobbers
,
400 SmallSet
<int, 32> &StoredFIs
,
401 SmallVectorImpl
<CandidateInfo
> &Candidates
) {
402 bool RuledOut
= false;
403 bool HasNonInvariantUse
= false;
405 for (const MachineOperand
&MO
: MI
->operands()) {
407 // Remember if the instruction stores to the frame index.
408 int FI
= MO
.getIndex();
409 if (!StoredFIs
.count(FI
) &&
410 MFI
->isSpillSlotObjectIndex(FI
) &&
411 InstructionStoresToFI(MI
, FI
))
412 StoredFIs
.insert(FI
);
413 HasNonInvariantUse
= true;
417 // We can't hoist an instruction defining a physreg that is clobbered in
419 if (MO
.isRegMask()) {
420 PhysRegClobbers
.setBitsNotInMask(MO
.getRegMask());
426 Register Reg
= MO
.getReg();
429 assert(Register::isPhysicalRegister(Reg
) &&
430 "Not expecting virtual register!");
433 if (Reg
&& (PhysRegDefs
.test(Reg
) || PhysRegClobbers
.test(Reg
)))
434 // If it's using a non-loop-invariant register, then it's obviously not
436 HasNonInvariantUse
= true;
440 if (MO
.isImplicit()) {
441 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
442 PhysRegClobbers
.set(*AI
);
444 // Non-dead implicit def? This cannot be hoisted.
446 // No need to check if a dead implicit def is also defined by
447 // another instruction.
451 // FIXME: For now, avoid instructions with multiple defs, unless
452 // it's a dead implicit def.
458 // If we have already seen another instruction that defines the same
459 // register, then this is not safe. Two defs is indicated by setting a
460 // PhysRegClobbers bit.
461 for (MCRegAliasIterator
AS(Reg
, TRI
, true); AS
.isValid(); ++AS
) {
462 if (PhysRegDefs
.test(*AS
))
463 PhysRegClobbers
.set(*AS
);
465 // Need a second loop because MCRegAliasIterator can visit the same
467 for (MCRegAliasIterator
AS(Reg
, TRI
, true); AS
.isValid(); ++AS
)
468 PhysRegDefs
.set(*AS
);
470 if (PhysRegClobbers
.test(Reg
))
471 // MI defined register is seen defined by another instruction in
472 // the loop, it cannot be a LICM candidate.
476 // Only consider reloads for now and remats which do not have register
477 // operands. FIXME: Consider unfold load folding instructions.
478 if (Def
&& !RuledOut
) {
479 int FI
= std::numeric_limits
<int>::min();
480 if ((!HasNonInvariantUse
&& IsLICMCandidate(*MI
)) ||
481 (TII
->isLoadFromStackSlot(*MI
, FI
) && MFI
->isSpillSlotObjectIndex(FI
)))
482 Candidates
.push_back(CandidateInfo(MI
, Def
, FI
));
486 /// Walk the specified region of the CFG and hoist loop invariants out to the
488 void MachineLICMBase::HoistRegionPostRA() {
489 MachineBasicBlock
*Preheader
= getCurPreheader();
493 unsigned NumRegs
= TRI
->getNumRegs();
494 BitVector
PhysRegDefs(NumRegs
); // Regs defined once in the loop.
495 BitVector
PhysRegClobbers(NumRegs
); // Regs defined more than once.
497 SmallVector
<CandidateInfo
, 32> Candidates
;
498 SmallSet
<int, 32> StoredFIs
;
500 // Walk the entire region, count number of defs for each register, and
501 // collect potential LICM candidates.
502 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
503 // If the header of the loop containing this basic block is a landing pad,
504 // then don't try to hoist instructions out of this loop.
505 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
506 if (ML
&& ML
->getHeader()->isEHPad()) continue;
508 // Conservatively treat live-in's as an external def.
509 // FIXME: That means a reload that're reused in successor block(s) will not
511 for (const auto &LI
: BB
->liveins()) {
512 for (MCRegAliasIterator
AI(LI
.PhysReg
, TRI
, true); AI
.isValid(); ++AI
)
513 PhysRegDefs
.set(*AI
);
516 SpeculationState
= SpeculateUnknown
;
517 for (MachineInstr
&MI
: *BB
)
518 ProcessMI(&MI
, PhysRegDefs
, PhysRegClobbers
, StoredFIs
, Candidates
);
521 // Gather the registers read / clobbered by the terminator.
522 BitVector
TermRegs(NumRegs
);
523 MachineBasicBlock::iterator TI
= Preheader
->getFirstTerminator();
524 if (TI
!= Preheader
->end()) {
525 for (const MachineOperand
&MO
: TI
->operands()) {
528 Register Reg
= MO
.getReg();
531 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
536 // Now evaluate whether the potential candidates qualify.
537 // 1. Check if the candidate defined register is defined by another
538 // instruction in the loop.
539 // 2. If the candidate is a load from stack slot (always true for now),
540 // check if the slot is stored anywhere in the loop.
