1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/CodeGen/LiveIntervals.h"
12 #include "llvm/CodeGen/MachineInstrBuilder.h"
13 #include "llvm/CodeGen/MachineLoopUtils.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/CodeGen/TargetInstrInfo.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
21 #define DEBUG_TYPE "pipeliner"
24 void ModuloSchedule::print(raw_ostream
&OS
) {
25 for (MachineInstr
*MI
: ScheduledInstrs
)
26 OS
<< "[stage " << getStage(MI
) << " @" << getCycle(MI
) << "c] " << *MI
;
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
33 /// Return the register values for the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
35 static void getPhiRegs(MachineInstr
&Phi
, MachineBasicBlock
*Loop
,
36 unsigned &InitVal
, unsigned &LoopVal
) {
37 assert(Phi
.isPHI() && "Expecting a Phi.");
41 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
42 if (Phi
.getOperand(i
+ 1).getMBB() != Loop
)
43 InitVal
= Phi
.getOperand(i
).getReg();
45 LoopVal
= Phi
.getOperand(i
).getReg();
47 assert(InitVal
!= 0 && LoopVal
!= 0 && "Unexpected Phi structure.");
50 /// Return the Phi register value that comes from the incoming block.
51 static unsigned getInitPhiReg(MachineInstr
&Phi
, MachineBasicBlock
*LoopBB
) {
52 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
53 if (Phi
.getOperand(i
+ 1).getMBB() != LoopBB
)
54 return Phi
.getOperand(i
).getReg();
58 /// Return the Phi register value that comes the loop block.
59 static unsigned getLoopPhiReg(MachineInstr
&Phi
, MachineBasicBlock
*LoopBB
) {
60 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
61 if (Phi
.getOperand(i
+ 1).getMBB() == LoopBB
)
62 return Phi
.getOperand(i
).getReg();
66 void ModuloScheduleExpander::expand() {
67 BB
= Schedule
.getLoop()->getTopBlock();
68 Preheader
= *BB
->pred_begin();
70 Preheader
= *std::next(BB
->pred_begin());
72 // Iterate over the definitions in each instruction, and compute the
73 // stage difference for each use. Keep the maximum value.
74 for (MachineInstr
*MI
: Schedule
.getInstructions()) {
75 int DefStage
= Schedule
.getStage(MI
);
76 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
< e
; ++i
) {
77 MachineOperand
&Op
= MI
->getOperand(i
);
78 if (!Op
.isReg() || !Op
.isDef())
81 Register Reg
= Op
.getReg();
83 bool PhiIsSwapped
= false;
84 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(Reg
),
87 MachineOperand
&UseOp
= *UI
;
88 MachineInstr
*UseMI
= UseOp
.getParent();
89 int UseStage
= Schedule
.getStage(UseMI
);
91 if (UseStage
!= -1 && UseStage
>= DefStage
)
92 Diff
= UseStage
- DefStage
;
94 if (isLoopCarried(*MI
))
99 MaxDiff
= std::max(Diff
, MaxDiff
);
101 RegToStageDiff
[Reg
] = std::make_pair(MaxDiff
, PhiIsSwapped
);
105 generatePipelinedLoop();
108 void ModuloScheduleExpander::generatePipelinedLoop() {
109 LoopInfo
= TII
->analyzeLoopForPipelining(BB
);
110 assert(LoopInfo
&& "Must be able to analyze loop!");
112 // Create a new basic block for the kernel and add it to the CFG.
113 MachineBasicBlock
*KernelBB
= MF
.CreateMachineBasicBlock(BB
->getBasicBlock());
115 unsigned MaxStageCount
= Schedule
.getNumStages() - 1;
117 // Remember the registers that are used in different stages. The index is
118 // the iteration, or stage, that the instruction is scheduled in. This is
119 // a map between register names in the original block and the names created
120 // in each stage of the pipelined loop.
121 ValueMapTy
*VRMap
= new ValueMapTy
[(MaxStageCount
+ 1) * 2];
124 SmallVector
<MachineBasicBlock
*, 4> PrologBBs
;
126 // Generate the prolog instructions that set up the pipeline.
127 generateProlog(MaxStageCount
, KernelBB
, VRMap
, PrologBBs
);
128 MF
.insert(BB
->getIterator(), KernelBB
);
130 // Rearrange the instructions to generate the new, pipelined loop,
131 // and update register names as needed.
132 for (MachineInstr
*CI
: Schedule
.getInstructions()) {
135 unsigned StageNum
= Schedule
.getStage(CI
);
136 MachineInstr
*NewMI
= cloneInstr(CI
, MaxStageCount
, StageNum
);
137 updateInstruction(NewMI
, false, MaxStageCount
, StageNum
, VRMap
);
138 KernelBB
->push_back(NewMI
);
139 InstrMap
[NewMI
] = CI
;
142 // Copy any terminator instructions to the new kernel, and update
144 for (MachineBasicBlock::iterator I
= BB
->getFirstTerminator(),
147 MachineInstr
*NewMI
= MF
.CloneMachineInstr(&*I
);
148 updateInstruction(NewMI
, false, MaxStageCount
, 0, VRMap
);
149 KernelBB
->push_back(NewMI
);
150 InstrMap
[NewMI
] = &*I
;
153 NewKernel
= KernelBB
;
154 KernelBB
->transferSuccessors(BB
);
155 KernelBB
->replaceSuccessor(BB
, KernelBB
);
157 generateExistingPhis(KernelBB
, PrologBBs
.back(), KernelBB
, KernelBB
, VRMap
,
158 InstrMap
, MaxStageCount
, MaxStageCount
, false);
159 generatePhis(KernelBB
, PrologBBs
.back(), KernelBB
, KernelBB
, VRMap
, InstrMap
,
160 MaxStageCount
, MaxStageCount
, false);
162 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB
->dump(););
164 SmallVector
<MachineBasicBlock
*, 4> EpilogBBs
;
165 // Generate the epilog instructions to complete the pipeline.
166 generateEpilog(MaxStageCount
, KernelBB
, VRMap
, EpilogBBs
, PrologBBs
);
168 // We need this step because the register allocation doesn't handle some
169 // situations well, so we insert copies to help out.
170 splitLifetimes(KernelBB
, EpilogBBs
);
172 // Remove dead instructions due to loop induction variables.
173 removeDeadInstructions(KernelBB
, EpilogBBs
);
175 // Add branches between prolog and epilog blocks.
176 addBranches(*Preheader
, PrologBBs
, KernelBB
, EpilogBBs
, VRMap
);
181 void ModuloScheduleExpander::cleanup() {
182 // Remove the original loop since it's no longer referenced.
184 LIS
.RemoveMachineInstrFromMaps(I
);
186 BB
->eraseFromParent();
189 /// Generate the pipeline prolog code.
190 void ModuloScheduleExpander::generateProlog(unsigned LastStage
,
191 MachineBasicBlock
*KernelBB
,
193 MBBVectorTy
&PrologBBs
) {
194 MachineBasicBlock
*PredBB
= Preheader
;
197 // Generate a basic block for each stage, not including the last stage,
198 // which will be generated in the kernel. Each basic block may contain
199 // instructions from multiple stages/iterations.
200 for (unsigned i
= 0; i
< LastStage
; ++i
) {
201 // Create and insert the prolog basic block prior to the original loop
202 // basic block. The original loop is removed later.
203 MachineBasicBlock
*NewBB
= MF
.CreateMachineBasicBlock(BB
->getBasicBlock());
204 PrologBBs
.push_back(NewBB
);
205 MF
.insert(BB
->getIterator(), NewBB
);
206 NewBB
->transferSuccessors(PredBB
);
207 PredBB
->addSuccessor(NewBB
);
210 // Generate instructions for each appropriate stage. Process instructions
211 // in original program order.
212 for (int StageNum
= i
; StageNum
>= 0; --StageNum
) {
213 for (MachineBasicBlock::iterator BBI
= BB
->instr_begin(),
214 BBE
= BB
->getFirstTerminator();
216 if (Schedule
.getStage(&*BBI
) == StageNum
) {
219 MachineInstr
*NewMI
=
220 cloneAndChangeInstr(&*BBI
, i
, (unsigned)StageNum
);
221 updateInstruction(NewMI
, false, i
, (unsigned)StageNum
, VRMap
);
222 NewBB
->push_back(NewMI
);
223 InstrMap
[NewMI
] = &*BBI
;
227 rewritePhiValues(NewBB
, i
, VRMap
, InstrMap
);
229 dbgs() << "prolog:\n";
234 PredBB
->replaceSuccessor(BB
, KernelBB
);
236 // Check if we need to remove the branch from the preheader to the original
237 // loop, and replace it with a branch to the new loop.
238 unsigned numBranches
= TII
->removeBranch(*Preheader
);
240 SmallVector
<MachineOperand
, 0> Cond
;
241 TII
->insertBranch(*Preheader
, PrologBBs
[0], nullptr, Cond
, DebugLoc());
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel. We create a basic
247 /// block for each stage that needs to complete.
248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage
,
249 MachineBasicBlock
*KernelBB
,
251 MBBVectorTy
&EpilogBBs
,
252 MBBVectorTy
&PrologBBs
) {
253 // We need to change the branch from the kernel to the first epilog block, so
254 // this call to analyze branch uses the kernel rather than the original BB.
255 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
256 SmallVector
<MachineOperand
, 4> Cond
;
257 bool checkBranch
= TII
->analyzeBranch(*KernelBB
, TBB
, FBB
, Cond
);
258 assert(!checkBranch
&& "generateEpilog must be able to analyze the branch");
262 MachineBasicBlock::succ_iterator LoopExitI
= KernelBB
->succ_begin();
263 if (*LoopExitI
== KernelBB
)
265 assert(LoopExitI
!= KernelBB
->succ_end() && "Expecting a successor");
266 MachineBasicBlock
*LoopExitBB
= *LoopExitI
;
268 MachineBasicBlock
*PredBB
= KernelBB
;
269 MachineBasicBlock
*EpilogStart
= LoopExitBB
;
272 // Generate a basic block for each stage, not including the last stage,
273 // which was generated for the kernel. Each basic block may contain
274 // instructions from multiple stages/iterations.
275 int EpilogStage
= LastStage
+ 1;
276 for (unsigned i
= LastStage
; i
>= 1; --i
, ++EpilogStage
) {
277 MachineBasicBlock
*NewBB
= MF
.CreateMachineBasicBlock();
278 EpilogBBs
.push_back(NewBB
);
279 MF
.insert(BB
->getIterator(), NewBB
);
281 PredBB
->replaceSuccessor(LoopExitBB
, NewBB
);
282 NewBB
->addSuccessor(LoopExitBB
);
284 if (EpilogStart
== LoopExitBB
)
287 // Add instructions to the epilog depending on the current block.
