[Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
[llvm-core.git] / lib / CodeGen / MachineScheduler.cpp
blobf0721ea3b76de20dcb34932b778dbb03d969f718
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "machine-scheduler"
75 namespace llvm {
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78 cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80 cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83 cl::desc("Print critical path length to stdout"));
85 cl::opt<bool> VerifyScheduling(
86 "verify-misched", cl::Hidden,
87 cl::desc("Verify machine instrs before and after machine scheduling"));
89 } // end namespace llvm
91 #ifndef NDEBUG
92 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
93 cl::desc("Pop up a window to show MISched dags after they are processed"));
95 /// In some situations a few uninteresting nodes depend on nearly all other
96 /// nodes in the graph, provide a cutoff to hide them.
97 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
98 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
100 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
101 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
103 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
104 cl::desc("Only schedule this function"));
105 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
106 cl::desc("Only schedule this MBB#"));
107 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
108 cl::desc("Print schedule DAGs"));
109 #else
110 static const bool ViewMISchedDAGs = false;
111 static const bool PrintDAGs = false;
112 #endif // NDEBUG
114 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
115 /// size of the ready lists.
116 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
117 cl::desc("Limit ready list to N instructions"), cl::init(256));
119 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
120 cl::desc("Enable register pressure scheduling."), cl::init(true));
122 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
123 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
125 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
126 cl::desc("Enable memop clustering."),
127 cl::init(true));
129 // DAG subtrees must have at least this many nodes.
130 static const unsigned MinSubtreeSize = 8;
132 // Pin the vtables to this file.
133 void MachineSchedStrategy::anchor() {}
135 void ScheduleDAGMutation::anchor() {}
137 //===----------------------------------------------------------------------===//
138 // Machine Instruction Scheduling Pass and Registry
139 //===----------------------------------------------------------------------===//
141 MachineSchedContext::MachineSchedContext() {
142 RegClassInfo = new RegisterClassInfo();
145 MachineSchedContext::~MachineSchedContext() {
146 delete RegClassInfo;
149 namespace {
151 /// Base class for a machine scheduler class that can run at any point.
152 class MachineSchedulerBase : public MachineSchedContext,
153 public MachineFunctionPass {
154 public:
155 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
157 void print(raw_ostream &O, const Module* = nullptr) const override;
159 protected:
160 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
163 /// MachineScheduler runs after coalescing and before register allocation.
164 class MachineScheduler : public MachineSchedulerBase {
165 public:
166 MachineScheduler();
168 void getAnalysisUsage(AnalysisUsage &AU) const override;
170 bool runOnMachineFunction(MachineFunction&) override;
172 static char ID; // Class identification, replacement for typeinfo
174 protected:
175 ScheduleDAGInstrs *createMachineScheduler();
178 /// PostMachineScheduler runs after shortly before code emission.
179 class PostMachineScheduler : public MachineSchedulerBase {
180 public:
181 PostMachineScheduler();
183 void getAnalysisUsage(AnalysisUsage &AU) const override;
185 bool runOnMachineFunction(MachineFunction&) override;
187 static char ID; // Class identification, replacement for typeinfo
189 protected:
190 ScheduleDAGInstrs *createPostMachineScheduler();
193 } // end anonymous namespace
195 char MachineScheduler::ID = 0;
197 char &llvm::MachineSchedulerID = MachineScheduler::ID;
199 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
200 "Machine Instruction Scheduler", false, false)
201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
202 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
207 "Machine Instruction Scheduler", false, false)
209 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
210 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
213 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
214 AU.setPreservesCFG();
215 AU.addRequired<MachineDominatorTree>();
216 AU.addRequired<MachineLoopInfo>();
217 AU.addRequired<AAResultsWrapperPass>();
218 AU.addRequired<TargetPassConfig>();
219 AU.addRequired<SlotIndexes>();
220 AU.addPreserved<SlotIndexes>();
221 AU.addRequired<LiveIntervals>();
222 AU.addPreserved<LiveIntervals>();
223 MachineFunctionPass::getAnalysisUsage(AU);
226 char PostMachineScheduler::ID = 0;
228 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
230 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
231 "PostRA Machine Instruction Scheduler", false, false)
233 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
234 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
237 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
238 AU.setPreservesCFG();
239 AU.addRequired<MachineDominatorTree>();
240 AU.addRequired<MachineLoopInfo>();
241 AU.addRequired<TargetPassConfig>();
242 MachineFunctionPass::getAnalysisUsage(AU);
245 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
246 MachineSchedRegistry::Registry;
248 /// A dummy default scheduler factory indicates whether the scheduler
249 /// is overridden on the command line.
250 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
251 return nullptr;
254 /// MachineSchedOpt allows command line selection of the scheduler.
255 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
256 RegisterPassParser<MachineSchedRegistry>>
257 MachineSchedOpt("misched",
258 cl::init(&useDefaultMachineSched), cl::Hidden,
259 cl::desc("Machine instruction scheduler to use"));
261 static MachineSchedRegistry
262 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
263 useDefaultMachineSched);
265 static cl::opt<bool> EnableMachineSched(
266 "enable-misched",
267 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
268 cl::Hidden);
270 static cl::opt<bool> EnablePostRAMachineSched(
271 "enable-post-misched",
272 cl::desc("Enable the post-ra machine instruction scheduling pass."),
273 cl::init(true), cl::Hidden);
275 /// Decrement this iterator until reaching the top or a non-debug instr.
276 static MachineBasicBlock::const_iterator
277 priorNonDebug(MachineBasicBlock::const_iterator I,
278 MachineBasicBlock::const_iterator Beg) {
279 assert(I != Beg && "reached the top of the region, cannot decrement");
280 while (--I != Beg) {
281 if (!I->isDebugInstr())
282 break;
284 return I;
287 /// Non-const version.
288 static MachineBasicBlock::iterator
289 priorNonDebug(MachineBasicBlock::iterator I,
290 MachineBasicBlock::const_iterator Beg) {
291 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
292 .getNonConstIterator();
295 /// If this iterator is a debug value, increment until reaching the End or a
296 /// non-debug instruction.
297 static MachineBasicBlock::const_iterator
298 nextIfDebug(MachineBasicBlock::const_iterator I,
299 MachineBasicBlock::const_iterator End) {
300 for(; I != End; ++I) {
301 if (!I->isDebugInstr())
302 break;
304 return I;
307 /// Non-const version.
308 static MachineBasicBlock::iterator
309 nextIfDebug(MachineBasicBlock::iterator I,
310 MachineBasicBlock::const_iterator End) {
311 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
312 .getNonConstIterator();
315 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
316 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
317 // Select the scheduler, or set the default.
318 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
319 if (Ctor != useDefaultMachineSched)
320 return Ctor(this);
322 // Get the default scheduler set by the target for this function.
323 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
324 if (Scheduler)
325 return Scheduler;
327 // Default to GenericScheduler.
328 return createGenericSchedLive(this);
331 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
332 /// the caller. We don't have a command line option to override the postRA
333 /// scheduler. The Target must configure it.
334 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
335 // Get the postRA scheduler set by the target for this function.
336 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
337 if (Scheduler)
338 return Scheduler;
340 // Default to GenericScheduler.
341 return createGenericSchedPostRA(this);
344 /// Top-level MachineScheduler pass driver.
346 /// Visit blocks in function order. Divide each block into scheduling regions
347 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
348 /// consistent with the DAG builder, which traverses the interior of the
349 /// scheduling regions bottom-up.
351 /// This design avoids exposing scheduling boundaries to the DAG builder,
352 /// simplifying the DAG builder's support for "special" target instructions.
353 /// At the same time the design allows target schedulers to operate across
354 /// scheduling boundaries, for example to bundle the boundary instructions
355 /// without reordering them. This creates complexity, because the target
356 /// scheduler must update the RegionBegin and RegionEnd positions cached by
357 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
358 /// design would be to split blocks at scheduling boundaries, but LLVM has a
359 /// general bias against block splitting purely for implementation simplicity.
360 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
361 if (skipFunction(mf.getFunction()))
362 return false;
364 if (EnableMachineSched.getNumOccurrences()) {
365 if (!EnableMachineSched)
366 return false;
367 } else if (!mf.getSubtarget().enableMachineScheduler())
368 return false;
370 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
372 // Initialize the context of the pass.
373 MF = &mf;
374 MLI = &getAnalysis<MachineLoopInfo>();
375 MDT = &getAnalysis<MachineDominatorTree>();
376 PassConfig = &getAnalysis<TargetPassConfig>();
377 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
379 LIS = &getAnalysis<LiveIntervals>();
381 if (VerifyScheduling) {
382 LLVM_DEBUG(LIS->dump());
383 MF->verify(this, "Before machine scheduling.");
385 RegClassInfo->runOnMachineFunction(*MF);
387 // Instantiate the selected scheduler for this target, function, and
388 // optimization level.
389 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
390 scheduleRegions(*Scheduler, false);
392 LLVM_DEBUG(LIS->dump());
393 if (VerifyScheduling)
394 MF->verify(this, "After machine scheduling.");
395 return true;
398 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
399 if (skipFunction(mf.getFunction()))
400 return false;
402 if (EnablePostRAMachineSched.getNumOccurrences()) {
403 if (!EnablePostRAMachineSched)
404 return false;
405 } else if (!mf.getSubtarget().enablePostRAScheduler()) {
406 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
407 return false;
409 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
411 // Initialize the context of the pass.
412 MF = &mf;
413 MLI = &getAnalysis<MachineLoopInfo>();
414 PassConfig = &getAnalysis<TargetPassConfig>();
416 if (VerifyScheduling)
417 MF->verify(this, "Before post machine scheduling.");
419 // Instantiate the selected scheduler for this target, function, and
420 // optimization level.
421 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
422 scheduleRegions(*Scheduler, true);
424 if (VerifyScheduling)
425 MF->verify(this, "After post machine scheduling.");
426 return true;
429 /// Return true of the given instruction should not be included in a scheduling
430 /// region.
432 /// MachineScheduler does not currently support scheduling across calls. To
433 /// handle calls, the DAG builder needs to be modified to create register
434 /// anti/output dependencies on the registers clobbered by the call's regmask
435 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
436 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
437 /// the boundary, but there would be no benefit to postRA scheduling across
438 /// calls this late anyway.
439 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
440 MachineBasicBlock *MBB,
441 MachineFunction *MF,
442 const TargetInstrInfo *TII) {
443 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
446 /// A region of an MBB for scheduling.
447 namespace {
448 struct SchedRegion {
449 /// RegionBegin is the first instruction in the scheduling region, and
450 /// RegionEnd is either MBB->end() or the scheduling boundary after the
451 /// last instruction in the scheduling region. These iterators cannot refer
452 /// to instructions outside of the identified scheduling region because
453 /// those may be reordered before scheduling this region.
454 MachineBasicBlock::iterator RegionBegin;
455 MachineBasicBlock::iterator RegionEnd;
456 unsigned NumRegionInstrs;
458 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
459 unsigned N) :
460 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
462 } // end anonymous namespace
464 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
466 static void
467 getSchedRegions(MachineBasicBlock *MBB,
468 MBBRegionsVector &Regions,
469 bool RegionsTopDown) {
470 MachineFunction *MF = MBB->getParent();
471 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
473 MachineBasicBlock::iterator I = nullptr;
474 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
475 RegionEnd != MBB->begin(); RegionEnd = I) {
477 // Avoid decrementing RegionEnd for blocks with no terminator.
478 if (RegionEnd != MBB->end() ||
479 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
480 --RegionEnd;
483 // The next region starts above the previous region. Look backward in the
484 // instruction stream until we find the nearest boundary.
485 unsigned NumRegionInstrs = 0;
486 I = RegionEnd;
487 for (;I != MBB->begin(); --I) {
488 MachineInstr &MI = *std::prev(I);
489 if (isSchedBoundary(&MI, &*MBB, MF, TII))
490 break;
491 if (!MI.isDebugInstr()) {
492 // MBB::size() uses instr_iterator to count. Here we need a bundle to
493 // count as a single instruction.
494 ++NumRegionInstrs;
498 // It's possible we found a scheduling region that only has debug
499 // instructions. Don't bother scheduling these.
500 if (NumRegionInstrs != 0)
501 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
504 if (RegionsTopDown)
505 std::reverse(Regions.begin(), Regions.end());
508 /// Main driver for both MachineScheduler and PostMachineScheduler.
509 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
510 bool FixKillFlags) {
511 // Visit all machine basic blocks.
513 // TODO: Visit blocks in global postorder or postorder within the bottom-up
514 // loop tree. Then we can optionally compute global RegPressure.
515 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
516 MBB != MBBEnd; ++MBB) {
518 Scheduler.startBlock(&*MBB);
520 #ifndef NDEBUG
521 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
522 continue;
523 if (SchedOnlyBlock.getNumOccurrences()
524 && (int)SchedOnlyBlock != MBB->getNumber())
525 continue;
526 #endif
528 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
529 // points to the scheduling boundary at the bottom of the region. The DAG
530 // does not include RegionEnd, but the region does (i.e. the next
531 // RegionEnd is above the previous RegionBegin). If the current block has
532 // no terminator then RegionEnd == MBB->end() for the bottom region.
534 // All the regions of MBB are first found and stored in MBBRegions, which
535 // will be processed (MBB) top-down if initialized with true.
537 // The Scheduler may insert instructions during either schedule() or
538 // exitRegion(), even for empty regions. So the local iterators 'I' and
539 // 'RegionEnd' are invalid across these calls. Instructions must not be
540 // added to other regions than the current one without updating MBBRegions.