541 // 3. Make sure candidate def should not clobber
542 // registers read by the terminator. Similarly its def should not be
543 // clobbered by the terminator.
544 for (CandidateInfo
&Candidate
: Candidates
) {
545 if (Candidate
.FI
!= std::numeric_limits
<int>::min() &&
546 StoredFIs
.count(Candidate
.FI
))
549 unsigned Def
= Candidate
.Def
;
550 if (!PhysRegClobbers
.test(Def
) && !TermRegs
.test(Def
)) {
552 MachineInstr
*MI
= Candidate
.MI
;
553 for (const MachineOperand
&MO
: MI
->operands()) {
554 if (!MO
.isReg() || MO
.isDef() || !MO
.getReg())
556 Register Reg
= MO
.getReg();
557 if (PhysRegDefs
.test(Reg
) ||
558 PhysRegClobbers
.test(Reg
)) {
559 // If it's using a non-loop-invariant register, then it's obviously
560 // not safe to hoist.
566 HoistPostRA(MI
, Candidate
.Def
);
571 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
572 /// sure it is not killed by any instructions in the loop.
573 void MachineLICMBase::AddToLiveIns(unsigned Reg
) {
574 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
575 if (!BB
->isLiveIn(Reg
))
577 for (MachineInstr
&MI
: *BB
) {
578 for (MachineOperand
&MO
: MI
.operands()) {
579 if (!MO
.isReg() || !MO
.getReg() || MO
.isDef()) continue;
580 if (MO
.getReg() == Reg
|| TRI
->isSuperRegister(Reg
, MO
.getReg()))
587 /// When an instruction is found to only use loop invariant operands that is
588 /// safe to hoist, this instruction is called to do the dirty work.
589 void MachineLICMBase::HoistPostRA(MachineInstr
*MI
, unsigned Def
) {
590 MachineBasicBlock
*Preheader
= getCurPreheader();
592 // Now move the instructions to the predecessor, inserting it before any
593 // terminator instructions.
594 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader
)
595 << " from " << printMBBReference(*MI
->getParent()) << ": "
598 // Splice the instruction to the preheader.
599 MachineBasicBlock
*MBB
= MI
->getParent();
600 Preheader
->splice(Preheader
->getFirstTerminator(), MBB
, MI
);
602 // Add register to livein list to all the BBs in the current loop since a
603 // loop invariant must be kept live throughout the whole loop. This is
604 // important to ensure later passes do not scavenge the def register.
611 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
612 /// may not be safe to hoist.
613 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock
*BB
) {
614 if (SpeculationState
!= SpeculateUnknown
)
615 return SpeculationState
== SpeculateFalse
;
617 if (BB
!= CurLoop
->getHeader()) {
618 // Check loop exiting blocks.
619 SmallVector
<MachineBasicBlock
*, 8> CurrentLoopExitingBlocks
;
620 CurLoop
->getExitingBlocks(CurrentLoopExitingBlocks
);
621 for (MachineBasicBlock
*CurrentLoopExitingBlock
: CurrentLoopExitingBlocks
)
622 if (!DT
->dominates(BB
, CurrentLoopExitingBlock
)) {
623 SpeculationState
= SpeculateTrue
;
628 SpeculationState
= SpeculateFalse
;
632 void MachineLICMBase::EnterScope(MachineBasicBlock
*MBB
) {
633 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB
) << '\n');
635 // Remember livein register pressure.
636 BackTrace
.push_back(RegPressure
);
639 void MachineLICMBase::ExitScope(MachineBasicBlock
*MBB
) {
640 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB
) << '\n');
641 BackTrace
.pop_back();
644 /// Destroy scope for the MBB that corresponds to the given dominator tree node
645 /// if its a leaf or all of its children are done. Walk up the dominator tree to
646 /// destroy ancestors which are now done.
647 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode
*Node
,
648 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
649 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
) {
650 if (OpenChildren
[Node
])
654 ExitScope(Node
->getBlock());
656 // Now traverse upwards to pop ancestors whose offsprings are all done.
657 while (MachineDomTreeNode
*Parent
= ParentMap
[Node
]) {
658 unsigned Left
= --OpenChildren
[Parent
];
661 ExitScope(Parent
->getBlock());
666 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
667 /// specified header block, and that are in the current loop) in depth first
668 /// order w.r.t the DominatorTree. This allows us to visit definitions before
669 /// uses, allowing us to hoist a loop body in one pass without iteration.
670 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode
*HeaderN
) {
671 MachineBasicBlock
*Preheader
= getCurPreheader();
675 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
676 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
677 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> ParentMap
;
678 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
680 // Perform a DFS walk to determine the order of visit.
681 WorkList
.push_back(HeaderN
);
682 while (!WorkList
.empty()) {
683 MachineDomTreeNode
*Node
= WorkList
.pop_back_val();
684 assert(Node
&& "Null dominator tree node?");
685 MachineBasicBlock
*BB
= Node
->getBlock();
687 // If the header of the loop containing this basic block is a landing pad,
688 // then don't try to hoist instructions out of this loop.