288 // Process instructions in original program order.
289 for (unsigned StageNum
= i
; StageNum
<= LastStage
; ++StageNum
) {
290 for (auto &BBI
: *BB
) {
293 MachineInstr
*In
= &BBI
;
294 if ((unsigned)Schedule
.getStage(In
) == StageNum
) {
295 // Instructions with memoperands in the epilog are updated with
296 // conservative values.
297 MachineInstr
*NewMI
= cloneInstr(In
, UINT_MAX
, 0);
298 updateInstruction(NewMI
, i
== 1, EpilogStage
, 0, VRMap
);
299 NewBB
->push_back(NewMI
);
300 InstrMap
[NewMI
] = In
;
304 generateExistingPhis(NewBB
, PrologBBs
[i
- 1], PredBB
, KernelBB
, VRMap
,
305 InstrMap
, LastStage
, EpilogStage
, i
== 1);
306 generatePhis(NewBB
, PrologBBs
[i
- 1], PredBB
, KernelBB
, VRMap
, InstrMap
,
307 LastStage
, EpilogStage
, i
== 1);
311 dbgs() << "epilog:\n";
316 // Fix any Phi nodes in the loop exit block.
317 LoopExitBB
->replacePhiUsesWith(BB
, PredBB
);
319 // Create a branch to the new epilog from the kernel.
320 // Remove the original branch and add a new branch to the epilog.
321 TII
->removeBranch(*KernelBB
);
322 TII
->insertBranch(*KernelBB
, KernelBB
, EpilogStart
, Cond
, DebugLoc());
323 // Add a branch to the loop exit.
324 if (EpilogBBs
.size() > 0) {
325 MachineBasicBlock
*LastEpilogBB
= EpilogBBs
.back();
326 SmallVector
<MachineOperand
, 4> Cond1
;
327 TII
->insertBranch(*LastEpilogBB
, LoopExitBB
, nullptr, Cond1
, DebugLoc());
331 /// Replace all uses of FromReg that appear outside the specified
332 /// basic block with ToReg.
333 static void replaceRegUsesAfterLoop(unsigned FromReg
, unsigned ToReg
,
334 MachineBasicBlock
*MBB
,
335 MachineRegisterInfo
&MRI
,
336 LiveIntervals
&LIS
) {
337 for (MachineRegisterInfo::use_iterator I
= MRI
.use_begin(FromReg
),
340 MachineOperand
&O
= *I
;
342 if (O
.getParent()->getParent() != MBB
)
345 if (!LIS
.hasInterval(ToReg
))
346 LIS
.createEmptyInterval(ToReg
);
349 /// Return true if the register has a use that occurs outside the
351 static bool hasUseAfterLoop(unsigned Reg
, MachineBasicBlock
*BB
,
352 MachineRegisterInfo
&MRI
) {
353 for (MachineRegisterInfo::use_iterator I
= MRI
.use_begin(Reg
),
356 if (I
->getParent()->getParent() != BB
)
361 /// Generate Phis for the specific block in the generated pipelined code.
362 /// This function looks at the Phis from the original code to guide the
363 /// creation of new Phis.
364 void ModuloScheduleExpander::generateExistingPhis(
365 MachineBasicBlock
*NewBB
, MachineBasicBlock
*BB1
, MachineBasicBlock
*BB2
,
366 MachineBasicBlock
*KernelBB
, ValueMapTy
*VRMap
, InstrMapTy
&InstrMap
,
367 unsigned LastStageNum
, unsigned CurStageNum
, bool IsLast
) {
368 // Compute the stage number for the initial value of the Phi, which
369 // comes from the prolog. The prolog to use depends on to which kernel/
370 // epilog that we're adding the Phi.
371 unsigned PrologStage
= 0;
372 unsigned PrevStage
= 0;
373 bool InKernel
= (LastStageNum
== CurStageNum
);
375 PrologStage
= LastStageNum
- 1;
376 PrevStage
= CurStageNum
;
378 PrologStage
= LastStageNum
- (CurStageNum
- LastStageNum
);
379 PrevStage
= LastStageNum
+ (CurStageNum
- LastStageNum
) - 1;
382 for (MachineBasicBlock::iterator BBI
= BB
->instr_begin(),
383 BBE
= BB
->getFirstNonPHI();
385 Register Def
= BBI
->getOperand(0).getReg();
387 unsigned InitVal
= 0;
388 unsigned LoopVal
= 0;
389 getPhiRegs(*BBI
, BB
, InitVal
, LoopVal
);
392 // The Phi value from the loop body typically is defined in the loop, but
393 // not always. So, we need to check if the value is defined in the loop.
394 unsigned PhiOp2
= LoopVal
;
395 if (VRMap
[LastStageNum
].count(LoopVal
))
396 PhiOp2
= VRMap
[LastStageNum
][LoopVal
];
398 int StageScheduled
= Schedule
.getStage(&*BBI
);
399 int LoopValStage
= Schedule
.getStage(MRI
.getVRegDef(LoopVal
));
400 unsigned NumStages
= getStagesForReg(Def
, CurStageNum
);
401 if (NumStages
== 0) {
402 // We don't need to generate a Phi anymore, but we need to rename any uses
404 unsigned NewReg
= VRMap
[PrevStage
][LoopVal
];
405 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, 0, &*BBI
, Def
,
407 if (VRMap
[CurStageNum
].count(LoopVal
))
408 VRMap
[CurStageNum
][Def
] = VRMap
[CurStageNum
][LoopVal
];
410 // Adjust the number of Phis needed depending on the number of prologs left,
411 // and the distance from where the Phi is first scheduled. The number of
412 // Phis cannot exceed the number of prolog stages. Each stage can
413 // potentially define two values.
414 unsigned MaxPhis
= PrologStage
+ 2;
415 if (!InKernel
&& (int)PrologStage
<= LoopValStage
)
416 MaxPhis
= std::max((int)MaxPhis
- (int)LoopValStage
, 1);
417 unsigned NumPhis
= std::min(NumStages
, MaxPhis
);
420 unsigned AccessStage
= (LoopValStage
!= -1) ? LoopValStage
: StageScheduled
;
421 // In the epilog, we may need to look back one stage to get the correct
422 // Phi name because the epilog and prolog blocks execute the same stage.
423 // The correct name is from the previous block only when the Phi has
424 // been completely scheduled prior to the epilog, and Phi value is not
425 // needed in multiple stages.
427 if (!InKernel
&& StageScheduled
>= LoopValStage
&& AccessStage
== 0 &&
430 // Adjust the computations below when the phi and the loop definition
431 // are scheduled in different stages.
432 if (InKernel
&& LoopValStage
!= -1 && StageScheduled
> LoopValStage
)
433 StageDiff
= StageScheduled
- LoopValStage
;
434 for (unsigned np
= 0; np
< NumPhis
; ++np
) {
435 // If the Phi hasn't been scheduled, then use the initial Phi operand
436 // value. Otherwise, use the scheduled version of the instruction. This
437 // is a little complicated when a Phi references another Phi.
438 if (np
> PrologStage
|| StageScheduled
>= (int)LastStageNum
)
440 // Check if the Phi has already been scheduled in a prolog stage.
441 else if (PrologStage
>= AccessStage
+ StageDiff
+ np
&&
442 VRMap
[PrologStage
- StageDiff
- np
].count(LoopVal
) != 0)
443 PhiOp1
= VRMap
[PrologStage
- StageDiff
- np
][LoopVal
];
444 // Check if the Phi has already been scheduled, but the loop instruction
445 // is either another Phi, or doesn't occur in the loop.
446 else if (PrologStage
>= AccessStage
+ StageDiff
+ np
) {
447 // If the Phi references another Phi, we need to examine the other
448 // Phi to get the correct value.
450 MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
);
452 while (InstOp1
&& InstOp1
->isPHI() && InstOp1
->getParent() == BB
) {
453 int PhiStage
= Schedule
.getStage(InstOp1
);
454 if ((int)(PrologStage
- StageDiff
- np
) < PhiStage
+ Indirects
)
455 PhiOp1
= getInitPhiReg(*InstOp1
, BB
);
457 PhiOp1
= getLoopPhiReg(*InstOp1
, BB
);
458 InstOp1
= MRI
.getVRegDef(PhiOp1
);
459 int PhiOpStage
= Schedule
.getStage(InstOp1
);
460 int StageAdj
= (PhiOpStage
!= -1 ? PhiStage
- PhiOpStage
: 0);
461 if (PhiOpStage
!= -1 && PrologStage
- StageAdj
>= Indirects
+ np
&&
462 VRMap
[PrologStage
- StageAdj
- Indirects
- np
].count(PhiOp1
)) {
463 PhiOp1
= VRMap
[PrologStage
- StageAdj
- Indirects
- np
][PhiOp1
];
470 // If this references a generated Phi in the kernel, get the Phi operand
471 // from the incoming block.
472 if (MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
))
473 if (InstOp1
->isPHI() && InstOp1
->getParent() == KernelBB
)
474 PhiOp1
= getInitPhiReg(*InstOp1
, KernelBB
);
476 MachineInstr
*PhiInst
= MRI
.getVRegDef(LoopVal
);
477 bool LoopDefIsPhi
= PhiInst
&& PhiInst
->isPHI();
478 // In the epilog, a map lookup is needed to get the value from the kernel,
479 // or previous epilog block. How is does this depends on if the
480 // instruction is scheduled in the previous block.
482 int StageDiffAdj
= 0;
483 if (LoopValStage
!= -1 && StageScheduled
> LoopValStage
)
484 StageDiffAdj
= StageScheduled
- LoopValStage
;
485 // Use the loop value defined in the kernel, unless the kernel
486 // contains the last definition of the Phi.
487 if (np
== 0 && PrevStage
== LastStageNum
&&
488 (StageScheduled
!= 0 || LoopValStage
!= 0) &&
489 VRMap
[PrevStage
- StageDiffAdj
].count(LoopVal
))
490 PhiOp2
= VRMap
[PrevStage
- StageDiffAdj
][LoopVal
];
491 // Use the value defined by the Phi. We add one because we switch
492 // from looking at the loop value to the Phi definition.
493 else if (np
> 0 && PrevStage
== LastStageNum
&&
494 VRMap
[PrevStage
- np
+ 1].count(Def
))
495 PhiOp2
= VRMap
[PrevStage
- np
+ 1][Def
];
496 // Use the loop value defined in the kernel.
497 else if (static_cast<unsigned>(LoopValStage
) > PrologStage
+ 1 &&
498 VRMap
[PrevStage
- StageDiffAdj
- np
].count(LoopVal
))
499 PhiOp2
= VRMap
[PrevStage
- StageDiffAdj
- np
][LoopVal
];
500 // Use the value defined by the Phi, unless we're generating the first
501 // epilog and the Phi refers to a Phi in a different stage.