542 MBBRegionsVector MBBRegions;
543 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
544 for (MBBRegionsVector::iterator R = MBBRegions.begin();
545 R != MBBRegions.end(); ++R) {
546 MachineBasicBlock::iterator I = R->RegionBegin;
547 MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
548 unsigned NumRegionInstrs = R->NumRegionInstrs;
550 // Notify the scheduler of the region, even if we may skip scheduling
551 // it. Perhaps it still needs to be bundled.
552 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
554 // Skip empty scheduling regions (0 or 1 schedulable instructions).
555 if (I == RegionEnd || I == std::prev(RegionEnd)) {
556 // Close the current region. Bundle the terminator if needed.
557 // This invalidates 'RegionEnd' and 'I'.
558 Scheduler.exitRegion();
559 continue;
561 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
562 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
563 << " " << MBB->getName() << "\n From: " << *I
564 << " To: ";
565 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
566 else dbgs() << "End";
567 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
568 if (DumpCriticalPathLength) {
569 errs() << MF->getName();
570 errs() << ":%bb. " << MBB->getNumber();
571 errs() << " " << MBB->getName() << " \n";
574 // Schedule a region: possibly reorder instructions.
575 // This invalidates the original region iterators.
576 Scheduler.schedule();
578 // Close the current region.
579 Scheduler.exitRegion();
581 Scheduler.finishBlock();
582 // FIXME: Ideally, no further passes should rely on kill flags. However,
583 // thumb2 size reduction is currently an exception, so the PostMIScheduler
584 // needs to do this.
585 if (FixKillFlags)
586 Scheduler.fixupKills(*MBB);
588 Scheduler.finalizeSchedule();
591 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
592 // unimplemented
595 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
596 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
597 dbgs() << "Queue " << Name << ": ";
598 for (const SUnit *SU : Queue)
599 dbgs() << SU->NodeNum << " ";
600 dbgs() << "\n";
602 #endif
604 //===----------------------------------------------------------------------===//
605 // ScheduleDAGMI - Basic machine instruction scheduling. This is
606 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
607 // virtual registers.
608 // ===----------------------------------------------------------------------===/
610 // Provide a vtable anchor.
611 ScheduleDAGMI::~ScheduleDAGMI() = default;
613 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
614 /// NumPredsLeft reaches zero, release the successor node.
616 /// FIXME: Adjust SuccSU height based on MinLatency.
617 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
618 SUnit *SuccSU = SuccEdge->getSUnit();
620 if (SuccEdge->isWeak()) {
621 --SuccSU->WeakPredsLeft;
622 if (SuccEdge->isCluster())
623 NextClusterSucc = SuccSU;
624 return;
626 #ifndef NDEBUG
627 if (SuccSU->NumPredsLeft == 0) {
628 dbgs() << "*** Scheduling failed! ***\n";
629 dumpNode(*SuccSU);
630 dbgs() << " has been released too many times!\n";
631 llvm_unreachable(nullptr);
633 #endif
634 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
635 // CurrCycle may have advanced since then.
636 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
637 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
639 --SuccSU->NumPredsLeft;
640 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
641 SchedImpl->releaseTopNode(SuccSU);
644 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
645 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
646 for (SDep &Succ : SU->Succs)
647 releaseSucc(SU, &Succ);
650 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
651 /// NumSuccsLeft reaches zero, release the predecessor node.
653 /// FIXME: Adjust PredSU height based on MinLatency.
654 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
655 SUnit *PredSU = PredEdge->getSUnit();
657 if (PredEdge->isWeak()) {
658 --PredSU->WeakSuccsLeft;
659 if (PredEdge->isCluster())
660 NextClusterPred = PredSU;
661 return;
663 #ifndef NDEBUG
664 if (PredSU->NumSuccsLeft == 0) {
665 dbgs() << "*** Scheduling failed! ***\n";
666 dumpNode(*PredSU);
667 dbgs() << " has been released too many times!\n";
668 llvm_unreachable(nullptr);
670 #endif
671 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
672 // CurrCycle may have advanced since then.
673 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
674 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
676 --PredSU->NumSuccsLeft;
677 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
678 SchedImpl->releaseBottomNode(PredSU);
681 /// releasePredecessors - Call releasePred on each of SU's predecessors.
682 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
683 for (SDep &Pred : SU->Preds)
684 releasePred(SU, &Pred);
687 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
688 ScheduleDAGInstrs::startBlock(bb);
689 SchedImpl->enterMBB(bb);
692 void ScheduleDAGMI::finishBlock() {
693 SchedImpl->leaveMBB();
694 ScheduleDAGInstrs::finishBlock();
697 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
698 /// crossing a scheduling boundary. [begin, end) includes all instructions in
699 /// the region, including the boundary itself and single-instruction regions
700 /// that don't get scheduled.
701 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
702 MachineBasicBlock::iterator begin,
703 MachineBasicBlock::iterator end,
704 unsigned regioninstrs)
706 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
708 SchedImpl->initPolicy(begin, end, regioninstrs);
711 /// This is normally called from the main scheduler loop but may also be invoked
712 /// by the scheduling strategy to perform additional code motion.
713 void ScheduleDAGMI::moveInstruction(
714 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
715 // Advance RegionBegin if the first instruction moves down.
716 if (&*RegionBegin == MI)
717 ++RegionBegin;
719 // Update the instruction stream.
720 BB->splice(InsertPos, BB, MI);
722 // Update LiveIntervals
723 if (LIS)
724 LIS->handleMove(*MI, /*UpdateFlags=*/true);
726 // Recede RegionBegin if an instruction moves above the first.
727 if (RegionBegin == InsertPos)
728 RegionBegin = MI;
731 bool ScheduleDAGMI::checkSchedLimit() {
732 #ifndef NDEBUG
733 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
734 CurrentTop = CurrentBottom;
735 return false;
737 ++NumInstrsScheduled;
738 #endif
739 return true;
742 /// Per-region scheduling driver, called back from
743 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
744 /// does not consider liveness or register pressure. It is useful for PostRA
745 /// scheduling and potentially other custom schedulers.
746 void ScheduleDAGMI::schedule() {
747 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
748 LLVM_DEBUG(SchedImpl->dumpPolicy());
750 // Build the DAG.
751 buildSchedGraph(AA);
753 postprocessDAG();
755 SmallVector<SUnit*, 8> TopRoots, BotRoots;
756 findRootsAndBiasEdges(TopRoots, BotRoots);
758 LLVM_DEBUG(dump());
759 if (PrintDAGs) dump();
760 if (ViewMISchedDAGs) viewGraph();
762 // Initialize the strategy before modifying the DAG.
763 // This may initialize a DFSResult to be used for queue priority.
764 SchedImpl->initialize(this);
766 // Initialize ready queues now that the DAG and priority data are finalized.
767 initQueues(TopRoots, BotRoots);
769 bool IsTopNode = false;
770 while (true) {
771 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
772 SUnit *SU = SchedImpl->pickNode(IsTopNode);
773 if (!SU) break;
775 assert(!SU->isScheduled && "Node already scheduled");
776 if (!checkSchedLimit())
777 break;
779 MachineInstr *MI = SU->getInstr();
780 if (IsTopNode) {
781 assert(SU->isTopReady() && "node still has unscheduled dependencies");
782 if (&*CurrentTop == MI)
783 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
784 else
785 moveInstruction(MI, CurrentTop);
786 } else {
787 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
788 MachineBasicBlock::iterator priorII =
789 priorNonDebug(CurrentBottom, CurrentTop);
790 if (&*priorII == MI)
791 CurrentBottom = priorII;
792 else {
793 if (&*CurrentTop == MI)
794 CurrentTop = nextIfDebug(++CurrentTop, priorII);
795 moveInstruction(MI, CurrentBottom);
796 CurrentBottom = MI;
799 // Notify the scheduling strategy before updating the DAG.
800 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
801 // runs, it can then use the accurate ReadyCycle time to determine whether
802 // newly released nodes can move to the readyQ.
803 SchedImpl->schedNode(SU, IsTopNode);
805 updateQueues(SU, IsTopNode);
807 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
809 placeDebugValues();
811 LLVM_DEBUG({
812 dbgs() << "*** Final schedule for "
813 << printMBBReference(*begin()->getParent()) << " ***\n";
814 dumpSchedule();
815 dbgs() << '\n';
819 /// Apply each ScheduleDAGMutation step in order.
820 void ScheduleDAGMI::postprocessDAG() {
821 for (auto &m : Mutations)
822 m->apply(this);
825 void ScheduleDAGMI::
826 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
827 SmallVectorImpl<SUnit*> &BotRoots) {
828 for (SUnit &SU : SUnits) {
829 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
831 // Order predecessors so DFSResult follows the critical path.
832 SU.biasCriticalPath();
834 // A SUnit is ready to top schedule if it has no predecessors.
835 if (!SU.NumPredsLeft)
836 TopRoots.push_back(&SU);
837 // A SUnit is ready to bottom schedule if it has no successors.
838 if (!SU.NumSuccsLeft)
839 BotRoots.push_back(&SU);
841 ExitSU.biasCriticalPath();
844 /// Identify DAG roots and setup scheduler queues.
845 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
846 ArrayRef<SUnit*> BotRoots) {
847 NextClusterSucc = nullptr;
848 NextClusterPred = nullptr;
850 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
852 // Nodes with unreleased weak edges can still be roots.
853 // Release top roots in forward order.
854 for (SUnit *SU : TopRoots)
855 SchedImpl->releaseTopNode(SU);
857 // Release bottom roots in reverse order so the higher priority nodes appear
858 // first. This is more natural and slightly more efficient.
859 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
860 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
861 SchedImpl->releaseBottomNode(*I);
864 releaseSuccessors(&EntrySU);
865 releasePredecessors(&ExitSU);
867 SchedImpl->registerRoots();
869 // Advance past initial DebugValues.
870 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
871 CurrentBottom = RegionEnd;
874 /// Update scheduler queues after scheduling an instruction.
875 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
876 // Release dependent instructions for scheduling.
877 if (IsTopNode)
878 releaseSuccessors(SU);
879 else
880 releasePredecessors(SU);
882 SU->isScheduled = true;
885 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
886 void ScheduleDAGMI::placeDebugValues() {
887 // If first instruction was a DBG_VALUE then put it back.
888 if (FirstDbgValue) {
889 BB->splice(RegionBegin, BB, FirstDbgValue);
890 RegionBegin = FirstDbgValue;
893 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
894 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
895 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
896 MachineInstr *DbgValue = P.first;
897 MachineBasicBlock::iterator OrigPrevMI = P.second;
898 if (&*RegionBegin == DbgValue)
899 ++RegionBegin;
900 BB->splice(++OrigPrevMI, BB, DbgValue);
901 if (OrigPrevMI == std::prev(RegionEnd))
902 RegionEnd = DbgValue;
904 DbgValues.clear();
905 FirstDbgValue = nullptr;
908 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
909 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
910 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
911 if (SUnit *SU = getSUnit(&(*MI)))
912 dumpNode(*SU);
913 else
914 dbgs() << "Missing SUnit\n";
917 #endif
919 //===----------------------------------------------------------------------===//
920 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
921 // preservation.
922 //===----------------------------------------------------------------------===//
924 ScheduleDAGMILive::~ScheduleDAGMILive() {
925 delete DFSResult;
928 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
929 const MachineInstr &MI = *SU.getInstr();
930 for (const MachineOperand &MO : MI.operands()) {
931 if (!MO.isReg())
932 continue;
933 if (!MO.readsReg())
934 continue;
935 if (TrackLaneMasks && !MO.isUse())
936 continue;
938 Register Reg = MO.getReg();
939 if (!Register::isVirtualRegister(Reg))
940 continue;
942 // Ignore re-defs.
943 if (TrackLaneMasks) {
944 bool FoundDef = false;
945 for (const MachineOperand &MO2 : MI.operands()) {
946 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
947 FoundDef = true;
948 break;
951 if (FoundDef)
952 continue;
955 // Record this local VReg use.
956 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
957 for (; UI != VRegUses.end(); ++UI) {
958 if (UI->SU == &SU)
959 break;
961 if (UI == VRegUses.end())
962 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
966 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
967 /// crossing a scheduling boundary. [begin, end) includes all instructions in
968 /// the region, including the boundary itself and single-instruction regions
969 /// that don't get scheduled.
970 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
971 MachineBasicBlock::iterator begin,
972 MachineBasicBlock::iterator end,
973 unsigned regioninstrs)
975 // ScheduleDAGMI initializes SchedImpl's per-region policy.
976 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
978 // For convenience remember the end of the liveness region.
979 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
981 SUPressureDiffs.clear();
983 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
984 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
986 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
987 "ShouldTrackLaneMasks requires ShouldTrackPressure");
990 // Setup the register pressure trackers for the top scheduled and bottom
991 // scheduled regions.
992 void ScheduleDAGMILive::initRegPressure() {
993 VRegUses.clear();
994 VRegUses.setUniverse(MRI.getNumVirtRegs());
995 for (SUnit &SU : SUnits)
996 collectVRegUses(SU);
998 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
999 ShouldTrackLaneMasks, false);
1000 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1001 ShouldTrackLaneMasks, false);
1003 // Close the RPTracker to finalize live ins.
1004 RPTracker.closeRegion();
1006 LLVM_DEBUG(RPTracker.dump());
1008 // Initialize the live ins and live outs.
1009 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1010 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1012 // Close one end of the tracker so we can call
1013 // getMaxUpward/DownwardPressureDelta before advancing across any
1014 // instructions. This converts currently live regs into live ins/outs.