689 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
690 if (ML
&& ML
->getHeader()->isEHPad())
693 // If this subregion is not in the top level loop at all, exit.
694 if (!CurLoop
->contains(BB
))
697 Scopes
.push_back(Node
);
698 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
699 unsigned NumChildren
= Children
.size();
701 // Don't hoist things out of a large switch statement. This often causes
702 // code to be hoisted that wasn't going to be executed, and increases
703 // register pressure in a situation where it's likely to matter.
704 if (BB
->succ_size() >= 25)
707 OpenChildren
[Node
] = NumChildren
;
708 // Add children in reverse order as then the next popped worklist node is
709 // the first child of this node. This means we ultimately traverse the
710 // DOM tree in exactly the same order as if we'd recursed.
711 for (int i
= (int)NumChildren
-1; i
>= 0; --i
) {
712 MachineDomTreeNode
*Child
= Children
[i
];
713 ParentMap
[Child
] = Node
;
714 WorkList
.push_back(Child
);
718 if (Scopes
.size() == 0)
721 // Compute registers which are livein into the loop headers.
724 InitRegPressure(Preheader
);
727 for (MachineDomTreeNode
*Node
: Scopes
) {
728 MachineBasicBlock
*MBB
= Node
->getBlock();
733 SpeculationState
= SpeculateUnknown
;
734 for (MachineBasicBlock::iterator
735 MII
= MBB
->begin(), E
= MBB
->end(); MII
!= E
; ) {
736 MachineBasicBlock::iterator NextMII
= MII
; ++NextMII
;
737 MachineInstr
*MI
= &*MII
;
738 if (!Hoist(MI
, Preheader
))
739 UpdateRegPressure(MI
);
740 // If we have hoisted an instruction that may store, it can only be a
745 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
746 ExitScopeIfDone(Node
, OpenChildren
, ParentMap
);
750 /// Sink instructions into loops if profitable. This especially tries to prevent
751 /// register spills caused by register pressure if there is little to no
752 /// overhead moving instructions into loops.
753 void MachineLICMBase::SinkIntoLoop() {
754 MachineBasicBlock
*Preheader
= getCurPreheader();
758 SmallVector
<MachineInstr
*, 8> Candidates
;
759 for (MachineBasicBlock::instr_iterator I
= Preheader
->instr_begin();
760 I
!= Preheader
->instr_end(); ++I
) {
761 // We need to ensure that we can safely move this instruction into the loop.
762 // As such, it must not have side-effects, e.g. such as a call has.
763 if (IsLoopInvariantInst(*I
) && !HasLoopPHIUse(&*I
))
764 Candidates
.push_back(&*I
);
767 for (MachineInstr
*I
: Candidates
) {
768 const MachineOperand
&MO
= I
->getOperand(0);
769 if (!MO
.isDef() || !MO
.isReg() || !MO
.getReg())
771 if (!MRI
->hasOneDef(MO
.getReg()))
774 MachineBasicBlock
*B
= nullptr;
775 for (MachineInstr
&MI
: MRI
->use_instructions(MO
.getReg())) {
776 // FIXME: Come up with a proper cost model that estimates whether sinking
777 // the instruction (and thus possibly executing it on every loop
778 // iteration) is more expensive than a register.
779 // For now assumes that copies are cheap and thus almost always worth it.
788 B
= DT
->findNearestCommonDominator(B
, MI
.getParent());
794 if (!CanSink
|| !B
|| B
== Preheader
)
796 B
->splice(B
->getFirstNonPHI(), Preheader
, I
);
800 static bool isOperandKill(const MachineOperand
&MO
, MachineRegisterInfo
*MRI
) {
801 return MO
.isKill() || MRI
->hasOneNonDBGUse(MO
.getReg());
804 /// Find all virtual register references that are liveout of the preheader to
805 /// initialize the starting "register pressure". Note this does not count live
806 /// through (livein but not used) registers.
807 void MachineLICMBase::InitRegPressure(MachineBasicBlock
*BB
) {
808 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
810 // If the preheader has only a single predecessor and it ends with a
811 // fallthrough or an unconditional branch, then scan its predecessor for live
812 // defs as well. This happens whenever the preheader is created by splitting
813 // the critical edge from the loop predecessor to the loop header.
814 if (BB
->pred_size() == 1) {
815 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
816 SmallVector
<MachineOperand
, 4> Cond
;
817 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
, false) && Cond
.empty())
818 InitRegPressure(*BB
->pred_begin());
821 for (const MachineInstr
&MI
: *BB
)
822 UpdateRegPressure(&MI
, /*ConsiderUnseenAsDef=*/true);
825 /// Update estimate of register pressure after the specified instruction.
826 void MachineLICMBase::UpdateRegPressure(const MachineInstr
*MI
,
827 bool ConsiderUnseenAsDef
) {
828 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/true, ConsiderUnseenAsDef
);
829 for (const auto &RPIdAndCost
: Cost
) {
830 unsigned Class
= RPIdAndCost
.first
;
831 if (static_cast<int>(RegPressure
[Class
]) < -RPIdAndCost
.second
)
832 RegPressure
[Class
] = 0;
834 RegPressure
[Class
] += RPIdAndCost
.second
;
838 /// Calculate the additional register pressure that the registers used in MI
841 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
842 /// figure out which usages are live-ins.
