1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms simple global variables that never have their address
10 // taken. If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
75 #define DEBUG_TYPE "globalopt"
77 STATISTIC(NumMarked
, "Number of globals marked constant");
78 STATISTIC(NumUnnamed
, "Number of globals marked unnamed_addr");
79 STATISTIC(NumSRA
, "Number of aggregate globals broken into scalars");
80 STATISTIC(NumHeapSRA
, "Number of heap objects SRA'd");
81 STATISTIC(NumSubstitute
,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted
, "Number of globals deleted");
83 STATISTIC(NumGlobUses
, "Number of global uses devirtualized");
84 STATISTIC(NumLocalized
, "Number of globals localized");
85 STATISTIC(NumShrunkToBool
, "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns
, "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated
, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved
, "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved
, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved
, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved
, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc
, "Number of internal functions");
93 STATISTIC(NumColdCC
, "Number of functions marked coldcc");
96 EnableColdCCStressTest("enable-coldcc-stress-test",
97 cl::desc("Enable stress test of coldcc by adding "
98 "calling conv to all internal functions."),
99 cl::init(false), cl::Hidden
);
101 static cl::opt
<int> ColdCCRelFreq(
102 "coldcc-rel-freq", cl::Hidden
, cl::init(2), cl::ZeroOrMore
,
104 "Maximum block frequency, expressed as a percentage of caller's "
105 "entry frequency, for a call site to be considered cold for enabling"
108 /// Is this global variable possibly used by a leak checker as a root? If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable
*GV
) {
111 // A global variable is a root if it is a pointer, or could plausibly contain
112 // a pointer. There are two challenges; one is that we could have a struct
113 // the has an inner member which is a pointer. We recurse through the type to
114 // detect these (up to a point). The other is that we may actually be a union
115 // of a pointer and another type, and so our LLVM type is an integer which
116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117 // potentially contained here.
119 if (GV
->hasPrivateLinkage())
122 SmallVector
<Type
*, 4> Types
;
123 Types
.push_back(GV
->getValueType());
127 Type
*Ty
= Types
.pop_back_val();
128 switch (Ty
->getTypeID()) {
130 case Type::PointerTyID
: return true;
131 case Type::ArrayTyID
:
132 case Type::VectorTyID
: {
133 SequentialType
*STy
= cast
<SequentialType
>(Ty
);
134 Types
.push_back(STy
->getElementType());
137 case Type::StructTyID
: {
138 StructType
*STy
= cast
<StructType
>(Ty
);
139 if (STy
->isOpaque()) return true;
140 for (StructType::element_iterator I
= STy
->element_begin(),
141 E
= STy
->element_end(); I
!= E
; ++I
) {
143 if (isa
<PointerType
>(InnerTy
)) return true;
144 if (isa
<CompositeType
>(InnerTy
))
145 Types
.push_back(InnerTy
);
150 if (--Limit
== 0) return true;
151 } while (!Types
.empty());
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
158 static bool IsSafeComputationToRemove(
159 Value
*V
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
161 if (isa
<Constant
>(V
))
165 if (isa
<LoadInst
>(V
) || isa
<InvokeInst
>(V
) || isa
<Argument
>(V
) ||
168 if (isAllocationFn(V
, GetTLI
))
171 Instruction
*I
= cast
<Instruction
>(V
);
172 if (I
->mayHaveSideEffects())
174 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
175 if (!GEP
->hasAllConstantIndices())
177 } else if (I
->getNumOperands() != 1) {
181 V
= I
->getOperand(0);
185 /// This GV is a pointer root. Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
189 CleanupPointerRootUsers(GlobalVariable
*GV
,
190 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
191 // A brief explanation of leak checkers. The goal is to find bugs where
192 // pointers are forgotten, causing an accumulating growth in memory
193 // usage over time. The common strategy for leak checkers is to whitelist the
194 // memory pointed to by globals at exit. This is popular because it also
195 // solves another problem where the main thread of a C++ program may shut down
196 // before other threads that are still expecting to use those globals. To
197 // handle that case, we expect the program may create a singleton and never
200 bool Changed
= false;
202 // If Dead[n].first is the only use of a malloc result, we can delete its
203 // chain of computation and the store to the global in Dead[n].second.
204 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 32> Dead
;
206 // Constants can't be pointers to dynamically allocated memory.
207 for (Value::user_iterator UI
= GV
->user_begin(), E
= GV
->user_end();
210 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
211 Value
*V
= SI
->getValueOperand();
212 if (isa
<Constant
>(V
)) {
214 SI
->eraseFromParent();
215 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
217 Dead
.push_back(std::make_pair(I
, SI
));
219 } else if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(U
)) {
220 if (isa
<Constant
>(MSI
->getValue())) {
222 MSI
->eraseFromParent();
223 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MSI
->getValue())) {
225 Dead
.push_back(std::make_pair(I
, MSI
));
227 } else if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(U
)) {
228 GlobalVariable
*MemSrc
= dyn_cast
<GlobalVariable
>(MTI
->getSource());
229 if (MemSrc
&& MemSrc
->isConstant()) {
231 MTI
->eraseFromParent();
232 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MemSrc
)) {
234 Dead
.push_back(std::make_pair(I
, MTI
));
236 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
237 if (CE
->use_empty()) {
238 CE
->destroyConstant();
241 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
242 if (isSafeToDestroyConstant(C
)) {
243 C
->destroyConstant();
244 // This could have invalidated UI, start over from scratch.
246 CleanupPointerRootUsers(GV
, GetTLI
);
252 for (int i
= 0, e
= Dead
.size(); i
!= e
; ++i
) {
253 if (IsSafeComputationToRemove(Dead
[i
].first
, GetTLI
)) {
254 Dead
[i
].second
->eraseFromParent();
255 Instruction
*I
= Dead
[i
].first
;
257 if (isAllocationFn(I
, GetTLI
))
259 Instruction
*J
= dyn_cast
<Instruction
>(I
->getOperand(0));
262 I
->eraseFromParent();
265 I
->eraseFromParent();
272 /// We just marked GV constant. Loop over all users of the global, cleaning up
273 /// the obvious ones. This is largely just a quick scan over the use list to
274 /// clean up the easy and obvious cruft. This returns true if it made a change.
275 static bool CleanupConstantGlobalUsers(
276 Value
*V
, Constant
*Init
, const DataLayout
&DL
,
277 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
278 bool Changed
= false;
279 // Note that we need to use a weak value handle for the worklist items. When
280 // we delete a constant array, we may also be holding pointer to one of its
281 // elements (or an element of one of its elements if we're dealing with an
282 // array of arrays) in the worklist.
283 SmallVector
<WeakTrackingVH
, 8> WorkList(V
->user_begin(), V
->user_end());
284 while (!WorkList
.empty()) {
285 Value
*UV
= WorkList
.pop_back_val();
289 User
*U
= cast
<User
>(UV
);
291 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
293 // Replace the load with the initializer.
294 LI
->replaceAllUsesWith(Init
);
295 LI
->eraseFromParent();
298 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
299 // Store must be unreachable or storing Init into the global.
300 SI
->eraseFromParent();
302 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
303 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
304 Constant
*SubInit
= nullptr;
306 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
307 Changed
|= CleanupConstantGlobalUsers(CE
, SubInit
, DL
, GetTLI
);
308 } else if ((CE
->getOpcode() == Instruction::BitCast
&&
309 CE
->getType()->isPointerTy()) ||
310 CE
->getOpcode() == Instruction::AddrSpaceCast
) {
311 // Pointer cast, delete any stores and memsets to the global.
312 Changed
|= CleanupConstantGlobalUsers(CE
, nullptr, DL
, GetTLI
);
315 if (CE
->use_empty()) {
316 CE
->destroyConstant();
319 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
320 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322 // and will invalidate our notion of what Init is.
323 Constant
*SubInit
= nullptr;
324 if (!isa
<ConstantExpr
>(GEP
->getOperand(0))) {
325 ConstantExpr
*CE
= dyn_cast_or_null
<ConstantExpr
>(
326 ConstantFoldInstruction(GEP
, DL
, &GetTLI(*GEP
->getFunction())));
327 if (Init
&& CE
&& CE
->getOpcode() == Instruction::GetElementPtr
)
328 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
330 // If the initializer is an all-null value and we have an inbounds GEP,
331 // we already know what the result of any load from that GEP is.
332 // TODO: Handle splats.
333 if (Init
&& isa
<ConstantAggregateZero
>(Init
) && GEP
->isInBounds())
334 SubInit
= Constant::getNullValue(GEP
->getResultElementType());
336 Changed
|= CleanupConstantGlobalUsers(GEP
, SubInit
, DL
, GetTLI
);
338 if (GEP
->use_empty()) {
339 GEP
->eraseFromParent();
342 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
)) { // memset/cpy/mv
343 if (MI
->getRawDest() == V
) {
344 MI
->eraseFromParent();
348 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
349 // If we have a chain of dead constantexprs or other things dangling from
350 // us, and if they are all dead, nuke them without remorse.
351 if (isSafeToDestroyConstant(C
)) {
352 C
->destroyConstant();
353 CleanupConstantGlobalUsers(V
, Init
, DL
, GetTLI
);
361 static bool isSafeSROAElementUse(Value
*V
);
363 /// Return true if the specified GEP is a safe user of a derived
364 /// expression from a global that we want to SROA.
365 static bool isSafeSROAGEP(User
*U
) {
366 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
367 // don't like < 3 operand CE's, and we don't like non-constant integer
368 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
370 if (U
->getNumOperands() < 3 || !isa
<Constant
>(U
->getOperand(1)) ||
371 !cast
<Constant
>(U
->getOperand(1))->isNullValue())
374 gep_type_iterator GEPI
= gep_type_begin(U
), E
= gep_type_end(U
);
375 ++GEPI
; // Skip over the pointer index.
377 // For all other level we require that the indices are constant and inrange.
378 // In particular, consider: A[0][i]. We cannot know that the user isn't doing
379 // invalid things like allowing i to index an out-of-range subscript that
380 // accesses A[1]. This can also happen between different members of a struct
382 for (; GEPI
!= E
; ++GEPI
) {
386 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPI
.getOperand());
387 if (!IdxVal
|| (GEPI
.isBoundedSequential() &&
388 IdxVal
->getZExtValue() >= GEPI
.getSequentialNumElements()))
392 return llvm::all_of(U
->users(),
393 [](User
*UU
) { return isSafeSROAElementUse(UU
); });
396 /// Return true if the specified instruction is a safe user of a derived
397 /// expression from a global that we want to SROA.
398 static bool isSafeSROAElementUse(Value
*V
) {
399 // We might have a dead and dangling constant hanging off of here.
400 if (Constant
*C
= dyn_cast
<Constant
>(V
))
401 return isSafeToDestroyConstant(C
);
403 Instruction
*I
= dyn_cast
<Instruction
>(V
);
404 if (!I
) return false;
407 if (isa
<LoadInst
>(I
)) return true;
409 // Stores *to* the pointer are ok.
410 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
411 return SI
->getOperand(0) != V
;
413 // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
414 return isa
<GetElementPtrInst
>(I
) && isSafeSROAGEP(I
);
417 /// Look at all uses of the global and decide whether it is safe for us to
418 /// perform this transformation.
419 static bool GlobalUsersSafeToSRA(GlobalValue
*GV
) {
420 for (User
*U
: GV
->users()) {
421 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
422 if (!isa
<GetElementPtrInst
>(U
) &&
423 (!isa
<ConstantExpr
>(U
) ||
424 cast
<ConstantExpr
>(U
)->getOpcode() != Instruction::GetElementPtr
))
427 // Check the gep and it's users are safe to SRA
428 if (!isSafeSROAGEP(U
))
435 /// Copy over the debug info for a variable to its SRA replacements.
436 static void transferSRADebugInfo(GlobalVariable
*GV
, GlobalVariable
*NGV
,
437 uint64_t FragmentOffsetInBits
,
438 uint64_t FragmentSizeInBits
,
439 unsigned NumElements
) {
440 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
441 GV
->getDebugInfo(GVs
);
442 for (auto *GVE
: GVs
) {
443 DIVariable
*Var
= GVE
->getVariable();
444 DIExpression
*Expr
= GVE
->getExpression();
445 if (NumElements
> 1) {
446 if (auto E
= DIExpression::createFragmentExpression(
447 Expr
, FragmentOffsetInBits
, FragmentSizeInBits
))
452 auto *NGVE
= DIGlobalVariableExpression::get(GVE
->getContext(), Var
, Expr
);
453 NGV
->addDebugInfo(NGVE
);
457 /// Perform scalar replacement of aggregates on the specified global variable.
458 /// This opens the door for other optimizations by exposing the behavior of the
459 /// program in a more fine-grained way. We have determined that this
460 /// transformation is safe already. We return the first global variable we
461 /// insert so that the caller can reprocess it.
462 static GlobalVariable
*SRAGlobal(GlobalVariable
*GV
, const DataLayout
&DL
) {
463 // Make sure this global only has simple uses that we can SRA.
464 if (!GlobalUsersSafeToSRA(GV
))
467 assert(GV
->hasLocalLinkage());
468 Constant
*Init
= GV
->getInitializer();
469 Type
*Ty
= Init
->getType();
471 std::vector
<GlobalVariable
*> NewGlobals
;
472 Module::GlobalListType
&Globals
= GV
->getParent()->getGlobalList();
474 // Get the alignment of the global, either explicit or target-specific.