1015 TopRPTracker.closeTop();
1016 BotRPTracker.closeBottom();
1018 BotRPTracker.initLiveThru(RPTracker);
1019 if (!BotRPTracker.getLiveThru().empty()) {
1020 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1021 LLVM_DEBUG(dbgs() << "Live Thru: ";
1022 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1025 // For each live out vreg reduce the pressure change associated with other
1026 // uses of the same vreg below the live-out reaching def.
1027 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1029 // Account for liveness generated by the region boundary.
1030 if (LiveRegionEnd != RegionEnd) {
1031 SmallVector<RegisterMaskPair, 8> LiveUses;
1032 BotRPTracker.recede(&LiveUses);
1033 updatePressureDiffs(LiveUses);
1036 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1037 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1038 dbgs() << "Bottom Pressure:\n";
1039 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1041 assert((BotRPTracker.getPos() == RegionEnd ||
1042 (RegionEnd->isDebugInstr() &&
1043 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1044 "Can't find the region bottom");
1046 // Cache the list of excess pressure sets in this region. This will also track
1047 // the max pressure in the scheduled code for these sets.
1048 RegionCriticalPSets.clear();
1049 const std::vector<unsigned> &RegionPressure =
1050 RPTracker.getPressure().MaxSetPressure;
1051 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1052 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1053 if (RegionPressure[i] > Limit) {
1054 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1055 << " Actual " << RegionPressure[i] << "\n");
1056 RegionCriticalPSets.push_back(PressureChange(i));
1059 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1060 for (const PressureChange &RCPS
1061 : RegionCriticalPSets) dbgs()
1062 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1063 dbgs() << "\n");
1066 void ScheduleDAGMILive::
1067 updateScheduledPressure(const SUnit *SU,
1068 const std::vector<unsigned> &NewMaxPressure) {
1069 const PressureDiff &PDiff = getPressureDiff(SU);
1070 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1071 for (const PressureChange &PC : PDiff) {
1072 if (!PC.isValid())
1073 break;
1074 unsigned ID = PC.getPSet();
1075 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1076 ++CritIdx;
1077 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1078 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1079 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1080 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1082 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1083 if (NewMaxPressure[ID] >= Limit - 2) {
1084 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1085 << NewMaxPressure[ID]
1086 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1087 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1088 << " livethru)\n");
1093 /// Update the PressureDiff array for liveness after scheduling this
1094 /// instruction.
1095 void ScheduleDAGMILive::updatePressureDiffs(
1096 ArrayRef<RegisterMaskPair> LiveUses) {
1097 for (const RegisterMaskPair &P : LiveUses) {
1098 unsigned Reg = P.RegUnit;
1099 /// FIXME: Currently assuming single-use physregs.
1100 if (!Register::isVirtualRegister(Reg))
1101 continue;
1103 if (ShouldTrackLaneMasks) {
1104 // If the register has just become live then other uses won't change
1105 // this fact anymore => decrement pressure.
1106 // If the register has just become dead then other uses make it come
1107 // back to life => increment pressure.
1108 bool Decrement = P.LaneMask.any();
1110 for (const VReg2SUnit &V2SU
1111 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1112 SUnit &SU = *V2SU.SU;
1113 if (SU.isScheduled || &SU == &ExitSU)
1114 continue;
1116 PressureDiff &PDiff = getPressureDiff(&SU);
1117 PDiff.addPressureChange(Reg, Decrement, &MRI);
1118 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1119 << printReg(Reg, TRI) << ':'
1120 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1121 dbgs() << " to "; PDiff.dump(*TRI););
1123 } else {
1124 assert(P.LaneMask.any());
1125 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1126 // This may be called before CurrentBottom has been initialized. However,
1127 // BotRPTracker must have a valid position. We want the value live into the
1128 // instruction or live out of the block, so ask for the previous
1129 // instruction's live-out.
1130 const LiveInterval &LI = LIS->getInterval(Reg);
1131 VNInfo *VNI;
1132 MachineBasicBlock::const_iterator I =
1133 nextIfDebug(BotRPTracker.getPos(), BB->end());
1134 if (I == BB->end())
1135 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1136 else {
1137 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1138 VNI = LRQ.valueIn();
1140 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1141 assert(VNI && "No live value at use.");
1142 for (const VReg2SUnit &V2SU
1143 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1144 SUnit *SU = V2SU.SU;
1145 // If this use comes before the reaching def, it cannot be a last use,
1146 // so decrease its pressure change.
1147 if (!SU->isScheduled && SU != &ExitSU) {
1148 LiveQueryResult LRQ =
1149 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1150 if (LRQ.valueIn() == VNI) {
1151 PressureDiff &PDiff = getPressureDiff(SU);
1152 PDiff.addPressureChange(Reg, true, &MRI);
1153 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1154 << *SU->getInstr();
1155 dbgs() << " to "; PDiff.dump(*TRI););
1163 void ScheduleDAGMILive::dump() const {
1164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1165 if (EntrySU.getInstr() != nullptr)
1166 dumpNodeAll(EntrySU);
1167 for (const SUnit &SU : SUnits) {
1168 dumpNodeAll(SU);
1169 if (ShouldTrackPressure) {
1170 dbgs() << " Pressure Diff : ";
1171 getPressureDiff(&SU).dump(*TRI);
1173 dbgs() << " Single Issue : ";
1174 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1175 SchedModel.mustEndGroup(SU.getInstr()))
1176 dbgs() << "true;";
1177 else
1178 dbgs() << "false;";
1179 dbgs() << '\n';
1181 if (ExitSU.getInstr() != nullptr)
1182 dumpNodeAll(ExitSU);
1183 #endif
1186 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1187 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1188 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1190 /// This is a skeletal driver, with all the functionality pushed into helpers,
1191 /// so that it can be easily extended by experimental schedulers. Generally,
1192 /// implementing MachineSchedStrategy should be sufficient to implement a new
1193 /// scheduling algorithm. However, if a scheduler further subclasses
1194 /// ScheduleDAGMILive then it will want to override this virtual method in order
1195 /// to update any specialized state.
1196 void ScheduleDAGMILive::schedule() {
1197 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1198 LLVM_DEBUG(SchedImpl->dumpPolicy());
1199 buildDAGWithRegPressure();
1201 postprocessDAG();
1203 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1204 findRootsAndBiasEdges(TopRoots, BotRoots);
1206 // Initialize the strategy before modifying the DAG.
1207 // This may initialize a DFSResult to be used for queue priority.
1208 SchedImpl->initialize(this);
1210 LLVM_DEBUG(dump());
1211 if (PrintDAGs) dump();
1212 if (ViewMISchedDAGs) viewGraph();
1214 // Initialize ready queues now that the DAG and priority data are finalized.
1215 initQueues(TopRoots, BotRoots);
1217 bool IsTopNode = false;
1218 while (true) {
1219 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1220 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1221 if (!SU) break;
1223 assert(!SU->isScheduled && "Node already scheduled");
1224 if (!checkSchedLimit())
1225 break;
1227 scheduleMI(SU, IsTopNode);
1229 if (DFSResult) {
1230 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1231 if (!ScheduledTrees.test(SubtreeID)) {
1232 ScheduledTrees.set(SubtreeID);
1233 DFSResult->scheduleTree(SubtreeID);
1234 SchedImpl->scheduleTree(SubtreeID);
1238 // Notify the scheduling strategy after updating the DAG.
1239 SchedImpl->schedNode(SU, IsTopNode);
1241 updateQueues(SU, IsTopNode);
1243 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1245 placeDebugValues();
1247 LLVM_DEBUG({
1248 dbgs() << "*** Final schedule for "
1249 << printMBBReference(*begin()->getParent()) << " ***\n";
1250 dumpSchedule();
1251 dbgs() << '\n';
1255 /// Build the DAG and setup three register pressure trackers.
1256 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1257 if (!ShouldTrackPressure) {
1258 RPTracker.reset();
1259 RegionCriticalPSets.clear();
1260 buildSchedGraph(AA);
1261 return;
1264 // Initialize the register pressure tracker used by buildSchedGraph.
1265 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1266 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1268 // Account for liveness generate by the region boundary.
1269 if (LiveRegionEnd != RegionEnd)
1270 RPTracker.recede();
1272 // Build the DAG, and compute current register pressure.
1273 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1275 // Initialize top/bottom trackers after computing region pressure.
1276 initRegPressure();
1279 void ScheduleDAGMILive::computeDFSResult() {
1280 if (!DFSResult)
1281 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1282 DFSResult->clear();
1283 ScheduledTrees.clear();
1284 DFSResult->resize(SUnits.size());
1285 DFSResult->compute(SUnits);
1286 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1289 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1290 /// only provides the critical path for single block loops. To handle loops that
1291 /// span blocks, we could use the vreg path latencies provided by
1292 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1293 /// available for use in the scheduler.
1295 /// The cyclic path estimation identifies a def-use pair that crosses the back
1296 /// edge and considers the depth and height of the nodes. For example, consider
1297 /// the following instruction sequence where each instruction has unit latency
1298 /// and defines an epomymous virtual register:
1300 /// a->b(a,c)->c(b)->d(c)->exit
1302 /// The cyclic critical path is a two cycles: b->c->b
1303 /// The acyclic critical path is four cycles: a->b->c->d->exit
1304 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1305 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1306 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1307 /// LiveInDepth = depth(b) = len(a->b) = 1
1309 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1310 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1311 /// CyclicCriticalPath = min(2, 2) = 2
1313 /// This could be relevant to PostRA scheduling, but is currently implemented
1314 /// assuming LiveIntervals.
1315 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1316 // This only applies to single block loop.
1317 if (!BB->isSuccessor(BB))
1318 return 0;
1320 unsigned MaxCyclicLatency = 0;
1321 // Visit each live out vreg def to find def/use pairs that cross iterations.
1322 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1323 unsigned Reg = P.RegUnit;
1324 if (!Register::isVirtualRegister(Reg))
1325 continue;
1326 const LiveInterval &LI = LIS->getInterval(Reg);
1327 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1328 if (!DefVNI)
1329 continue;
1331 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1332 const SUnit *DefSU = getSUnit(DefMI);
1333 if (!DefSU)
1334 continue;
1336 unsigned LiveOutHeight = DefSU->getHeight();
1337 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1338 // Visit all local users of the vreg def.
1339 for (const VReg2SUnit &V2SU
1340 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1341 SUnit *SU = V2SU.SU;
1342 if (SU == &ExitSU)
1343 continue;
1345 // Only consider uses of the phi.
1346 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1347 if (!LRQ.valueIn()->isPHIDef())
1348 continue;
1350 // Assume that a path spanning two iterations is a cycle, which could
1351 // overestimate in strange cases. This allows cyclic latency to be
1352 // estimated as the minimum slack of the vreg's depth or height.
1353 unsigned CyclicLatency = 0;
1354 if (LiveOutDepth > SU->getDepth())
1355 CyclicLatency = LiveOutDepth - SU->getDepth();
1357 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1358 if (LiveInHeight > LiveOutHeight) {
1359 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1360 CyclicLatency = LiveInHeight - LiveOutHeight;
1361 } else
1362 CyclicLatency = 0;
1364 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1365 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1366 if (CyclicLatency > MaxCyclicLatency)
1367 MaxCyclicLatency = CyclicLatency;
1370 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1371 return MaxCyclicLatency;
1374 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1375 /// the Top RP tracker in case the region beginning has changed.
1376 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1377 ArrayRef<SUnit*> BotRoots) {
1378 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1379 if (ShouldTrackPressure) {
1380 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1381 TopRPTracker.setPos(CurrentTop);
1385 /// Move an instruction and update register pressure.
1386 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1387 // Move the instruction to its new location in the instruction stream.
1388 MachineInstr *MI = SU->getInstr();
1390 if (IsTopNode) {
1391 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1392 if (&*CurrentTop == MI)
1393 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1394 else {
1395 moveInstruction(MI, CurrentTop);
1396 TopRPTracker.setPos(MI);
1399 if (ShouldTrackPressure) {
1400 // Update top scheduled pressure.
1401 RegisterOperands RegOpers;
1402 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1403 if (ShouldTrackLaneMasks) {
1404 // Adjust liveness and add missing dead+read-undef flags.
1405 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1406 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1407 } else {
1408 // Adjust for missing dead-def flags.
1409 RegOpers.detectDeadDefs(*MI, *LIS);
1412 TopRPTracker.advance(RegOpers);
1413 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1414 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1415 TopRPTracker.getRegSetPressureAtPos(), TRI););
1417 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1419 } else {
1420 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1421 MachineBasicBlock::iterator priorII =
1422 priorNonDebug(CurrentBottom, CurrentTop);
1423 if (&*priorII == MI)
1424 CurrentBottom = priorII;
1425 else {
1426 if (&*CurrentTop == MI) {
1427 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1428 TopRPTracker.setPos(CurrentTop);
1430 moveInstruction(MI, CurrentBottom);
1431 CurrentBottom = MI;
1432 BotRPTracker.setPos(CurrentBottom);
1434 if (ShouldTrackPressure) {
1435 RegisterOperands RegOpers;
1436 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1437 if (ShouldTrackLaneMasks) {
1438 // Adjust liveness and add missing dead+read-undef flags.
1439 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1440 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1441 } else {
1442 // Adjust for missing dead-def flags.