502 else if (VRMap
[PrevStage
- np
].count(Def
) &&
503 (!LoopDefIsPhi
|| (PrevStage
!= LastStageNum
) ||
504 (LoopValStage
== StageScheduled
)))
505 PhiOp2
= VRMap
[PrevStage
- np
][Def
];
508 // Check if we can reuse an existing Phi. This occurs when a Phi
509 // references another Phi, and the other Phi is scheduled in an
510 // earlier stage. We can try to reuse an existing Phi up until the last
511 // stage of the current Phi.
513 if (static_cast<int>(PrologStage
- np
) >= StageScheduled
) {
514 int LVNumStages
= getStagesForPhi(LoopVal
);
515 int StageDiff
= (StageScheduled
- LoopValStage
);
516 LVNumStages
-= StageDiff
;
517 // Make sure the loop value Phi has been processed already.
518 if (LVNumStages
> (int)np
&& VRMap
[CurStageNum
].count(LoopVal
)) {
520 unsigned ReuseStage
= CurStageNum
;
521 if (isLoopCarried(*PhiInst
))
522 ReuseStage
-= LVNumStages
;
523 // Check if the Phi to reuse has been generated yet. If not, then
524 // there is nothing to reuse.
525 if (VRMap
[ReuseStage
- np
].count(LoopVal
)) {
526 NewReg
= VRMap
[ReuseStage
- np
][LoopVal
];
528 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
,
530 // Update the map with the new Phi name.
531 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
533 if (VRMap
[LastStageNum
- np
- 1].count(LoopVal
))
534 PhiOp2
= VRMap
[LastStageNum
- np
- 1][LoopVal
];
536 if (IsLast
&& np
== NumPhis
- 1)
537 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
542 if (InKernel
&& StageDiff
> 0 &&
543 VRMap
[CurStageNum
- StageDiff
- np
].count(LoopVal
))
544 PhiOp2
= VRMap
[CurStageNum
- StageDiff
- np
][LoopVal
];
547 const TargetRegisterClass
*RC
= MRI
.getRegClass(Def
);
548 NewReg
= MRI
.createVirtualRegister(RC
);
550 MachineInstrBuilder NewPhi
=
551 BuildMI(*NewBB
, NewBB
->getFirstNonPHI(), DebugLoc(),
552 TII
->get(TargetOpcode::PHI
), NewReg
);
553 NewPhi
.addReg(PhiOp1
).addMBB(BB1
);
554 NewPhi
.addReg(PhiOp2
).addMBB(BB2
);
556 InstrMap
[NewPhi
] = &*BBI
;
558 // We define the Phis after creating the new pipelined code, so
559 // we need to rename the Phi values in scheduled instructions.
561 unsigned PrevReg
= 0;
562 if (InKernel
&& VRMap
[PrevStage
- np
].count(LoopVal
))
563 PrevReg
= VRMap
[PrevStage
- np
][LoopVal
];
564 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, Def
,
566 // If the Phi has been scheduled, use the new name for rewriting.
567 if (VRMap
[CurStageNum
- np
].count(Def
)) {
568 unsigned R
= VRMap
[CurStageNum
- np
][Def
];
569 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, R
,
573 // Check if we need to rename any uses that occurs after the loop. The
574 // register to replace depends on whether the Phi is scheduled in the
576 if (IsLast
&& np
== NumPhis
- 1)
577 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
579 // In the kernel, a dependent Phi uses the value from this Phi.
583 // Update the map with the new Phi name.
584 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
587 while (NumPhis
++ < NumStages
) {
588 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, NumPhis
, &*BBI
, Def
,
592 // Check if we need to rename a Phi that has been eliminated due to
594 if (NumStages
== 0 && IsLast
&& VRMap
[CurStageNum
].count(LoopVal
))
595 replaceRegUsesAfterLoop(Def
, VRMap
[CurStageNum
][LoopVal
], BB
, MRI
, LIS
);
599 /// Generate Phis for the specified block in the generated pipelined code.
600 /// These are new Phis needed because the definition is scheduled after the
601 /// use in the pipelined sequence.
602 void ModuloScheduleExpander::generatePhis(
603 MachineBasicBlock
*NewBB
, MachineBasicBlock
*BB1
, MachineBasicBlock
*BB2
,
604 MachineBasicBlock
*KernelBB
, ValueMapTy
*VRMap
, InstrMapTy
&InstrMap
,
605 unsigned LastStageNum
, unsigned CurStageNum
, bool IsLast
) {
606 // Compute the stage number that contains the initial Phi value, and
607 // the Phi from the previous stage.
608 unsigned PrologStage
= 0;
609 unsigned PrevStage
= 0;
610 unsigned StageDiff
= CurStageNum
- LastStageNum
;
611 bool InKernel
= (StageDiff
== 0);
613 PrologStage
= LastStageNum
- 1;
614 PrevStage
= CurStageNum
;
616 PrologStage
= LastStageNum
- StageDiff
;
617 PrevStage
= LastStageNum
+ StageDiff
- 1;
620 for (MachineBasicBlock::iterator BBI
= BB
->getFirstNonPHI(),
621 BBE
= BB
->instr_end();
623 for (unsigned i
= 0, e
= BBI
->getNumOperands(); i
!= e
; ++i
) {
624 MachineOperand
&MO
= BBI
->getOperand(i
);
625 if (!MO
.isReg() || !MO
.isDef() ||
626 !Register::isVirtualRegister(MO
.getReg()))
629 int StageScheduled
= Schedule
.getStage(&*BBI
);
630 assert(StageScheduled
!= -1 && "Expecting scheduled instruction.");
631 Register Def
= MO
.getReg();
632 unsigned NumPhis
= getStagesForReg(Def
, CurStageNum
);
633 // An instruction scheduled in stage 0 and is used after the loop
634 // requires a phi in the epilog for the last definition from either
635 // the kernel or prolog.
636 if (!InKernel
&& NumPhis
== 0 && StageScheduled
== 0 &&
637 hasUseAfterLoop(Def
, BB
, MRI
))
639 if (!InKernel
&& (unsigned)StageScheduled
> PrologStage
)
642 unsigned PhiOp2
= VRMap
[PrevStage
][Def
];
643 if (MachineInstr
*InstOp2
= MRI
.getVRegDef(PhiOp2
))
644 if (InstOp2
->isPHI() && InstOp2
->getParent() == NewBB
)
645 PhiOp2
= getLoopPhiReg(*InstOp2
, BB2
);
646 // The number of Phis can't exceed the number of prolog stages. The
647 // prolog stage number is zero based.
648 if (NumPhis
> PrologStage
+ 1 - StageScheduled
)
649 NumPhis
= PrologStage
+ 1 - StageScheduled
;
650 for (unsigned np
= 0; np
< NumPhis
; ++np
) {
651 unsigned PhiOp1
= VRMap
[PrologStage
][Def
];
652 if (np
<= PrologStage
)
653 PhiOp1
= VRMap
[PrologStage
- np
][Def
];
654 if (MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
)) {
655 if (InstOp1
->isPHI() && InstOp1
->getParent() == KernelBB
)
656 PhiOp1
= getInitPhiReg(*InstOp1
, KernelBB
);
657 if (InstOp1
->isPHI() && InstOp1
->getParent() == NewBB
)
658 PhiOp1
= getInitPhiReg(*InstOp1
, NewBB
);
661 PhiOp2
= VRMap
[PrevStage
- np
][Def
];
663 const TargetRegisterClass
*RC
= MRI
.getRegClass(Def
);
664 Register NewReg
= MRI
.createVirtualRegister(RC
);
666 MachineInstrBuilder NewPhi
=
667 BuildMI(*NewBB
, NewBB
->getFirstNonPHI(), DebugLoc(),
668 TII
->get(TargetOpcode::PHI
), NewReg
);
669 NewPhi
.addReg(PhiOp1
).addMBB(BB1
);
670 NewPhi
.addReg(PhiOp2
).addMBB(BB2
);
672 InstrMap
[NewPhi
] = &*BBI
;
674 // Rewrite uses and update the map. The actions depend upon whether
675 // we generating code for the kernel or epilog blocks.
677 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, PhiOp1
,
679 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, PhiOp2
,
683 VRMap
[PrevStage
- np
- 1][Def
] = NewReg
;
685 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
686 if (np
== NumPhis
- 1)
687 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, Def
,
690 if (IsLast
&& np
== NumPhis
- 1)
691 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
697 /// Remove instructions that generate values with no uses.
698 /// Typically, these are induction variable operations that generate values
699 /// used in the loop itself. A dead instruction has a definition with
700 /// no uses, or uses that occur in the original loop only.
701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock
*KernelBB
,
702 MBBVectorTy
&EpilogBBs
) {
703 // For each epilog block, check that the value defined by each instruction
704 // is used. If not, delete it.
705 for (MBBVectorTy::reverse_iterator MBB
= EpilogBBs
.rbegin(),
706 MBE
= EpilogBBs
.rend();
708 for (MachineBasicBlock::reverse_instr_iterator MI
= (*MBB
)->instr_rbegin(),
709 ME
= (*MBB
)->instr_rend();
711 // From DeadMachineInstructionElem. Don't delete inline assembly.
712 if (MI
->isInlineAsm()) {
716 bool SawStore
= false;
717 // Check if it's safe to remove the instruction due to side effects.
718 // We can, and want to, remove Phis here.
719 if (!MI
->isSafeToMove(nullptr, SawStore
) && !MI
->isPHI()) {
724 for (MachineInstr::mop_iterator MOI
= MI
->operands_begin(),
725 MOE
= MI
->operands_end();
727 if (!MOI
->isReg() || !MOI
->isDef())
729 Register reg
= MOI
->getReg();
730 // Assume physical registers are used, unless they are marked dead.
731 if (Register::isPhysicalRegister(reg
)) {
732 used
= !MOI
->isDead();
737 unsigned realUses
= 0;
738 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(reg
),
741 // Check if there are any uses that occur only in the original
742 // loop. If so, that's not a real use.
743 if (UI
->getParent()->getParent() != BB
) {
754 LIS
.RemoveMachineInstrFromMaps(*MI
);
755 MI
++->eraseFromParent();
760 // In the kernel block, check if we can remove a Phi that generates a value
761 // used in an instruction removed in the epilog block.
762 for (MachineBasicBlock::iterator BBI
= KernelBB
->instr_begin(),
763 BBE
= KernelBB
->getFirstNonPHI();
765 MachineInstr
*MI
= &*BBI
;
767 Register reg
= MI
->getOperand(0).getReg();
768 if (MRI
.use_begin(reg
) == MRI
.use_end()) {
769 LIS
.RemoveMachineInstrFromMaps(*MI
);
770 MI
->eraseFromParent();
775 /// For loop carried definitions, we split the lifetime of a virtual register
776 /// that has uses past the definition in the next iteration. A copy with a new
777 /// virtual register is inserted before the definition, which helps with
778 /// generating a better register assignment.
