[Alignment][NFC] Remove dependency on GlobalObject::setAlignment(unsigned)
[llvm-core.git] / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
blob917d1119dc68b7362294ad3a2ef6e23e5222ea42
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form. In cases that this kicks in, it can be a significant
11 // performance win.
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
19 //===----------------------------------------------------------------------===//
21 // TODO List:
23 // Future loop memory idioms to recognize:
24 // memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 // fpowi
27 // Future integer operation idioms to recognize:
28 // ctpop
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set. It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
37 //===----------------------------------------------------------------------===//
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/StringRef.h"
50 #include "llvm/Analysis/AliasAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/Analysis/ScalarEvolutionExpander.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Analysis/TargetTransformInfo.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugLoc.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/GlobalValue.h"
71 #include "llvm/IR/GlobalVariable.h"
72 #include "llvm/IR/IRBuilder.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instruction.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/PassManager.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/IR/Verifier.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/Transforms/Scalar/LoopPassManager.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include "llvm/Transforms/Utils/BuildLibCalls.h"
96 #include "llvm/Transforms/Utils/Local.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include <algorithm>
99 #include <cassert>
100 #include <cstdint>
101 #include <utility>
102 #include <vector>
104 using namespace llvm;
106 #define DEBUG_TYPE "loop-idiom"
108 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
109 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
110 STATISTIC(NumBCmp, "Number of memcmp's formed from loop 2xload+eq-compare");
112 static cl::opt<bool> UseLIRCodeSizeHeurs(
113 "use-lir-code-size-heurs",
114 cl::desc("Use loop idiom recognition code size heuristics when compiling"
115 "with -Os/-Oz"),
116 cl::init(true), cl::Hidden);
118 namespace {
120 // FIXME: reinventing the wheel much? Is there a cleaner solution?
121 struct PMAbstraction {
122 virtual void markLoopAsDeleted(Loop *L) = 0;
123 virtual ~PMAbstraction() = default;
125 struct LegacyPMAbstraction : PMAbstraction {
126 LPPassManager &LPM;
127 LegacyPMAbstraction(LPPassManager &LPM) : LPM(LPM) {}
128 virtual ~LegacyPMAbstraction() = default;
129 void markLoopAsDeleted(Loop *L) override { LPM.markLoopAsDeleted(*L); }
131 struct NewPMAbstraction : PMAbstraction {
132 LPMUpdater &Updater;
133 NewPMAbstraction(LPMUpdater &Updater) : Updater(Updater) {}
134 virtual ~NewPMAbstraction() = default;
135 void markLoopAsDeleted(Loop *L) override {
136 Updater.markLoopAsDeleted(*L, L->getName());
140 class LoopIdiomRecognize {
141 Loop *CurLoop = nullptr;
142 AliasAnalysis *AA;
143 DominatorTree *DT;
144 LoopInfo *LI;
145 ScalarEvolution *SE;
146 TargetLibraryInfo *TLI;
147 const TargetTransformInfo *TTI;
148 const DataLayout *DL;
149 PMAbstraction &LoopDeleter;
150 OptimizationRemarkEmitter &ORE;
151 bool ApplyCodeSizeHeuristics;
153 public:
154 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
155 LoopInfo *LI, ScalarEvolution *SE,
156 TargetLibraryInfo *TLI,
157 const TargetTransformInfo *TTI,
158 const DataLayout *DL, PMAbstraction &LoopDeleter,
159 OptimizationRemarkEmitter &ORE)
160 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL),
161 LoopDeleter(LoopDeleter), ORE(ORE) {}
163 bool runOnLoop(Loop *L);
165 private:
166 using StoreList = SmallVector<StoreInst *, 8>;
167 using StoreListMap = MapVector<Value *, StoreList>;
169 StoreListMap StoreRefsForMemset;
170 StoreListMap StoreRefsForMemsetPattern;
171 StoreList StoreRefsForMemcpy;
172 bool HasMemset;
173 bool HasMemsetPattern;
174 bool HasMemcpy;
175 bool HasMemCmp;
176 bool HasBCmp;
178 /// Return code for isLegalStore()
179 enum LegalStoreKind {
180 None = 0,
181 Memset,
182 MemsetPattern,
183 Memcpy,
184 UnorderedAtomicMemcpy,
185 DontUse // Dummy retval never to be used. Allows catching errors in retval
186 // handling.