1443 RegOpers.detectDeadDefs(*MI, *LIS);
1446 if (BotRPTracker.getPos() != CurrentBottom)
1447 BotRPTracker.recedeSkipDebugValues();
1448 SmallVector<RegisterMaskPair, 8> LiveUses;
1449 BotRPTracker.recede(RegOpers, &LiveUses);
1450 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1451 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1452 BotRPTracker.getRegSetPressureAtPos(), TRI););
1454 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1455 updatePressureDiffs(LiveUses);
1460 //===----------------------------------------------------------------------===//
1461 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1462 //===----------------------------------------------------------------------===//
1464 namespace {
1466 /// Post-process the DAG to create cluster edges between neighboring
1467 /// loads or between neighboring stores.
1468 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1469 struct MemOpInfo {
1470 SUnit *SU;
1471 const MachineOperand *BaseOp;
1472 int64_t Offset;
1474 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1475 : SU(su), BaseOp(Op), Offset(ofs) {}
1477 bool operator<(const MemOpInfo &RHS) const {
1478 if (BaseOp->getType() != RHS.BaseOp->getType())
1479 return BaseOp->getType() < RHS.BaseOp->getType();
1481 if (BaseOp->isReg())
1482 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1483 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1484 RHS.SU->NodeNum);
1485 if (BaseOp->isFI()) {
1486 const MachineFunction &MF =
1487 *BaseOp->getParent()->getParent()->getParent();
1488 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1489 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1490 TargetFrameLowering::StackGrowsDown;
1491 // Can't use tuple comparison here since we might need to use a
1492 // different order when the stack grows down.
1493 if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1494 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1495 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1497 if (Offset != RHS.Offset)
1498 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1500 return SU->NodeNum < RHS.SU->NodeNum;
1503 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1504 "index bases.");
1508 const TargetInstrInfo *TII;
1509 const TargetRegisterInfo *TRI;
1510 bool IsLoad;
1512 public:
1513 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1514 const TargetRegisterInfo *tri, bool IsLoad)
1515 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1517 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1519 protected:
1520 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1523 class StoreClusterMutation : public BaseMemOpClusterMutation {
1524 public:
1525 StoreClusterMutation(const TargetInstrInfo *tii,
1526 const TargetRegisterInfo *tri)
1527 : BaseMemOpClusterMutation(tii, tri, false) {}
1530 class LoadClusterMutation : public BaseMemOpClusterMutation {
1531 public:
1532 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1533 : BaseMemOpClusterMutation(tii, tri, true) {}
1536 } // end anonymous namespace
1538 namespace llvm {
1540 std::unique_ptr<ScheduleDAGMutation>
1541 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1542 const TargetRegisterInfo *TRI) {
1543 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1544 : nullptr;
1547 std::unique_ptr<ScheduleDAGMutation>
1548 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1549 const TargetRegisterInfo *TRI) {
1550 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1551 : nullptr;
1554 } // end namespace llvm
1556 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1557 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1558 SmallVector<MemOpInfo, 32> MemOpRecords;
1559 for (SUnit *SU : MemOps) {
1560 const MachineOperand *BaseOp;
1561 int64_t Offset;
1562 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1563 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1565 if (MemOpRecords.size() < 2)
1566 return;
1568 llvm::sort(MemOpRecords);
1569 unsigned ClusterLength = 1;
1570 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1571 SUnit *SUa = MemOpRecords[Idx].SU;
1572 SUnit *SUb = MemOpRecords[Idx+1].SU;
1573 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1574 *MemOpRecords[Idx + 1].BaseOp,
1575 ClusterLength) &&
1576 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1577 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1578 << SUb->NodeNum << ")\n");
1579 // Copy successor edges from SUa to SUb. Interleaving computation
1580 // dependent on SUa can prevent load combining due to register reuse.
1581 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1582 // loads should have effectively the same inputs.
1583 for (const SDep &Succ : SUa->Succs) {
1584 if (Succ.getSUnit() == SUb)
1585 continue;
1586 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1587 << ")\n");
1588 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1590 ++ClusterLength;
1591 } else
1592 ClusterLength = 1;
1596 /// Callback from DAG postProcessing to create cluster edges for loads.
1597 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1598 // Map DAG NodeNum to store chain ID.
1599 DenseMap<unsigned, unsigned> StoreChainIDs;
1600 // Map each store chain to a set of dependent MemOps.
1601 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1602 for (SUnit &SU : DAG->SUnits) {
1603 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1604 (!IsLoad && !SU.getInstr()->mayStore()))
1605 continue;
1607 unsigned ChainPredID = DAG->SUnits.size();
1608 for (const SDep &Pred : SU.Preds) {
1609 if (Pred.isCtrl()) {
1610 ChainPredID = Pred.getSUnit()->NodeNum;
1611 break;
1614 // Check if this chain-like pred has been seen
1615 // before. ChainPredID==MaxNodeID at the top of the schedule.
1616 unsigned NumChains = StoreChainDependents.size();
1617 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1618 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1619 if (Result.second)
1620 StoreChainDependents.resize(NumChains + 1);
1621 StoreChainDependents[Result.first->second].push_back(&SU);
1624 // Iterate over the store chains.
1625 for (auto &SCD : StoreChainDependents)
1626 clusterNeighboringMemOps(SCD, DAG);
1629 //===----------------------------------------------------------------------===//
1630 // CopyConstrain - DAG post-processing to encourage copy elimination.
1631 //===----------------------------------------------------------------------===//
1633 namespace {
1635 /// Post-process the DAG to create weak edges from all uses of a copy to
1636 /// the one use that defines the copy's source vreg, most likely an induction
1637 /// variable increment.
1638 class CopyConstrain : public ScheduleDAGMutation {
1639 // Transient state.
1640 SlotIndex RegionBeginIdx;
1642 // RegionEndIdx is the slot index of the last non-debug instruction in the
1643 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1644 SlotIndex RegionEndIdx;
1646 public:
1647 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1649 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1651 protected:
1652 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1655 } // end anonymous namespace
1657 namespace llvm {
1659 std::unique_ptr<ScheduleDAGMutation>
1660 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1661 const TargetRegisterInfo *TRI) {
1662 return std::make_unique<CopyConstrain>(TII, TRI);
1665 } // end namespace llvm
1667 /// constrainLocalCopy handles two possibilities:
1668 /// 1) Local src:
1669 /// I0: = dst
1670 /// I1: src = ...
1671 /// I2: = dst
1672 /// I3: dst = src (copy)
1673 /// (create pred->succ edges I0->I1, I2->I1)
1675 /// 2) Local copy:
1676 /// I0: dst = src (copy)
1677 /// I1: = dst
1678 /// I2: src = ...
1679 /// I3: = dst
1680 /// (create pred->succ edges I1->I2, I3->I2)
1682 /// Although the MachineScheduler is currently constrained to single blocks,
1683 /// this algorithm should handle extended blocks. An EBB is a set of
1684 /// contiguously numbered blocks such that the previous block in the EBB is
1685 /// always the single predecessor.
1686 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1687 LiveIntervals *LIS = DAG->getLIS();
1688 MachineInstr *Copy = CopySU->getInstr();
1690 // Check for pure vreg copies.
1691 const MachineOperand &SrcOp = Copy->getOperand(1);
1692 Register SrcReg = SrcOp.getReg();
1693 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1694 return;
1696 const MachineOperand &DstOp = Copy->getOperand(0);
1697 Register DstReg = DstOp.getReg();
1698 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1699 return;
1701 // Check if either the dest or source is local. If it's live across a back
1702 // edge, it's not local. Note that if both vregs are live across the back
1703 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1704 // If both the copy's source and dest are local live intervals, then we
1705 // should treat the dest as the global for the purpose of adding
1706 // constraints. This adds edges from source's other uses to the copy.
1707 unsigned LocalReg = SrcReg;
1708 unsigned GlobalReg = DstReg;
1709 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1710 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1711 LocalReg = DstReg;
1712 GlobalReg = SrcReg;
1713 LocalLI = &LIS->getInterval(LocalReg);
1714 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1715 return;
1717 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1719 // Find the global segment after the start of the local LI.
1720 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1721 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1722 // local live range. We could create edges from other global uses to the local
1723 // start, but the coalescer should have already eliminated these cases, so
1724 // don't bother dealing with it.
1725 if (GlobalSegment == GlobalLI->end())
1726 return;
1728 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1729 // returned the next global segment. But if GlobalSegment overlaps with
1730 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1731 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1732 if (GlobalSegment->contains(LocalLI->beginIndex()))
1733 ++GlobalSegment;
1735 if (GlobalSegment == GlobalLI->end())
1736 return;
1738 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1739 if (GlobalSegment != GlobalLI->begin()) {
1740 // Two address defs have no hole.
1741 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1742 GlobalSegment->start)) {
1743 return;
1745 // If the prior global segment may be defined by the same two-address
1746 // instruction that also defines LocalLI, then can't make a hole here.
1747 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1748 LocalLI->beginIndex())) {
1749 return;
1751 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1752 // it would be a disconnected component in the live range.
1753 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1754 "Disconnected LRG within the scheduling region.");
1756 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1757 if (!GlobalDef)
1758 return;
1760 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1761 if (!GlobalSU)
1762 return;
1764 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1765 // constraining the uses of the last local def to precede GlobalDef.
1766 SmallVector<SUnit*,8> LocalUses;
1767 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1768 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1769 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1770 for (const SDep &Succ : LastLocalSU->Succs) {
1771 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1772 continue;
1773 if (Succ.getSUnit() == GlobalSU)
1774 continue;
1775 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1776 return;
1777 LocalUses.push_back(Succ.getSUnit());
1779 // Open the top of the GlobalLI hole by constraining any earlier global uses
1780 // to precede the start of LocalLI.
1781 SmallVector<SUnit*,8> GlobalUses;
1782 MachineInstr *FirstLocalDef =
1783 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1784 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1785 for (const SDep &Pred : GlobalSU->Preds) {
1786 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1787 continue;
1788 if (Pred.getSUnit() == FirstLocalSU)
1789 continue;
1790 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1791 return;
1792 GlobalUses.push_back(Pred.getSUnit());
1794 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1795 // Add the weak edges.
1796 for (SmallVectorImpl<SUnit*>::const_iterator
1797 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1798 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1799 << GlobalSU->NodeNum << ")\n");
1800 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1802 for (SmallVectorImpl<SUnit*>::const_iterator
1803 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1804 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1805 << FirstLocalSU->NodeNum << ")\n");
1806 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1810 /// Callback from DAG postProcessing to create weak edges to encourage
1811 /// copy elimination.
1812 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1813 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1814 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1816 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1817 if (FirstPos == DAG->end())
1818 return;
1819 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1820 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1821 *priorNonDebug(DAG->end(), DAG->begin()));
1823 for (SUnit &SU : DAG->SUnits) {
1824 if (!SU.getInstr()->isCopy())
1825 continue;
1827 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1831 //===----------------------------------------------------------------------===//
1832 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1833 // and possibly other custom schedulers.
1834 //===----------------------------------------------------------------------===//
1836 static const unsigned InvalidCycle = ~0U;
1838 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1840 /// Given a Count of resource usage and a Latency value, return true if a
1841 /// SchedBoundary becomes resource limited.
1842 /// If we are checking after scheduling a node, we should return true when
1843 /// we just reach the resource limit.
1844 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1845 unsigned Latency, bool AfterSchedNode) {
1846 int ResCntFactor = (int)(Count - (Latency * LFactor));
1847 if (AfterSchedNode)
1848 return ResCntFactor >= (int)LFactor;
1849 else
1850 return ResCntFactor > (int)LFactor;
1853 void SchedBoundary::reset() {
1854 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1855 // Destroying and reconstructing it is very expensive though. So keep
1856 // invalid, placeholder HazardRecs.
1857 if (HazardRec && HazardRec->isEnabled()) {
1858 delete HazardRec;
1859 HazardRec = nullptr;
1861 Available.clear();
1862 Pending.clear();
1863 CheckPending = false;
1864 CurrCycle = 0;
1865 CurrMOps = 0;
1866 MinReadyCycle = std::numeric_limits<unsigned>::max();
1867 ExpectedLatency = 0;
1868 DependentLatency = 0;
1869 RetiredMOps = 0;
1870 MaxExecutedResCount = 0;
1871 ZoneCritResIdx = 0;
1872 IsResourceLimited = false;
1873 ReservedCycles.clear();
1874 ReservedCyclesIndex.clear();
1875 #ifndef NDEBUG
1876 // Track the maximum number of stall cycles that could arise either from the
1877 // latency of a DAG edge or the number of cycles that a processor resource is
1878 // reserved (SchedBoundary::ReservedCycles).
1879 MaxObservedStall = 0;
1880 #endif
1881 // Reserve a zero-count for invalid CritResIdx.
1882 ExecutedResCounts.resize(1);
1883 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1886 void SchedRemainder::
1887 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1888 reset();
1889 if (!SchedModel->hasInstrSchedModel())
1890 return;
1891 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1892 for (SUnit &SU : DAG->SUnits) {
1893 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1894 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1895 * SchedModel->getMicroOpFactor();
1896 for (TargetSchedModel::ProcResIter
1897 PI = SchedModel->getWriteProcResBegin(SC),
1898 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1899 unsigned PIdx = PI->ProcResourceIdx;
1900 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1901 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1906 void SchedBoundary::
1907 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1908 reset();
1909 DAG = dag;
1910 SchedModel = smodel;
1911 Rem = rem;
1912 if (SchedModel->hasInstrSchedModel()) {
1913 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1914 ReservedCyclesIndex.resize(ResourceCount);
1915 ExecutedResCounts.resize(ResourceCount);
1916 unsigned NumUnits = 0;
1918 for (unsigned i = 0; i < ResourceCount; ++i) {
1919 ReservedCyclesIndex[i] = NumUnits;
1920 NumUnits += SchedModel->getProcResource(i)->NumUnits;
1923 ReservedCycles.resize(NumUnits, InvalidCycle);
1927 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1928 /// these "soft stalls" differently than the hard stall cycles based on CPU
1929 /// resources and computed by checkHazard(). A fully in-order model
1930 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1931 /// available for scheduling until they are ready. However, a weaker in-order
1932 /// model may use this for heuristics. For example, if a processor has in-order
1933 /// behavior when reading certain resources, this may come into play.