843 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
844 DenseMap
<unsigned, int>
845 MachineLICMBase::calcRegisterCost(const MachineInstr
*MI
, bool ConsiderSeen
,
846 bool ConsiderUnseenAsDef
) {
847 DenseMap
<unsigned, int> Cost
;
848 if (MI
->isImplicitDef())
850 for (unsigned i
= 0, e
= MI
->getDesc().getNumOperands(); i
!= e
; ++i
) {
851 const MachineOperand
&MO
= MI
->getOperand(i
);
852 if (!MO
.isReg() || MO
.isImplicit())
854 Register Reg
= MO
.getReg();
855 if (!Register::isVirtualRegister(Reg
))
858 // FIXME: It seems bad to use RegSeen only for some of these calculations.
859 bool isNew
= ConsiderSeen
? RegSeen
.insert(Reg
).second
: false;
860 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
862 RegClassWeight W
= TRI
->getRegClassWeight(RC
);
865 RCCost
= W
.RegWeight
;
867 bool isKill
= isOperandKill(MO
, MRI
);
868 if (isNew
&& !isKill
&& ConsiderUnseenAsDef
)
869 // Haven't seen this, it must be a livein.
870 RCCost
= W
.RegWeight
;
871 else if (!isNew
&& isKill
)
872 RCCost
= -W
.RegWeight
;
876 const int *PS
= TRI
->getRegClassPressureSets(RC
);
877 for (; *PS
!= -1; ++PS
) {
878 if (Cost
.find(*PS
) == Cost
.end())
887 /// Return true if this machine instruction loads from global offset table or
889 static bool mayLoadFromGOTOrConstantPool(MachineInstr
&MI
) {
890 assert(MI
.mayLoad() && "Expected MI that loads!");
892 // If we lost memory operands, conservatively assume that the instruction
893 // reads from everything..
894 if (MI
.memoperands_empty())
897 for (MachineMemOperand
*MemOp
: MI
.memoperands())
898 if (const PseudoSourceValue
*PSV
= MemOp
->getPseudoValue())
899 if (PSV
->isGOT() || PSV
->isConstantPool())
905 // This function iterates through all the operands of the input store MI and
906 // checks that each register operand statisfies isCallerPreservedPhysReg.
907 // This means, the value being stored and the address where it is being stored
908 // is constant throughout the body of the function (not including prologue and
909 // epilogue). When called with an MI that isn't a store, it returns false.
910 // A future improvement can be to check if the store registers are constant
911 // throughout the loop rather than throughout the funtion.
912 static bool isInvariantStore(const MachineInstr
&MI
,
913 const TargetRegisterInfo
*TRI
,
914 const MachineRegisterInfo
*MRI
) {
916 bool FoundCallerPresReg
= false;
917 if (!MI
.mayStore() || MI
.hasUnmodeledSideEffects() ||
918 (MI
.getNumOperands() == 0))
921 // Check that all register operands are caller-preserved physical registers.
922 for (const MachineOperand
&MO
: MI
.operands()) {
924 Register Reg
= MO
.getReg();
925 // If operand is a virtual register, check if it comes from a copy of a
926 // physical register.
927 if (Register::isVirtualRegister(Reg
))
928 Reg
= TRI
->lookThruCopyLike(MO
.getReg(), MRI
);
929 if (Register::isVirtualRegister(Reg
))
931 if (!TRI
->isCallerPreservedPhysReg(Reg
, *MI
.getMF()))
934 FoundCallerPresReg
= true;
935 } else if (!MO
.isImm()) {
939 return FoundCallerPresReg
;
942 // Return true if the input MI is a copy instruction that feeds an invariant
943 // store instruction. This means that the src of the copy has to satisfy
944 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
946 static bool isCopyFeedingInvariantStore(const MachineInstr
&MI
,
947 const MachineRegisterInfo
*MRI
,
948 const TargetRegisterInfo
*TRI
) {
950 // FIXME: If targets would like to look through instructions that aren't
951 // pure copies, this can be updated to a query.
955 const MachineFunction
*MF
= MI
.getMF();
956 // Check that we are copying a constant physical register.
957 Register CopySrcReg
= MI
.getOperand(1).getReg();
958 if (Register::isVirtualRegister(CopySrcReg
))
961 if (!TRI
->isCallerPreservedPhysReg(CopySrcReg
, *MF
))
964 Register CopyDstReg
= MI
.getOperand(0).getReg();
965 // Check if any of the uses of the copy are invariant stores.
966 assert(Register::isVirtualRegister(CopyDstReg
) &&
967 "copy dst is not a virtual reg");
969 for (MachineInstr
&UseMI
: MRI
->use_instructions(CopyDstReg
)) {
970 if (UseMI
.mayStore() && isInvariantStore(UseMI
, TRI
, MRI
))
976 /// Returns true if the instruction may be a suitable candidate for LICM.