189 /// \name Countable Loop Idiom Handling
190 /// @{
192 bool runOnCountableLoop();
193 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
194 SmallVectorImpl<BasicBlock *> &ExitBlocks);
196 void collectStores(BasicBlock *BB);
197 LegalStoreKind isLegalStore(StoreInst *SI);
198 enum class ForMemset { No, Yes };
199 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
200 ForMemset For);
201 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
203 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
204 unsigned StoreAlignment, Value *StoredVal,
205 Instruction *TheStore,
206 SmallPtrSetImpl<Instruction *> &Stores,
207 const SCEVAddRecExpr *Ev, const SCEV *BECount,
208 bool NegStride, bool IsLoopMemset = false);
209 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
210 bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
211 bool IsLoopMemset = false);
213 /// @}
214 /// \name Noncountable Loop Idiom Handling
215 /// @{
217 bool runOnNoncountableLoop();
219 struct CmpLoopStructure {
220 Value *BCmpValue, *LatchCmpValue;
221 BasicBlock *HeaderBrEqualBB, *HeaderBrUnequalBB;
222 BasicBlock *LatchBrFinishBB, *LatchBrContinueBB;
224 bool matchBCmpLoopStructure(CmpLoopStructure &CmpLoop) const;
225 struct CmpOfLoads {
226 ICmpInst::Predicate BCmpPred;
227 Value *LoadSrcA, *LoadSrcB;
228 Value *LoadA, *LoadB;
230 bool matchBCmpOfLoads(Value *BCmpValue, CmpOfLoads &CmpOfLoads) const;
231 bool recognizeBCmpLoopControlFlow(const CmpOfLoads &CmpOfLoads,
232 CmpLoopStructure &CmpLoop) const;
233 bool recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes, CmpOfLoads &CmpOfLoads,
234 const SCEV *&SrcA, const SCEV *&SrcB,
235 const SCEV *&Iterations) const;
236 bool detectBCmpIdiom(ICmpInst *&BCmpInst, CmpInst *&LatchCmpInst,
237 LoadInst *&LoadA, LoadInst *&LoadB, const SCEV *&SrcA,
238 const SCEV *&SrcB, const SCEV *&NBytes) const;
239 BasicBlock *transformBCmpControlFlow(ICmpInst *ComparedEqual);
240 void transformLoopToBCmp(ICmpInst *BCmpInst, CmpInst *LatchCmpInst,
241 LoadInst *LoadA, LoadInst *LoadB, const SCEV *SrcA,
242 const SCEV *SrcB, const SCEV *NBytes);
243 bool recognizeBCmp();
245 bool recognizePopcount();
246 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
247 PHINode *CntPhi, Value *Var);
248 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
249 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
250 Instruction *CntInst, PHINode *CntPhi,
251 Value *Var, Instruction *DefX,
252 const DebugLoc &DL, bool ZeroCheck,
253 bool IsCntPhiUsedOutsideLoop);
255 /// @}
258 class LoopIdiomRecognizeLegacyPass : public LoopPass {
259 public:
260 static char ID;
262 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
263 initializeLoopIdiomRecognizeLegacyPassPass(
264 *PassRegistry::getPassRegistry());
267 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
268 if (skipLoop(L))
269 return false;
271 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
272 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
273 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
274 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
275 TargetLibraryInfo *TLI =
276 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
277 *L->getHeader()->getParent());
278 const TargetTransformInfo *TTI =
279 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
280 *L->getHeader()->getParent());
281 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
282 LegacyPMAbstraction LoopDeleter(LPM);
284 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
285 // pass. Function analyses need to be preserved across loop transformations
286 // but ORE cannot be preserved (see comment before the pass definition).
287 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
289 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, LoopDeleter, ORE);
290 return LIR.runOnLoop(L);
293 /// This transformation requires natural loop information & requires that
294 /// loop preheaders be inserted into the CFG.
295 void getAnalysisUsage(AnalysisUsage &AU) const override {
296 AU.addRequired<TargetLibraryInfoWrapperPass>();
297 AU.addRequired<TargetTransformInfoWrapperPass>();
298 getLoopAnalysisUsage(AU);
302 } // end anonymous namespace
304 char LoopIdiomRecognizeLegacyPass::ID = 0;
306 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
307 LoopStandardAnalysisResults &AR,
308 LPMUpdater &Updater) {
309 const auto *DL = &L.getHeader()->getModule()->getDataLayout();
311 const auto &FAM =
312 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
313 Function *F = L.getHeader()->getParent();
315 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
316 // FIXME: This should probably be optional rather than required.