1934 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1935 if (!SU->isUnbuffered)
1936 return 0;
1938 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1939 if (ReadyCycle > CurrCycle)
1940 return ReadyCycle - CurrCycle;
1941 return 0;
1944 /// Compute the next cycle at which the given processor resource unit
1945 /// can be scheduled.
1946 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
1947 unsigned Cycles) {
1948 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
1949 // If this resource has never been used, always return cycle zero.
1950 if (NextUnreserved == InvalidCycle)
1951 return 0;
1952 // For bottom-up scheduling add the cycles needed for the current operation.
1953 if (!isTop())
1954 NextUnreserved += Cycles;
1955 return NextUnreserved;
1958 /// Compute the next cycle at which the given processor resource can be
1959 /// scheduled. Returns the next cycle and the index of the processor resource
1960 /// instance in the reserved cycles vector.
1961 std::pair<unsigned, unsigned>
1962 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1963 unsigned MinNextUnreserved = InvalidCycle;
1964 unsigned InstanceIdx = 0;
1965 unsigned StartIndex = ReservedCyclesIndex[PIdx];
1966 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
1967 assert(NumberOfInstances > 0 &&
1968 "Cannot have zero instances of a ProcResource");
1970 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
1971 ++I) {
1972 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
1973 if (MinNextUnreserved > NextUnreserved) {
1974 InstanceIdx = I;
1975 MinNextUnreserved = NextUnreserved;
1978 return std::make_pair(MinNextUnreserved, InstanceIdx);
1981 /// Does this SU have a hazard within the current instruction group.
1983 /// The scheduler supports two modes of hazard recognition. The first is the
1984 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1985 /// supports highly complicated in-order reservation tables
1986 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1988 /// The second is a streamlined mechanism that checks for hazards based on
1989 /// simple counters that the scheduler itself maintains. It explicitly checks
1990 /// for instruction dispatch limitations, including the number of micro-ops that
1991 /// can dispatch per cycle.
1993 /// TODO: Also check whether the SU must start a new group.
1994 bool SchedBoundary::checkHazard(SUnit *SU) {
1995 if (HazardRec->isEnabled()
1996 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1997 return true;
2000 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2001 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2002 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2003 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2004 return true;
2007 if (CurrMOps > 0 &&
2008 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2009 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2010 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2011 << (isTop() ? "begin" : "end") << " group\n");
2012 return true;
2015 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2016 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2017 for (const MCWriteProcResEntry &PE :
2018 make_range(SchedModel->getWriteProcResBegin(SC),
2019 SchedModel->getWriteProcResEnd(SC))) {
2020 unsigned ResIdx = PE.ProcResourceIdx;
2021 unsigned Cycles = PE.Cycles;
2022 unsigned NRCycle, InstanceIdx;
2023 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2024 if (NRCycle > CurrCycle) {
2025 #ifndef NDEBUG
2026 MaxObservedStall = std::max(Cycles, MaxObservedStall);
2027 #endif
2028 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2029 << SchedModel->getResourceName(ResIdx)
2030 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2031 << "=" << NRCycle << "c\n");
2032 return true;
2036 return false;
2039 // Find the unscheduled node in ReadySUs with the highest latency.
2040 unsigned SchedBoundary::
2041 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2042 SUnit *LateSU = nullptr;
2043 unsigned RemLatency = 0;
2044 for (SUnit *SU : ReadySUs) {
2045 unsigned L = getUnscheduledLatency(SU);
2046 if (L > RemLatency) {
2047 RemLatency = L;
2048 LateSU = SU;
2051 if (LateSU) {
2052 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2053 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2055 return RemLatency;
2058 // Count resources in this zone and the remaining unscheduled
2059 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2060 // resource index, or zero if the zone is issue limited.
2061 unsigned SchedBoundary::
2062 getOtherResourceCount(unsigned &OtherCritIdx) {
2063 OtherCritIdx = 0;
2064 if (!SchedModel->hasInstrSchedModel())
2065 return 0;
2067 unsigned OtherCritCount = Rem->RemIssueCount
2068 + (RetiredMOps * SchedModel->getMicroOpFactor());
2069 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2070 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2071 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2072 PIdx != PEnd; ++PIdx) {
2073 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2074 if (OtherCount > OtherCritCount) {
2075 OtherCritCount = OtherCount;
2076 OtherCritIdx = PIdx;
2079 if (OtherCritIdx) {
2080 LLVM_DEBUG(
2081 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2082 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2083 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2085 return OtherCritCount;
2088 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2089 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2091 #ifndef NDEBUG
2092 // ReadyCycle was been bumped up to the CurrCycle when this node was
2093 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2094 // scheduling, so may now be greater than ReadyCycle.
2095 if (ReadyCycle > CurrCycle)
2096 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2097 #endif
2099 if (ReadyCycle < MinReadyCycle)
2100 MinReadyCycle = ReadyCycle;
2102 // Check for interlocks first. For the purpose of other heuristics, an
2103 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2104 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2105 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2106 Available.size() >= ReadyListLimit)
2107 Pending.push(SU);
2108 else
2109 Available.push(SU);
2112 /// Move the boundary of scheduled code by one cycle.
2113 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2114 if (SchedModel->getMicroOpBufferSize() == 0) {
2115 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2116 "MinReadyCycle uninitialized");
2117 if (MinReadyCycle > NextCycle)
2118 NextCycle = MinReadyCycle;
2120 // Update the current micro-ops, which will issue in the next cycle.
2121 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2122 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2124 // Decrement DependentLatency based on the next cycle.
2125 if ((NextCycle - CurrCycle) > DependentLatency)
2126 DependentLatency = 0;
2127 else
2128 DependentLatency -= (NextCycle - CurrCycle);
2130 if (!HazardRec->isEnabled()) {
2131 // Bypass HazardRec virtual calls.
2132 CurrCycle = NextCycle;
2133 } else {
2134 // Bypass getHazardType calls in case of long latency.
2135 for (; CurrCycle != NextCycle; ++CurrCycle) {
2136 if (isTop())
2137 HazardRec->AdvanceCycle();
2138 else
2139 HazardRec->RecedeCycle();
2142 CheckPending = true;
2143 IsResourceLimited =
2144 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2145 getScheduledLatency(), true);
2147 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2148 << '\n');
2151 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2152 ExecutedResCounts[PIdx] += Count;
2153 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2154 MaxExecutedResCount = ExecutedResCounts[PIdx];
2157 /// Add the given processor resource to this scheduled zone.
2159 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2160 /// during which this resource is consumed.
2162 /// \return the next cycle at which the instruction may execute without
2163 /// oversubscribing resources.
2164 unsigned SchedBoundary::
2165 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2166 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2167 unsigned Count = Factor * Cycles;
2168 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2169 << Cycles << "x" << Factor << "u\n");
2171 // Update Executed resources counts.
2172 incExecutedResources(PIdx, Count);
2173 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2174 Rem->RemainingCounts[PIdx] -= Count;
2176 // Check if this resource exceeds the current critical resource. If so, it
2177 // becomes the critical resource.
2178 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2179 ZoneCritResIdx = PIdx;
2180 LLVM_DEBUG(dbgs() << " *** Critical resource "
2181 << SchedModel->getResourceName(PIdx) << ": "
2182 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2183 << "c\n");
2185 // For reserved resources, record the highest cycle using the resource.
2186 unsigned NextAvailable, InstanceIdx;
2187 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2188 if (NextAvailable > CurrCycle) {
2189 LLVM_DEBUG(dbgs() << " Resource conflict: "
2190 << SchedModel->getResourceName(PIdx)
2191 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2192 << " reserved until @" << NextAvailable << "\n");
2194 return NextAvailable;
2197 /// Move the boundary of scheduled code by one SUnit.
2198 void SchedBoundary::bumpNode(SUnit *SU) {
2199 // Update the reservation table.
2200 if (HazardRec->isEnabled()) {
2201 if (!isTop() && SU->isCall) {
2202 // Calls are scheduled with their preceding instructions. For bottom-up
2203 // scheduling, clear the pipeline state before emitting.
2204 HazardRec->Reset();
2206 HazardRec->EmitInstruction(SU);
2207 // Scheduling an instruction may have made pending instructions available.
2208 CheckPending = true;
2210 // checkHazard should prevent scheduling multiple instructions per cycle that
2211 // exceed the issue width.
2212 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2213 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2214 assert(
2215 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2216 "Cannot schedule this instruction's MicroOps in the current cycle.");
2218 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2219 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2221 unsigned NextCycle = CurrCycle;
2222 switch (SchedModel->getMicroOpBufferSize()) {
2223 case 0:
2224 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2225 break;
2226 case 1:
2227 if (ReadyCycle > NextCycle) {
2228 NextCycle = ReadyCycle;
2229 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2231 break;
2232 default:
2233 // We don't currently model the OOO reorder buffer, so consider all
2234 // scheduled MOps to be "retired". We do loosely model in-order resource
2235 // latency. If this instruction uses an in-order resource, account for any
2236 // likely stall cycles.
2237 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2238 NextCycle = ReadyCycle;
2239 break;
2241 RetiredMOps += IncMOps;
2243 // Update resource counts and critical resource.
2244 if (SchedModel->hasInstrSchedModel()) {
2245 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2246 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2247 Rem->RemIssueCount -= DecRemIssue;
2248 if (ZoneCritResIdx) {
2249 // Scale scheduled micro-ops for comparing with the critical resource.
2250 unsigned ScaledMOps =
2251 RetiredMOps * SchedModel->getMicroOpFactor();
2253 // If scaled micro-ops are now more than the previous critical resource by
2254 // a full cycle, then micro-ops issue becomes critical.
2255 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2256 >= (int)SchedModel->getLatencyFactor()) {
2257 ZoneCritResIdx = 0;
2258 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2259 << ScaledMOps / SchedModel->getLatencyFactor()
2260 << "c\n");
2263 for (TargetSchedModel::ProcResIter
2264 PI = SchedModel->getWriteProcResBegin(SC),
2265 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2266 unsigned RCycle =
2267 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2268 if (RCycle > NextCycle)
2269 NextCycle = RCycle;
2271 if (SU->hasReservedResource) {
2272 // For reserved resources, record the highest cycle using the resource.
2273 // For top-down scheduling, this is the cycle in which we schedule this
2274 // instruction plus the number of cycles the operations reserves the
2275 // resource. For bottom-up is it simply the instruction's cycle.
2276 for (TargetSchedModel::ProcResIter
2277 PI = SchedModel->getWriteProcResBegin(SC),
2278 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2279 unsigned PIdx = PI->ProcResourceIdx;
2280 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2281 unsigned ReservedUntil, InstanceIdx;
2282 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2283 if (isTop()) {
2284 ReservedCycles[InstanceIdx] =
2285 std::max(ReservedUntil, NextCycle + PI->Cycles);
2286 } else
2287 ReservedCycles[InstanceIdx] = NextCycle;
2292 // Update ExpectedLatency and DependentLatency.
2293 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2294 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2295 if (SU->getDepth() > TopLatency) {
2296 TopLatency = SU->getDepth();
2297 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2298 << SU->NodeNum << ") " << TopLatency << "c\n");
2300 if (SU->getHeight() > BotLatency) {
2301 BotLatency = SU->getHeight();
2302 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2303 << SU->NodeNum << ") " << BotLatency << "c\n");
2305 // If we stall for any reason, bump the cycle.
2306 if (NextCycle > CurrCycle)
2307 bumpCycle(NextCycle);
2308 else
2309 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2310 // resource limited. If a stall occurred, bumpCycle does this.
2311 IsResourceLimited =
2312 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2313 getScheduledLatency(), true);
2315 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2316 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2317 // one cycle. Since we commonly reach the max MOps here, opportunistically
2318 // bump the cycle to avoid uselessly checking everything in the readyQ.
2319 CurrMOps += IncMOps;
2321 // Bump the cycle count for issue group constraints.
2322 // This must be done after NextCycle has been adjust for all other stalls.
2323 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2324 // currCycle to X.
2325 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2326 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2327 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2328 << " group\n");
2329 bumpCycle(++NextCycle);
2332 while (CurrMOps >= SchedModel->getIssueWidth()) {
2333 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2334 << CurrCycle << '\n');
2335 bumpCycle(++NextCycle);
2337 LLVM_DEBUG(dumpScheduledState());
2340 /// Release pending ready nodes in to the available queue. This makes them
2341 /// visible to heuristics.
2342 void SchedBoundary::releasePending() {
2343 // If the available queue is empty, it is safe to reset MinReadyCycle.
2344 if (Available.empty())
2345 MinReadyCycle = std::numeric_limits<unsigned>::max();
2347 // Check to see if any of the pending instructions are ready to issue. If
2348 // so, add them to the available queue.
2349 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2350 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2351 SUnit *SU = *(Pending.begin()+i);
2352 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2354 if (ReadyCycle < MinReadyCycle)
2355 MinReadyCycle = ReadyCycle;
2357 if (!IsBuffered && ReadyCycle > CurrCycle)
2358 continue;
2360 if (checkHazard(SU))
2361 continue;
2363 if (Available.size() >= ReadyListLimit)
2364 break;
2366 Available.push(SU);
2367 Pending.remove(Pending.begin()+i);
2368 --i; --e;
2370 CheckPending = false;
2373 /// Remove SU from the ready set for this boundary.