977 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
978 bool MachineLICMBase::IsLICMCandidate(MachineInstr
&I
) {
979 // Check if it's safe to move the instruction.
980 bool DontMoveAcrossStore
= true;
981 if ((!I
.isSafeToMove(AA
, DontMoveAcrossStore
)) &&
982 !(HoistConstStores
&& isInvariantStore(I
, TRI
, MRI
))) {
986 // If it is load then check if it is guaranteed to execute by making sure that
987 // it dominates all exiting blocks. If it doesn't, then there is a path out of
988 // the loop which does not execute this load, so we can't hoist it. Loads
989 // from constant memory are not safe to speculate all the time, for example
990 // indexed load from a jump table.
991 // Stores and side effects are already checked by isSafeToMove.
992 if (I
.mayLoad() && !mayLoadFromGOTOrConstantPool(I
) &&
993 !IsGuaranteedToExecute(I
.getParent()))
999 /// Returns true if the instruction is loop invariant.
1000 /// I.e., all virtual register operands are defined outside of the loop,
1001 /// physical registers aren't accessed explicitly, and there are no side
1002 /// effects that aren't captured by the operands or other flags.
1003 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr
&I
) {
1004 if (!IsLICMCandidate(I
))
1007 // The instruction is loop invariant if all of its operands are.
1008 for (const MachineOperand
&MO
: I
.operands()) {
1012 Register Reg
= MO
.getReg();
1013 if (Reg
== 0) continue;
1015 // Don't hoist an instruction that uses or defines a physical register.
1016 if (Register::isPhysicalRegister(Reg
)) {
1018 // If the physreg has no defs anywhere, it's just an ambient register
1019 // and we can freely move its uses. Alternatively, if it's allocatable,
1020 // it could get allocated to something with a def during allocation.
1021 // However, if the physreg is known to always be caller saved/restored
1022 // then this use is safe to hoist.
1023 if (!MRI
->isConstantPhysReg(Reg
) &&
1024 !(TRI
->isCallerPreservedPhysReg(Reg
, *I
.getMF())))
1026 // Otherwise it's safe to move.
1028 } else if (!MO
.isDead()) {
1029 // A def that isn't dead. We can't move it.
1031 } else if (CurLoop
->getHeader()->isLiveIn(Reg
)) {
1032 // If the reg is live into the loop, we can't hoist an instruction
1033 // which would clobber it.
1041 assert(MRI
->getVRegDef(Reg
) &&
1042 "Machine instr not mapped for this vreg?!");
1044 // If the loop contains the definition of an operand, then the instruction
1045 // isn't loop invariant.
1046 if (CurLoop
->contains(MRI
->getVRegDef(Reg
)))
1050 // If we got this far, the instruction is loop invariant!
1054 /// Return true if the specified instruction is used by a phi node and hoisting
1055 /// it could cause a copy to be inserted.
1056 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr
*MI
) const {
1057 SmallVector
<const MachineInstr
*, 8> Work(1, MI
);
1059 MI
= Work
.pop_back_val();
1060 for (const MachineOperand
&MO
: MI
->operands()) {
1061 if (!MO
.isReg() || !MO
.isDef())
1063 Register Reg
= MO
.getReg();
1064 if (!Register::isVirtualRegister(Reg
))
1066 for (MachineInstr
&UseMI
: MRI
->use_instructions(Reg
)) {
1067 // A PHI may cause a copy to be inserted.
1068 if (UseMI
.isPHI()) {
1069 // A PHI inside the loop causes a copy because the live range of Reg is
1070 // extended across the PHI.
1071 if (CurLoop
->contains(&UseMI
))
1073 // A PHI in an exit block can cause a copy to be inserted if the PHI
1074 // has multiple predecessors in the loop with different values.
1075 // For now, approximate by rejecting all exit blocks.
1076 if (isExitBlock(UseMI
.getParent()))
1080 // Look past copies as well.
1081 if (UseMI
.isCopy() && CurLoop
->contains(&UseMI
))
1082 Work
.push_back(&UseMI
);
1085 } while (!Work
.empty());
1089 /// Compute operand latency between a def of 'Reg' and an use in the current
1090 /// loop, return true if the target considered it high.
1091 bool MachineLICMBase::HasHighOperandLatency(MachineInstr
&MI
,
1093 unsigned Reg
) const {
1094 if (MRI
->use_nodbg_empty(Reg
))
1097 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(Reg
)) {
1098 if (UseMI
.isCopyLike())
1100 if (!CurLoop
->contains(UseMI
.getParent()))
1102 for (unsigned i
= 0, e
= UseMI
.getNumOperands(); i
!= e
; ++i
) {
1103 const MachineOperand
&MO
= UseMI
.getOperand(i
);
1104 if (!MO
.isReg() || !MO
.isUse())
1106 Register MOReg
= MO
.getReg();
1110 if (TII
->hasHighOperandLatency(SchedModel
, MRI
, MI
, DefIdx
, UseMI
, i
))
1114 // Only look at the first in loop use.