317 if (!ORE)
318 report_fatal_error(
319 "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
320 "at a higher level");
322 NewPMAbstraction LoopDeleter(Updater);
323 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
324 LoopDeleter, *ORE);
325 if (!LIR.runOnLoop(&L))
326 return PreservedAnalyses::all();
328 return getLoopPassPreservedAnalyses();
331 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
332 "Recognize loop idioms", false, false)
333 INITIALIZE_PASS_DEPENDENCY(LoopPass)
334 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
335 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
336 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
337 "Recognize loop idioms", false, false)
339 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
341 static void deleteDeadInstruction(Instruction *I) {
342 I->replaceAllUsesWith(UndefValue::get(I->getType()));
343 I->eraseFromParent();
346 //===----------------------------------------------------------------------===//
348 // Implementation of LoopIdiomRecognize
350 //===----------------------------------------------------------------------===//
352 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
353 CurLoop = L;
354 // If the loop could not be converted to canonical form, it must have an
355 // indirectbr in it, just give up.
356 if (!L->getLoopPreheader())
357 return false;
359 // Disable loop idiom recognition if the function's name is a common idiom.
360 StringRef Name = L->getHeader()->getParent()->getName();
361 if (Name == "memset" || Name == "memcpy" || Name == "memcmp" ||
362 Name == "bcmp")
363 return false;
365 // Determine if code size heuristics need to be applied.
366 ApplyCodeSizeHeuristics =
367 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
369 HasMemset = TLI->has(LibFunc_memset);
370 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
371 HasMemcpy = TLI->has(LibFunc_memcpy);
372 HasMemCmp = TLI->has(LibFunc_memcmp);
373 HasBCmp = TLI->has(LibFunc_bcmp);
375 if (HasMemset || HasMemsetPattern || HasMemcpy || HasMemCmp || HasBCmp)
376 if (SE->hasLoopInvariantBackedgeTakenCount(L))
377 return runOnCountableLoop();
379 return runOnNoncountableLoop();
382 bool LoopIdiomRecognize::runOnCountableLoop() {
383 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
384 assert(!isa<SCEVCouldNotCompute>(BECount) &&
385 "runOnCountableLoop() called on a loop without a predictable"
386 "backedge-taken count");
388 // If this loop executes exactly one time, then it should be peeled, not
389 // optimized by this pass.
390 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
391 if (BECst->getAPInt() == 0)
392 return false;
394 SmallVector<BasicBlock *, 8> ExitBlocks;
395 CurLoop->getUniqueExitBlocks(ExitBlocks);
397 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
398 << CurLoop->getHeader()->getParent()->getName()
399 << "] Countable Loop %" << CurLoop->getHeader()->getName()
400 << "\n");
402 bool MadeChange = false;
404 // The following transforms hoist stores/memsets into the loop pre-header.
405 // Give up if the loop has instructions may throw.
406 SimpleLoopSafetyInfo SafetyInfo;
407 SafetyInfo.computeLoopSafetyInfo(CurLoop);
408 if (SafetyInfo.anyBlockMayThrow())
409 return MadeChange;
411 // Scan all the blocks in the loop that are not in subloops.
412 for (auto *BB : CurLoop->getBlocks()) {
413 // Ignore blocks in subloops.
414 if (LI->getLoopFor(BB) != CurLoop)
415 continue;
417 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
419 return MadeChange;
422 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
423 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
424 return ConstStride->getAPInt();
427 /// getMemSetPatternValue - If a strided store of the specified value is safe to
428 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
429 /// be passed in. Otherwise, return null.
431 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
432 /// just replicate their input array and then pass on to memset_pattern16.
433 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
434 // FIXME: This could check for UndefValue because it can be merged into any
435 // other valid pattern.
437 // If the value isn't a constant, we can't promote it to being in a constant
438 // array. We could theoretically do a store to an alloca or something, but
439 // that doesn't seem worthwhile.
440 Constant *C = dyn_cast<Constant>(V);
441 if (!C)
442 return nullptr;
444 // Only handle simple values that are a power of two bytes in size.
445 uint64_t Size = DL->getTypeSizeInBits(V->getType());
446 if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
447 return nullptr;
449 // Don't care enough about darwin/ppc to implement this.