780 /// v1 = phi(a, v2) v1 = phi(a, v2)
781 /// v2 = phi(b, v3) v2 = phi(b, v3)
782 /// v3 = .. v4 = copy v1
785 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock
*KernelBB
,
786 MBBVectorTy
&EpilogBBs
) {
787 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
788 for (auto &PHI
: KernelBB
->phis()) {
789 Register Def
= PHI
.getOperand(0).getReg();
790 // Check for any Phi definition that used as an operand of another Phi
791 // in the same block.
792 for (MachineRegisterInfo::use_instr_iterator I
= MRI
.use_instr_begin(Def
),
793 E
= MRI
.use_instr_end();
795 if (I
->isPHI() && I
->getParent() == KernelBB
) {
796 // Get the loop carried definition.
797 unsigned LCDef
= getLoopPhiReg(PHI
, KernelBB
);
800 MachineInstr
*MI
= MRI
.getVRegDef(LCDef
);
801 if (!MI
|| MI
->getParent() != KernelBB
|| MI
->isPHI())
803 // Search through the rest of the block looking for uses of the Phi
804 // definition. If one occurs, then split the lifetime.
805 unsigned SplitReg
= 0;
806 for (auto &BBJ
: make_range(MachineBasicBlock::instr_iterator(MI
),
807 KernelBB
->instr_end()))
808 if (BBJ
.readsRegister(Def
)) {
809 // We split the lifetime when we find the first use.
811 SplitReg
= MRI
.createVirtualRegister(MRI
.getRegClass(Def
));
812 BuildMI(*KernelBB
, MI
, MI
->getDebugLoc(),
813 TII
->get(TargetOpcode::COPY
), SplitReg
)
816 BBJ
.substituteRegister(Def
, SplitReg
, 0, *TRI
);
820 // Search through each of the epilog blocks for any uses to be renamed.
821 for (auto &Epilog
: EpilogBBs
)
822 for (auto &I
: *Epilog
)
823 if (I
.readsRegister(Def
))
824 I
.substituteRegister(Def
, SplitReg
, 0, *TRI
);
831 /// Remove the incoming block from the Phis in a basic block.
832 static void removePhis(MachineBasicBlock
*BB
, MachineBasicBlock
*Incoming
) {
833 for (MachineInstr
&MI
: *BB
) {
836 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
!= e
; i
+= 2)
837 if (MI
.getOperand(i
+ 1).getMBB() == Incoming
) {
838 MI
.RemoveOperand(i
+ 1);
845 /// Create branches from each prolog basic block to the appropriate epilog
846 /// block. These edges are needed if the loop ends before reaching the
848 void ModuloScheduleExpander::addBranches(MachineBasicBlock
&PreheaderBB
,
849 MBBVectorTy
&PrologBBs
,
850 MachineBasicBlock
*KernelBB
,
851 MBBVectorTy
&EpilogBBs
,
853 assert(PrologBBs
.size() == EpilogBBs
.size() && "Prolog/Epilog mismatch");
854 MachineBasicBlock
*LastPro
= KernelBB
;
855 MachineBasicBlock
*LastEpi
= KernelBB
;
857 // Start from the blocks connected to the kernel and work "out"
858 // to the first prolog and the last epilog blocks.
859 SmallVector
<MachineInstr
*, 4> PrevInsts
;
860 unsigned MaxIter
= PrologBBs
.size() - 1;
861 for (unsigned i
= 0, j
= MaxIter
; i
<= MaxIter
; ++i
, --j
) {
862 // Add branches to the prolog that go to the corresponding
863 // epilog, and the fall-thru prolog/kernel block.
864 MachineBasicBlock
*Prolog
= PrologBBs
[j
];
865 MachineBasicBlock
*Epilog
= EpilogBBs
[i
];
867 SmallVector
<MachineOperand
, 4> Cond
;
868 Optional
<bool> StaticallyGreater
=
869 LoopInfo
->createTripCountGreaterCondition(j
+ 1, *Prolog
, Cond
);
870 unsigned numAdded
= 0;
871 if (!StaticallyGreater
.hasValue()) {
872 Prolog
->addSuccessor(Epilog
);
873 numAdded
= TII
->insertBranch(*Prolog
, Epilog
, LastPro
, Cond
, DebugLoc());
874 } else if (*StaticallyGreater
== false) {
875 Prolog
->addSuccessor(Epilog
);
876 Prolog
->removeSuccessor(LastPro
);
877 LastEpi
->removeSuccessor(Epilog
);
878 numAdded
= TII
->insertBranch(*Prolog
, Epilog
, nullptr, Cond
, DebugLoc());
879 removePhis(Epilog
, LastEpi
);
880 // Remove the blocks that are no longer referenced.
881 if (LastPro
!= LastEpi
) {
883 LastEpi
->eraseFromParent();
885 if (LastPro
== KernelBB
) {
886 LoopInfo
->disposed();
890 LastPro
->eraseFromParent();
892 numAdded
= TII
->insertBranch(*Prolog
, LastPro
, nullptr, Cond
, DebugLoc());
893 removePhis(Epilog
, Prolog
);
897 for (MachineBasicBlock::reverse_instr_iterator I
= Prolog
->instr_rbegin(),
898 E
= Prolog
->instr_rend();
899 I
!= E
&& numAdded
> 0; ++I
, --numAdded
)
900 updateInstruction(&*I
, false, j
, 0, VRMap
);
904 LoopInfo
->setPreheader(PrologBBs
[MaxIter
]);
905 LoopInfo
->adjustTripCount(-(MaxIter
+ 1));
909 /// Return true if we can compute the amount the instruction changes
910 /// during each iteration. Set Delta to the amount of the change.
911 bool ModuloScheduleExpander::computeDelta(MachineInstr
&MI
, unsigned &Delta
) {
912 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
913 const MachineOperand
*BaseOp
;
915 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, TRI
))
918 if (!BaseOp
->isReg())
921 Register BaseReg
= BaseOp
->getReg();
923 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
924 // Check if there is a Phi. If so, get the definition in the loop.
925 MachineInstr
*BaseDef
= MRI
.getVRegDef(BaseReg
);
926 if (BaseDef
&& BaseDef
->isPHI()) {
927 BaseReg
= getLoopPhiReg(*BaseDef
, MI
.getParent());
928 BaseDef
= MRI
.getVRegDef(BaseReg
);
934 if (!TII
->getIncrementValue(*BaseDef
, D
) && D
>= 0)
941 /// Update the memory operand with a new offset when the pipeliner
942 /// generates a new copy of the instruction that refers to a
943 /// different memory location.
944 void ModuloScheduleExpander::updateMemOperands(MachineInstr
&NewMI
,
949 // If the instruction has memory operands, then adjust the offset
950 // when the instruction appears in different stages.
951 if (NewMI
.memoperands_empty())
953 SmallVector
<MachineMemOperand
*, 2> NewMMOs
;
954 for (MachineMemOperand
*MMO
: NewMI
.memoperands()) {
955 // TODO: Figure out whether isAtomic is really necessary (see D57601).
956 if (MMO
->isVolatile() || MMO
->isAtomic() ||
957 (MMO
->isInvariant() && MMO
->isDereferenceable()) ||
958 (!MMO
->getValue())) {
959 NewMMOs
.push_back(MMO
);
963 if (Num
!= UINT_MAX
&& computeDelta(OldMI
, Delta
)) {
964 int64_t AdjOffset
= Delta
* Num
;
966 MF
.getMachineMemOperand(MMO
, AdjOffset
, MMO
->getSize()));
969 MF
.getMachineMemOperand(MMO
, 0, MemoryLocation::UnknownSize
));
972 NewMI
.setMemRefs(MF
, NewMMOs
);
975 /// Clone the instruction for the new pipelined loop and update the
976 /// memory operands, if needed.
977 MachineInstr
*ModuloScheduleExpander::cloneInstr(MachineInstr
*OldMI
,
978 unsigned CurStageNum
,
979 unsigned InstStageNum
) {
980 MachineInstr
*NewMI
= MF
.CloneMachineInstr(OldMI
);
981 // Check for tied operands in inline asm instructions. This should be handled
982 // elsewhere, but I'm not sure of the best solution.
983 if (OldMI
->isInlineAsm())
984 for (unsigned i
= 0, e
= OldMI
->getNumOperands(); i
!= e
; ++i
) {
985 const auto &MO
= OldMI
->getOperand(i
);
986 if (MO
.isReg() && MO
.isUse())
989 if (OldMI
->isRegTiedToUseOperand(i
, &UseIdx
))
990 NewMI
->tieOperands(i
, UseIdx
);
992 updateMemOperands(*NewMI
, *OldMI
, CurStageNum
- InstStageNum
);
996 /// Clone the instruction for the new pipelined loop. If needed, this
997 /// function updates the instruction using the values saved in the
998 /// InstrChanges structure.
999 MachineInstr
*ModuloScheduleExpander::cloneAndChangeInstr(
1000 MachineInstr
*OldMI
, unsigned CurStageNum
, unsigned InstStageNum
) {
1001 MachineInstr
*NewMI
= MF
.CloneMachineInstr(OldMI
);
1002 auto It
= InstrChanges
.find(OldMI
);
1003 if (It
!= InstrChanges
.end()) {
1004 std::pair
<unsigned, int64_t> RegAndOffset
= It
->second
;
1005 unsigned BasePos
, OffsetPos
;
1006 if (!TII
->getBaseAndOffsetPosition(*OldMI
, BasePos
, OffsetPos
))
1008 int64_t NewOffset
= OldMI
->getOperand(OffsetPos
).getImm();
1009 MachineInstr
*LoopDef
= findDefInLoop(RegAndOffset
.first
);
1010 if (Schedule
.getStage(LoopDef
) > (signed)InstStageNum
)
1011 NewOffset
+= RegAndOffset
.second
* (CurStageNum
- InstStageNum
);
1012 NewMI
->getOperand(OffsetPos
).setImm(NewOffset
);
1014 updateMemOperands(*NewMI
, *OldMI
, CurStageNum
- InstStageNum
);
1018 /// Update the machine instruction with new virtual registers. This
1019 /// function may change the defintions and/or uses.
1020 void ModuloScheduleExpander::updateInstruction(MachineInstr
*NewMI
,
1022 unsigned CurStageNum
,
1023 unsigned InstrStageNum
,
1024 ValueMapTy
*VRMap
) {
1025 for (unsigned i
= 0, e
= NewMI
->getNumOperands(); i
!= e
; ++i
) {
1026 MachineOperand
&MO
= NewMI
->getOperand(i
);
1027 if (!MO
.isReg() || !Register::isVirtualRegister(MO
.getReg()))
1029 Register reg
= MO
.getReg();
1031 // Create a new virtual register for the definition.