1121 /// Return true if the instruction is marked "cheap" or the operand latency
1122 /// between its def and a use is one or less.
1123 bool MachineLICMBase::IsCheapInstruction(MachineInstr
&MI
) const {
1124 if (TII
->isAsCheapAsAMove(MI
) || MI
.isCopyLike())
1127 bool isCheap
= false;
1128 unsigned NumDefs
= MI
.getDesc().getNumDefs();
1129 for (unsigned i
= 0, e
= MI
.getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
1130 MachineOperand
&DefMO
= MI
.getOperand(i
);
1131 if (!DefMO
.isReg() || !DefMO
.isDef())
1134 Register Reg
= DefMO
.getReg();
1135 if (Register::isPhysicalRegister(Reg
))
1138 if (!TII
->hasLowDefLatency(SchedModel
, MI
, i
))
1146 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1147 /// given cost matrix can cause high register pressure.
1149 MachineLICMBase::CanCauseHighRegPressure(const DenseMap
<unsigned, int>& Cost
,
1151 for (const auto &RPIdAndCost
: Cost
) {
1152 if (RPIdAndCost
.second
<= 0)
1155 unsigned Class
= RPIdAndCost
.first
;
1156 int Limit
= RegLimit
[Class
];
1158 // Don't hoist cheap instructions if they would increase register pressure,
1159 // even if we're under the limit.
1160 if (CheapInstr
&& !HoistCheapInsts
)
1163 for (const auto &RP
: BackTrace
)
1164 if (static_cast<int>(RP
[Class
]) + RPIdAndCost
.second
>= Limit
)
1171 /// Traverse the back trace from header to the current block and update their
1172 /// register pressures to reflect the effect of hoisting MI from the current
1173 /// block to the preheader.
1174 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr
*MI
) {
1175 // First compute the 'cost' of the instruction, i.e. its contribution
1176 // to register pressure.
1177 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/false,
1178 /*ConsiderUnseenAsDef=*/false);
1180 // Update register pressure of blocks from loop header to current block.
1181 for (auto &RP
: BackTrace
)
1182 for (const auto &RPIdAndCost
: Cost
)
1183 RP
[RPIdAndCost
.first
] += RPIdAndCost
.second
;
1186 /// Return true if it is potentially profitable to hoist the given loop
1188 bool MachineLICMBase::IsProfitableToHoist(MachineInstr
&MI
) {
1189 if (MI
.isImplicitDef())
1192 // Besides removing computation from the loop, hoisting an instruction has
1195 // - The value defined by the instruction becomes live across the entire
1196 // loop. This increases register pressure in the loop.
1198 // - If the value is used by a PHI in the loop, a copy will be required for
1199 // lowering the PHI after extending the live range.
1201 // - When hoisting the last use of a value in the loop, that value no longer
1202 // needs to be live in the loop. This lowers register pressure in the loop.
1204 if (HoistConstStores
&& isCopyFeedingInvariantStore(MI
, MRI
, TRI
))
1207 bool CheapInstr
= IsCheapInstruction(MI
);
1208 bool CreatesCopy
= HasLoopPHIUse(&MI
);
1210 // Don't hoist a cheap instruction if it would create a copy in the loop.
1211 if (CheapInstr
&& CreatesCopy
) {
1212 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI
);
1216 // Rematerializable instructions should always be hoisted since the register
1217 // allocator can just pull them down again when needed.
1218 if (TII
->isTriviallyReMaterializable(MI
, AA
))
1221 // FIXME: If there are long latency loop-invariant instructions inside the
1222 // loop at this point, why didn't the optimizer's LICM hoist them?
1223 for (unsigned i
= 0, e
= MI
.getDesc().getNumOperands(); i
!= e
; ++i
) {
1224 const MachineOperand
&MO
= MI
.getOperand(i
);
1225 if (!MO
.isReg() || MO
.isImplicit())
1227 Register Reg
= MO
.getReg();
1228 if (!Register::isVirtualRegister(Reg
))
1230 if (MO
.isDef() && HasHighOperandLatency(MI
, i
, Reg
)) {
1231 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI
);
1237 // Estimate register pressure to determine whether to LICM the instruction.
1238 // In low register pressure situation, we can be more aggressive about
1239 // hoisting. Also, favors hoisting long latency instructions even in
1240 // moderately high pressure situation.
1241 // Cheap instructions will only be hoisted if they don't increase register
1243 auto Cost
= calcRegisterCost(&MI
, /*ConsiderSeen=*/false,
1244 /*ConsiderUnseenAsDef=*/false);
1246 // Visit BBs from header to current BB, if hoisting this doesn't cause
1247 // high register pressure, then it's safe to proceed.
1248 if (!CanCauseHighRegPressure(Cost
, CheapInstr
)) {
1249 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI
);
1254 // Don't risk increasing register pressure if it would create copies.