450 if (DL->isBigEndian())
451 return nullptr;
453 // Convert to size in bytes.
454 Size /= 8;
456 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
457 // if the top and bottom are the same (e.g. for vectors and large integers).
458 if (Size > 16)
459 return nullptr;
461 // If the constant is exactly 16 bytes, just use it.
462 if (Size == 16)
463 return C;
465 // Otherwise, we'll use an array of the constants.
466 unsigned ArraySize = 16 / Size;
467 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
468 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
471 LoopIdiomRecognize::LegalStoreKind
472 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
473 // Don't touch volatile stores.
474 if (SI->isVolatile())
475 return LegalStoreKind::None;
476 // We only want simple or unordered-atomic stores.
477 if (!SI->isUnordered())
478 return LegalStoreKind::None;
480 // Don't convert stores of non-integral pointer types to memsets (which stores
481 // integers).
482 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
483 return LegalStoreKind::None;
485 // Avoid merging nontemporal stores.
486 if (SI->getMetadata(LLVMContext::MD_nontemporal))
487 return LegalStoreKind::None;
489 Value *StoredVal = SI->getValueOperand();
490 Value *StorePtr = SI->getPointerOperand();
492 // Reject stores that are so large that they overflow an unsigned.
493 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
494 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
495 return LegalStoreKind::None;
497 // See if the pointer expression is an AddRec like {base,+,1} on the current
498 // loop, which indicates a strided store. If we have something else, it's a
499 // random store we can't handle.
500 const SCEVAddRecExpr *StoreEv =
501 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
502 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
503 return LegalStoreKind::None;
505 // Check to see if we have a constant stride.
506 if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
507 return LegalStoreKind::None;
509 // See if the store can be turned into a memset.
511 // If the stored value is a byte-wise value (like i32 -1), then it may be
512 // turned into a memset of i8 -1, assuming that all the consecutive bytes
513 // are stored. A store of i32 0x01020304 can never be turned into a memset,
514 // but it can be turned into memset_pattern if the target supports it.
515 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
516 Constant *PatternValue = nullptr;
518 // Note: memset and memset_pattern on unordered-atomic is yet not supported
519 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
521 // If we're allowed to form a memset, and the stored value would be
522 // acceptable for memset, use it.
523 if (!UnorderedAtomic && HasMemset && SplatValue &&
524 // Verify that the stored value is loop invariant. If not, we can't
525 // promote the memset.
526 CurLoop->isLoopInvariant(SplatValue)) {
527 // It looks like we can use SplatValue.
528 return LegalStoreKind::Memset;
529 } else if (!UnorderedAtomic && HasMemsetPattern &&
530 // Don't create memset_pattern16s with address spaces.
531 StorePtr->getType()->getPointerAddressSpace() == 0 &&
532 (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
533 // It looks like we can use PatternValue!
534 return LegalStoreKind::MemsetPattern;
537 // Otherwise, see if the store can be turned into a memcpy.
538 if (HasMemcpy) {
539 // Check to see if the stride matches the size of the store. If so, then we
540 // know that every byte is touched in the loop.
541 APInt Stride = getStoreStride(StoreEv);
542 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
543 if (StoreSize != Stride && StoreSize != -Stride)
544 return LegalStoreKind::None;
546 // The store must be feeding a non-volatile load.
547 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
549 // Only allow non-volatile loads
550 if (!LI || LI->isVolatile())
551 return LegalStoreKind::None;
552 // Only allow simple or unordered-atomic loads
553 if (!LI->isUnordered())
554 return LegalStoreKind::None;
556 // See if the pointer expression is an AddRec like {base,+,1} on the current
557 // loop, which indicates a strided load. If we have something else, it's a
558 // random load we can't handle.
559 const SCEVAddRecExpr *LoadEv =
560 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
561 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
562 return LegalStoreKind::None;
564 // The store and load must share the same stride.
565 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
566 return LegalStoreKind::None;
568 // Success. This store can be converted into a memcpy.
569 UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
570 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
571 : LegalStoreKind::Memcpy;
573 // This store can't be transformed into a memset/memcpy.
574 return LegalStoreKind::None;
577 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
578 StoreRefsForMemset.clear();
579 StoreRefsForMemsetPattern.clear();
580 StoreRefsForMemcpy.clear();
581 for (Instruction &I : *BB) {
582 StoreInst *SI = dyn_cast<StoreInst>(&I);
583 if (!SI)
584 continue;
586 // Make sure this is a strided store with a constant stride.