1032 const TargetRegisterClass
*RC
= MRI
.getRegClass(reg
);
1033 Register NewReg
= MRI
.createVirtualRegister(RC
);
1035 VRMap
[CurStageNum
][reg
] = NewReg
;
1037 replaceRegUsesAfterLoop(reg
, NewReg
, BB
, MRI
, LIS
);
1038 } else if (MO
.isUse()) {
1039 MachineInstr
*Def
= MRI
.getVRegDef(reg
);
1040 // Compute the stage that contains the last definition for instruction.
1041 int DefStageNum
= Schedule
.getStage(Def
);
1042 unsigned StageNum
= CurStageNum
;
1043 if (DefStageNum
!= -1 && (int)InstrStageNum
> DefStageNum
) {
1044 // Compute the difference in stages between the defintion and the use.
1045 unsigned StageDiff
= (InstrStageNum
- DefStageNum
);
1046 // Make an adjustment to get the last definition.
1047 StageNum
-= StageDiff
;
1049 if (VRMap
[StageNum
].count(reg
))
1050 MO
.setReg(VRMap
[StageNum
][reg
]);
1055 /// Return the instruction in the loop that defines the register.
1056 /// If the definition is a Phi, then follow the Phi operand to
1057 /// the instruction in the loop.
1058 MachineInstr
*ModuloScheduleExpander::findDefInLoop(unsigned Reg
) {
1059 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1060 MachineInstr
*Def
= MRI
.getVRegDef(Reg
);
1061 while (Def
->isPHI()) {
1062 if (!Visited
.insert(Def
).second
)
1064 for (unsigned i
= 1, e
= Def
->getNumOperands(); i
< e
; i
+= 2)
1065 if (Def
->getOperand(i
+ 1).getMBB() == BB
) {
1066 Def
= MRI
.getVRegDef(Def
->getOperand(i
).getReg());
1073 /// Return the new name for the value from the previous stage.
1074 unsigned ModuloScheduleExpander::getPrevMapVal(
1075 unsigned StageNum
, unsigned PhiStage
, unsigned LoopVal
, unsigned LoopStage
,
1076 ValueMapTy
*VRMap
, MachineBasicBlock
*BB
) {
1077 unsigned PrevVal
= 0;
1078 if (StageNum
> PhiStage
) {
1079 MachineInstr
*LoopInst
= MRI
.getVRegDef(LoopVal
);
1080 if (PhiStage
== LoopStage
&& VRMap
[StageNum
- 1].count(LoopVal
))
1081 // The name is defined in the previous stage.
1082 PrevVal
= VRMap
[StageNum
- 1][LoopVal
];
1083 else if (VRMap
[StageNum
].count(LoopVal
))
1084 // The previous name is defined in the current stage when the instruction
1085 // order is swapped.
1086 PrevVal
= VRMap
[StageNum
][LoopVal
];
1087 else if (!LoopInst
->isPHI() || LoopInst
->getParent() != BB
)
1088 // The loop value hasn't yet been scheduled.
1090 else if (StageNum
== PhiStage
+ 1)
1091 // The loop value is another phi, which has not been scheduled.
1092 PrevVal
= getInitPhiReg(*LoopInst
, BB
);
1093 else if (StageNum
> PhiStage
+ 1 && LoopInst
->getParent() == BB
)
1094 // The loop value is another phi, which has been scheduled.
1096 getPrevMapVal(StageNum
- 1, PhiStage
, getLoopPhiReg(*LoopInst
, BB
),
1097 LoopStage
, VRMap
, BB
);
1102 /// Rewrite the Phi values in the specified block to use the mappings
1103 /// from the initial operand. Once the Phi is scheduled, we switch
1104 /// to using the loop value instead of the Phi value, so those names
1105 /// do not need to be rewritten.
1106 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock
*NewBB
,
1109 InstrMapTy
&InstrMap
) {
1110 for (auto &PHI
: BB
->phis()) {
1111 unsigned InitVal
= 0;
1112 unsigned LoopVal
= 0;
1113 getPhiRegs(PHI
, BB
, InitVal
, LoopVal
);
1114 Register PhiDef
= PHI
.getOperand(0).getReg();
1116 unsigned PhiStage
= (unsigned)Schedule
.getStage(MRI
.getVRegDef(PhiDef
));
1117 unsigned LoopStage
= (unsigned)Schedule
.getStage(MRI
.getVRegDef(LoopVal
));
1118 unsigned NumPhis
= getStagesForPhi(PhiDef
);
1119 if (NumPhis
> StageNum
)
1121 for (unsigned np
= 0; np
<= NumPhis
; ++np
) {
1123 getPrevMapVal(StageNum
- np
, PhiStage
, LoopVal
, LoopStage
, VRMap
, BB
);
1126 rewriteScheduledInstr(NewBB
, InstrMap
, StageNum
- np
, np
, &PHI
, PhiDef
,
1132 /// Rewrite a previously scheduled instruction to use the register value
1133 /// from the new instruction. Make sure the instruction occurs in the
1134 /// basic block, and we don't change the uses in the new instruction.
1135 void ModuloScheduleExpander::rewriteScheduledInstr(
1136 MachineBasicBlock
*BB
, InstrMapTy
&InstrMap
, unsigned CurStageNum
,
1137 unsigned PhiNum
, MachineInstr
*Phi
, unsigned OldReg
, unsigned NewReg
,
1139 bool InProlog
= (CurStageNum
< (unsigned)Schedule
.getNumStages() - 1);
1140 int StagePhi
= Schedule
.getStage(Phi
) + PhiNum
;
1141 // Rewrite uses that have been scheduled already to use the new
1143 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(OldReg
),
1146 MachineOperand
&UseOp
= *UI
;
1147 MachineInstr
*UseMI
= UseOp
.getParent();
1149 if (UseMI
->getParent() != BB
)
1151 if (UseMI
->isPHI()) {
1152 if (!Phi
->isPHI() && UseMI
->getOperand(0).getReg() == NewReg
)
1154 if (getLoopPhiReg(*UseMI
, BB
) != OldReg
)
1157 InstrMapTy::iterator OrigInstr
= InstrMap
.find(UseMI
);
1158 assert(OrigInstr
!= InstrMap
.end() && "Instruction not scheduled.");
1159 MachineInstr
*OrigMI
= OrigInstr
->second
;
1160 int StageSched
= Schedule
.getStage(OrigMI
);
1161 int CycleSched
= Schedule
.getCycle(OrigMI
);
1162 unsigned ReplaceReg
= 0;
1163 // This is the stage for the scheduled instruction.
1164 if (StagePhi
== StageSched
&& Phi
->isPHI()) {
1165 int CyclePhi
= Schedule
.getCycle(Phi
);
1166 if (PrevReg
&& InProlog
)
1167 ReplaceReg
= PrevReg
;
1168 else if (PrevReg
&& !isLoopCarried(*Phi
) &&
1169 (CyclePhi
<= CycleSched
|| OrigMI
->isPHI()))
1170 ReplaceReg
= PrevReg
;
1172 ReplaceReg
= NewReg
;
1174 // The scheduled instruction occurs before the scheduled Phi, and the
1175 // Phi is not loop carried.
1176 if (!InProlog
&& StagePhi
+ 1 == StageSched
&& !isLoopCarried(*Phi
))
1177 ReplaceReg
= NewReg
;
1178 if (StagePhi
> StageSched
&& Phi
->isPHI())
1179 ReplaceReg
= NewReg
;
1180 if (!InProlog
&& !Phi
->isPHI() && StagePhi
< StageSched
)
1181 ReplaceReg
= NewReg
;
1183 MRI
.constrainRegClass(ReplaceReg
, MRI
.getRegClass(OldReg
));
1184 UseOp
.setReg(ReplaceReg
);
1189 bool ModuloScheduleExpander::isLoopCarried(MachineInstr
&Phi
) {
1192 unsigned DefCycle
= Schedule
.getCycle(&Phi
);
1193 int DefStage
= Schedule
.getStage(&Phi
);
1195 unsigned InitVal
= 0;
1196 unsigned LoopVal
= 0;
1197 getPhiRegs(Phi
, Phi
.getParent(), InitVal
, LoopVal
);
1198 MachineInstr
*Use
= MRI
.getVRegDef(LoopVal
);
1199 if (!Use
|| Use
->isPHI())
1201 unsigned LoopCycle
= Schedule
.getCycle(Use
);
1202 int LoopStage
= Schedule
.getStage(Use
);
1203 return (LoopCycle
> DefCycle
) || (LoopStage
<= DefStage
);
1206 //===----------------------------------------------------------------------===//
1207 // PeelingModuloScheduleExpander implementation
1208 //===----------------------------------------------------------------------===//
1209 // This is a reimplementation of ModuloScheduleExpander that works by creating
1210 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1211 //===----------------------------------------------------------------------===//
1214 // Remove any dead phis in MBB. Dead phis either have only one block as input
1215 // (in which case they are the identity) or have no uses.
1216 void EliminateDeadPhis(MachineBasicBlock
*MBB
, MachineRegisterInfo
&MRI
,
1217 LiveIntervals
*LIS
) {
1218 bool Changed
= true;
1221 for (auto I
= MBB
->begin(); I
!= MBB
->getFirstNonPHI();) {
1222 MachineInstr
&MI
= *I
++;
1224 if (MRI
.use_empty(MI
.getOperand(0).getReg())) {
1226 LIS
->RemoveMachineInstrFromMaps(MI
);
1227 MI
.eraseFromParent();
1229 } else if (MI
.getNumExplicitOperands() == 3) {
1230 MRI
.constrainRegClass(MI
.getOperand(1).getReg(),
1231 MRI
.getRegClass(MI
.getOperand(0).getReg()));
1232 MRI
.replaceRegWith(MI
.getOperand(0).getReg(),
1233 MI
.getOperand(1).getReg());
1235 LIS
->RemoveMachineInstrFromMaps(MI
);
1236 MI
.eraseFromParent();
1243 /// Rewrites the kernel block in-place to adhere to the given schedule.
1244 /// KernelRewriter holds all of the state required to perform the rewriting.
1245 class KernelRewriter
{
1247 MachineBasicBlock
*BB
;
1248 MachineBasicBlock
*PreheaderBB
, *ExitBB
;
1249 MachineRegisterInfo
&MRI
;
1250 const TargetInstrInfo
*TII
;
1253 // Map from register class to canonical undef register for that class.
1254 DenseMap
<const TargetRegisterClass
*, Register
> Undefs
;
1255 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1256 // this map is only used when InitReg is non-undef.