475 unsigned StartAlignment
= GV
->getAlignment();
476 if (StartAlignment
== 0)
477 StartAlignment
= DL
.getABITypeAlignment(GV
->getType());
479 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
480 unsigned NumElements
= STy
->getNumElements();
481 NewGlobals
.reserve(NumElements
);
482 const StructLayout
&Layout
= *DL
.getStructLayout(STy
);
483 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
484 Constant
*In
= Init
->getAggregateElement(i
);
485 assert(In
&& "Couldn't get element of initializer?");
486 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(i
), false,
487 GlobalVariable::InternalLinkage
,
488 In
, GV
->getName()+"."+Twine(i
),
489 GV
->getThreadLocalMode(),
490 GV
->getType()->getAddressSpace());
491 NGV
->setExternallyInitialized(GV
->isExternallyInitialized());
492 NGV
->copyAttributesFrom(GV
);
493 Globals
.push_back(NGV
);
494 NewGlobals
.push_back(NGV
);
496 // Calculate the known alignment of the field. If the original aggregate
497 // had 256 byte alignment for example, something might depend on that:
498 // propagate info to each field.
499 uint64_t FieldOffset
= Layout
.getElementOffset(i
);
500 Align
NewAlign(MinAlign(StartAlignment
, FieldOffset
));
501 if (NewAlign
> Align(DL
.getABITypeAlignment(STy
->getElementType(i
))))
502 NGV
->setAlignment(NewAlign
);
504 // Copy over the debug info for the variable.
505 uint64_t Size
= DL
.getTypeAllocSizeInBits(NGV
->getValueType());
506 uint64_t FragmentOffsetInBits
= Layout
.getElementOffsetInBits(i
);
507 transferSRADebugInfo(GV
, NGV
, FragmentOffsetInBits
, Size
, NumElements
);
509 } else if (SequentialType
*STy
= dyn_cast
<SequentialType
>(Ty
)) {
510 unsigned NumElements
= STy
->getNumElements();
511 if (NumElements
> 16 && GV
->hasNUsesOrMore(16))
512 return nullptr; // It's not worth it.
513 NewGlobals
.reserve(NumElements
);
514 auto ElTy
= STy
->getElementType();
515 uint64_t EltSize
= DL
.getTypeAllocSize(ElTy
);
516 Align
EltAlign(DL
.getABITypeAlignment(ElTy
));
517 uint64_t FragmentSizeInBits
= DL
.getTypeAllocSizeInBits(ElTy
);
518 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
519 Constant
*In
= Init
->getAggregateElement(i
);
520 assert(In
&& "Couldn't get element of initializer?");
522 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(), false,
523 GlobalVariable::InternalLinkage
,
524 In
, GV
->getName()+"."+Twine(i
),
525 GV
->getThreadLocalMode(),
526 GV
->getType()->getAddressSpace());
527 NGV
->setExternallyInitialized(GV
->isExternallyInitialized());
528 NGV
->copyAttributesFrom(GV
);
529 Globals
.push_back(NGV
);
530 NewGlobals
.push_back(NGV
);
532 // Calculate the known alignment of the field. If the original aggregate
533 // had 256 byte alignment for example, something might depend on that:
534 // propagate info to each field.
535 Align
NewAlign(MinAlign(StartAlignment
, EltSize
* i
));
536 if (NewAlign
> EltAlign
)
537 NGV
->setAlignment(NewAlign
);
538 transferSRADebugInfo(GV
, NGV
, FragmentSizeInBits
* i
, FragmentSizeInBits
,
543 if (NewGlobals
.empty())
546 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV
<< "\n");
548 Constant
*NullInt
=Constant::getNullValue(Type::getInt32Ty(GV
->getContext()));
550 // Loop over all of the uses of the global, replacing the constantexpr geps,
551 // with smaller constantexpr geps or direct references.
552 while (!GV
->use_empty()) {
553 User
*GEP
= GV
->user_back();
554 assert(((isa
<ConstantExpr
>(GEP
) &&
555 cast
<ConstantExpr
>(GEP
)->getOpcode()==Instruction::GetElementPtr
)||
556 isa
<GetElementPtrInst
>(GEP
)) && "NonGEP CE's are not SRAable!");
558 // Ignore the 1th operand, which has to be zero or else the program is quite
559 // broken (undefined). Get the 2nd operand, which is the structure or array
561 unsigned Val
= cast
<ConstantInt
>(GEP
->getOperand(2))->getZExtValue();
562 if (Val
>= NewGlobals
.size()) Val
= 0; // Out of bound array access.
564 Value
*NewPtr
= NewGlobals
[Val
];
565 Type
*NewTy
= NewGlobals
[Val
]->getValueType();
567 // Form a shorter GEP if needed.
568 if (GEP
->getNumOperands() > 3) {
569 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GEP
)) {
570 SmallVector
<Constant
*, 8> Idxs
;
571 Idxs
.push_back(NullInt
);
572 for (unsigned i
= 3, e
= CE
->getNumOperands(); i
!= e
; ++i
)
573 Idxs
.push_back(CE
->getOperand(i
));
575 ConstantExpr::getGetElementPtr(NewTy
, cast
<Constant
>(NewPtr
), Idxs
);
577 GetElementPtrInst
*GEPI
= cast
<GetElementPtrInst
>(GEP
);
578 SmallVector
<Value
*, 8> Idxs
;
579 Idxs
.push_back(NullInt
);
580 for (unsigned i
= 3, e
= GEPI
->getNumOperands(); i
!= e
; ++i
)
581 Idxs
.push_back(GEPI
->getOperand(i
));
582 NewPtr
= GetElementPtrInst::Create(
583 NewTy
, NewPtr
, Idxs
, GEPI
->getName() + "." + Twine(Val
), GEPI
);
586 GEP
->replaceAllUsesWith(NewPtr
);
588 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(GEP
))
589 GEPI
->eraseFromParent();
591 cast
<ConstantExpr
>(GEP
)->destroyConstant();
594 // Delete the old global, now that it is dead.
598 // Loop over the new globals array deleting any globals that are obviously
599 // dead. This can arise due to scalarization of a structure or an array that
600 // has elements that are dead.
601 unsigned FirstGlobal
= 0;
602 for (unsigned i
= 0, e
= NewGlobals
.size(); i
!= e
; ++i
)
603 if (NewGlobals
[i
]->use_empty()) {
604 Globals
.erase(NewGlobals
[i
]);
605 if (FirstGlobal
== i
) ++FirstGlobal
;
608 return FirstGlobal
!= NewGlobals
.size() ? NewGlobals
[FirstGlobal
] : nullptr;
611 /// Return true if all users of the specified value will trap if the value is
612 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
613 /// reprocessing them.
614 static bool AllUsesOfValueWillTrapIfNull(const Value
*V
,
615 SmallPtrSetImpl
<const PHINode
*> &PHIs
) {
616 for (const User
*U
: V
->users()) {
617 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
)) {
618 // If null pointer is considered valid, then all uses are non-trapping.
619 // Non address-space 0 globals have already been pruned by the caller.
620 if (NullPointerIsDefined(I
->getFunction()))
623 if (isa
<LoadInst
>(U
)) {
625 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
626 if (SI
->getOperand(0) == V
) {
627 //cerr << "NONTRAPPING USE: " << *U;
628 return false; // Storing the value.
630 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
631 if (CI
->getCalledValue() != V
) {
632 //cerr << "NONTRAPPING USE: " << *U;
633 return false; // Not calling the ptr
635 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(U
)) {
636 if (II
->getCalledValue() != V
) {
637 //cerr << "NONTRAPPING USE: " << *U;
638 return false; // Not calling the ptr
640 } else if (const BitCastInst
*CI
= dyn_cast
<BitCastInst
>(U
)) {
641 if (!AllUsesOfValueWillTrapIfNull(CI
, PHIs
)) return false;
642 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
643 if (!AllUsesOfValueWillTrapIfNull(GEPI
, PHIs
)) return false;
644 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
645 // If we've already seen this phi node, ignore it, it has already been
647 if (PHIs
.insert(PN
).second
&& !AllUsesOfValueWillTrapIfNull(PN
, PHIs
))
649 } else if (isa
<ICmpInst
>(U
) &&
650 isa
<ConstantPointerNull
>(U
->getOperand(1))) {
651 // Ignore icmp X, null
653 //cerr << "NONTRAPPING USE: " << *U;
660 /// Return true if all uses of any loads from GV will trap if the loaded value
661 /// is null. Note that this also permits comparisons of the loaded value
662 /// against null, as a special case.
663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable
*GV
) {
664 for (const User
*U
: GV
->users())
665 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
666 SmallPtrSet
<const PHINode
*, 8> PHIs
;
667 if (!AllUsesOfValueWillTrapIfNull(LI
, PHIs
))
669 } else if (isa
<StoreInst
>(U
)) {
670 // Ignore stores to the global.
672 // We don't know or understand this user, bail out.
673 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
679 static bool OptimizeAwayTrappingUsesOfValue(Value
*V
, Constant
*NewV
) {
680 bool Changed
= false;
681 for (auto UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; ) {
682 Instruction
*I
= cast
<Instruction
>(*UI
++);
683 // Uses are non-trapping if null pointer is considered valid.
684 // Non address-space 0 globals are already pruned by the caller.
685 if (NullPointerIsDefined(I
->getFunction()))
687 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
688 LI
->setOperand(0, NewV
);
690 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
691 if (SI
->getOperand(1) == V
) {
692 SI
->setOperand(1, NewV
);
695 } else if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
697 if (CS
.getCalledValue() == V
) {
698 // Calling through the pointer! Turn into a direct call, but be careful
699 // that the pointer is not also being passed as an argument.
700 CS
.setCalledFunction(NewV
);
702 bool PassedAsArg
= false;
703 for (unsigned i
= 0, e
= CS
.arg_size(); i
!= e
; ++i
)
704 if (CS
.getArgument(i
) == V
) {
706 CS
.setArgument(i
, NewV
);
710 // Being passed as an argument also. Be careful to not invalidate UI!
711 UI
= V
->user_begin();
714 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
715 Changed
|= OptimizeAwayTrappingUsesOfValue(CI
,
716 ConstantExpr::getCast(CI
->getOpcode(),
717 NewV
, CI
->getType()));
718 if (CI
->use_empty()) {
720 CI
->eraseFromParent();
722 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
723 // Should handle GEP here.
724 SmallVector
<Constant
*, 8> Idxs
;
725 Idxs
.reserve(GEPI
->getNumOperands()-1);
726 for (User::op_iterator i
= GEPI
->op_begin() + 1, e
= GEPI
->op_end();
728 if (Constant
*C
= dyn_cast
<Constant
>(*i
))
732 if (Idxs
.size() == GEPI
->getNumOperands()-1)
733 Changed
|= OptimizeAwayTrappingUsesOfValue(
734 GEPI
, ConstantExpr::getGetElementPtr(GEPI
->getSourceElementType(),
736 if (GEPI
->use_empty()) {
738 GEPI
->eraseFromParent();
746 /// The specified global has only one non-null value stored into it. If there
747 /// are uses of the loaded value that would trap if the loaded value is
748 /// dynamically null, then we know that they cannot be reachable with a null
749 /// optimize away the load.
750 static bool OptimizeAwayTrappingUsesOfLoads(
751 GlobalVariable
*GV
, Constant
*LV
, const DataLayout
&DL
,
752 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
753 bool Changed
= false;
755 // Keep track of whether we are able to remove all the uses of the global
756 // other than the store that defines it.
757 bool AllNonStoreUsesGone
= true;
759 // Replace all uses of loads with uses of uses of the stored value.
760 for (Value::user_iterator GUI
= GV
->user_begin(), E
= GV
->user_end(); GUI
!= E
;){
761 User
*GlobalUser
= *GUI
++;
762 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(GlobalUser
)) {
763 Changed
|= OptimizeAwayTrappingUsesOfValue(LI
, LV
);
764 // If we were able to delete all uses of the loads
765 if (LI
->use_empty()) {
766 LI
->eraseFromParent();
769 AllNonStoreUsesGone
= false;
771 } else if (isa
<StoreInst
>(GlobalUser
)) {
772 // Ignore the store that stores "LV" to the global.
773 assert(GlobalUser
->getOperand(1) == GV
&&
774 "Must be storing *to* the global");
776 AllNonStoreUsesGone
= false;
778 // If we get here we could have other crazy uses that are transitively
780 assert((isa
<PHINode
>(GlobalUser
) || isa
<SelectInst
>(GlobalUser
) ||
781 isa
<ConstantExpr
>(GlobalUser
) || isa
<CmpInst
>(GlobalUser
) ||
782 isa
<BitCastInst
>(GlobalUser
) ||
783 isa
<GetElementPtrInst
>(GlobalUser
)) &&
784 "Only expect load and stores!");
789 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
794 // If we nuked all of the loads, then none of the stores are needed either,
795 // nor is the global.
796 if (AllNonStoreUsesGone
) {
797 if (isLeakCheckerRoot(GV
)) {
798 Changed
|= CleanupPointerRootUsers(GV
, GetTLI
);
801 CleanupConstantGlobalUsers(GV
, nullptr, DL
, GetTLI
);
803 if (GV
->use_empty()) {
804 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
806 GV
->eraseFromParent();
813 /// Walk the use list of V, constant folding all of the instructions that are
815 static void ConstantPropUsersOf(Value
*V
, const DataLayout
&DL
,
816 TargetLibraryInfo
*TLI
) {
817 for (Value::user_iterator UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; )
818 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
++))
819 if (Constant
*NewC
= ConstantFoldInstruction(I
, DL
, TLI
)) {
820 I
->replaceAllUsesWith(NewC
);
822 // Advance UI to the next non-I use to avoid invalidating it!
823 // Instructions could multiply use V.
824 while (UI
!= E
&& *UI
== I
)
826 if (isInstructionTriviallyDead(I
, TLI
))
827 I
->eraseFromParent();
831 /// This function takes the specified global variable, and transforms the
832 /// program as if it always contained the result of the specified malloc.
833 /// Because it is always the result of the specified malloc, there is no reason
834 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
835 /// loads of GV as uses of the new global.