2374 void SchedBoundary::removeReady(SUnit *SU) {
2375 if (Available.isInQueue(SU))
2376 Available.remove(Available.find(SU));
2377 else {
2378 assert(Pending.isInQueue(SU) && "bad ready count");
2379 Pending.remove(Pending.find(SU));
2383 /// If this queue only has one ready candidate, return it. As a side effect,
2384 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2385 /// one node is ready. If multiple instructions are ready, return NULL.
2386 SUnit *SchedBoundary::pickOnlyChoice() {
2387 if (CheckPending)
2388 releasePending();
2390 if (CurrMOps > 0) {
2391 // Defer any ready instrs that now have a hazard.
2392 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2393 if (checkHazard(*I)) {
2394 Pending.push(*I);
2395 I = Available.remove(I);
2396 continue;
2398 ++I;
2401 for (unsigned i = 0; Available.empty(); ++i) {
2402 // FIXME: Re-enable assert once PR20057 is resolved.
2403 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2404 // "permanent hazard");
2405 (void)i;
2406 bumpCycle(CurrCycle + 1);
2407 releasePending();
2410 LLVM_DEBUG(Pending.dump());
2411 LLVM_DEBUG(Available.dump());
2413 if (Available.size() == 1)
2414 return *Available.begin();
2415 return nullptr;
2418 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2419 // This is useful information to dump after bumpNode.
2420 // Note that the Queue contents are more useful before pickNodeFromQueue.
2421 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2422 unsigned ResFactor;
2423 unsigned ResCount;
2424 if (ZoneCritResIdx) {
2425 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2426 ResCount = getResourceCount(ZoneCritResIdx);
2427 } else {
2428 ResFactor = SchedModel->getMicroOpFactor();
2429 ResCount = RetiredMOps * ResFactor;
2431 unsigned LFactor = SchedModel->getLatencyFactor();
2432 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2433 << " Retired: " << RetiredMOps;
2434 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2435 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2436 << ResCount / ResFactor << " "
2437 << SchedModel->getResourceName(ZoneCritResIdx)
2438 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2439 << (IsResourceLimited ? " - Resource" : " - Latency")
2440 << " limited.\n";
2442 #endif
2444 //===----------------------------------------------------------------------===//
2445 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2446 //===----------------------------------------------------------------------===//
2448 void GenericSchedulerBase::SchedCandidate::
2449 initResourceDelta(const ScheduleDAGMI *DAG,
2450 const TargetSchedModel *SchedModel) {
2451 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2452 return;
2454 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2455 for (TargetSchedModel::ProcResIter
2456 PI = SchedModel->getWriteProcResBegin(SC),
2457 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2458 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2459 ResDelta.CritResources += PI->Cycles;
2460 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2461 ResDelta.DemandedResources += PI->Cycles;
2465 /// Compute remaining latency. We need this both to determine whether the
2466 /// overall schedule has become latency-limited and whether the instructions
2467 /// outside this zone are resource or latency limited.
2469 /// The "dependent" latency is updated incrementally during scheduling as the
2470 /// max height/depth of scheduled nodes minus the cycles since it was
2471 /// scheduled:
2472 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2474 /// The "independent" latency is the max ready queue depth:
2475 /// ILat = max N.depth for N in Available|Pending
2477 /// RemainingLatency is the greater of independent and dependent latency.
2479 /// These computations are expensive, especially in DAGs with many edges, so
2480 /// only do them if necessary.
2481 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2482 unsigned RemLatency = CurrZone.getDependentLatency();
2483 RemLatency = std::max(RemLatency,
2484 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2485 RemLatency = std::max(RemLatency,
2486 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2487 return RemLatency;
2490 /// Returns true if the current cycle plus remaning latency is greater than
2491 /// the critical path in the scheduling region.
2492 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2493 SchedBoundary &CurrZone,
2494 bool ComputeRemLatency,
2495 unsigned &RemLatency) const {
2496 // The current cycle is already greater than the critical path, so we are
2497 // already latency limited and don't need to compute the remaining latency.
2498 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2499 return true;
2501 // If we haven't scheduled anything yet, then we aren't latency limited.
2502 if (CurrZone.getCurrCycle() == 0)
2503 return false;
2505 if (ComputeRemLatency)
2506 RemLatency = computeRemLatency(CurrZone);
2508 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2511 /// Set the CandPolicy given a scheduling zone given the current resources and
2512 /// latencies inside and outside the zone.
2513 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2514 SchedBoundary &CurrZone,
2515 SchedBoundary *OtherZone) {
2516 // Apply preemptive heuristics based on the total latency and resources
2517 // inside and outside this zone. Potential stalls should be considered before
2518 // following this policy.
2520 // Compute the critical resource outside the zone.
2521 unsigned OtherCritIdx = 0;
2522 unsigned OtherCount =
2523 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2525 bool OtherResLimited = false;
2526 unsigned RemLatency = 0;
2527 bool RemLatencyComputed = false;
2528 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2529 RemLatency = computeRemLatency(CurrZone);
2530 RemLatencyComputed = true;
2531 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2532 OtherCount, RemLatency, false);
2535 // Schedule aggressively for latency in PostRA mode. We don't check for
2536 // acyclic latency during PostRA, and highly out-of-order processors will
2537 // skip PostRA scheduling.
2538 if (!OtherResLimited &&
2539 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2540 RemLatency))) {
2541 Policy.ReduceLatency |= true;
2542 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
2543 << " RemainingLatency " << RemLatency << " + "
2544 << CurrZone.getCurrCycle() << "c > CritPath "
2545 << Rem.CriticalPath << "\n");
2547 // If the same resource is limiting inside and outside the zone, do nothing.
2548 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2549 return;
2551 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2552 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2553 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2554 } if (OtherResLimited) dbgs()
2555 << " RemainingLimit: "
2556 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2557 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2558 << " Latency limited both directions.\n");
2560 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2561 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2563 if (OtherResLimited)
2564 Policy.DemandResIdx = OtherCritIdx;
2567 #ifndef NDEBUG
2568 const char *GenericSchedulerBase::getReasonStr(
2569 GenericSchedulerBase::CandReason Reason) {
2570 switch (Reason) {
2571 case NoCand: return "NOCAND ";
2572 case Only1: return "ONLY1 ";
2573 case PhysReg: return "PHYS-REG ";
2574 case RegExcess: return "REG-EXCESS";
2575 case RegCritical: return "REG-CRIT ";
2576 case Stall: return "STALL ";
2577 case Cluster: return "CLUSTER ";
2578 case Weak: return "WEAK ";
2579 case RegMax: return "REG-MAX ";
2580 case ResourceReduce: return "RES-REDUCE";
2581 case ResourceDemand: return "RES-DEMAND";
2582 case TopDepthReduce: return "TOP-DEPTH ";
2583 case TopPathReduce: return "TOP-PATH ";
2584 case BotHeightReduce:return "BOT-HEIGHT";
2585 case BotPathReduce: return "BOT-PATH ";
2586 case NextDefUse: return "DEF-USE ";
2587 case NodeOrder: return "ORDER ";
2589 llvm_unreachable("Unknown reason!");
2592 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2593 PressureChange P;
2594 unsigned ResIdx = 0;
2595 unsigned Latency = 0;
2596 switch (Cand.Reason) {
2597 default:
2598 break;
2599 case RegExcess:
2600 P = Cand.RPDelta.Excess;
2601 break;
2602 case RegCritical:
2603 P = Cand.RPDelta.CriticalMax;
2604 break;
2605 case RegMax:
2606 P = Cand.RPDelta.CurrentMax;
2607 break;
2608 case ResourceReduce:
2609 ResIdx = Cand.Policy.ReduceResIdx;
2610 break;
2611 case ResourceDemand:
2612 ResIdx = Cand.Policy.DemandResIdx;
2613 break;
2614 case TopDepthReduce:
2615 Latency = Cand.SU->getDepth();
2616 break;
2617 case TopPathReduce:
2618 Latency = Cand.SU->getHeight();
2619 break;
2620 case BotHeightReduce:
2621 Latency = Cand.SU->getHeight();
2622 break;
2623 case BotPathReduce:
2624 Latency = Cand.SU->getDepth();
2625 break;
2627 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2628 if (P.isValid())
2629 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2630 << ":" << P.getUnitInc() << " ";
2631 else
2632 dbgs() << " ";
2633 if (ResIdx)
2634 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2635 else
2636 dbgs() << " ";
2637 if (Latency)
2638 dbgs() << " " << Latency << " cycles ";
2639 else
2640 dbgs() << " ";
2641 dbgs() << '\n';
2643 #endif
2645 namespace llvm {
2646 /// Return true if this heuristic determines order.
2647 bool tryLess(int TryVal, int CandVal,
2648 GenericSchedulerBase::SchedCandidate &TryCand,
2649 GenericSchedulerBase::SchedCandidate &Cand,
2650 GenericSchedulerBase::CandReason Reason) {
2651 if (TryVal < CandVal) {
2652 TryCand.Reason = Reason;
2653 return true;
2655 if (TryVal > CandVal) {
2656 if (Cand.Reason > Reason)
2657 Cand.Reason = Reason;
2658 return true;
2660 return false;
2663 bool tryGreater(int TryVal, int CandVal,
2664 GenericSchedulerBase::SchedCandidate &TryCand,
2665 GenericSchedulerBase::SchedCandidate &Cand,
2666 GenericSchedulerBase::CandReason Reason) {
2667 if (TryVal > CandVal) {
2668 TryCand.Reason = Reason;
2669 return true;
2671 if (TryVal < CandVal) {
2672 if (Cand.Reason > Reason)
2673 Cand.Reason = Reason;
2674 return true;
2676 return false;
2679 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2680 GenericSchedulerBase::SchedCandidate &Cand,
2681 SchedBoundary &Zone) {
2682 if (Zone.isTop()) {
2683 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2684 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2685 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2686 return true;
2688 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2689 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2690 return true;
2691 } else {
2692 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2693 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2694 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2695 return true;
2697 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2698 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2699 return true;
2701 return false;
2703 } // end namespace llvm
2705 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2706 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2707 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2710 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2711 tracePick(Cand.Reason, Cand.AtTop);
2714 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2715 assert(dag->hasVRegLiveness() &&
2716 "(PreRA)GenericScheduler needs vreg liveness");
2717 DAG = static_cast<ScheduleDAGMILive*>(dag);
2718 SchedModel = DAG->getSchedModel();
2719 TRI = DAG->TRI;
2721 Rem.init(DAG, SchedModel);
2722 Top.init(DAG, SchedModel, &Rem);
2723 Bot.init(DAG, SchedModel, &Rem);
2725 // Initialize resource counts.
2727 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2728 // are disabled, then these HazardRecs will be disabled.
2729 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2730 if (!Top.HazardRec) {
2731 Top.HazardRec =
2732 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2733 Itin, DAG);
2735 if (!Bot.HazardRec) {
2736 Bot.HazardRec =
2737 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2738 Itin, DAG);
2740 TopCand.SU = nullptr;
2741 BotCand.SU = nullptr;
2744 /// Initialize the per-region scheduling policy.
2745 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2746 MachineBasicBlock::iterator End,
2747 unsigned NumRegionInstrs) {
2748 const MachineFunction &MF = *Begin->getMF();
2749 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2751 // Avoid setting up the register pressure tracker for small regions to save
2752 // compile time. As a rough heuristic, only track pressure when the number of
2753 // schedulable instructions exceeds half the integer register file.
2754 RegionPolicy.ShouldTrackPressure = true;
2755 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2756 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2757 if (TLI->isTypeLegal(LegalIntVT)) {
2758 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2759 TLI->getRegClassFor(LegalIntVT));
2760 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2764 // For generic targets, we default to bottom-up, because it's simpler and more
2765 // compile-time optimizations have been implemented in that direction.
2766 RegionPolicy.OnlyBottomUp = true;
2768 // Allow the subtarget to override default policy.
2769 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2771 // After subtarget overrides, apply command line options.
2772 if (!EnableRegPressure) {
2773 RegionPolicy.ShouldTrackPressure = false;
2774 RegionPolicy.ShouldTrackLaneMasks = false;
2777 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2778 // e.g. -misched-bottomup=false allows scheduling in both directions.
2779 assert((!ForceTopDown || !ForceBottomUp) &&
2780 "-misched-topdown incompatible with -misched-bottomup");
2781 if (ForceBottomUp.getNumOccurrences() > 0) {
2782 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2783 if (RegionPolicy.OnlyBottomUp)
2784 RegionPolicy.OnlyTopDown = false;
2786 if (ForceTopDown.getNumOccurrences() > 0) {
2787 RegionPolicy.OnlyTopDown = ForceTopDown;
2788 if (RegionPolicy.OnlyTopDown)
2789 RegionPolicy.OnlyBottomUp = false;
2793 void GenericScheduler::dumpPolicy() const {
2794 // Cannot completely remove virtual function even in release mode.
2795 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2796 dbgs() << "GenericScheduler RegionPolicy: "
2797 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2798 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2799 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2800 << "\n";
2801 #endif
2804 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2805 /// critical path by more cycles than it takes to drain the instruction buffer.
2806 /// We estimate an upper bounds on in-flight instructions as:
2808 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2809 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2810 /// InFlightResources = InFlightIterations * LoopResources
2812 /// TODO: Check execution resources in addition to IssueCount.
2813 void GenericScheduler::checkAcyclicLatency() {
2814 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2815 return;
2817 // Scaled number of cycles per loop iteration.