1257 DenseMap
<std::pair
<unsigned, unsigned>, Register
> Phis
;
1258 // Map from LoopReg to phi register where the InitReg is undef.
1259 DenseMap
<Register
, Register
> UndefPhis
;
1261 // Reg is used by MI. Return the new register MI should use to adhere to the
1262 // schedule. Insert phis as necessary.
1263 Register
remapUse(Register Reg
, MachineInstr
&MI
);
1264 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1265 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1266 // or will be chosen so as to share another phi.
1267 Register
phi(Register LoopReg
, Optional
<Register
> InitReg
= {},
1268 const TargetRegisterClass
*RC
= nullptr);
1269 // Create an undef register of the given register class.
1270 Register
undef(const TargetRegisterClass
*RC
);
1273 KernelRewriter(MachineLoop
&L
, ModuloSchedule
&S
,
1274 LiveIntervals
*LIS
= nullptr);
1279 KernelRewriter::KernelRewriter(MachineLoop
&L
, ModuloSchedule
&S
,
1281 : S(S
), BB(L
.getTopBlock()), PreheaderBB(L
.getLoopPreheader()),
1282 ExitBB(L
.getExitBlock()), MRI(BB
->getParent()->getRegInfo()),
1283 TII(BB
->getParent()->getSubtarget().getInstrInfo()), LIS(LIS
) {
1284 PreheaderBB
= *BB
->pred_begin();
1285 if (PreheaderBB
== BB
)
1286 PreheaderBB
= *std::next(BB
->pred_begin());
1289 void KernelRewriter::rewrite() {
1290 // Rearrange the loop to be in schedule order. Note that the schedule may
1291 // contain instructions that are not owned by the loop block (InstrChanges and
1292 // friends), so we gracefully handle unowned instructions and delete any
1293 // instructions that weren't in the schedule.
1294 auto InsertPt
= BB
->getFirstTerminator();
1295 MachineInstr
*FirstMI
= nullptr;
1296 for (MachineInstr
*MI
: S
.getInstructions()) {
1299 if (MI
->getParent())
1300 MI
->removeFromParent();
1301 BB
->insert(InsertPt
, MI
);
1305 assert(FirstMI
&& "Failed to find first MI in schedule");
1307 // At this point all of the scheduled instructions are between FirstMI
1308 // and the end of the block. Kill from the first non-phi to FirstMI.
1309 for (auto I
= BB
->getFirstNonPHI(); I
!= FirstMI
->getIterator();) {
1311 LIS
->RemoveMachineInstrFromMaps(*I
);
1312 (I
++)->eraseFromParent();
1315 // Now remap every instruction in the loop.
1316 for (MachineInstr
&MI
: *BB
) {
1317 if (MI
.isPHI() || MI
.isTerminator())
1319 for (MachineOperand
&MO
: MI
.uses()) {
1320 if (!MO
.isReg() || MO
.getReg().isPhysical() || MO
.isImplicit())
1322 Register Reg
= remapUse(MO
.getReg(), MI
);
1326 EliminateDeadPhis(BB
, MRI
, LIS
);
1328 // Ensure a phi exists for all instructions that are either referenced by
1329 // an illegal phi or by an instruction outside the loop. This allows us to
1330 // treat remaps of these values the same as "normal" values that come from
1331 // loop-carried phis.
1332 for (auto MI
= BB
->getFirstNonPHI(); MI
!= BB
->end(); ++MI
) {
1334 Register R
= MI
->getOperand(0).getReg();
1339 for (MachineOperand
&Def
: MI
->defs()) {
1340 for (MachineInstr
&MI
: MRI
.use_instructions(Def
.getReg())) {
1341 if (MI
.getParent() != BB
) {
1350 Register
KernelRewriter::remapUse(Register Reg
, MachineInstr
&MI
) {
1351 MachineInstr
*Producer
= MRI
.getUniqueVRegDef(Reg
);
1355 int ConsumerStage
= S
.getStage(&MI
);
1356 if (!Producer
->isPHI()) {
1357 // Non-phi producers are simple to remap. Insert as many phis as the
1358 // difference between the consumer and producer stages.
1359 if (Producer
->getParent() != BB
)
1360 // Producer was not inside the loop. Use the register as-is.
1362 int ProducerStage
= S
.getStage(Producer
);
1363 assert(ConsumerStage
!= -1 &&
1364 "In-loop consumer should always be scheduled!");
1365 assert(ConsumerStage
>= ProducerStage
);
1366 unsigned StageDiff
= ConsumerStage
- ProducerStage
;
1368 for (unsigned I
= 0; I
< StageDiff
; ++I
)
1373 // First, dive through the phi chain to find the defaults for the generated
1375 SmallVector
<Optional
<Register
>, 4> Defaults
;
1376 Register LoopReg
= Reg
;
1377 auto LoopProducer
= Producer
;
1378 while (LoopProducer
->isPHI() && LoopProducer
->getParent() == BB
) {
1379 LoopReg
= getLoopPhiReg(*LoopProducer
, BB
);
1380 Defaults
.emplace_back(getInitPhiReg(*LoopProducer
, BB
));
1381 LoopProducer
= MRI
.getUniqueVRegDef(LoopReg
);
1382 assert(LoopProducer
);
1384 int LoopProducerStage
= S
.getStage(LoopProducer
);
1386 Optional
<Register
> IllegalPhiDefault
;
1388 if (LoopProducerStage
== -1) {
1390 } else if (LoopProducerStage
> ConsumerStage
) {
1391 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1392 // In addition, Consumer's cycle must be scheduled after Producer in the
1393 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1395 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1396 int LoopProducerCycle
= S
.getCycle(LoopProducer
);
1397 int ConsumerCycle
= S
.getCycle(&MI
);
1399 assert(LoopProducerCycle
<= ConsumerCycle
);
1400 assert(LoopProducerStage
== ConsumerStage
+ 1);
1401 // Peel off the first phi from Defaults and insert a phi between producer
1402 // and consumer. This phi will not be at the front of the block so we
1403 // consider it illegal. It will only exist during the rewrite process; it
1404 // needs to exist while we peel off prologs because these could take the
1405 // default value. After that we can replace all uses with the loop producer
1407 IllegalPhiDefault
= Defaults
.front();
1408 Defaults
.erase(Defaults
.begin());
1410 assert(ConsumerStage
>= LoopProducerStage
);
1411 int StageDiff
= ConsumerStage
- LoopProducerStage
;
1412 if (StageDiff
> 0) {
1413 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults
.size()
1414 << " to " << (Defaults
.size() + StageDiff
) << "\n");
1415 // If we need more phis than we have defaults for, pad out with undefs for
1416 // the earliest phis, which are at the end of the defaults chain (the
1417 // chain is in reverse order).
1418 Defaults
.resize(Defaults
.size() + StageDiff
, Defaults
.empty()
1419 ? Optional
<Register
>()
1424 // Now we know the number of stages to jump back, insert the phi chain.
1425 auto DefaultI
= Defaults
.rbegin();
1426 while (DefaultI
!= Defaults
.rend())
1427 LoopReg
= phi(LoopReg
, *DefaultI
++, MRI
.getRegClass(Reg
));
1429 if (IllegalPhiDefault
.hasValue()) {
1430 // The consumer optionally consumes LoopProducer in the same iteration
1431 // (because the producer is scheduled at an earlier cycle than the consumer)
1432 // or the initial value. To facilitate this we create an illegal block here
1433 // by embedding a phi in the middle of the block. We will fix this up
1434 // immediately prior to pruning.
1435 auto RC
= MRI
.getRegClass(Reg
);
1436 Register R
= MRI
.createVirtualRegister(RC
);
1437 BuildMI(*BB
, MI
, DebugLoc(), TII
->get(TargetOpcode::PHI
), R
)
1438 .addReg(IllegalPhiDefault
.getValue())
1439 .addMBB(PreheaderBB
) // Block choice is arbitrary and has no effect.
1441 .addMBB(BB
); // Block choice is arbitrary and has no effect.
1448 Register
KernelRewriter::phi(Register LoopReg
, Optional
<Register
> InitReg
,
1449 const TargetRegisterClass
*RC
) {
1450 // If the init register is not undef, try and find an existing phi.
1451 if (InitReg
.hasValue()) {
1452 auto I
= Phis
.find({LoopReg
, InitReg
.getValue()});
1453 if (I
!= Phis
.end())
1456 for (auto &KV
: Phis
) {
1457 if (KV
.first
.first
== LoopReg
)
1462 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1463 // find a phi that takes undef as input.
1464 auto I
= UndefPhis
.find(LoopReg
);
1465 if (I
!= UndefPhis
.end()) {
1466 Register R
= I
->second
;
1467 if (!InitReg
.hasValue())
1468 // Found a phi taking undef as input, and this input is undef so return
1469 // without any more changes.
1471 // Found a phi taking undef as input, so rewrite it to take InitReg.
1472 MachineInstr
*MI
= MRI
.getVRegDef(R
);
1473 MI
->getOperand(1).setReg(InitReg
.getValue());
1474 Phis
.insert({{LoopReg
, InitReg
.getValue()}, R
});
1475 MRI
.constrainRegClass(R
, MRI
.getRegClass(InitReg
.getValue()));
1480 // Failed to find any existing phi to reuse, so create a new one.
1482 RC
= MRI
.getRegClass(LoopReg
);
1483 Register R
= MRI
.createVirtualRegister(RC
);
1484 if (InitReg
.hasValue())
1485 MRI
.constrainRegClass(R
, MRI
.getRegClass(*InitReg
));
1486 BuildMI(*BB
, BB
->getFirstNonPHI(), DebugLoc(), TII
->get(TargetOpcode::PHI
), R
)
1487 .addReg(InitReg
.hasValue() ? *InitReg
: undef(RC
))
1488 .addMBB(PreheaderBB
)
1491 if (!InitReg
.hasValue())
1492 UndefPhis
[LoopReg
] = R
;
1494 Phis
[{LoopReg
, *InitReg
}] = R
;
1498 Register
KernelRewriter::undef(const TargetRegisterClass
*RC
) {
1499 Register
&R
= Undefs
[RC
];
1501 // Create an IMPLICIT_DEF that defines this register if we need it.
1502 // All uses of this should be removed by the time we have finished unrolling
1503 // prologs and epilogs.
1504 R
= MRI
.createVirtualRegister(RC
);
1505 auto *InsertBB
= &PreheaderBB
->getParent()->front();
1506 BuildMI(*InsertBB
, InsertBB
->getFirstTerminator(), DebugLoc(),
1507 TII
->get(TargetOpcode::IMPLICIT_DEF
), R
);
1513 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1514 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1515 /// through and defaults for these phis.