836 static GlobalVariable
*
837 OptimizeGlobalAddressOfMalloc(GlobalVariable
*GV
, CallInst
*CI
, Type
*AllocTy
,
838 ConstantInt
*NElements
, const DataLayout
&DL
,
839 TargetLibraryInfo
*TLI
) {
840 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV
<< " CALL = " << *CI
844 if (NElements
->getZExtValue() == 1)
845 GlobalType
= AllocTy
;
847 // If we have an array allocation, the global variable is of an array.
848 GlobalType
= ArrayType::get(AllocTy
, NElements
->getZExtValue());
850 // Create the new global variable. The contents of the malloc'd memory is
851 // undefined, so initialize with an undef value.
852 GlobalVariable
*NewGV
= new GlobalVariable(
853 *GV
->getParent(), GlobalType
, false, GlobalValue::InternalLinkage
,
854 UndefValue::get(GlobalType
), GV
->getName() + ".body", nullptr,
855 GV
->getThreadLocalMode());
857 // If there are bitcast users of the malloc (which is typical, usually we have
858 // a malloc + bitcast) then replace them with uses of the new global. Update
859 // other users to use the global as well.
860 BitCastInst
*TheBC
= nullptr;
861 while (!CI
->use_empty()) {
862 Instruction
*User
= cast
<Instruction
>(CI
->user_back());
863 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
864 if (BCI
->getType() == NewGV
->getType()) {
865 BCI
->replaceAllUsesWith(NewGV
);
866 BCI
->eraseFromParent();
868 BCI
->setOperand(0, NewGV
);
872 TheBC
= new BitCastInst(NewGV
, CI
->getType(), "newgv", CI
);
873 User
->replaceUsesOfWith(CI
, TheBC
);
877 Constant
*RepValue
= NewGV
;
878 if (NewGV
->getType() != GV
->getValueType())
879 RepValue
= ConstantExpr::getBitCast(RepValue
, GV
->getValueType());
881 // If there is a comparison against null, we will insert a global bool to
882 // keep track of whether the global was initialized yet or not.
883 GlobalVariable
*InitBool
=
884 new GlobalVariable(Type::getInt1Ty(GV
->getContext()), false,
885 GlobalValue::InternalLinkage
,
886 ConstantInt::getFalse(GV
->getContext()),
887 GV
->getName()+".init", GV
->getThreadLocalMode());
888 bool InitBoolUsed
= false;
890 // Loop over all uses of GV, processing them in turn.
891 while (!GV
->use_empty()) {
892 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(GV
->user_back())) {
893 // The global is initialized when the store to it occurs.
894 new StoreInst(ConstantInt::getTrue(GV
->getContext()), InitBool
, false, 0,
895 SI
->getOrdering(), SI
->getSyncScopeID(), SI
);
896 SI
->eraseFromParent();
900 LoadInst
*LI
= cast
<LoadInst
>(GV
->user_back());
901 while (!LI
->use_empty()) {
902 Use
&LoadUse
= *LI
->use_begin();
903 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(LoadUse
.getUser());
909 // Replace the cmp X, 0 with a use of the bool value.
910 // Sink the load to where the compare was, if atomic rules allow us to.
911 Value
*LV
= new LoadInst(InitBool
->getValueType(), InitBool
,
912 InitBool
->getName() + ".val", false, 0,
913 LI
->getOrdering(), LI
->getSyncScopeID(),
914 LI
->isUnordered() ? (Instruction
*)ICI
: LI
);
916 switch (ICI
->getPredicate()) {
917 default: llvm_unreachable("Unknown ICmp Predicate!");
918 case ICmpInst::ICMP_ULT
:
919 case ICmpInst::ICMP_SLT
: // X < null -> always false
920 LV
= ConstantInt::getFalse(GV
->getContext());
922 case ICmpInst::ICMP_ULE
:
923 case ICmpInst::ICMP_SLE
:
924 case ICmpInst::ICMP_EQ
:
925 LV
= BinaryOperator::CreateNot(LV
, "notinit", ICI
);
927 case ICmpInst::ICMP_NE
:
928 case ICmpInst::ICMP_UGE
:
929 case ICmpInst::ICMP_SGE
:
930 case ICmpInst::ICMP_UGT
:
931 case ICmpInst::ICMP_SGT
:
934 ICI
->replaceAllUsesWith(LV
);
935 ICI
->eraseFromParent();
937 LI
->eraseFromParent();
940 // If the initialization boolean was used, insert it, otherwise delete it.
942 while (!InitBool
->use_empty()) // Delete initializations
943 cast
<StoreInst
>(InitBool
->user_back())->eraseFromParent();
946 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), InitBool
);
948 // Now the GV is dead, nuke it and the malloc..
949 GV
->eraseFromParent();
950 CI
->eraseFromParent();
952 // To further other optimizations, loop over all users of NewGV and try to
953 // constant prop them. This will promote GEP instructions with constant
954 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
955 ConstantPropUsersOf(NewGV
, DL
, TLI
);
956 if (RepValue
!= NewGV
)
957 ConstantPropUsersOf(RepValue
, DL
, TLI
);
962 /// Scan the use-list of V checking to make sure that there are no complex uses
963 /// of V. We permit simple things like dereferencing the pointer, but not
964 /// storing through the address, unless it is to the specified global.
965 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction
*V
,
966 const GlobalVariable
*GV
,
967 SmallPtrSetImpl
<const PHINode
*> &PHIs
) {
968 for (const User
*U
: V
->users()) {
969 const Instruction
*Inst
= cast
<Instruction
>(U
);
971 if (isa
<LoadInst
>(Inst
) || isa
<CmpInst
>(Inst
)) {
972 continue; // Fine, ignore.
975 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
976 if (SI
->getOperand(0) == V
&& SI
->getOperand(1) != GV
)
977 return false; // Storing the pointer itself... bad.
978 continue; // Otherwise, storing through it, or storing into GV... fine.
981 // Must index into the array and into the struct.
982 if (isa
<GetElementPtrInst
>(Inst
) && Inst
->getNumOperands() >= 3) {
983 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst
, GV
, PHIs
))
988 if (const PHINode
*PN
= dyn_cast
<PHINode
>(Inst
)) {
989 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
991 if (PHIs
.insert(PN
).second
)
992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN
, GV
, PHIs
))
997 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Inst
)) {
998 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI
, GV
, PHIs
))
1008 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the
1009 /// allocation into loads from the global and uses of the resultant pointer.
1010 /// Further, delete the store into GV. This assumes that these value pass the
1011 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1012 static void ReplaceUsesOfMallocWithGlobal(Instruction
*Alloc
,
1013 GlobalVariable
*GV
) {
1014 while (!Alloc
->use_empty()) {
1015 Instruction
*U
= cast
<Instruction
>(*Alloc
->user_begin());
1016 Instruction
*InsertPt
= U
;
1017 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1018 // If this is the store of the allocation into the global, remove it.
1019 if (SI
->getOperand(1) == GV
) {
1020 SI
->eraseFromParent();
1023 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
1024 // Insert the load in the corresponding predecessor, not right before the
1026 InsertPt
= PN
->getIncomingBlock(*Alloc
->use_begin())->getTerminator();
1027 } else if (isa
<BitCastInst
>(U
)) {
1028 // Must be bitcast between the malloc and store to initialize the global.
1029 ReplaceUsesOfMallocWithGlobal(U
, GV
);
1030 U
->eraseFromParent();
1032 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
1033 // If this is a "GEP bitcast" and the user is a store to the global, then
1034 // just process it as a bitcast.
1035 if (GEPI
->hasAllZeroIndices() && GEPI
->hasOneUse())
1036 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(GEPI
->user_back()))
1037 if (SI
->getOperand(1) == GV
) {
1038 // Must be bitcast GEP between the malloc and store to initialize
1040 ReplaceUsesOfMallocWithGlobal(GEPI
, GV
);
1041 GEPI
->eraseFromParent();
1046 // Insert a load from the global, and use it instead of the malloc.
1048 new LoadInst(GV
->getValueType(), GV
, GV
->getName() + ".val", InsertPt
);
1049 U
->replaceUsesOfWith(Alloc
, NL
);
1053 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1054 /// perform heap SRA on. This permits GEP's that index through the array and
1055 /// struct field, icmps of null, and PHIs.
1056 static bool LoadUsesSimpleEnoughForHeapSRA(const Value
*V
,
1057 SmallPtrSetImpl
<const PHINode
*> &LoadUsingPHIs
,
1058 SmallPtrSetImpl
<const PHINode
*> &LoadUsingPHIsPerLoad
) {
1059 // We permit two users of the load: setcc comparing against the null
1060 // pointer, and a getelementptr of a specific form.
1061 for (const User
*U
: V
->users()) {
1062 const Instruction
*UI
= cast
<Instruction
>(U
);
1064 // Comparison against null is ok.
1065 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UI
)) {
1066 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
1071 // getelementptr is also ok, but only a simple form.
1072 if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(UI
)) {
1073 // Must index into the array and into the struct.
1074 if (GEPI
->getNumOperands() < 3)
1077 // Otherwise the GEP is ok.
1081 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UI
)) {
1082 if (!LoadUsingPHIsPerLoad
.insert(PN
).second
)
1083 // This means some phi nodes are dependent on each other.
1084 // Avoid infinite looping!
1086 if (!LoadUsingPHIs
.insert(PN
).second
)
1087 // If we have already analyzed this PHI, then it is safe.
1090 // Make sure all uses of the PHI are simple enough to transform.
1091 if (!LoadUsesSimpleEnoughForHeapSRA(PN
,
1092 LoadUsingPHIs
, LoadUsingPHIsPerLoad
))
1098 // Otherwise we don't know what this is, not ok.
1105 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1107 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable
*GV
,
1108 Instruction
*StoredVal
) {
1109 SmallPtrSet
<const PHINode
*, 32> LoadUsingPHIs
;
1110 SmallPtrSet
<const PHINode
*, 32> LoadUsingPHIsPerLoad
;
1111 for (const User
*U
: GV
->users())
1112 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1113 if (!LoadUsesSimpleEnoughForHeapSRA(LI
, LoadUsingPHIs
,
1114 LoadUsingPHIsPerLoad
))
1116 LoadUsingPHIsPerLoad
.clear();
1119 // If we reach here, we know that all uses of the loads and transitive uses
1120 // (through PHI nodes) are simple enough to transform. However, we don't know
1121 // that all inputs the to the PHI nodes are in the same equivalence sets.
1122 // Check to verify that all operands of the PHIs are either PHIS that can be
1123 // transformed, loads from GV, or MI itself.
1124 for (const PHINode
*PN
: LoadUsingPHIs
) {
1125 for (unsigned op
= 0, e
= PN
->getNumIncomingValues(); op
!= e
; ++op
) {
1126 Value
*InVal
= PN
->getIncomingValue(op
);
1128 // PHI of the stored value itself is ok.
1129 if (InVal
== StoredVal
) continue;
1131 if (const PHINode
*InPN
= dyn_cast
<PHINode
>(InVal
)) {
1132 // One of the PHIs in our set is (optimistically) ok.
1133 if (LoadUsingPHIs
.count(InPN
))
1138 // Load from GV is ok.
1139 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(InVal
))
1140 if (LI
->getOperand(0) == GV
)
1145 // Anything else is rejected.
1153 static Value
*GetHeapSROAValue(Value
*V
, unsigned FieldNo
,
1154 DenseMap
<Value
*, std::vector
<Value
*>> &InsertedScalarizedValues
,
1155 std::vector
<std::pair
<PHINode
*, unsigned>> &PHIsToRewrite
) {
1156 std::vector
<Value
*> &FieldVals
= InsertedScalarizedValues
[V
];
1158 if (FieldNo
>= FieldVals
.size())
1159 FieldVals
.resize(FieldNo
+1);
1161 // If we already have this value, just reuse the previously scalarized
1163 if (Value
*FieldVal
= FieldVals
[FieldNo
])
1166 // Depending on what instruction this is, we have several cases.
1168 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(V
)) {
1169 // This is a scalarized version of the load from the global. Just create
1170 // a new Load of the scalarized global.
1171 Value
*V
= GetHeapSROAValue(LI
->getOperand(0), FieldNo
,
1172 InsertedScalarizedValues
, PHIsToRewrite
);
1173 Result
= new LoadInst(V
->getType()->getPointerElementType(), V
,
1174 LI
->getName() + ".f" + Twine(FieldNo
), LI
);
1176 PHINode
*PN
= cast
<PHINode
>(V
);
1177 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1180 PointerType
*PTy
= cast
<PointerType
>(PN
->getType());
1181 StructType
*ST
= cast
<StructType
>(PTy
->getElementType());
1183 unsigned AS
= PTy
->getAddressSpace();
1185 PHINode::Create(PointerType::get(ST
->getElementType(FieldNo
), AS
),
1186 PN
->getNumIncomingValues(),
1187 PN
->getName()+".f"+Twine(FieldNo
), PN
);
1189 PHIsToRewrite
.push_back(std::make_pair(PN
, FieldNo
));
1192 return FieldVals
[FieldNo
] = Result
;
1195 /// Given a load instruction and a value derived from the load, rewrite the
1196 /// derived value to use the HeapSRoA'd load.
1197 static void RewriteHeapSROALoadUser(Instruction
*LoadUser
,
1198 DenseMap
<Value
*, std::vector
<Value
*>> &InsertedScalarizedValues
,
1199 std::vector
<std::pair
<PHINode
*, unsigned>> &PHIsToRewrite
) {
1200 // If this is a comparison against null, handle it.