2818 unsigned IterCount =
2819 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2820 Rem.RemIssueCount);
2821 // Scaled acyclic critical path.
2822 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2823 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2824 unsigned InFlightCount =
2825 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2826 unsigned BufferLimit =
2827 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2829 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2831 LLVM_DEBUG(
2832 dbgs() << "IssueCycles="
2833 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2834 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2835 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2836 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2837 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2838 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
2841 void GenericScheduler::registerRoots() {
2842 Rem.CriticalPath = DAG->ExitSU.getDepth();
2844 // Some roots may not feed into ExitSU. Check all of them in case.
2845 for (const SUnit *SU : Bot.Available) {
2846 if (SU->getDepth() > Rem.CriticalPath)
2847 Rem.CriticalPath = SU->getDepth();
2849 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2850 if (DumpCriticalPathLength) {
2851 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2854 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2855 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2856 checkAcyclicLatency();
2860 namespace llvm {
2861 bool tryPressure(const PressureChange &TryP,
2862 const PressureChange &CandP,
2863 GenericSchedulerBase::SchedCandidate &TryCand,
2864 GenericSchedulerBase::SchedCandidate &Cand,
2865 GenericSchedulerBase::CandReason Reason,
2866 const TargetRegisterInfo *TRI,
2867 const MachineFunction &MF) {
2868 // If one candidate decreases and the other increases, go with it.
2869 // Invalid candidates have UnitInc==0.
2870 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2871 Reason)) {
2872 return true;
2874 // Do not compare the magnitude of pressure changes between top and bottom
2875 // boundary.
2876 if (Cand.AtTop != TryCand.AtTop)
2877 return false;
2879 // If both candidates affect the same set in the same boundary, go with the
2880 // smallest increase.
2881 unsigned TryPSet = TryP.getPSetOrMax();
2882 unsigned CandPSet = CandP.getPSetOrMax();
2883 if (TryPSet == CandPSet) {
2884 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2885 Reason);
2888 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2889 std::numeric_limits<int>::max();
2891 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2892 std::numeric_limits<int>::max();
2894 // If the candidates are decreasing pressure, reverse priority.
2895 if (TryP.getUnitInc() < 0)
2896 std::swap(TryRank, CandRank);
2897 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2900 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2901 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2904 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2905 /// their physreg def/use.
2907 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2908 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2909 /// with the operation that produces or consumes the physreg. We'll do this when
2910 /// regalloc has support for parallel copies.
2911 int biasPhysReg(const SUnit *SU, bool isTop) {
2912 const MachineInstr *MI = SU->getInstr();
2914 if (MI->isCopy()) {
2915 unsigned ScheduledOper = isTop ? 1 : 0;
2916 unsigned UnscheduledOper = isTop ? 0 : 1;
2917 // If we have already scheduled the physreg produce/consumer, immediately
2918 // schedule the copy.
2919 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
2920 return 1;
2921 // If the physreg is at the boundary, defer it. Otherwise schedule it
2922 // immediately to free the dependent. We can hoist the copy later.
2923 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2924 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
2925 return AtBoundary ? -1 : 1;
2928 if (MI->isMoveImmediate()) {
2929 // If we have a move immediate and all successors have been assigned, bias
2930 // towards scheduling this later. Make sure all register defs are to
2931 // physical registers.
2932 bool DoBias = true;
2933 for (const MachineOperand &Op : MI->defs()) {
2934 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
2935 DoBias = false;
2936 break;
2940 if (DoBias)
2941 return isTop ? -1 : 1;
2944 return 0;
2946 } // end namespace llvm
2948 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2949 bool AtTop,
2950 const RegPressureTracker &RPTracker,
2951 RegPressureTracker &TempTracker) {
2952 Cand.SU = SU;
2953 Cand.AtTop = AtTop;
2954 if (DAG->isTrackingPressure()) {
2955 if (AtTop) {
2956 TempTracker.getMaxDownwardPressureDelta(
2957 Cand.SU->getInstr(),
2958 Cand.RPDelta,
2959 DAG->getRegionCriticalPSets(),
2960 DAG->getRegPressure().MaxSetPressure);
2961 } else {
2962 if (VerifyScheduling) {
2963 TempTracker.getMaxUpwardPressureDelta(
2964 Cand.SU->getInstr(),
2965 &DAG->getPressureDiff(Cand.SU),
2966 Cand.RPDelta,
2967 DAG->getRegionCriticalPSets(),
2968 DAG->getRegPressure().MaxSetPressure);
2969 } else {
2970 RPTracker.getUpwardPressureDelta(
2971 Cand.SU->getInstr(),
2972 DAG->getPressureDiff(Cand.SU),
2973 Cand.RPDelta,
2974 DAG->getRegionCriticalPSets(),
2975 DAG->getRegPressure().MaxSetPressure);
2979 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2980 << " Try SU(" << Cand.SU->NodeNum << ") "
2981 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2982 << Cand.RPDelta.Excess.getUnitInc() << "\n");
2985 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2986 /// hierarchical. This may be more efficient than a graduated cost model because
2987 /// we don't need to evaluate all aspects of the model for each node in the
2988 /// queue. But it's really done to make the heuristics easier to debug and
2989 /// statistically analyze.
2991 /// \param Cand provides the policy and current best candidate.
2992 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2993 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2994 // if Cand is from a different zone than TryCand.
2995 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2996 SchedCandidate &TryCand,
2997 SchedBoundary *Zone) const {
2998 // Initialize the candidate if needed.
2999 if (!Cand.isValid()) {
3000 TryCand.Reason = NodeOrder;
3001 return;
3004 // Bias PhysReg Defs and copies to their uses and defined respectively.
3005 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3006 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3007 return;
3009 // Avoid exceeding the target's limit.
3010 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3011 Cand.RPDelta.Excess,
3012 TryCand, Cand, RegExcess, TRI,
3013 DAG->MF))
3014 return;
3016 // Avoid increasing the max critical pressure in the scheduled region.
3017 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3018 Cand.RPDelta.CriticalMax,
3019 TryCand, Cand, RegCritical, TRI,
3020 DAG->MF))
3021 return;
3023 // We only compare a subset of features when comparing nodes between
3024 // Top and Bottom boundary. Some properties are simply incomparable, in many
3025 // other instances we should only override the other boundary if something
3026 // is a clear good pick on one boundary. Skip heuristics that are more
3027 // "tie-breaking" in nature.
3028 bool SameBoundary = Zone != nullptr;
3029 if (SameBoundary) {
3030 // For loops that are acyclic path limited, aggressively schedule for
3031 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3032 // heuristics to take precedence.
3033 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3034 tryLatency(TryCand, Cand, *Zone))
3035 return;
3037 // Prioritize instructions that read unbuffered resources by stall cycles.
3038 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3039 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3040 return;
3043 // Keep clustered nodes together to encourage downstream peephole
3044 // optimizations which may reduce resource requirements.
3046 // This is a best effort to set things up for a post-RA pass. Optimizations
3047 // like generating loads of multiple registers should ideally be done within
3048 // the scheduler pass by combining the loads during DAG postprocessing.
3049 const SUnit *CandNextClusterSU =
3050 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3051 const SUnit *TryCandNextClusterSU =
3052 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3053 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3054 Cand.SU == CandNextClusterSU,
3055 TryCand, Cand, Cluster))
3056 return;
3058 if (SameBoundary) {
3059 // Weak edges are for clustering and other constraints.
3060 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3061 getWeakLeft(Cand.SU, Cand.AtTop),
3062 TryCand, Cand, Weak))
3063 return;
3066 // Avoid increasing the max pressure of the entire region.
3067 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3068 Cand.RPDelta.CurrentMax,
3069 TryCand, Cand, RegMax, TRI,
3070 DAG->MF))
3071 return;
3073 if (SameBoundary) {
3074 // Avoid critical resource consumption and balance the schedule.
3075 TryCand.initResourceDelta(DAG, SchedModel);
3076 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3077 TryCand, Cand, ResourceReduce))
3078 return;
3079 if (tryGreater(TryCand.ResDelta.DemandedResources,
3080 Cand.ResDelta.DemandedResources,
3081 TryCand, Cand, ResourceDemand))
3082 return;
3084 // Avoid serializing long latency dependence chains.
3085 // For acyclic path limited loops, latency was already checked above.
3086 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3087 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3088 return;
3090 // Fall through to original instruction order.
3091 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3092 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3093 TryCand.Reason = NodeOrder;
3098 /// Pick the best candidate from the queue.
3100 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3101 /// DAG building. To adjust for the current scheduling location we need to
3102 /// maintain the number of vreg uses remaining to be top-scheduled.
3103 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3104 const CandPolicy &ZonePolicy,
3105 const RegPressureTracker &RPTracker,
3106 SchedCandidate &Cand) {
3107 // getMaxPressureDelta temporarily modifies the tracker.
3108 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3110 ReadyQueue &Q = Zone.Available;
3111 for (SUnit *SU : Q) {
3113 SchedCandidate TryCand(ZonePolicy);
3114 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3115 // Pass SchedBoundary only when comparing nodes from the same boundary.
3116 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3117 tryCandidate(Cand, TryCand, ZoneArg);
3118 if (TryCand.Reason != NoCand) {
3119 // Initialize resource delta if needed in case future heuristics query it.
3120 if (TryCand.ResDelta == SchedResourceDelta())
3121 TryCand.initResourceDelta(DAG, SchedModel);
3122 Cand.setBest(TryCand);
3123 LLVM_DEBUG(traceCandidate(Cand));
3128 /// Pick the best candidate node from either the top or bottom queue.
3129 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3130 // Schedule as far as possible in the direction of no choice. This is most
3131 // efficient, but also provides the best heuristics for CriticalPSets.
3132 if (SUnit *SU = Bot.pickOnlyChoice()) {
3133 IsTopNode = false;
3134 tracePick(Only1, false);
3135 return SU;
3137 if (SUnit *SU = Top.pickOnlyChoice()) {
3138 IsTopNode = true;
3139 tracePick(Only1, true);
3140 return SU;
3142 // Set the bottom-up policy based on the state of the current bottom zone and
3143 // the instructions outside the zone, including the top zone.
3144 CandPolicy BotPolicy;
3145 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3146 // Set the top-down policy based on the state of the current top zone and
3147 // the instructions outside the zone, including the bottom zone.
3148 CandPolicy TopPolicy;
3149 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3151 // See if BotCand is still valid (because we previously scheduled from Top).
3152 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3153 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3154 BotCand.Policy != BotPolicy) {
3155 BotCand.reset(CandPolicy());
3156 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3157 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3158 } else {
3159 LLVM_DEBUG(traceCandidate(BotCand));
3160 #ifndef NDEBUG
3161 if (VerifyScheduling) {
3162 SchedCandidate TCand;
3163 TCand.reset(CandPolicy());
3164 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3165 assert(TCand.SU == BotCand.SU &&
3166 "Last pick result should correspond to re-picking right now");
3168 #endif
3171 // Check if the top Q has a better candidate.
3172 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3173 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3174 TopCand.Policy != TopPolicy) {
3175 TopCand.reset(CandPolicy());
3176 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3177 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3178 } else {
3179 LLVM_DEBUG(traceCandidate(TopCand));
3180 #ifndef NDEBUG
3181 if (VerifyScheduling) {
3182 SchedCandidate TCand;
3183 TCand.reset(CandPolicy());
3184 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3185 assert(TCand.SU == TopCand.SU &&
3186 "Last pick result should correspond to re-picking right now");
3188 #endif
3191 // Pick best from BotCand and TopCand.
3192 assert(BotCand.isValid());
3193 assert(TopCand.isValid());
3194 SchedCandidate Cand = BotCand;
3195 TopCand.Reason = NoCand;
3196 tryCandidate(Cand, TopCand, nullptr);
3197 if (TopCand.Reason != NoCand) {
3198 Cand.setBest(TopCand);
3199 LLVM_DEBUG(traceCandidate(Cand));
3202 IsTopNode = Cand.AtTop;
3203 tracePick(Cand);
3204 return Cand.SU;
3207 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3208 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3209 if (DAG->top() == DAG->bottom()) {
3210 assert(Top.Available.empty() && Top.Pending.empty() &&
3211 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3212 return nullptr;
3214 SUnit *SU;
3215 do {
3216 if (RegionPolicy.OnlyTopDown) {
3217 SU = Top.pickOnlyChoice();
3218 if (!SU) {
3219 CandPolicy NoPolicy;
3220 TopCand.reset(NoPolicy);
3221 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3222 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3223 tracePick(TopCand);
3224 SU = TopCand.SU;
3226 IsTopNode = true;
3227 } else if (RegionPolicy.OnlyBottomUp) {
3228 SU = Bot.pickOnlyChoice();
3229 if (!SU) {
3230 CandPolicy NoPolicy;
3231 BotCand.reset(NoPolicy);
3232 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3233 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3234 tracePick(BotCand);
3235 SU = BotCand.SU;
3237 IsTopNode = false;
3238 } else {
3239 SU = pickNodeBidirectional(IsTopNode);
3241 } while (SU->isScheduled);
3243 if (SU->isTopReady())
3244 Top.removeReady(SU);
3245 if (SU->isBottomReady())
3246 Bot.removeReady(SU);
3248 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3249 << *SU->getInstr());
3250 return SU;
3253 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3254 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3255 if (!isTop)
3256 ++InsertPos;
3257 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3259 // Find already scheduled copies with a single physreg dependence and move
3260 // them just above the scheduled instruction.