1516 class KernelOperandInfo
{
1517 MachineBasicBlock
*BB
;
1518 MachineRegisterInfo
&MRI
;
1519 SmallVector
<Register
, 4> PhiDefaults
;
1520 MachineOperand
*Source
;
1521 MachineOperand
*Target
;
1524 KernelOperandInfo(MachineOperand
*MO
, MachineRegisterInfo
&MRI
,
1525 const SmallPtrSetImpl
<MachineInstr
*> &IllegalPhis
)
1528 BB
= MO
->getParent()->getParent();
1529 while (isRegInLoop(MO
)) {
1530 MachineInstr
*MI
= MRI
.getVRegDef(MO
->getReg());
1531 if (MI
->isFullCopy()) {
1532 MO
= &MI
->getOperand(1);
1537 // If this is an illegal phi, don't count it in distance.
1538 if (IllegalPhis
.count(MI
)) {
1539 MO
= &MI
->getOperand(3);
1543 Register Default
= getInitPhiReg(*MI
, BB
);
1544 MO
= MI
->getOperand(2).getMBB() == BB
? &MI
->getOperand(1)
1545 : &MI
->getOperand(3);
1546 PhiDefaults
.push_back(Default
);
1551 bool operator==(const KernelOperandInfo
&Other
) const {
1552 return PhiDefaults
.size() == Other
.PhiDefaults
.size();
1555 void print(raw_ostream
&OS
) const {
1556 OS
<< "use of " << *Source
<< ": distance(" << PhiDefaults
.size() << ") in "
1557 << *Source
->getParent();
1561 bool isRegInLoop(MachineOperand
*MO
) {
1562 return MO
->isReg() && MO
->getReg().isVirtual() &&
1563 MRI
.getVRegDef(MO
->getReg())->getParent() == BB
;
1569 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD
) {
1570 MachineBasicBlock
*NewBB
= PeelSingleBlockLoop(LPD
, BB
, MRI
, TII
);
1571 if (LPD
== LPD_Front
)
1572 PeeledFront
.push_back(NewBB
);
1574 PeeledBack
.push_front(NewBB
);
1575 for (auto I
= BB
->begin(), NI
= NewBB
->begin(); !I
->isTerminator();
1577 CanonicalMIs
[&*I
] = &*I
;
1578 CanonicalMIs
[&*NI
] = &*I
;
1579 BlockMIs
[{NewBB
, &*I
}] = &*NI
;
1580 BlockMIs
[{BB
, &*I
}] = &*I
;
1585 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1586 BitVector
LS(Schedule
.getNumStages(), true);
1587 BitVector
AS(Schedule
.getNumStages(), true);
1588 LiveStages
[BB
] = LS
;
1589 AvailableStages
[BB
] = AS
;
1591 // Peel out the prologs.
1593 for (int I
= 0; I
< Schedule
.getNumStages() - 1; ++I
) {
1595 Prologs
.push_back(peelKernel(LPD_Front
));
1596 LiveStages
[Prologs
.back()] = LS
;
1597 AvailableStages
[Prologs
.back()] = LS
;
1600 // Create a block that will end up as the new loop exiting block (dominated by
1601 // all prologs and epilogs). It will only contain PHIs, in the same order as
1602 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1603 // that the exiting block is a (sub) clone of BB. This in turn gives us the
1604 // property that any value deffed in BB but used outside of BB is used by a
1605 // PHI in the exiting block.
1606 MachineBasicBlock
*ExitingBB
= CreateLCSSAExitingBlock();
1608 // Push out the epilogs, again in reverse order.
1609 // We can't assume anything about the minumum loop trip count at this point,
1610 // so emit a fairly complex epilog:
1611 // K[0, 1, 2] // Kernel runs stages 0, 1, 2
1612 // E0[2] <- P1 // Epilog runs stage 2 only, so the state after is [0].
1613 // E1[1, 2] <- P0 // Epilog 1 moves the last item from stage 0 to stage 2.
1615 // This creates a single-successor single-predecessor sequence of blocks for
1616 // each epilog, which are kept this way for simplicity at this stage and
1617 // cleaned up by the optimizer later.
1618 for (int I
= 1; I
<= Schedule
.getNumStages() - 1; ++I
) {
1619 Epilogs
.push_back(nullptr);
1620 for (int J
= Schedule
.getNumStages() - 1; J
>= I
; --J
) {
1623 Epilogs
.back() = peelKernel(LPD_Back
);
1624 LiveStages
[Epilogs
.back()] = LS
;
1625 AvailableStages
[Epilogs
.back()] = AS
;
1629 // Now we've defined all the prolog and epilog blocks as a fallthrough
1630 // sequence, add the edges that will be followed if the loop trip count is
1631 // lower than the number of stages (connecting prologs directly with epilogs).
1632 auto PI
= Prologs
.begin();
1633 auto EI
= Epilogs
.begin();
1634 assert(Prologs
.size() == Epilogs
.size());
1635 for (; PI
!= Prologs
.end(); ++PI
, ++EI
) {
1636 MachineBasicBlock
*Pred
= *(*EI
)->pred_begin();
1637 (*PI
)->addSuccessor(*EI
);
1638 for (MachineInstr
&MI
: (*EI
)->phis()) {
1639 Register Reg
= MI
.getOperand(1).getReg();
1640 MachineInstr
*Use
= MRI
.getUniqueVRegDef(Reg
);
1641 if (Use
&& Use
->getParent() == Pred
)
1642 Reg
= getEquivalentRegisterIn(Reg
, *PI
);
1643 MI
.addOperand(MachineOperand::CreateReg(Reg
, /*isDef=*/false));
1644 MI
.addOperand(MachineOperand::CreateMBB(*PI
));
1648 // Create a list of all blocks in order.
1649 SmallVector
<MachineBasicBlock
*, 8> Blocks
;
1650 llvm::copy(PeeledFront
, std::back_inserter(Blocks
));
1651 Blocks
.push_back(BB
);
1652 llvm::copy(PeeledBack
, std::back_inserter(Blocks
));
1654 // Iterate in reverse order over all instructions, remapping as we go.
1655 for (MachineBasicBlock
*B
: reverse(Blocks
)) {
1656 for (auto I
= B
->getFirstInstrTerminator()->getReverseIterator();
1657 I
!= std::next(B
->getFirstNonPHI()->getReverseIterator());) {
1658 MachineInstr
*MI
= &*I
++;
1662 // Now all remapping has been done, we're free to optimize the generated code.
1663 for (MachineBasicBlock
*B
: reverse(Blocks
))
1664 EliminateDeadPhis(B
, MRI
, LIS
);
1665 EliminateDeadPhis(ExitingBB
, MRI
, LIS
);
1668 MachineBasicBlock
*PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1669 MachineFunction
&MF
= *BB
->getParent();
1670 MachineBasicBlock
*Exit
= *BB
->succ_begin();
1672 Exit
= *std::next(BB
->succ_begin());
1674 MachineBasicBlock
*NewBB
= MF
.CreateMachineBasicBlock(BB
->getBasicBlock());
1675 MF
.insert(std::next(BB
->getIterator()), NewBB
);
1677 // Clone all phis in BB into NewBB and rewrite.
1678 for (MachineInstr
&MI
: BB
->phis()) {
1679 auto RC
= MRI
.getRegClass(MI
.getOperand(0).getReg());
1680 Register OldR
= MI
.getOperand(3).getReg();
1681 Register R
= MRI
.createVirtualRegister(RC
);
1682 SmallVector
<MachineInstr
*, 4> Uses
;
1683 for (MachineInstr
&Use
: MRI
.use_instructions(OldR
))
1684 if (Use
.getParent() != BB
)
1685 Uses
.push_back(&Use
);
1686 for (MachineInstr
*Use
: Uses
)
1687 Use
->substituteRegister(OldR
, R
, /*SubIdx=*/0,
1688 *MRI
.getTargetRegisterInfo());
1689 MachineInstr
*NI
= BuildMI(NewBB
, DebugLoc(), TII
->get(TargetOpcode::PHI
), R
)
1692 BlockMIs
[{NewBB
, &MI
}] = NI
;
1693 CanonicalMIs
[NI
] = &MI
;
1695 BB
->replaceSuccessor(Exit
, NewBB
);
1696 Exit
->replacePhiUsesWith(BB
, NewBB
);
1697 NewBB
->addSuccessor(Exit
);
1699 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1700 SmallVector
<MachineOperand
, 4> Cond
;
1701 bool CanAnalyzeBr
= !TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
);
1703 assert(CanAnalyzeBr
&& "Must be able to analyze the loop branch!");
1704 TII
->removeBranch(*BB
);
1705 TII
->insertBranch(*BB
, TBB
== Exit
? NewBB
: TBB
, FBB
== Exit
? NewBB
: FBB
,
1707 TII
->insertUnconditionalBranch(*NewBB
, Exit
, DebugLoc());
1712 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg
,
1713 MachineBasicBlock
*BB
) {
1714 MachineInstr
*MI
= MRI
.getUniqueVRegDef(Reg
);
1715 unsigned OpIdx
= MI
->findRegisterDefOperandIdx(Reg
);
1716 return BlockMIs
[{BB
, CanonicalMIs
[MI
]}]->getOperand(OpIdx
).getReg();
1719 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr
*MI
) {
1721 // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1722 // and it is produced by this block.
1723 Register PhiR
= MI
->getOperand(0).getReg();
1724 Register R
= MI
->getOperand(3).getReg();
1725 int RMIStage
= getStage(MRI
.getUniqueVRegDef(R
));
1726 if (RMIStage
!= -1 && !AvailableStages
[MI
->getParent()].test(RMIStage
))
1727 R
= MI
->getOperand(1).getReg();
1728 MRI
.setRegClass(R
, MRI
.getRegClass(PhiR
));
1729 MRI
.replaceRegWith(PhiR
, R
);
1731 LIS
->RemoveMachineInstrFromMaps(*MI
);
1732 MI
->eraseFromParent();
1736 int Stage
= getStage(MI
);
1737 if (Stage
== -1 || LiveStages
.count(MI
->getParent()) == 0 ||
1738 LiveStages
[MI
->getParent()].test(Stage
))
1739 // Instruction is live, no rewriting to do.
1742 for (MachineOperand
&DefMO
: MI
->defs()) {
1743 SmallVector
<std::pair
<MachineInstr
*, Register
>, 4> Subs
;
1744 for (MachineInstr
&UseMI
: MRI
.use_instructions(DefMO
.getReg())) {
1745 // Only PHIs can use values from this block by construction.
1746 // Match with the equivalent PHI in B.