1201 if (ICmpInst
*SCI
= dyn_cast
<ICmpInst
>(LoadUser
)) {
1202 assert(isa
<ConstantPointerNull
>(SCI
->getOperand(1)));
1203 // If we have a setcc of the loaded pointer, we can use a setcc of any
1205 Value
*NPtr
= GetHeapSROAValue(SCI
->getOperand(0), 0,
1206 InsertedScalarizedValues
, PHIsToRewrite
);
1208 Value
*New
= new ICmpInst(SCI
, SCI
->getPredicate(), NPtr
,
1209 Constant::getNullValue(NPtr
->getType()),
1211 SCI
->replaceAllUsesWith(New
);
1212 SCI
->eraseFromParent();
1216 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1217 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(LoadUser
)) {
1218 assert(GEPI
->getNumOperands() >= 3 && isa
<ConstantInt
>(GEPI
->getOperand(2))
1219 && "Unexpected GEPI!");
1221 // Load the pointer for this field.
1222 unsigned FieldNo
= cast
<ConstantInt
>(GEPI
->getOperand(2))->getZExtValue();
1223 Value
*NewPtr
= GetHeapSROAValue(GEPI
->getOperand(0), FieldNo
,
1224 InsertedScalarizedValues
, PHIsToRewrite
);
1226 // Create the new GEP idx vector.
1227 SmallVector
<Value
*, 8> GEPIdx
;
1228 GEPIdx
.push_back(GEPI
->getOperand(1));
1229 GEPIdx
.append(GEPI
->op_begin()+3, GEPI
->op_end());
1231 Value
*NGEPI
= GetElementPtrInst::Create(GEPI
->getResultElementType(), NewPtr
, GEPIdx
,
1232 GEPI
->getName(), GEPI
);
1233 GEPI
->replaceAllUsesWith(NGEPI
);
1234 GEPI
->eraseFromParent();
1238 // Recursively transform the users of PHI nodes. This will lazily create the
1239 // PHIs that are needed for individual elements. Keep track of what PHIs we
1240 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1241 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1242 // already been seen first by another load, so its uses have already been
1244 PHINode
*PN
= cast
<PHINode
>(LoadUser
);
1245 if (!InsertedScalarizedValues
.insert(std::make_pair(PN
,
1246 std::vector
<Value
*>())).second
)
1249 // If this is the first time we've seen this PHI, recursively process all
1251 for (auto UI
= PN
->user_begin(), E
= PN
->user_end(); UI
!= E
;) {
1252 Instruction
*User
= cast
<Instruction
>(*UI
++);
1253 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1257 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the
1258 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead.
1259 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1260 static void RewriteUsesOfLoadForHeapSRoA(LoadInst
*Load
,
1261 DenseMap
<Value
*, std::vector
<Value
*>> &InsertedScalarizedValues
,
1262 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1263 for (auto UI
= Load
->user_begin(), E
= Load
->user_end(); UI
!= E
;) {
1264 Instruction
*User
= cast
<Instruction
>(*UI
++);
1265 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1268 if (Load
->use_empty()) {
1269 Load
->eraseFromParent();
1270 InsertedScalarizedValues
.erase(Load
);
1274 /// CI is an allocation of an array of structures. Break it up into multiple
1275 /// allocations of arrays of the fields.
1276 static GlobalVariable
*PerformHeapAllocSRoA(GlobalVariable
*GV
, CallInst
*CI
,
1277 Value
*NElems
, const DataLayout
&DL
,
1278 const TargetLibraryInfo
*TLI
) {
1279 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV
<< " MALLOC = " << *CI
1281 Type
*MAT
= getMallocAllocatedType(CI
, TLI
);
1282 StructType
*STy
= cast
<StructType
>(MAT
);
1284 // There is guaranteed to be at least one use of the malloc (storing
1285 // it into GV). If there are other uses, change them to be uses of
1286 // the global to simplify later code. This also deletes the store
1288 ReplaceUsesOfMallocWithGlobal(CI
, GV
);
1290 // Okay, at this point, there are no users of the malloc. Insert N
1291 // new mallocs at the same place as CI, and N globals.
1292 std::vector
<Value
*> FieldGlobals
;
1293 std::vector
<Value
*> FieldMallocs
;
1295 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1296 CI
->getOperandBundlesAsDefs(OpBundles
);
1298 unsigned AS
= GV
->getType()->getPointerAddressSpace();
1299 for (unsigned FieldNo
= 0, e
= STy
->getNumElements(); FieldNo
!= e
;++FieldNo
){
1300 Type
*FieldTy
= STy
->getElementType(FieldNo
);
1301 PointerType
*PFieldTy
= PointerType::get(FieldTy
, AS
);
1303 GlobalVariable
*NGV
= new GlobalVariable(
1304 *GV
->getParent(), PFieldTy
, false, GlobalValue::InternalLinkage
,
1305 Constant::getNullValue(PFieldTy
), GV
->getName() + ".f" + Twine(FieldNo
),
1306 nullptr, GV
->getThreadLocalMode());
1307 NGV
->copyAttributesFrom(GV
);
1308 FieldGlobals
.push_back(NGV
);
1310 unsigned TypeSize
= DL
.getTypeAllocSize(FieldTy
);
1311 if (StructType
*ST
= dyn_cast
<StructType
>(FieldTy
))
1312 TypeSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
1313 Type
*IntPtrTy
= DL
.getIntPtrType(CI
->getType());
1314 Value
*NMI
= CallInst::CreateMalloc(CI
, IntPtrTy
, FieldTy
,
1315 ConstantInt::get(IntPtrTy
, TypeSize
),
1316 NElems
, OpBundles
, nullptr,
1317 CI
->getName() + ".f" + Twine(FieldNo
));
1318 FieldMallocs
.push_back(NMI
);
1319 new StoreInst(NMI
, NGV
, CI
);
1322 // The tricky aspect of this transformation is handling the case when malloc
1323 // fails. In the original code, malloc failing would set the result pointer
1324 // of malloc to null. In this case, some mallocs could succeed and others
1325 // could fail. As such, we emit code that looks like this:
1326 // F0 = malloc(field0)
1327 // F1 = malloc(field1)
1328 // F2 = malloc(field2)
1329 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1330 // if (F0) { free(F0); F0 = 0; }
1331 // if (F1) { free(F1); F1 = 0; }
1332 // if (F2) { free(F2); F2 = 0; }
1334 // The malloc can also fail if its argument is too large.
1335 Constant
*ConstantZero
= ConstantInt::get(CI
->getArgOperand(0)->getType(), 0);
1336 Value
*RunningOr
= new ICmpInst(CI
, ICmpInst::ICMP_SLT
, CI
->getArgOperand(0),
1337 ConstantZero
, "isneg");
1338 for (unsigned i
= 0, e
= FieldMallocs
.size(); i
!= e
; ++i
) {
1339 Value
*Cond
= new ICmpInst(CI
, ICmpInst::ICMP_EQ
, FieldMallocs
[i
],
1340 Constant::getNullValue(FieldMallocs
[i
]->getType()),
1342 RunningOr
= BinaryOperator::CreateOr(RunningOr
, Cond
, "tmp", CI
);
1345 // Split the basic block at the old malloc.
1346 BasicBlock
*OrigBB
= CI
->getParent();
1347 BasicBlock
*ContBB
=
1348 OrigBB
->splitBasicBlock(CI
->getIterator(), "malloc_cont");
1350 // Create the block to check the first condition. Put all these blocks at the
1351 // end of the function as they are unlikely to be executed.
1352 BasicBlock
*NullPtrBlock
= BasicBlock::Create(OrigBB
->getContext(),
1354 OrigBB
->getParent());
1356 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1357 // branch on RunningOr.
1358 OrigBB
->getTerminator()->eraseFromParent();
1359 BranchInst::Create(NullPtrBlock
, ContBB
, RunningOr
, OrigBB
);
1361 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1362 // pointer, because some may be null while others are not.
1363 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1365 new LoadInst(cast
<GlobalVariable
>(FieldGlobals
[i
])->getValueType(),
1366 FieldGlobals
[i
], "tmp", NullPtrBlock
);
1367 Value
*Cmp
= new ICmpInst(*NullPtrBlock
, ICmpInst::ICMP_NE
, GVVal
,
1368 Constant::getNullValue(GVVal
->getType()));
1369 BasicBlock
*FreeBlock
= BasicBlock::Create(Cmp
->getContext(), "free_it",
1370 OrigBB
->getParent());
1371 BasicBlock
*NextBlock
= BasicBlock::Create(Cmp
->getContext(), "next",
1372 OrigBB
->getParent());
1373 Instruction
*BI
= BranchInst::Create(FreeBlock
, NextBlock
,
1376 // Fill in FreeBlock.
1377 CallInst::CreateFree(GVVal
, OpBundles
, BI
);
1378 new StoreInst(Constant::getNullValue(GVVal
->getType()), FieldGlobals
[i
],
1380 BranchInst::Create(NextBlock
, FreeBlock
);
1382 NullPtrBlock
= NextBlock
;
1385 BranchInst::Create(ContBB
, NullPtrBlock
);
1387 // CI is no longer needed, remove it.
1388 CI
->eraseFromParent();
1390 /// As we process loads, if we can't immediately update all uses of the load,
1391 /// keep track of what scalarized loads are inserted for a given load.
1392 DenseMap
<Value
*, std::vector
<Value
*>> InsertedScalarizedValues
;
1393 InsertedScalarizedValues
[GV
] = FieldGlobals
;
1395 std::vector
<std::pair
<PHINode
*, unsigned>> PHIsToRewrite
;
1397 // Okay, the malloc site is completely handled. All of the uses of GV are now
1398 // loads, and all uses of those loads are simple. Rewrite them to use loads
1399 // of the per-field globals instead.
1400 for (auto UI
= GV
->user_begin(), E
= GV
->user_end(); UI
!= E
;) {
1401 Instruction
*User
= cast
<Instruction
>(*UI
++);
1403 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1404 RewriteUsesOfLoadForHeapSRoA(LI
, InsertedScalarizedValues
, PHIsToRewrite
);
1408 // Must be a store of null.
1409 StoreInst
*SI
= cast
<StoreInst
>(User
);
1410 assert(isa
<ConstantPointerNull
>(SI
->getOperand(0)) &&
1411 "Unexpected heap-sra user!");
1413 // Insert a store of null into each global.
1414 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1415 Type
*ValTy
= cast
<GlobalValue
>(FieldGlobals
[i
])->getValueType();
1416 Constant
*Null
= Constant::getNullValue(ValTy
);
1417 new StoreInst(Null
, FieldGlobals
[i
], SI
);
1419 // Erase the original store.
1420 SI
->eraseFromParent();
1423 // While we have PHIs that are interesting to rewrite, do it.
1424 while (!PHIsToRewrite
.empty()) {
1425 PHINode
*PN
= PHIsToRewrite
.back().first
;
1426 unsigned FieldNo
= PHIsToRewrite
.back().second
;
1427 PHIsToRewrite
.pop_back();
1428 PHINode
*FieldPN
= cast
<PHINode
>(InsertedScalarizedValues
[PN
][FieldNo
]);
1429 assert(FieldPN
->getNumIncomingValues() == 0 &&"Already processed this phi");
1431 // Add all the incoming values. This can materialize more phis.
1432 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1433 Value
*InVal
= PN
->getIncomingValue(i
);
1434 InVal
= GetHeapSROAValue(InVal
, FieldNo
, InsertedScalarizedValues
,
1436 FieldPN
->addIncoming(InVal
, PN
->getIncomingBlock(i
));
1440 // Drop all inter-phi links and any loads that made it this far.
1441 for (DenseMap
<Value
*, std::vector
<Value
*>>::iterator
1442 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1444 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1445 PN
->dropAllReferences();
1446 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1447 LI
->dropAllReferences();
1450 // Delete all the phis and loads now that inter-references are dead.
1451 for (DenseMap
<Value
*, std::vector
<Value
*>>::iterator
1452 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1454 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1455 PN
->eraseFromParent();
1456 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1457 LI
->eraseFromParent();
1460 // The old global is now dead, remove it.
1461 GV
->eraseFromParent();
1464 return cast
<GlobalVariable
>(FieldGlobals
[0]);
1467 /// This function is called when we see a pointer global variable with a single
1468 /// value stored it that is a malloc or cast of malloc.
1469 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable
*GV
, CallInst
*CI
,
1471 AtomicOrdering Ordering
,
1472 const DataLayout
&DL
,
1473 TargetLibraryInfo
*TLI
) {
1474 // If this is a malloc of an abstract type, don't touch it.
1475 if (!AllocTy
->isSized())
1478 // We can't optimize this global unless all uses of it are *known* to be
1479 // of the malloc value, not of the null initializer value (consider a use
1480 // that compares the global's value against zero to see if the malloc has
1481 // been reached). To do this, we check to see if all uses of the global
1482 // would trap if the global were null: this proves that they must all
1483 // happen after the malloc.
1484 if (!AllUsesOfLoadedValueWillTrapIfNull(GV
))
1487 // We can't optimize this if the malloc itself is used in a complex way,
1488 // for example, being stored into multiple globals. This allows the
1489 // malloc to be stored into the specified global, loaded icmp'd, and
1490 // GEP'd. These are all things we could transform to using the global
1492 SmallPtrSet
<const PHINode
*, 8> PHIs
;
1493 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI
, GV
, PHIs
))
1496 // If we have a global that is only initialized with a fixed size malloc,
1497 // transform the program to use global memory instead of malloc'd memory.
1498 // This eliminates dynamic allocation, avoids an indirection accessing the
1499 // data, and exposes the resultant global to further GlobalOpt.
1500 // We cannot optimize the malloc if we cannot determine malloc array size.
1501 Value
*NElems
= getMallocArraySize(CI
, DL
, TLI
, true);
1505 if (ConstantInt
*NElements
= dyn_cast
<ConstantInt
>(NElems
))
1506 // Restrict this transformation to only working on small allocations
1507 // (2048 bytes currently), as we don't want to introduce a 16M global or
1509 if (NElements
->getZExtValue() * DL
.getTypeAllocSize(AllocTy
) < 2048) {
1510 OptimizeGlobalAddressOfMalloc(GV
, CI
, AllocTy
, NElements
, DL
, TLI
);
1514 // If the allocation is an array of structures, consider transforming this
1515 // into multiple malloc'd arrays, one for each field. This is basically
1516 // SRoA for malloc'd memory.