1256 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI
);
1260 // Do not "speculate" in high register pressure situation. If an
1261 // instruction is not guaranteed to be executed in the loop, it's best to be
1263 if (AvoidSpeculation
&&
1264 (!IsGuaranteedToExecute(MI
.getParent()) && !MayCSE(&MI
))) {
1265 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI
);
1269 // High register pressure situation, only hoist if the instruction is going
1271 if (!TII
->isTriviallyReMaterializable(MI
, AA
) &&
1272 !MI
.isDereferenceableInvariantLoad(AA
)) {
1273 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI
);
1280 /// Unfold a load from the given machineinstr if the load itself could be
1281 /// hoisted. Return the unfolded and hoistable load, or null if the load
1282 /// couldn't be unfolded or if it wouldn't be hoistable.
1283 MachineInstr
*MachineLICMBase::ExtractHoistableLoad(MachineInstr
*MI
) {
1284 // Don't unfold simple loads.
1285 if (MI
->canFoldAsLoad())
1288 // If not, we may be able to unfold a load and hoist that.
1289 // First test whether the instruction is loading from an amenable
1291 if (!MI
->isDereferenceableInvariantLoad(AA
))
1294 // Next determine the register class for a temporary register.
1295 unsigned LoadRegIndex
;
1297 TII
->getOpcodeAfterMemoryUnfold(MI
->getOpcode(),
1298 /*UnfoldLoad=*/true,
1299 /*UnfoldStore=*/false,
1301 if (NewOpc
== 0) return nullptr;
1302 const MCInstrDesc
&MID
= TII
->get(NewOpc
);
1303 MachineFunction
&MF
= *MI
->getMF();
1304 const TargetRegisterClass
*RC
= TII
->getRegClass(MID
, LoadRegIndex
, TRI
, MF
);
1305 // Ok, we're unfolding. Create a temporary register and do the unfold.
1306 Register Reg
= MRI
->createVirtualRegister(RC
);
1308 SmallVector
<MachineInstr
*, 2> NewMIs
;
1309 bool Success
= TII
->unfoldMemoryOperand(MF
, *MI
, Reg
,
1310 /*UnfoldLoad=*/true,
1311 /*UnfoldStore=*/false, NewMIs
);
1314 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1316 assert(NewMIs
.size() == 2 &&
1317 "Unfolded a load into multiple instructions!");
1318 MachineBasicBlock
*MBB
= MI
->getParent();
1319 MachineBasicBlock::iterator Pos
= MI
;
1320 MBB
->insert(Pos
, NewMIs
[0]);
1321 MBB
->insert(Pos
, NewMIs
[1]);
1322 // If unfolding produced a load that wasn't loop-invariant or profitable to
1323 // hoist, discard the new instructions and bail.
1324 if (!IsLoopInvariantInst(*NewMIs
[0]) || !IsProfitableToHoist(*NewMIs
[0])) {
1325 NewMIs
[0]->eraseFromParent();
1326 NewMIs
[1]->eraseFromParent();
1330 // Update register pressure for the unfolded instruction.
1331 UpdateRegPressure(NewMIs
[1]);
1333 // Otherwise we successfully unfolded a load that we can hoist.
1334 MI
->eraseFromParent();
1338 /// Initialize the CSE map with instructions that are in the current loop
1339 /// preheader that may become duplicates of instructions that are hoisted
1340 /// out of the loop.
1341 void MachineLICMBase::InitCSEMap(MachineBasicBlock
*BB
) {
1342 for (MachineInstr
&MI
: *BB
)
1343 CSEMap
[MI
.getOpcode()].push_back(&MI
);
1346 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1347 /// Return this instruction if it's found.
1349 MachineLICMBase::LookForDuplicate(const MachineInstr
*MI
,
1350 std::vector
<const MachineInstr
*> &PrevMIs
) {
1351 for (const MachineInstr
*PrevMI
: PrevMIs
)
1352 if (TII
->produceSameValue(*MI
, *PrevMI
, (PreRegAlloc
? MRI
: nullptr)))
1358 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1359 /// computes the same value. If it's found, do a RAU on with the definition of
1360 /// the existing instruction rather than hoisting the instruction to the
1362 bool MachineLICMBase::EliminateCSE(MachineInstr
*MI
,
1363 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
&CI
) {
1364 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1365 // the undef property onto uses.
1366 if (CI
== CSEMap
.end() || MI
->isImplicitDef())
1369 if (const MachineInstr
*Dup
= LookForDuplicate(MI
, CI
->second
)) {
1370 LLVM_DEBUG(dbgs() << "CSEing " << *MI
<< " with " << *Dup
);
1372 // Replace virtual registers defined by MI by their counterparts defined
1374 SmallVector
<unsigned, 2> Defs
;
1375 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1376 const MachineOperand
&MO
= MI
->getOperand(i
);
1378 // Physical registers may not differ here.