3261 for (SDep &Dep : Deps) {
3262 if (Dep.getKind() != SDep::Data ||
3263 !Register::isPhysicalRegister(Dep.getReg()))
3264 continue;
3265 SUnit *DepSU = Dep.getSUnit();
3266 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3267 continue;
3268 MachineInstr *Copy = DepSU->getInstr();
3269 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3270 continue;
3271 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3272 DAG->dumpNode(*Dep.getSUnit()));
3273 DAG->moveInstruction(Copy, InsertPos);
3277 /// Update the scheduler's state after scheduling a node. This is the same node
3278 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3279 /// update it's state based on the current cycle before MachineSchedStrategy
3280 /// does.
3282 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3283 /// them here. See comments in biasPhysReg.
3284 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3285 if (IsTopNode) {
3286 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3287 Top.bumpNode(SU);
3288 if (SU->hasPhysRegUses)
3289 reschedulePhysReg(SU, true);
3290 } else {
3291 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3292 Bot.bumpNode(SU);
3293 if (SU->hasPhysRegDefs)
3294 reschedulePhysReg(SU, false);
3298 /// Create the standard converging machine scheduler. This will be used as the
3299 /// default scheduler if the target does not set a default.
3300 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3301 ScheduleDAGMILive *DAG =
3302 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3303 // Register DAG post-processors.
3305 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3306 // data and pass it to later mutations. Have a single mutation that gathers
3307 // the interesting nodes in one pass.
3308 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3309 return DAG;
3312 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3313 return createGenericSchedLive(C);
3316 static MachineSchedRegistry
3317 GenericSchedRegistry("converge", "Standard converging scheduler.",
3318 createConveringSched);
3320 //===----------------------------------------------------------------------===//
3321 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3322 //===----------------------------------------------------------------------===//
3324 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3325 DAG = Dag;
3326 SchedModel = DAG->getSchedModel();
3327 TRI = DAG->TRI;
3329 Rem.init(DAG, SchedModel);
3330 Top.init(DAG, SchedModel, &Rem);
3331 BotRoots.clear();
3333 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3334 // or are disabled, then these HazardRecs will be disabled.
3335 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3336 if (!Top.HazardRec) {
3337 Top.HazardRec =
3338 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3339 Itin, DAG);
3343 void PostGenericScheduler::registerRoots() {
3344 Rem.CriticalPath = DAG->ExitSU.getDepth();
3346 // Some roots may not feed into ExitSU. Check all of them in case.
3347 for (const SUnit *SU : BotRoots) {
3348 if (SU->getDepth() > Rem.CriticalPath)
3349 Rem.CriticalPath = SU->getDepth();
3351 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3352 if (DumpCriticalPathLength) {
3353 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3357 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3359 /// \param Cand provides the policy and current best candidate.
3360 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3361 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3362 SchedCandidate &TryCand) {
3363 // Initialize the candidate if needed.
3364 if (!Cand.isValid()) {
3365 TryCand.Reason = NodeOrder;
3366 return;
3369 // Prioritize instructions that read unbuffered resources by stall cycles.
3370 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3371 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3372 return;
3374 // Keep clustered nodes together.
3375 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3376 Cand.SU == DAG->getNextClusterSucc(),
3377 TryCand, Cand, Cluster))
3378 return;
3380 // Avoid critical resource consumption and balance the schedule.
3381 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3382 TryCand, Cand, ResourceReduce))
3383 return;
3384 if (tryGreater(TryCand.ResDelta.DemandedResources,
3385 Cand.ResDelta.DemandedResources,
3386 TryCand, Cand, ResourceDemand))
3387 return;
3389 // Avoid serializing long latency dependence chains.
3390 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3391 return;
3394 // Fall through to original instruction order.
3395 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3396 TryCand.Reason = NodeOrder;
3399 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3400 ReadyQueue &Q = Top.Available;
3401 for (SUnit *SU : Q) {
3402 SchedCandidate TryCand(Cand.Policy);
3403 TryCand.SU = SU;
3404 TryCand.AtTop = true;
3405 TryCand.initResourceDelta(DAG, SchedModel);
3406 tryCandidate(Cand, TryCand);
3407 if (TryCand.Reason != NoCand) {
3408 Cand.setBest(TryCand);
3409 LLVM_DEBUG(traceCandidate(Cand));
3414 /// Pick the next node to schedule.
3415 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3416 if (DAG->top() == DAG->bottom()) {
3417 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3418 return nullptr;
3420 SUnit *SU;
3421 do {
3422 SU = Top.pickOnlyChoice();
3423 if (SU) {
3424 tracePick(Only1, true);
3425 } else {
3426 CandPolicy NoPolicy;
3427 SchedCandidate TopCand(NoPolicy);
3428 // Set the top-down policy based on the state of the current top zone and
3429 // the instructions outside the zone, including the bottom zone.
3430 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3431 pickNodeFromQueue(TopCand);
3432 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3433 tracePick(TopCand);
3434 SU = TopCand.SU;
3436 } while (SU->isScheduled);
3438 IsTopNode = true;
3439 Top.removeReady(SU);
3441 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3442 << *SU->getInstr());
3443 return SU;
3446 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3447 /// scheduled/remaining flags in the DAG nodes.
3448 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3449 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3450 Top.bumpNode(SU);
3453 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3454 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3455 /*RemoveKillFlags=*/true);
3458 //===----------------------------------------------------------------------===//
3459 // ILP Scheduler. Currently for experimental analysis of heuristics.
3460 //===----------------------------------------------------------------------===//
3462 namespace {
3464 /// Order nodes by the ILP metric.
3465 struct ILPOrder {
3466 const SchedDFSResult *DFSResult = nullptr;
3467 const BitVector *ScheduledTrees = nullptr;
3468 bool MaximizeILP;
3470 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3472 /// Apply a less-than relation on node priority.
3474 /// (Return true if A comes after B in the Q.)
3475 bool operator()(const SUnit *A, const SUnit *B) const {
3476 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3477 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3478 if (SchedTreeA != SchedTreeB) {
3479 // Unscheduled trees have lower priority.
3480 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3481 return ScheduledTrees->test(SchedTreeB);
3483 // Trees with shallower connections have have lower priority.
3484 if (DFSResult->getSubtreeLevel(SchedTreeA)
3485 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3486 return DFSResult->getSubtreeLevel(SchedTreeA)
3487 < DFSResult->getSubtreeLevel(SchedTreeB);
3490 if (MaximizeILP)
3491 return DFSResult->getILP(A) < DFSResult->getILP(B);
3492 else
3493 return DFSResult->getILP(A) > DFSResult->getILP(B);
3497 /// Schedule based on the ILP metric.
3498 class ILPScheduler : public MachineSchedStrategy {
3499 ScheduleDAGMILive *DAG = nullptr;
3500 ILPOrder Cmp;
3502 std::vector<SUnit*> ReadyQ;
3504 public:
3505 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3507 void initialize(ScheduleDAGMI *dag) override {
3508 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3509 DAG = static_cast<ScheduleDAGMILive*>(dag);
3510 DAG->computeDFSResult();
3511 Cmp.DFSResult = DAG->getDFSResult();
3512 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3513 ReadyQ.clear();
3516 void registerRoots() override {
3517 // Restore the heap in ReadyQ with the updated DFS results.
3518 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3521 /// Implement MachineSchedStrategy interface.
3522 /// -----------------------------------------
3524 /// Callback to select the highest priority node from the ready Q.
3525 SUnit *pickNode(bool &IsTopNode) override {
3526 if (ReadyQ.empty()) return nullptr;
3527 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3528 SUnit *SU = ReadyQ.back();
3529 ReadyQ.pop_back();
3530 IsTopNode = false;
3531 LLVM_DEBUG(dbgs() << "Pick node "
3532 << "SU(" << SU->NodeNum << ") "
3533 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3534 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3535 << " @"
3536 << DAG->getDFSResult()->getSubtreeLevel(
3537 DAG->getDFSResult()->getSubtreeID(SU))
3538 << '\n'
3539 << "Scheduling " << *SU->getInstr());
3540 return SU;
3543 /// Scheduler callback to notify that a new subtree is scheduled.
3544 void scheduleTree(unsigned SubtreeID) override {
3545 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3548 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3549 /// DFSResults, and resort the priority Q.
3550 void schedNode(SUnit *SU, bool IsTopNode) override {
3551 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3554 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3556 void releaseBottomNode(SUnit *SU) override {
3557 ReadyQ.push_back(SU);
3558 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3562 } // end anonymous namespace
3564 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3565 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3567 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3568 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3571 static MachineSchedRegistry ILPMaxRegistry(
3572 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3573 static MachineSchedRegistry ILPMinRegistry(
3574 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3576 //===----------------------------------------------------------------------===//
3577 // Machine Instruction Shuffler for Correctness Testing
3578 //===----------------------------------------------------------------------===//
3580 #ifndef NDEBUG
3581 namespace {
3583 /// Apply a less-than relation on the node order, which corresponds to the
3584 /// instruction order prior to scheduling. IsReverse implements greater-than.
3585 template<bool IsReverse>
3586 struct SUnitOrder {
3587 bool operator()(SUnit *A, SUnit *B) const {
3588 if (IsReverse)
3589 return A->NodeNum > B->NodeNum;
3590 else
3591 return A->NodeNum < B->NodeNum;
3595 /// Reorder instructions as much as possible.
3596 class InstructionShuffler : public MachineSchedStrategy {
3597 bool IsAlternating;
3598 bool IsTopDown;
3600 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3601 // gives nodes with a higher number higher priority causing the latest
3602 // instructions to be scheduled first.
3603 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3604 TopQ;
3606 // When scheduling bottom-up, use greater-than as the queue priority.
3607 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3608 BottomQ;
3610 public:
3611 InstructionShuffler(bool alternate, bool topdown)
3612 : IsAlternating(alternate), IsTopDown(topdown) {}
3614 void initialize(ScheduleDAGMI*) override {
3615 TopQ.clear();
3616 BottomQ.clear();
3619 /// Implement MachineSchedStrategy interface.
3620 /// -----------------------------------------
3622 SUnit *pickNode(bool &IsTopNode) override {
3623 SUnit *SU;
3624 if (IsTopDown) {
3625 do {
3626 if (TopQ.empty()) return nullptr;
3627 SU = TopQ.top();
3628 TopQ.pop();
3629 } while (SU->isScheduled);
3630 IsTopNode = true;
3631 } else {
3632 do {
3633 if (BottomQ.empty()) return nullptr;
3634 SU = BottomQ.top();
3635 BottomQ.pop();
3636 } while (SU->isScheduled);
3637 IsTopNode = false;
3639 if (IsAlternating)
3640 IsTopDown = !IsTopDown;
3641 return SU;
3644 void schedNode(SUnit *SU, bool IsTopNode) override {}
3646 void releaseTopNode(SUnit *SU) override {
3647 TopQ.push(SU);
3649 void releaseBottomNode(SUnit *SU) override {
3650 BottomQ.push(SU);
3654 } // end anonymous namespace
3656 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3657 bool Alternate = !ForceTopDown && !ForceBottomUp;
3658 bool TopDown = !ForceBottomUp;
3659 assert((TopDown || !ForceTopDown) &&
3660 "-misched-topdown incompatible with -misched-bottomup");
3661 return new ScheduleDAGMILive(
3662 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3665 static MachineSchedRegistry ShufflerRegistry(
3666 "shuffle", "Shuffle machine instructions alternating directions",
3667 createInstructionShuffler);
3668 #endif // !NDEBUG
3670 //===----------------------------------------------------------------------===//
3671 // GraphWriter support for ScheduleDAGMILive.
3672 //===----------------------------------------------------------------------===//
3674 #ifndef NDEBUG
3675 namespace llvm {
3677 template<> struct GraphTraits<
3678 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3680 template<>
3681 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3682 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3684 static std::string getGraphName(const ScheduleDAG *G) {
3685 return G->MF.getName();
3688 static bool renderGraphFromBottomUp() {
3689 return true;
3692 static bool isNodeHidden(const SUnit *Node) {
3693 if (ViewMISchedCutoff == 0)
3694 return false;
3695 return (Node->Preds.size() > ViewMISchedCutoff
3696 || Node->Succs.size() > ViewMISchedCutoff);
3699 /// If you want to override the dot attributes printed for a particular
3700 /// edge, override this method.
3701 static std::string getEdgeAttributes(const SUnit *Node,
3702 SUnitIterator EI,
3703 const ScheduleDAG *Graph) {
3704 if (EI.isArtificialDep())
3705 return "color=cyan,style=dashed";
3706 if (EI.isCtrlDep())
3707 return "color=blue,style=dashed";
3708 return "";
3711 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3712 std::string Str;
3713 raw_string_ostream SS(Str);
3714 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3715 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3716 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3717 SS << "SU:" << SU->NodeNum;
3718 if (DFS)
3719 SS << " I:" << DFS->getNumInstrs(SU);
3720 return SS.str();
3723 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3724 return G->getGraphNodeLabel(SU);
3727 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3728 std::string Str("shape=Mrecord");
3729 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3730 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3731 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3732 if (DFS) {
3733 Str += ",style=filled,fillcolor=\"#";
3734 Str += DOT::getColorString(DFS->getSubtreeID(N));
3735 Str += '"';
3737 return Str;
3741 } // end namespace llvm
3742 #endif // NDEBUG
3744 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3745 /// rendered using 'dot'.
3746 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3747 #ifndef NDEBUG
3748 ViewGraph(this, Name, false, Title);
3749 #else
3750 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3751 << "systems with Graphviz or gv!\n";
3752 #endif // NDEBUG
3755 /// Out-of-line implementation with no arguments is handy for gdb.
3756 void ScheduleDAGMI::viewGraph() {
3757 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());