1518 if (Ordering
!= AtomicOrdering::NotAtomic
)
1521 // If this is an allocation of a fixed size array of structs, analyze as a
1522 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1523 if (NElems
== ConstantInt::get(CI
->getArgOperand(0)->getType(), 1))
1524 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(AllocTy
))
1525 AllocTy
= AT
->getElementType();
1527 StructType
*AllocSTy
= dyn_cast
<StructType
>(AllocTy
);
1531 // This the structure has an unreasonable number of fields, leave it
1533 if (AllocSTy
->getNumElements() <= 16 && AllocSTy
->getNumElements() != 0 &&
1534 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV
, CI
)) {
1536 // If this is a fixed size array, transform the Malloc to be an alloc of
1537 // structs. malloc [100 x struct],1 -> malloc struct, 100
1538 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(getMallocAllocatedType(CI
, TLI
))) {
1539 Type
*IntPtrTy
= DL
.getIntPtrType(CI
->getType());
1540 unsigned TypeSize
= DL
.getStructLayout(AllocSTy
)->getSizeInBytes();
1541 Value
*AllocSize
= ConstantInt::get(IntPtrTy
, TypeSize
);
1542 Value
*NumElements
= ConstantInt::get(IntPtrTy
, AT
->getNumElements());
1543 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1544 CI
->getOperandBundlesAsDefs(OpBundles
);
1545 Instruction
*Malloc
=
1546 CallInst::CreateMalloc(CI
, IntPtrTy
, AllocSTy
, AllocSize
, NumElements
,
1547 OpBundles
, nullptr, CI
->getName());
1548 Instruction
*Cast
= new BitCastInst(Malloc
, CI
->getType(), "tmp", CI
);
1549 CI
->replaceAllUsesWith(Cast
);
1550 CI
->eraseFromParent();
1551 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Malloc
))
1552 CI
= cast
<CallInst
>(BCI
->getOperand(0));
1554 CI
= cast
<CallInst
>(Malloc
);
1557 PerformHeapAllocSRoA(GV
, CI
, getMallocArraySize(CI
, DL
, TLI
, true), DL
,
1565 // Try to optimize globals based on the knowledge that only one value (besides
1566 // its initializer) is ever stored to the global.
1568 optimizeOnceStoredGlobal(GlobalVariable
*GV
, Value
*StoredOnceVal
,
1569 AtomicOrdering Ordering
, const DataLayout
&DL
,
1570 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
1571 // Ignore no-op GEPs and bitcasts.
1572 StoredOnceVal
= StoredOnceVal
->stripPointerCasts();
1574 // If we are dealing with a pointer global that is initialized to null and
1575 // only has one (non-null) value stored into it, then we can optimize any
1576 // users of the loaded value (often calls and loads) that would trap if the
1578 if (GV
->getInitializer()->getType()->isPointerTy() &&
1579 GV
->getInitializer()->isNullValue() &&
1580 !NullPointerIsDefined(
1582 GV
->getInitializer()->getType()->getPointerAddressSpace())) {
1583 if (Constant
*SOVC
= dyn_cast
<Constant
>(StoredOnceVal
)) {
1584 if (GV
->getInitializer()->getType() != SOVC
->getType())
1585 SOVC
= ConstantExpr::getBitCast(SOVC
, GV
->getInitializer()->getType());
1587 // Optimize away any trapping uses of the loaded value.
1588 if (OptimizeAwayTrappingUsesOfLoads(GV
, SOVC
, DL
, GetTLI
))
1590 } else if (CallInst
*CI
= extractMallocCall(StoredOnceVal
, GetTLI
)) {
1591 auto *TLI
= &GetTLI(*CI
->getFunction());
1592 Type
*MallocType
= getMallocAllocatedType(CI
, TLI
);
1593 if (MallocType
&& tryToOptimizeStoreOfMallocToGlobal(GV
, CI
, MallocType
,
1602 /// At this point, we have learned that the only two values ever stored into GV
1603 /// are its initializer and OtherVal. See if we can shrink the global into a
1604 /// boolean and select between the two values whenever it is used. This exposes
1605 /// the values to other scalar optimizations.
1606 static bool TryToShrinkGlobalToBoolean(GlobalVariable
*GV
, Constant
*OtherVal
) {
1607 Type
*GVElType
= GV
->getValueType();
1609 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1610 // an FP value, pointer or vector, don't do this optimization because a select
1611 // between them is very expensive and unlikely to lead to later
1612 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1613 // where v1 and v2 both require constant pool loads, a big loss.
1614 if (GVElType
== Type::getInt1Ty(GV
->getContext()) ||
1615 GVElType
->isFloatingPointTy() ||
1616 GVElType
->isPointerTy() || GVElType
->isVectorTy())
1619 // Walk the use list of the global seeing if all the uses are load or store.
1620 // If there is anything else, bail out.
1621 for (User
*U
: GV
->users())
1622 if (!isa
<LoadInst
>(U
) && !isa
<StoreInst
>(U
))
1625 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV
<< "\n");
1627 // Create the new global, initializing it to false.
1628 GlobalVariable
*NewGV
= new GlobalVariable(Type::getInt1Ty(GV
->getContext()),
1630 GlobalValue::InternalLinkage
,
1631 ConstantInt::getFalse(GV
->getContext()),
1633 GV
->getThreadLocalMode(),
1634 GV
->getType()->getAddressSpace());
1635 NewGV
->copyAttributesFrom(GV
);
1636 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), NewGV
);
1638 Constant
*InitVal
= GV
->getInitializer();
1639 assert(InitVal
->getType() != Type::getInt1Ty(GV
->getContext()) &&
1640 "No reason to shrink to bool!");
1642 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
1643 GV
->getDebugInfo(GVs
);
1645 // If initialized to zero and storing one into the global, we can use a cast
1646 // instead of a select to synthesize the desired value.
1647 bool IsOneZero
= false;
1648 bool EmitOneOrZero
= true;
1649 auto *CI
= dyn_cast
<ConstantInt
>(OtherVal
);
1650 if (CI
&& CI
->getValue().getActiveBits() <= 64) {
1651 IsOneZero
= InitVal
->isNullValue() && CI
->isOne();
1653 auto *CIInit
= dyn_cast
<ConstantInt
>(GV
->getInitializer());
1654 if (CIInit
&& CIInit
->getValue().getActiveBits() <= 64) {
1655 uint64_t ValInit
= CIInit
->getZExtValue();
1656 uint64_t ValOther
= CI
->getZExtValue();
1657 uint64_t ValMinus
= ValOther
- ValInit
;
1659 for(auto *GVe
: GVs
){
1660 DIGlobalVariable
*DGV
= GVe
->getVariable();
1661 DIExpression
*E
= GVe
->getExpression();
1662 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1663 unsigned SizeInOctets
=
1664 DL
.getTypeAllocSizeInBits(NewGV
->getType()->getElementType()) / 8;
1666 // It is expected that the address of global optimized variable is on
1667 // top of the stack. After optimization, value of that variable will
1668 // be ether 0 for initial value or 1 for other value. The following
1669 // expression should return constant integer value depending on the
1670 // value at global object address:
1671 // val * (ValOther - ValInit) + ValInit:
1672 // DW_OP_deref DW_OP_constu <ValMinus>
1673 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1674 SmallVector
<uint64_t, 12> Ops
= {
1675 dwarf::DW_OP_deref_size
, SizeInOctets
,
1676 dwarf::DW_OP_constu
, ValMinus
,
1677 dwarf::DW_OP_mul
, dwarf::DW_OP_constu
, ValInit
,
1679 bool WithStackValue
= true;
1680 E
= DIExpression::prependOpcodes(E
, Ops
, WithStackValue
);
1681 DIGlobalVariableExpression
*DGVE
=
1682 DIGlobalVariableExpression::get(NewGV
->getContext(), DGV
, E
);
1683 NewGV
->addDebugInfo(DGVE
);
1685 EmitOneOrZero
= false;
1689 if (EmitOneOrZero
) {
1690 // FIXME: This will only emit address for debugger on which will
1691 // be written only 0 or 1.
1693 NewGV
->addDebugInfo(GV
);
1696 while (!GV
->use_empty()) {
1697 Instruction
*UI
= cast
<Instruction
>(GV
->user_back());
1698 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
1699 // Change the store into a boolean store.
1700 bool StoringOther
= SI
->getOperand(0) == OtherVal
;
1701 // Only do this if we weren't storing a loaded value.
1703 if (StoringOther
|| SI
->getOperand(0) == InitVal
) {
1704 StoreVal
= ConstantInt::get(Type::getInt1Ty(GV
->getContext()),
1707 // Otherwise, we are storing a previously loaded copy. To do this,
1708 // change the copy from copying the original value to just copying the
1710 Instruction
*StoredVal
= cast
<Instruction
>(SI
->getOperand(0));
1712 // If we've already replaced the input, StoredVal will be a cast or
1713 // select instruction. If not, it will be a load of the original
1715 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(StoredVal
)) {
1716 assert(LI
->getOperand(0) == GV
&& "Not a copy!");
1717 // Insert a new load, to preserve the saved value.
1718 StoreVal
= new LoadInst(NewGV
->getValueType(), NewGV
,
1719 LI
->getName() + ".b", false, 0,
1720 LI
->getOrdering(), LI
->getSyncScopeID(), LI
);
1722 assert((isa
<CastInst
>(StoredVal
) || isa
<SelectInst
>(StoredVal
)) &&
1723 "This is not a form that we understand!");
1724 StoreVal
= StoredVal
->getOperand(0);
1725 assert(isa
<LoadInst
>(StoreVal
) && "Not a load of NewGV!");
1729 new StoreInst(StoreVal
, NewGV
, false, 0, SI
->getOrdering(),
1730 SI
->getSyncScopeID(), SI
);
1731 NSI
->setDebugLoc(SI
->getDebugLoc());
1733 // Change the load into a load of bool then a select.
1734 LoadInst
*LI
= cast
<LoadInst
>(UI
);
1736 new LoadInst(NewGV
->getValueType(), NewGV
, LI
->getName() + ".b",
1737 false, 0, LI
->getOrdering(), LI
->getSyncScopeID(), LI
);
1740 NSI
= new ZExtInst(NLI
, LI
->getType(), "", LI
);
1742 NSI
= SelectInst::Create(NLI
, OtherVal
, InitVal
, "", LI
);
1744 // Since LI is split into two instructions, NLI and NSI both inherit the
1746 NLI
->setDebugLoc(LI
->getDebugLoc());
1747 NSI
->setDebugLoc(LI
->getDebugLoc());
1748 LI
->replaceAllUsesWith(NSI
);
1750 UI
->eraseFromParent();
1753 // Retain the name of the old global variable. People who are debugging their
1754 // programs may expect these variables to be named the same.
1755 NewGV
->takeName(GV
);
1756 GV
->eraseFromParent();
1760 static bool deleteIfDead(
1761 GlobalValue
&GV
, SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
1762 GV
.removeDeadConstantUsers();
1764 if (!GV
.isDiscardableIfUnused() && !GV
.isDeclaration())
1767 if (const Comdat
*C
= GV
.getComdat())
1768 if (!GV
.hasLocalLinkage() && NotDiscardableComdats
.count(C
))
1772 if (auto *F
= dyn_cast
<Function
>(&GV
))
1773 Dead
= (F
->isDeclaration() && F
->use_empty()) || F
->isDefTriviallyDead();
1775 Dead
= GV
.use_empty();
1779 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV
<< "\n");
1780 GV
.eraseFromParent();
1785 static bool isPointerValueDeadOnEntryToFunction(
1786 const Function
*F
, GlobalValue
*GV
,
1787 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
1788 // Find all uses of GV. We expect them all to be in F, and if we can't
1789 // identify any of the uses we bail out.
1791 // On each of these uses, identify if the memory that GV points to is
1792 // used/required/live at the start of the function. If it is not, for example
1793 // if the first thing the function does is store to the GV, the GV can
1794 // possibly be demoted.
1796 // We don't do an exhaustive search for memory operations - simply look
1797 // through bitcasts as they're quite common and benign.
1798 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1799 SmallVector
<LoadInst
*, 4> Loads
;
1800 SmallVector
<StoreInst
*, 4> Stores
;
1801 for (auto *U
: GV
->users()) {
1802 if (Operator::getOpcode(U
) == Instruction::BitCast
) {
1803 for (auto *UU
: U
->users()) {
1804 if (auto *LI
= dyn_cast
<LoadInst
>(UU
))
1805 Loads
.push_back(LI
);
1806 else if (auto *SI
= dyn_cast
<StoreInst
>(UU
))
1807 Stores
.push_back(SI
);
1814 Instruction
*I
= dyn_cast
<Instruction
>(U
);
1817 assert(I
->getParent()->getParent() == F
);
1819 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
1820 Loads
.push_back(LI
);
1821 else if (auto *SI
= dyn_cast
<StoreInst
>(I
))
1822 Stores
.push_back(SI
);
1827 // We have identified all uses of GV into loads and stores. Now check if all
1828 // of them are known not to depend on the value of the global at the function
1829 // entry point. We do this by ensuring that every load is dominated by at
1831 auto &DT
= LookupDomTree(*const_cast<Function
*>(F
));
1833 // The below check is quadratic. Check we're not going to do too many tests.
1834 // FIXME: Even though this will always have worst-case quadratic time, we
1835 // could put effort into minimizing the average time by putting stores that
1836 // have been shown to dominate at least one load at the beginning of the
1837 // Stores array, making subsequent dominance checks more likely to succeed
1840 // The threshold here is fairly large because global->local demotion is a
1841 // very powerful optimization should it fire.