1747 assert(UseMI
.isPHI());
1748 Register Reg
= getEquivalentRegisterIn(UseMI
.getOperand(0).getReg(),
1750 Subs
.emplace_back(&UseMI
, Reg
);
1752 for (auto &Sub
: Subs
)
1753 Sub
.first
->substituteRegister(DefMO
.getReg(), Sub
.second
, /*SubIdx=*/0,
1754 *MRI
.getTargetRegisterInfo());
1757 LIS
->RemoveMachineInstrFromMaps(*MI
);
1758 MI
->eraseFromParent();
1761 void PeelingModuloScheduleExpander::fixupBranches() {
1762 std::unique_ptr
<TargetInstrInfo::PipelinerLoopInfo
> Info
=
1763 TII
->analyzeLoopForPipelining(BB
);
1766 // Work outwards from the kernel.
1767 bool KernelDisposed
= false;
1768 int TC
= Schedule
.getNumStages() - 1;
1769 for (auto PI
= Prologs
.rbegin(), EI
= Epilogs
.rbegin(); PI
!= Prologs
.rend();
1771 MachineBasicBlock
*Prolog
= *PI
;
1772 MachineBasicBlock
*Fallthrough
= *Prolog
->succ_begin();
1773 MachineBasicBlock
*Epilog
= *EI
;
1774 SmallVector
<MachineOperand
, 4> Cond
;
1775 TII
->removeBranch(*Prolog
);
1776 Optional
<bool> StaticallyGreater
=
1777 Info
->createTripCountGreaterCondition(TC
, *Prolog
, Cond
);
1778 if (!StaticallyGreater
.hasValue()) {
1779 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC
<< "\n");
1780 // Dynamically branch based on Cond.
1781 TII
->insertBranch(*Prolog
, Epilog
, Fallthrough
, Cond
, DebugLoc());
1782 } else if (*StaticallyGreater
== false) {
1783 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC
<< "\n");
1784 // Prolog never falls through; branch to epilog and orphan interior
1785 // blocks. Leave it to unreachable-block-elim to clean up.
1786 Prolog
->removeSuccessor(Fallthrough
);
1787 for (MachineInstr
&P
: Fallthrough
->phis()) {
1791 TII
->insertUnconditionalBranch(*Prolog
, Epilog
, DebugLoc());
1792 KernelDisposed
= true;
1794 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC
<< "\n");
1795 // Prolog always falls through; remove incoming values in epilog.
1796 Prolog
->removeSuccessor(Epilog
);
1797 for (MachineInstr
&P
: Epilog
->phis()) {
1804 if (!KernelDisposed
) {
1805 Info
->adjustTripCount(-(Schedule
.getNumStages() - 1));
1806 Info
->setPreheader(Prologs
.back());
1812 void PeelingModuloScheduleExpander::rewriteKernel() {
1813 KernelRewriter
KR(*Schedule
.getLoop(), Schedule
);
1817 void PeelingModuloScheduleExpander::expand() {
1818 BB
= Schedule
.getLoop()->getTopBlock();
1819 Preheader
= Schedule
.getLoop()->getLoopPreheader();
1820 LLVM_DEBUG(Schedule
.dump());
1823 peelPrologAndEpilogs();
1827 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1828 BB
= Schedule
.getLoop()->getTopBlock();
1829 Preheader
= Schedule
.getLoop()->getLoopPreheader();
1831 // Dump the schedule before we invalidate and remap all its instructions.
1832 // Stash it in a string so we can print it if we found an error.
1833 std::string ScheduleDump
;
1834 raw_string_ostream
OS(ScheduleDump
);
1838 // First, run the normal ModuleScheduleExpander. We don't support any
1840 assert(LIS
&& "Requires LiveIntervals!");
1841 ModuloScheduleExpander
MSE(MF
, Schedule
, *LIS
,
1842 ModuloScheduleExpander::InstrChangesTy());
1844 MachineBasicBlock
*ExpandedKernel
= MSE
.getRewrittenKernel();
1845 if (!ExpandedKernel
) {
1846 // The expander optimized away the kernel. We can't do any useful checking.
1850 // Before running the KernelRewriter, re-add BB into the CFG.
1851 Preheader
->addSuccessor(BB
);
1853 // Now run the new expansion algorithm.
1854 KernelRewriter
KR(*Schedule
.getLoop(), Schedule
);
1856 peelPrologAndEpilogs();
1858 // Collect all illegal phis that the new algorithm created. We'll give these
1859 // to KernelOperandInfo.
1860 SmallPtrSet
<MachineInstr
*, 4> IllegalPhis
;
1861 for (auto NI
= BB
->getFirstNonPHI(); NI
!= BB
->end(); ++NI
) {
1863 IllegalPhis
.insert(&*NI
);
1866 // Co-iterate across both kernels. We expect them to be identical apart from
1867 // phis and full COPYs (we look through both).
1868 SmallVector
<std::pair
<KernelOperandInfo
, KernelOperandInfo
>, 8> KOIs
;
1869 auto OI
= ExpandedKernel
->begin();
1870 auto NI
= BB
->begin();
1871 for (; !OI
->isTerminator() && !NI
->isTerminator(); ++OI
, ++NI
) {
1872 while (OI
->isPHI() || OI
->isFullCopy())
1874 while (NI
->isPHI() || NI
->isFullCopy())
1876 assert(OI
->getOpcode() == NI
->getOpcode() && "Opcodes don't match?!");
1877 // Analyze every operand separately.
1878 for (auto OOpI
= OI
->operands_begin(), NOpI
= NI
->operands_begin();
1879 OOpI
!= OI
->operands_end(); ++OOpI
, ++NOpI
)
1880 KOIs
.emplace_back(KernelOperandInfo(&*OOpI
, MRI
, IllegalPhis
),
1881 KernelOperandInfo(&*NOpI
, MRI
, IllegalPhis
));
1884 bool Failed
= false;
1885 for (auto &OldAndNew
: KOIs
) {
1886 if (OldAndNew
.first
== OldAndNew
.second
)
1889 errs() << "Modulo kernel validation error: [\n";
1890 errs() << " [golden] ";
1891 OldAndNew
.first
.print(errs());
1893 OldAndNew
.second
.print(errs());
1898 errs() << "Golden reference kernel:\n";
1899 ExpandedKernel
->print(errs());
1900 errs() << "New kernel:\n";
1902 errs() << ScheduleDump
;
1904 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
1907 // Cleanup by removing BB from the CFG again as the original
1908 // ModuloScheduleExpander intended.
1909 Preheader
->removeSuccessor(BB
);
1913 //===----------------------------------------------------------------------===//
1914 // ModuloScheduleTestPass implementation
1915 //===----------------------------------------------------------------------===//
1916 // This pass constructs a ModuloSchedule from its module and runs
1917 // ModuloScheduleExpander.
1919 // The module is expected to contain a single-block analyzable loop.
1920 // The total order of instructions is taken from the loop as-is.
1921 // Instructions are expected to be annotated with a PostInstrSymbol.
1922 // This PostInstrSymbol must have the following format:
1923 // "Stage=%d Cycle=%d".
1924 //===----------------------------------------------------------------------===//
1927 class ModuloScheduleTest
: public MachineFunctionPass
{
1931 ModuloScheduleTest() : MachineFunctionPass(ID
) {
1932 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
1935 bool runOnMachineFunction(MachineFunction
&MF
) override
;
1936 void runOnLoop(MachineFunction
&MF
, MachineLoop
&L
);
1938 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1939 AU
.addRequired
<MachineLoopInfo
>();
1940 AU
.addRequired
<LiveIntervals
>();
1941 MachineFunctionPass::getAnalysisUsage(AU
);
1946 char ModuloScheduleTest::ID
= 0;
1948 INITIALIZE_PASS_BEGIN(ModuloScheduleTest
, "modulo-schedule-test",
1949 "Modulo Schedule test pass", false, false)
1950 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
1951 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
1952 INITIALIZE_PASS_END(ModuloScheduleTest
, "modulo-schedule-test",
1953 "Modulo Schedule test pass", false, false)
1955 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction
&MF
) {
1956 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
1957 for (auto *L
: MLI
) {
1958 if (L
->getTopBlock() != L
->getBottomBlock())
1966 static void parseSymbolString(StringRef S
, int &Cycle
, int &Stage
) {
1967 std::pair
<StringRef
, StringRef
> StageAndCycle
= getToken(S
, "_");
1968 std::pair
<StringRef
, StringRef
> StageTokenAndValue
=
1969 getToken(StageAndCycle
.first
, "-");
1970 std::pair
<StringRef
, StringRef
> CycleTokenAndValue
=
1971 getToken(StageAndCycle
.second
, "-");
1972 if (StageTokenAndValue
.first
!= "Stage" ||
1973 CycleTokenAndValue
.first
!= "_Cycle") {
1975 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
1979 StageTokenAndValue
.second
.drop_front().getAsInteger(10, Stage
);
1980 CycleTokenAndValue
.second
.drop_front().getAsInteger(10, Cycle
);
1982 dbgs() << " Stage=" << Stage
<< ", Cycle=" << Cycle
<< "\n";
1985 void ModuloScheduleTest::runOnLoop(MachineFunction
&MF
, MachineLoop
&L
) {
1986 LiveIntervals
&LIS
= getAnalysis
<LiveIntervals
>();
1987 MachineBasicBlock
*BB
= L
.getTopBlock();
1988 dbgs() << "--- ModuloScheduleTest running on BB#" << BB
->getNumber() << "\n";
1990 DenseMap
<MachineInstr
*, int> Cycle
, Stage
;
1991 std::vector
<MachineInstr
*> Instrs
;
1992 for (MachineInstr
&MI
: *BB
) {
1993 if (MI
.isTerminator())
1995 Instrs
.push_back(&MI
);
1996 if (MCSymbol
*Sym
= MI
.getPostInstrSymbol()) {
1997 dbgs() << "Parsing post-instr symbol for " << MI
;
1998 parseSymbolString(Sym
->getName(), Cycle
[&MI
], Stage
[&MI
]);
2002 ModuloSchedule
MS(MF
, &L
, std::move(Instrs
), std::move(Cycle
),
2004 ModuloScheduleExpander
MSE(
2005 MF
, MS
, LIS
, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2010 //===----------------------------------------------------------------------===//
2011 // ModuloScheduleTestAnnotater implementation
2012 //===----------------------------------------------------------------------===//
2014 void ModuloScheduleTestAnnotater::annotate() {
2015 for (MachineInstr
*MI
: S
.getInstructions()) {
2016 SmallVector
<char, 16> SV
;
2017 raw_svector_ostream
OS(SV
);
2018 OS
<< "Stage-" << S
.getStage(MI
) << "_Cycle-" << S
.getCycle(MI
);
2019 MCSymbol
*Sym
= MF
.getContext().getOrCreateSymbol(OS
.str());
2020 MI
->setPostInstrSymbol(MF
, Sym
);