1379 assert((!MO
.isReg() || MO
.getReg() == 0 ||
1380 !Register::isPhysicalRegister(MO
.getReg()) ||
1381 MO
.getReg() == Dup
->getOperand(i
).getReg()) &&
1382 "Instructions with different phys regs are not identical!");
1384 if (MO
.isReg() && MO
.isDef() &&
1385 !Register::isPhysicalRegister(MO
.getReg()))
1389 SmallVector
<const TargetRegisterClass
*, 2> OrigRCs
;
1390 for (unsigned i
= 0, e
= Defs
.size(); i
!= e
; ++i
) {
1391 unsigned Idx
= Defs
[i
];
1392 Register Reg
= MI
->getOperand(Idx
).getReg();
1393 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1394 OrigRCs
.push_back(MRI
->getRegClass(DupReg
));
1396 if (!MRI
->constrainRegClass(DupReg
, MRI
->getRegClass(Reg
))) {
1397 // Restore old RCs if more than one defs.
1398 for (unsigned j
= 0; j
!= i
; ++j
)
1399 MRI
->setRegClass(Dup
->getOperand(Defs
[j
]).getReg(), OrigRCs
[j
]);
1404 for (unsigned Idx
: Defs
) {
1405 Register Reg
= MI
->getOperand(Idx
).getReg();
1406 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1407 MRI
->replaceRegWith(Reg
, DupReg
);
1408 MRI
->clearKillFlags(DupReg
);
1411 MI
->eraseFromParent();
1418 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1420 bool MachineLICMBase::MayCSE(MachineInstr
*MI
) {
1421 unsigned Opcode
= MI
->getOpcode();
1422 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
1423 CI
= CSEMap
.find(Opcode
);
1424 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1425 // the undef property onto uses.
1426 if (CI
== CSEMap
.end() || MI
->isImplicitDef())
1429 return LookForDuplicate(MI
, CI
->second
) != nullptr;
1432 /// When an instruction is found to use only loop invariant operands
1433 /// that are safe to hoist, this instruction is called to do the dirty work.
1434 /// It returns true if the instruction is hoisted.
1435 bool MachineLICMBase::Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
) {
1436 // First check whether we should hoist this instruction.
1437 if (!IsLoopInvariantInst(*MI
) || !IsProfitableToHoist(*MI
)) {
1438 // If not, try unfolding a hoistable load.
1439 MI
= ExtractHoistableLoad(MI
);
1440 if (!MI
) return false;
1443 // If we have hoisted an instruction that may store, it can only be a constant
1448 // Now move the instructions to the predecessor, inserting it before any
1449 // terminator instructions.
1451 dbgs() << "Hoisting " << *MI
;
1452 if (MI
->getParent()->getBasicBlock())
1453 dbgs() << " from " << printMBBReference(*MI
->getParent());
1454 if (Preheader
->getBasicBlock())
1455 dbgs() << " to " << printMBBReference(*Preheader
);
1459 // If this is the first instruction being hoisted to the preheader,
1460 // initialize the CSE map with potential common expressions.
1462 InitCSEMap(Preheader
);
1463 FirstInLoop
= false;
1466 // Look for opportunity to CSE the hoisted instruction.
1467 unsigned Opcode
= MI
->getOpcode();
1468 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
1469 CI
= CSEMap
.find(Opcode
);
1470 if (!EliminateCSE(MI
, CI
)) {
1471 // Otherwise, splice the instruction to the preheader.
1472 Preheader
->splice(Preheader
->getFirstTerminator(),MI
->getParent(),MI
);
1474 // Since we are moving the instruction out of its basic block, we do not
1475 // retain its debug location. Doing so would degrade the debugging
1476 // experience and adversely affect the accuracy of profiling information.
1477 MI
->setDebugLoc(DebugLoc());
1479 // Update register pressure for BBs from header to this block.
1480 UpdateBackTraceRegPressure(MI
);
1482 // Clear the kill flags of any register this instruction defines,
1483 // since they may need to be live throughout the entire loop
1484 // rather than just live for part of it.
1485 for (MachineOperand
&MO
: MI
->operands())
1486 if (MO
.isReg() && MO
.isDef() && !MO
.isDead())
1487 MRI
->clearKillFlags(MO
.getReg());
1489 // Add to the CSE map.
1490 if (CI
!= CSEMap
.end())
1491 CI
->second
.push_back(MI
);
1493 CSEMap
[Opcode
].push_back(MI
);
1502 /// Get the preheader for the current loop, splitting a critical edge if needed.
1503 MachineBasicBlock
*MachineLICMBase::getCurPreheader() {
1504 // Determine the block to which to hoist instructions. If we can't find a
1505 // suitable loop predecessor, we can't do any hoisting.
1507 // If we've tried to get a preheader and failed, don't try again.
1508 if (CurPreheader
== reinterpret_cast<MachineBasicBlock
*>(-1))
1511 if (!CurPreheader
) {
1512 CurPreheader
= CurLoop
->getLoopPreheader();
1513 if (!CurPreheader
) {
1514 MachineBasicBlock
*Pred
= CurLoop
->getLoopPredecessor();
1516 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1520 CurPreheader
= Pred
->SplitCriticalEdge(CurLoop
->getHeader(), *this);
1521 if (!CurPreheader
) {
1522 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1527 return CurPreheader
;