1842 const unsigned Threshold
= 100;
1843 if (Loads
.size() * Stores
.size() > Threshold
)
1846 for (auto *L
: Loads
) {
1847 auto *LTy
= L
->getType();
1848 if (none_of(Stores
, [&](const StoreInst
*S
) {
1849 auto *STy
= S
->getValueOperand()->getType();
1850 // The load is only dominated by the store if DomTree says so
1851 // and the number of bits loaded in L is less than or equal to
1852 // the number of bits stored in S.
1853 return DT
.dominates(S
, L
) &&
1854 DL
.getTypeStoreSize(LTy
) <= DL
.getTypeStoreSize(STy
);
1858 // All loads have known dependences inside F, so the global can be localized.
1862 /// C may have non-instruction users. Can all of those users be turned into
1864 static bool allNonInstructionUsersCanBeMadeInstructions(Constant
*C
) {
1865 // We don't do this exhaustively. The most common pattern that we really need
1866 // to care about is a constant GEP or constant bitcast - so just looking
1867 // through one single ConstantExpr.
1869 // The set of constants that this function returns true for must be able to be
1870 // handled by makeAllConstantUsesInstructions.
1871 for (auto *U
: C
->users()) {
1872 if (isa
<Instruction
>(U
))
1874 if (!isa
<ConstantExpr
>(U
))
1875 // Non instruction, non-constantexpr user; cannot convert this.
1877 for (auto *UU
: U
->users())
1878 if (!isa
<Instruction
>(UU
))
1879 // A constantexpr used by another constant. We don't try and recurse any
1880 // further but just bail out at this point.
1887 /// C may have non-instruction users, and
1888 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1889 /// non-instruction users to instructions.
1890 static void makeAllConstantUsesInstructions(Constant
*C
) {
1891 SmallVector
<ConstantExpr
*,4> Users
;
1892 for (auto *U
: C
->users()) {
1893 if (isa
<ConstantExpr
>(U
))
1894 Users
.push_back(cast
<ConstantExpr
>(U
));
1896 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1897 // should not have returned true for C.
1899 isa
<Instruction
>(U
) &&
1900 "Can't transform non-constantexpr non-instruction to instruction!");
1903 SmallVector
<Value
*,4> UUsers
;
1904 for (auto *U
: Users
) {
1906 for (auto *UU
: U
->users())
1907 UUsers
.push_back(UU
);
1908 for (auto *UU
: UUsers
) {
1909 Instruction
*UI
= cast
<Instruction
>(UU
);
1910 Instruction
*NewU
= U
->getAsInstruction();
1911 NewU
->insertBefore(UI
);
1912 UI
->replaceUsesOfWith(U
, NewU
);
1914 // We've replaced all the uses, so destroy the constant. (destroyConstant
1915 // will update value handles and metadata.)
1916 U
->destroyConstant();
1920 /// Analyze the specified global variable and optimize
1921 /// it if possible. If we make a change, return true.
1923 processInternalGlobal(GlobalVariable
*GV
, const GlobalStatus
&GS
,
1924 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
1925 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
1926 auto &DL
= GV
->getParent()->getDataLayout();
1927 // If this is a first class global and has only one accessing function and
1928 // this function is non-recursive, we replace the global with a local alloca
1929 // in this function.
1931 // NOTE: It doesn't make sense to promote non-single-value types since we
1932 // are just replacing static memory to stack memory.
1934 // If the global is in different address space, don't bring it to stack.
1935 if (!GS
.HasMultipleAccessingFunctions
&&
1936 GS
.AccessingFunction
&&
1937 GV
->getValueType()->isSingleValueType() &&
1938 GV
->getType()->getAddressSpace() == 0 &&
1939 !GV
->isExternallyInitialized() &&
1940 allNonInstructionUsersCanBeMadeInstructions(GV
) &&
1941 GS
.AccessingFunction
->doesNotRecurse() &&
1942 isPointerValueDeadOnEntryToFunction(GS
.AccessingFunction
, GV
,
1944 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1946 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV
<< "\n");
1947 Instruction
&FirstI
= const_cast<Instruction
&>(*GS
.AccessingFunction
1948 ->getEntryBlock().begin());
1949 Type
*ElemTy
= GV
->getValueType();
1950 // FIXME: Pass Global's alignment when globals have alignment
1951 AllocaInst
*Alloca
= new AllocaInst(ElemTy
, DL
.getAllocaAddrSpace(), nullptr,
1952 GV
->getName(), &FirstI
);
1953 if (!isa
<UndefValue
>(GV
->getInitializer()))
1954 new StoreInst(GV
->getInitializer(), Alloca
, &FirstI
);
1956 makeAllConstantUsesInstructions(GV
);
1958 GV
->replaceAllUsesWith(Alloca
);
1959 GV
->eraseFromParent();
1964 // If the global is never loaded (but may be stored to), it is dead.
1967 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV
<< "\n");
1970 if (isLeakCheckerRoot(GV
)) {
1971 // Delete any constant stores to the global.
1972 Changed
= CleanupPointerRootUsers(GV
, GetTLI
);
1974 // Delete any stores we can find to the global. We may not be able to
1975 // make it completely dead though.
1977 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
1980 // If the global is dead now, delete it.
1981 if (GV
->use_empty()) {
1982 GV
->eraseFromParent();
1989 if (GS
.StoredType
<= GlobalStatus::InitializerStored
) {
1990 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV
<< "\n");
1992 // Don't actually mark a global constant if it's atomic because atomic loads
1993 // are implemented by a trivial cmpxchg in some edge-cases and that usually
1994 // requires write access to the variable even if it's not actually changed.
1995 if (GS
.Ordering
== AtomicOrdering::NotAtomic
)
1996 GV
->setConstant(true);
1998 // Clean up any obviously simplifiable users now.
1999 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
2001 // If the global is dead now, just nuke it.
2002 if (GV
->use_empty()) {
2003 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
2004 << "all users and delete global!\n");
2005 GV
->eraseFromParent();
2010 // Fall through to the next check; see if we can optimize further.
2013 if (!GV
->getInitializer()->getType()->isSingleValueType()) {
2014 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
2015 if (SRAGlobal(GV
, DL
))
2018 if (GS
.StoredType
== GlobalStatus::StoredOnce
&& GS
.StoredOnceValue
) {
2019 // If the initial value for the global was an undef value, and if only
2020 // one other value was stored into it, we can just change the
2021 // initializer to be the stored value, then delete all stores to the
2022 // global. This allows us to mark it constant.
2023 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
))
2024 if (isa
<UndefValue
>(GV
->getInitializer())) {
2025 // Change the initial value here.
2026 GV
->setInitializer(SOVConstant
);
2028 // Clean up any obviously simplifiable users now.
2029 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
2031 if (GV
->use_empty()) {
2032 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
2033 << "simplify all users and delete global!\n");
2034 GV
->eraseFromParent();
2041 // Try to optimize globals based on the knowledge that only one value
2042 // (besides its initializer) is ever stored to the global.
2043 if (optimizeOnceStoredGlobal(GV
, GS
.StoredOnceValue
, GS
.Ordering
, DL
,
2047 // Otherwise, if the global was not a boolean, we can shrink it to be a
2049 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
)) {
2050 if (GS
.Ordering
== AtomicOrdering::NotAtomic
) {
2051 if (TryToShrinkGlobalToBoolean(GV
, SOVConstant
)) {
2062 /// Analyze the specified global variable and optimize it if possible. If we
2063 /// make a change, return true.
2065 processGlobal(GlobalValue
&GV
,
2066 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2067 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
2068 if (GV
.getName().startswith("llvm."))
2073 if (GlobalStatus::analyzeGlobal(&GV
, GS
))
2076 bool Changed
= false;
2077 if (!GS
.IsCompared
&& !GV
.hasGlobalUnnamedAddr()) {
2078 auto NewUnnamedAddr
= GV
.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2079 : GlobalValue::UnnamedAddr::Local
;
2080 if (NewUnnamedAddr
!= GV
.getUnnamedAddr()) {
2081 GV
.setUnnamedAddr(NewUnnamedAddr
);
2087 // Do more involved optimizations if the global is internal.
2088 if (!GV
.hasLocalLinkage())
2091 auto *GVar
= dyn_cast
<GlobalVariable
>(&GV
);
2095 if (GVar
->isConstant() || !GVar
->hasInitializer())
2098 return processInternalGlobal(GVar
, GS
, GetTLI
, LookupDomTree
) || Changed
;
2101 /// Walk all of the direct calls of the specified function, changing them to
2103 static void ChangeCalleesToFastCall(Function
*F
) {
2104 for (User
*U
: F
->users()) {
2105 if (isa
<BlockAddress
>(U
))
2107 CallSite
CS(cast
<Instruction
>(U
));
2108 CS
.setCallingConv(CallingConv::Fast
);
2112 static AttributeList
StripAttr(LLVMContext
&C
, AttributeList Attrs
,
2113 Attribute::AttrKind A
) {
2115 if (Attrs
.hasAttrSomewhere(A
, &AttrIndex
))
2116 return Attrs
.removeAttribute(C
, AttrIndex
, A
);
2120 static void RemoveAttribute(Function
*F
, Attribute::AttrKind A
) {
2121 F
->setAttributes(StripAttr(F
->getContext(), F
->getAttributes(), A
));
2122 for (User
*U
: F
->users()) {
2123 if (isa
<BlockAddress
>(U
))
2125 CallSite
CS(cast
<Instruction
>(U
));
2126 CS
.setAttributes(StripAttr(F
->getContext(), CS
.getAttributes(), A
));
2130 /// Return true if this is a calling convention that we'd like to change. The
2131 /// idea here is that we don't want to mess with the convention if the user
2132 /// explicitly requested something with performance implications like coldcc,
2133 /// GHC, or anyregcc.
2134 static bool hasChangeableCC(Function
*F
) {
2135 CallingConv::ID CC
= F
->getCallingConv();
2137 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2138 if (CC
!= CallingConv::C
&& CC
!= CallingConv::X86_ThisCall
)
2141 // FIXME: Change CC for the whole chain of musttail calls when possible.
2143 // Can't change CC of the function that either has musttail calls, or is a
2144 // musttail callee itself
2145 for (User
*U
: F
->users()) {
2146 if (isa
<BlockAddress
>(U
))
2148 CallInst
* CI
= dyn_cast
<CallInst
>(U
);
2152 if (CI
->isMustTailCall())
2156 for (BasicBlock
&BB
: *F
)
2157 if (BB
.getTerminatingMustTailCall())
2163 /// Return true if the block containing the call site has a BlockFrequency of
2164 /// less than ColdCCRelFreq% of the entry block.
2165 static bool isColdCallSite(CallSite CS
, BlockFrequencyInfo
&CallerBFI
) {
2166 const BranchProbability
ColdProb(ColdCCRelFreq
, 100);
2167 auto CallSiteBB
= CS
.getInstruction()->getParent();
2168 auto CallSiteFreq
= CallerBFI
.getBlockFreq(CallSiteBB
);
2169 auto CallerEntryFreq
=
2170 CallerBFI
.getBlockFreq(&(CS
.getCaller()->getEntryBlock()));
2171 return CallSiteFreq
< CallerEntryFreq
* ColdProb
;
2174 // This function checks if the input function F is cold at all call sites. It
2175 // also looks each call site's containing function, returning false if the
2176 // caller function contains other non cold calls. The input vector AllCallsCold
2177 // contains a list of functions that only have call sites in cold blocks.
2179 isValidCandidateForColdCC(Function
&F
,
2180 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
2181 const std::vector
<Function
*> &AllCallsCold
) {
2186 for (User
*U
: F
.users()) {
2187 if (isa
<BlockAddress
>(U
))
2190 CallSite
CS(cast
<Instruction
>(U
));
2191 Function
*CallerFunc
= CS
.getInstruction()->getParent()->getParent();
2192 BlockFrequencyInfo
&CallerBFI
= GetBFI(*CallerFunc
);
2193 if (!isColdCallSite(CS
, CallerBFI
))
2195 auto It
= std::find(AllCallsCold
.begin(), AllCallsCold
.end(), CallerFunc
);
2196 if (It
== AllCallsCold
.end())
2202 static void changeCallSitesToColdCC(Function
*F
) {
2203 for (User
*U
: F
->users()) {
2204 if (isa
<BlockAddress
>(U
))
2206 CallSite
CS(cast
<Instruction
>(U
));
2207 CS
.setCallingConv(CallingConv::Cold
);
2211 // This function iterates over all the call instructions in the input Function
2212 // and checks that all call sites are in cold blocks and are allowed to use the
2213 // coldcc calling convention.
2215 hasOnlyColdCalls(Function
&F
,
2216 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
) {
2217 for (BasicBlock
&BB
: F
) {
2218 for (Instruction
&I
: BB
) {
2219 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
2220 CallSite
CS(cast
<Instruction
>(CI
));
2221 // Skip over isline asm instructions since they aren't function calls.
2222 if (CI
->isInlineAsm())
2224 Function
*CalledFn
= CI
->getCalledFunction();
2227 if (!CalledFn
->hasLocalLinkage())
2229 // Skip over instrinsics since they won't remain as function calls.
2230 if (CalledFn
->getIntrinsicID() != Intrinsic::not_intrinsic
)
2232 // Check if it's valid to use coldcc calling convention.
2233 if (!hasChangeableCC(CalledFn
) || CalledFn
->isVarArg() ||
2234 CalledFn
->hasAddressTaken())
2236 BlockFrequencyInfo
&CallerBFI
= GetBFI(F
);
2237 if (!isColdCallSite(CS
, CallerBFI
))
2246 OptimizeFunctions(Module
&M
,
2247 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2248 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
,
2249 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
2250 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
2251 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
2253 bool Changed
= false;
2255 std::vector
<Function
*> AllCallsCold
;
2256 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
;) {
2257 Function
*F
= &*FI
++;
2258 if (hasOnlyColdCalls(*F
, GetBFI
))
2259 AllCallsCold
.push_back(F
);
2262 // Optimize functions.
2263 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ) {
2264 Function
*F
= &*FI
++;
2266 // Don't perform global opt pass on naked functions; we don't want fast
2267 // calling conventions for naked functions.
2268 if (F
->hasFnAttribute(Attribute::Naked
))
2271 // Functions without names cannot be referenced outside this module.
2272 if (!F
->hasName() && !F
->isDeclaration() && !F
->hasLocalLinkage())
2273 F
->setLinkage(GlobalValue::InternalLinkage
);
2275 if (deleteIfDead(*F
, NotDiscardableComdats
)) {
2280 // LLVM's definition of dominance allows instructions that are cyclic
2281 // in unreachable blocks, e.g.:
2282 // %pat = select i1 %condition, @global, i16* %pat
2283 // because any instruction dominates an instruction in a block that's
2284 // not reachable from entry.
2285 // So, remove unreachable blocks from the function, because a) there's
2286 // no point in analyzing them and b) GlobalOpt should otherwise grow
2287 // some more complicated logic to break these cycles.
2288 if (!F
->isDeclaration()) {
2289 auto &DT
= LookupDomTree(*F
);
2290 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
2291 Changed
|= removeUnreachableBlocks(*F
, &DTU
);
2294 Changed
|= processGlobal(*F
, GetTLI
, LookupDomTree
);
2296 if (!F
->hasLocalLinkage())
2299 // If we have an inalloca parameter that we can safely remove the
2300 // inalloca attribute from, do so. This unlocks optimizations that
2301 // wouldn't be safe in the presence of inalloca.
2302 // FIXME: We should also hoist alloca affected by this to the entry
2303 // block if possible.
2304 if (F
->getAttributes().hasAttrSomewhere(Attribute::InAlloca
) &&
2305 !F
->hasAddressTaken()) {
2306 RemoveAttribute(F
, Attribute::InAlloca
);
2310 if (hasChangeableCC(F
) && !F
->isVarArg() && !F
->hasAddressTaken()) {
2312 TargetTransformInfo
&TTI
= GetTTI(*F
);
2313 // Change the calling convention to coldcc if either stress testing is
2314 // enabled or the target would like to use coldcc on functions which are
2315 // cold at all call sites and the callers contain no other non coldcc
2317 if (EnableColdCCStressTest
||
2318 (TTI
.useColdCCForColdCall(*F
) &&
2319 isValidCandidateForColdCC(*F
, GetBFI
, AllCallsCold
))) {
2320 F
->setCallingConv(CallingConv::Cold
);
2321 changeCallSitesToColdCC(F
);
2327 if (hasChangeableCC(F
) && !F
->isVarArg() &&
2328 !F
->hasAddressTaken()) {
2329 // If this function has a calling convention worth changing, is not a
2330 // varargs function, and is only called directly, promote it to use the
2331 // Fast calling convention.
2332 F
->setCallingConv(CallingConv::Fast
);
2333 ChangeCalleesToFastCall(F
);
2338 if (F
->getAttributes().hasAttrSomewhere(Attribute::Nest
) &&
2339 !F
->hasAddressTaken()) {
2340 // The function is not used by a trampoline intrinsic, so it is safe
2341 // to remove the 'nest' attribute.
2342 RemoveAttribute(F
, Attribute::Nest
);
2351 OptimizeGlobalVars(Module
&M
,
2352 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2353 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
2354 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
2355 bool Changed
= false;
2357 for (Module::global_iterator GVI
= M
.global_begin(), E
= M
.global_end();
2359 GlobalVariable
*GV
= &*GVI
++;
2360 // Global variables without names cannot be referenced outside this module.
2361 if (!GV
->hasName() && !GV
->isDeclaration() && !GV
->hasLocalLinkage())
2362 GV
->setLinkage(GlobalValue::InternalLinkage
);
2363 // Simplify the initializer.
2364 if (GV
->hasInitializer())
2365 if (auto *C
= dyn_cast
<Constant
>(GV
->getInitializer())) {
2366 auto &DL
= M
.getDataLayout();
2367 // TLI is not used in the case of a Constant, so use default nullptr
2368 // for that optional parameter, since we don't have a Function to
2369 // provide GetTLI anyway.
2370 Constant
*New
= ConstantFoldConstant(C
, DL
, /*TLI*/ nullptr);
2371 if (New
&& New
!= C
)
2372 GV
->setInitializer(New
);
2375 if (deleteIfDead(*GV
, NotDiscardableComdats
)) {
2380 Changed
|= processGlobal(*GV
, GetTLI
, LookupDomTree
);
2385 /// Evaluate a piece of a constantexpr store into a global initializer. This
2386 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2387 /// GEP operands of Addr [0, OpNo) have been stepped into.
2388 static Constant
*EvaluateStoreInto(Constant
*Init
, Constant
*Val
,
2389 ConstantExpr
*Addr
, unsigned OpNo
) {
2390 // Base case of the recursion.
2391 if (OpNo
== Addr
->getNumOperands()) {
2392 assert(Val
->getType() == Init
->getType() && "Type mismatch!");
2396 SmallVector
<Constant
*, 32> Elts
;
2397 if (StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2398 // Break up the constant into its elements.
2399 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
2400 Elts
.push_back(Init
->getAggregateElement(i
));
2402 // Replace the element that we are supposed to.
2403 ConstantInt
*CU
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2404 unsigned Idx
= CU
->getZExtValue();
2405 assert(Idx
< STy
->getNumElements() && "Struct index out of range!");
2406 Elts
[Idx
] = EvaluateStoreInto(Elts
[Idx
], Val
, Addr
, OpNo
+1);
2408 // Return the modified struct.
2409 return ConstantStruct::get(STy
, Elts
);
2412 ConstantInt
*CI
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2413 SequentialType
*InitTy
= cast
<SequentialType
>(Init
->getType());
2414 uint64_t NumElts
= InitTy
->getNumElements();
2416 // Break up the array into elements.
2417 for (uint64_t i
= 0, e
= NumElts
; i
!= e
; ++i
)
2418 Elts
.push_back(Init
->getAggregateElement(i
));
2420 assert(CI
->getZExtValue() < NumElts
);
2421 Elts
[CI
->getZExtValue()] =
2422 EvaluateStoreInto(Elts
[CI
->getZExtValue()], Val
, Addr
, OpNo
+1);
2424 if (Init
->getType()->isArrayTy())
2425 return ConstantArray::get(cast
<ArrayType
>(InitTy
), Elts
);
2426 return ConstantVector::get(Elts
);
2429 /// We have decided that Addr (which satisfies the predicate
2430 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2431 static void CommitValueTo(Constant
*Val
, Constant
*Addr
) {
2432 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
2433 assert(GV
->hasInitializer());
2434 GV
->setInitializer(Val
);
2438 ConstantExpr
*CE
= cast
<ConstantExpr
>(Addr
);
2439 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2440 GV
->setInitializer(EvaluateStoreInto(GV
->getInitializer(), Val
, CE
, 2));
2443 /// Given a map of address -> value, where addresses are expected to be some form
2444 /// of either a global or a constant GEP, set the initializer for the address to
2445 /// be the value. This performs mostly the same function as CommitValueTo()
2446 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2447 /// case where the set of addresses are GEPs sharing the same underlying global,
2448 /// processing the GEPs in batches rather than individually.
2450 /// To give an example, consider the following C++ code adapted from the clang
2451 /// regression tests:
2455 /// S(int a) : n(a) {}
2458 /// template<typename T>
2467 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2468 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2469 /// members. This batch algorithm will simply use general CommitValueTo() method
2470 /// to handle the complex nested S struct initialization of 'q', before
2471 /// processing the outermost members in a single batch. Using CommitValueTo() to
2472 /// handle member in the outer struct is inefficient when the struct/array is
2473 /// very large as we end up creating and destroy constant arrays for each
2475 /// For the above case, we expect the following IR to be generated:
2477 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2478 /// %struct.S = type { i32, i32 }
2479 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2481 /// %struct.S { i32 42, i32 84 }, %struct.U* @e }
2482 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2483 /// constant expression, while the other two elements of @e are "simple".
2484 static void BatchCommitValueTo(const DenseMap
<Constant
*, Constant
*> &Mem
) {
2485 SmallVector
<std::pair
<GlobalVariable
*, Constant
*>, 32> GVs
;
2486 SmallVector
<std::pair
<ConstantExpr
*, Constant
*>, 32> ComplexCEs
;
2487 SmallVector
<std::pair
<ConstantExpr
*, Constant
*>, 32> SimpleCEs
;
2488 SimpleCEs
.reserve(Mem
.size());
2490 for (const auto &I
: Mem
) {
2491 if (auto *GV
= dyn_cast
<GlobalVariable
>(I
.first
)) {
2492 GVs
.push_back(std::make_pair(GV
, I
.second
));
2494 ConstantExpr
*GEP
= cast
<ConstantExpr
>(I
.first
);
2495 // We don't handle the deeply recursive case using the batch method.
2496 if (GEP
->getNumOperands() > 3)
2497 ComplexCEs
.push_back(std::make_pair(GEP
, I
.second
));
2499 SimpleCEs
.push_back(std::make_pair(GEP
, I
.second
));
2503 // The algorithm below doesn't handle cases like nested structs, so use the
2504 // slower fully general method if we have to.
2505 for (auto ComplexCE
: ComplexCEs
)
2506 CommitValueTo(ComplexCE
.second
, ComplexCE
.first
);
2508 for (auto GVPair
: GVs
) {
2509 assert(GVPair
.first
->hasInitializer());
2510 GVPair
.first
->setInitializer(GVPair
.second
);
2513 if (SimpleCEs
.empty())
2516 // We cache a single global's initializer elements in the case where the
2517 // subsequent address/val pair uses the same one. This avoids throwing away and
2518 // rebuilding the constant struct/vector/array just because one element is
2519 // modified at a time.
2520 SmallVector
<Constant
*, 32> Elts
;
2521 Elts
.reserve(SimpleCEs
.size());
2522 GlobalVariable
*CurrentGV
= nullptr;
2524 auto commitAndSetupCache
= [&](GlobalVariable
*GV
, bool Update
) {
2525 Constant
*Init
= GV
->getInitializer();
2526 Type
*Ty
= Init
->getType();
2529 assert(CurrentGV
&& "Expected a GV to commit to!");
2530 Type
*CurrentInitTy
= CurrentGV
->getInitializer()->getType();
2531 // We have a valid cache that needs to be committed.
2532 if (StructType
*STy
= dyn_cast
<StructType
>(CurrentInitTy
))
2533 CurrentGV
->setInitializer(ConstantStruct::get(STy
, Elts
));
2534 else if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(CurrentInitTy
))
2535 CurrentGV
->setInitializer(ConstantArray::get(ArrTy
, Elts
));
2537 CurrentGV
->setInitializer(ConstantVector::get(Elts
));
2539 if (CurrentGV
== GV
)
2541 // Need to clear and set up cache for new initializer.
2545 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
2546 NumElts
= STy
->getNumElements();
2548 NumElts
= cast
<SequentialType
>(Ty
)->getNumElements();
2549 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
)
2550 Elts
.push_back(Init
->getAggregateElement(i
));
2554 for (auto CEPair
: SimpleCEs
) {
2555 ConstantExpr
*GEP
= CEPair
.first
;
2556 Constant
*Val
= CEPair
.second
;
2558 GlobalVariable
*GV
= cast
<GlobalVariable
>(GEP
->getOperand(0));
2559 commitAndSetupCache(GV
, GV
!= CurrentGV
);
2560 ConstantInt
*CI
= cast
<ConstantInt
>(GEP
->getOperand(2));
2561 Elts
[CI
->getZExtValue()] = Val
;
2563 // The last initializer in the list needs to be committed, others
2564 // will be committed on a new initializer being processed.
2565 commitAndSetupCache(CurrentGV
, true);
2568 /// Evaluate static constructors in the function, if we can. Return true if we
2569 /// can, false otherwise.
2570 static bool EvaluateStaticConstructor(Function
*F
, const DataLayout
&DL
,
2571 TargetLibraryInfo
*TLI
) {
2572 // Call the function.
2573 Evaluator
Eval(DL
, TLI
);
2574 Constant
*RetValDummy
;
2575 bool EvalSuccess
= Eval
.EvaluateFunction(F
, RetValDummy
,
2576 SmallVector
<Constant
*, 0>());
2579 ++NumCtorsEvaluated
;
2581 // We succeeded at evaluation: commit the result.
2582 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2583 << F
->getName() << "' to "
2584 << Eval
.getMutatedMemory().size() << " stores.\n");
2585 BatchCommitValueTo(Eval
.getMutatedMemory());
2586 for (GlobalVariable
*GV
: Eval
.getInvariants())
2587 GV
->setConstant(true);
2593 static int compareNames(Constant
*const *A
, Constant
*const *B
) {
2594 Value
*AStripped
= (*A
)->stripPointerCasts();
2595 Value
*BStripped
= (*B
)->stripPointerCasts();
2596 return AStripped
->getName().compare(BStripped
->getName());
2599 static void setUsedInitializer(GlobalVariable
&V
,
2600 const SmallPtrSetImpl
<GlobalValue
*> &Init
) {
2602 V
.eraseFromParent();
2606 // Type of pointer to the array of pointers.
2607 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(V
.getContext(), 0);
2609 SmallVector
<Constant
*, 8> UsedArray
;
2610 for (GlobalValue
*GV
: Init
) {
2612 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, Int8PtrTy
);
2613 UsedArray
.push_back(Cast
);
2615 // Sort to get deterministic order.
2616 array_pod_sort(UsedArray
.begin(), UsedArray
.end(), compareNames
);
2617 ArrayType
*ATy
= ArrayType::get(Int8PtrTy
, UsedArray
.size());
2619 Module
*M
= V
.getParent();
2620 V
.removeFromParent();
2621 GlobalVariable
*NV
=
2622 new GlobalVariable(*M
, ATy
, false, GlobalValue::AppendingLinkage
,
2623 ConstantArray::get(ATy
, UsedArray
), "");
2625 NV
->setSection("llvm.metadata");
2631 /// An easy to access representation of llvm.used and llvm.compiler.used.
2633 SmallPtrSet
<GlobalValue
*, 8> Used
;
2634 SmallPtrSet
<GlobalValue
*, 8> CompilerUsed
;
2635 GlobalVariable
*UsedV
;
2636 GlobalVariable
*CompilerUsedV
;
2639 LLVMUsed(Module
&M
) {
2640 UsedV
= collectUsedGlobalVariables(M
, Used
, false);
2641 CompilerUsedV
= collectUsedGlobalVariables(M
, CompilerUsed
, true);
2644 using iterator
= SmallPtrSet
<GlobalValue
*, 8>::iterator
;
2645 using used_iterator_range
= iterator_range
<iterator
>;
2647 iterator
usedBegin() { return Used
.begin(); }
2648 iterator
usedEnd() { return Used
.end(); }
2650 used_iterator_range
used() {
2651 return used_iterator_range(usedBegin(), usedEnd());
2654 iterator
compilerUsedBegin() { return CompilerUsed
.begin(); }
2655 iterator
compilerUsedEnd() { return CompilerUsed
.end(); }
2657 used_iterator_range
compilerUsed() {
2658 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2661 bool usedCount(GlobalValue
*GV
) const { return Used
.count(GV
); }
2663 bool compilerUsedCount(GlobalValue
*GV
) const {
2664 return CompilerUsed
.count(GV
);
2667 bool usedErase(GlobalValue
*GV
) { return Used
.erase(GV
); }
2668 bool compilerUsedErase(GlobalValue
*GV
) { return CompilerUsed
.erase(GV
); }
2669 bool usedInsert(GlobalValue
*GV
) { return Used
.insert(GV
).second
; }
2671 bool compilerUsedInsert(GlobalValue
*GV
) {
2672 return CompilerUsed
.insert(GV
).second
;
2675 void syncVariablesAndSets() {
2677 setUsedInitializer(*UsedV
, Used
);
2679 setUsedInitializer(*CompilerUsedV
, CompilerUsed
);
2683 } // end anonymous namespace
2685 static bool hasUseOtherThanLLVMUsed(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2686 if (GA
.use_empty()) // No use at all.
2689 assert((!U
.usedCount(&GA
) || !U
.compilerUsedCount(&GA
)) &&
2690 "We should have removed the duplicated "
2691 "element from llvm.compiler.used");
2692 if (!GA
.hasOneUse())
2693 // Strictly more than one use. So at least one is not in llvm.used and
2694 // llvm.compiler.used.
2697 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2698 return !U
.usedCount(&GA
) && !U
.compilerUsedCount(&GA
);
2701 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue
&V
,
2702 const LLVMUsed
&U
) {
2704 assert((!U
.usedCount(&V
) || !U
.compilerUsedCount(&V
)) &&
2705 "We should have removed the duplicated "
2706 "element from llvm.compiler.used");
2707 if (U
.usedCount(&V
) || U
.compilerUsedCount(&V
))
2709 return V
.hasNUsesOrMore(N
);
2712 static bool mayHaveOtherReferences(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2713 if (!GA
.hasLocalLinkage())
2716 return U
.usedCount(&GA
) || U
.compilerUsedCount(&GA
);
2719 static bool hasUsesToReplace(GlobalAlias
&GA
, const LLVMUsed
&U
,
2720 bool &RenameTarget
) {
2721 RenameTarget
= false;
2723 if (hasUseOtherThanLLVMUsed(GA
, U
))
2726 // If the alias is externally visible, we may still be able to simplify it.
2727 if (!mayHaveOtherReferences(GA
, U
))
2730 // If the aliasee has internal linkage, give it the name and linkage
2731 // of the alias, and delete the alias. This turns:
2732 // define internal ... @f(...)
2733 // @a = alias ... @f
2735 // define ... @a(...)
2736 Constant
*Aliasee
= GA
.getAliasee();
2737 GlobalValue
*Target
= cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2738 if (!Target
->hasLocalLinkage())
2741 // Do not perform the transform if multiple aliases potentially target the
2742 // aliasee. This check also ensures that it is safe to replace the section
2743 // and other attributes of the aliasee with those of the alias.
2744 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target
, U
))
2747 RenameTarget
= true;
2752 OptimizeGlobalAliases(Module
&M
,
2753 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
2754 bool Changed
= false;
2757 for (GlobalValue
*GV
: Used
.used())
2758 Used
.compilerUsedErase(GV
);
2760 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
2762 GlobalAlias
*J
= &*I
++;
2764 // Aliases without names cannot be referenced outside this module.
2765 if (!J
->hasName() && !J
->isDeclaration() && !J
->hasLocalLinkage())
2766 J
->setLinkage(GlobalValue::InternalLinkage
);
2768 if (deleteIfDead(*J
, NotDiscardableComdats
)) {
2773 // If the alias can change at link time, nothing can be done - bail out.
2774 if (J
->isInterposable())
2777 Constant
*Aliasee
= J
->getAliasee();
2778 GlobalValue
*Target
= dyn_cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2779 // We can't trivially replace the alias with the aliasee if the aliasee is
2780 // non-trivial in some way.
2781 // TODO: Try to handle non-zero GEPs of local aliasees.
2784 Target
->removeDeadConstantUsers();
2786 // Make all users of the alias use the aliasee instead.
2788 if (!hasUsesToReplace(*J
, Used
, RenameTarget
))
2791 J
->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee
, J
->getType()));
2792 ++NumAliasesResolved
;
2796 // Give the aliasee the name, linkage and other attributes of the alias.
2797 Target
->takeName(&*J
);
2798 Target
->setLinkage(J
->getLinkage());
2799 Target
->setDSOLocal(J
->isDSOLocal());
2800 Target
->setVisibility(J
->getVisibility());
2801 Target
->setDLLStorageClass(J
->getDLLStorageClass());
2803 if (Used
.usedErase(&*J
))
2804 Used
.usedInsert(Target
);
2806 if (Used
.compilerUsedErase(&*J
))
2807 Used
.compilerUsedInsert(Target
);
2808 } else if (mayHaveOtherReferences(*J
, Used
))
2811 // Delete the alias.
2812 M
.getAliasList().erase(J
);
2813 ++NumAliasesRemoved
;
2817 Used
.syncVariablesAndSets();
2823 FindCXAAtExit(Module
&M
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
2824 // Hack to get a default TLI before we have actual Function.
2825 auto FuncIter
= M
.begin();
2826 if (FuncIter
== M
.end())
2828 auto *TLI
= &GetTLI(*FuncIter
);
2830 LibFunc F
= LibFunc_cxa_atexit
;
2834 Function
*Fn
= M
.getFunction(TLI
->getName(F
));
2838 // Now get the actual TLI for Fn.
2841 // Make sure that the function has the correct prototype.
2842 if (!TLI
->getLibFunc(*Fn
, F
) || F
!= LibFunc_cxa_atexit
)
2848 /// Returns whether the given function is an empty C++ destructor and can
2849 /// therefore be eliminated.
2850 /// Note that we assume that other optimization passes have already simplified
2851 /// the code so we simply check for 'ret'.
2852 static bool cxxDtorIsEmpty(const Function
&Fn
) {
2853 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2854 // nounwind, but that doesn't seem worth doing.
2855 if (Fn
.isDeclaration())
2858 for (auto &I
: Fn
.getEntryBlock()) {
2859 if (isa
<DbgInfoIntrinsic
>(I
))
2861 if (isa
<ReturnInst
>(I
))
2868 static bool OptimizeEmptyGlobalCXXDtors(Function
*CXAAtExitFn
) {
2869 /// Itanium C++ ABI p3.3.5:
2871 /// After constructing a global (or local static) object, that will require
2872 /// destruction on exit, a termination function is registered as follows:
2874 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2876 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2877 /// call f(p) when DSO d is unloaded, before all such termination calls
2878 /// registered before this one. It returns zero if registration is
2879 /// successful, nonzero on failure.
2881 // This pass will look for calls to __cxa_atexit where the function is trivial
2883 bool Changed
= false;
2885 for (auto I
= CXAAtExitFn
->user_begin(), E
= CXAAtExitFn
->user_end();
2887 // We're only interested in calls. Theoretically, we could handle invoke
2888 // instructions as well, but neither llvm-gcc nor clang generate invokes
2890 CallInst
*CI
= dyn_cast
<CallInst
>(*I
++);
2895 dyn_cast
<Function
>(CI
->getArgOperand(0)->stripPointerCasts());
2896 if (!DtorFn
|| !cxxDtorIsEmpty(*DtorFn
))
2899 // Just remove the call.
2900 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
2901 CI
->eraseFromParent();
2903 ++NumCXXDtorsRemoved
;
2911 static bool optimizeGlobalsInModule(
2912 Module
&M
, const DataLayout
&DL
,
2913 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2914 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
,
2915 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
2916 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
2917 SmallPtrSet
<const Comdat
*, 8> NotDiscardableComdats
;
2918 bool Changed
= false;
2919 bool LocalChange
= true;
2920 while (LocalChange
) {
2921 LocalChange
= false;
2923 NotDiscardableComdats
.clear();
2924 for (const GlobalVariable
&GV
: M
.globals())
2925 if (const Comdat
*C
= GV
.getComdat())
2926 if (!GV
.isDiscardableIfUnused() || !GV
.use_empty())
2927 NotDiscardableComdats
.insert(C
);
2928 for (Function
&F
: M
)
2929 if (const Comdat
*C
= F
.getComdat())
2930 if (!F
.isDefTriviallyDead())
2931 NotDiscardableComdats
.insert(C
);
2932 for (GlobalAlias
&GA
: M
.aliases())
2933 if (const Comdat
*C
= GA
.getComdat())
2934 if (!GA
.isDiscardableIfUnused() || !GA
.use_empty())
2935 NotDiscardableComdats
.insert(C
);
2937 // Delete functions that are trivially dead, ccc -> fastcc
2938 LocalChange
|= OptimizeFunctions(M
, GetTLI
, GetTTI
, GetBFI
, LookupDomTree
,
2939 NotDiscardableComdats
);
2941 // Optimize global_ctors list.
2942 LocalChange
|= optimizeGlobalCtorsList(M
, [&](Function
*F
) {
2943 return EvaluateStaticConstructor(F
, DL
, &GetTLI(*F
));
2946 // Optimize non-address-taken globals.
2948 OptimizeGlobalVars(M
, GetTLI
, LookupDomTree
, NotDiscardableComdats
);
2950 // Resolve aliases, when possible.
2951 LocalChange
|= OptimizeGlobalAliases(M
, NotDiscardableComdats
);
2953 // Try to remove trivial global destructors if they are not removed
2955 Function
*CXAAtExitFn
= FindCXAAtExit(M
, GetTLI
);
2957 LocalChange
|= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn
);
2959 Changed
|= LocalChange
;
2962 // TODO: Move all global ctors functions to the end of the module for code
2968 PreservedAnalyses
GlobalOptPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
2969 auto &DL
= M
.getDataLayout();
2971 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
2972 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
&{
2973 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
2975 auto GetTLI
= [&FAM
](Function
&F
) -> TargetLibraryInfo
& {
2976 return FAM
.getResult
<TargetLibraryAnalysis
>(F
);
2978 auto GetTTI
= [&FAM
](Function
&F
) -> TargetTransformInfo
& {
2979 return FAM
.getResult
<TargetIRAnalysis
>(F
);
2982 auto GetBFI
= [&FAM
](Function
&F
) -> BlockFrequencyInfo
& {
2983 return FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
2986 if (!optimizeGlobalsInModule(M
, DL
, GetTLI
, GetTTI
, GetBFI
, LookupDomTree
))
2987 return PreservedAnalyses::all();
2988 return PreservedAnalyses::none();
2993 struct GlobalOptLegacyPass
: public ModulePass
{
2994 static char ID
; // Pass identification, replacement for typeid
2996 GlobalOptLegacyPass() : ModulePass(ID
) {
2997 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3000 bool runOnModule(Module
&M
) override
{
3004 auto &DL
= M
.getDataLayout();
3005 auto LookupDomTree
= [this](Function
&F
) -> DominatorTree
& {
3006 return this->getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
3008 auto GetTLI
= [this](Function
&F
) -> TargetLibraryInfo
& {
3009 return this->getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
3011 auto GetTTI
= [this](Function
&F
) -> TargetTransformInfo
& {
3012 return this->getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
3015 auto GetBFI
= [this](Function
&F
) -> BlockFrequencyInfo
& {
3016 return this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(F
).getBFI();
3019 return optimizeGlobalsInModule(M
, DL
, GetTLI
, GetTTI
, GetBFI
,
3023 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3024 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
3025 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
3026 AU
.addRequired
<DominatorTreeWrapperPass
>();
3027 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
3031 } // end anonymous namespace
3033 char GlobalOptLegacyPass::ID
= 0;
3035 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass
, "globalopt",
3036 "Global Variable Optimizer", false, false)
3037 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
3038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
3039 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
3040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
3041 INITIALIZE_PASS_END(GlobalOptLegacyPass
, "globalopt",
3042 "Global Variable Optimizer", false, false)
3044 ModulePass
*llvm::createGlobalOptimizerPass() {
3045 return new GlobalOptLegacyPass();