587 switch (isLegalStore(SI)) {
588 case LegalStoreKind::None:
589 // Nothing to do
590 break;
591 case LegalStoreKind::Memset: {
592 // Find the base pointer.
593 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
594 StoreRefsForMemset[Ptr].push_back(SI);
595 } break;
596 case LegalStoreKind::MemsetPattern: {
597 // Find the base pointer.
598 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
599 StoreRefsForMemsetPattern[Ptr].push_back(SI);
600 } break;
601 case LegalStoreKind::Memcpy:
602 case LegalStoreKind::UnorderedAtomicMemcpy:
603 StoreRefsForMemcpy.push_back(SI);
604 break;
605 default:
606 assert(false && "unhandled return value");
607 break;
612 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
613 /// with the specified backedge count. This block is known to be in the current
614 /// loop and not in any subloops.
615 bool LoopIdiomRecognize::runOnLoopBlock(
616 BasicBlock *BB, const SCEV *BECount,
617 SmallVectorImpl<BasicBlock *> &ExitBlocks) {
618 // We can only promote stores in this block if they are unconditionally
619 // executed in the loop. For a block to be unconditionally executed, it has
620 // to dominate all the exit blocks of the loop. Verify this now.
621 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
622 if (!DT->dominates(BB, ExitBlocks[i]))
623 return false;
625 bool MadeChange = false;
626 // Look for store instructions, which may be optimized to memset/memcpy.
627 collectStores(BB);
629 // Look for a single store or sets of stores with a common base, which can be
630 // optimized into a memset (memset_pattern). The latter most commonly happens
631 // with structs and handunrolled loops.
632 for (auto &SL : StoreRefsForMemset)
633 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
635 for (auto &SL : StoreRefsForMemsetPattern)
636 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
638 // Optimize the store into a memcpy, if it feeds an similarly strided load.
639 for (auto &SI : StoreRefsForMemcpy)
640 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
642 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
643 Instruction *Inst = &*I++;
644 // Look for memset instructions, which may be optimized to a larger memset.
645 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
646 WeakTrackingVH InstPtr(&*I);
647 if (!processLoopMemSet(MSI, BECount))
648 continue;
649 MadeChange = true;
651 // If processing the memset invalidated our iterator, start over from the
652 // top of the block.
653 if (!InstPtr)
654 I = BB->begin();
655 continue;
659 return MadeChange;
662 /// See if this store(s) can be promoted to a memset.
663 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
664 const SCEV *BECount, ForMemset For) {
665 // Try to find consecutive stores that can be transformed into memsets.
666 SetVector<StoreInst *> Heads, Tails;
667 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
669 // Do a quadratic search on all of the given stores and find
670 // all of the pairs of stores that follow each other.
671 SmallVector<unsigned, 16> IndexQueue;
672 for (unsigned i = 0, e = SL.size(); i < e; ++i) {
673 assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
675 Value *FirstStoredVal = SL[i]->getValueOperand();
676 Value *FirstStorePtr = SL[i]->getPointerOperand();
677 const SCEVAddRecExpr *FirstStoreEv =
678 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
679 APInt FirstStride = getStoreStride(FirstStoreEv);
680 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
682 // See if we can optimize just this store in isolation.
683 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
684 Heads.insert(SL[i]);
685 continue;
688 Value *FirstSplatValue = nullptr;
689 Constant *FirstPatternValue = nullptr;
691 if (For == ForMemset::Yes)
692 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
693 else
694 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
696 assert((FirstSplatValue || FirstPatternValue) &&
697 "Expected either splat value or pattern value.");
699 IndexQueue.clear();
700 // If a store has multiple consecutive store candidates, search Stores
701 // array according to the sequence: from i+1 to e, then from i-1 to 0.
702 // This is because usually pairing with immediate succeeding or preceding
703 // candidate create the best chance to find memset opportunity.
704 unsigned j = 0;
705 for (j = i + 1; j < e; ++j)
706 IndexQueue.push_back(j);
707 for (j = i; j > 0; --j)
708 IndexQueue.push_back(j - 1);
710 for (auto &k : IndexQueue) {
711 assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
712 Value *SecondStorePtr = SL[k]->getPointerOperand();
713 const SCEVAddRecExpr *SecondStoreEv =
714 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
715 APInt SecondStride = getStoreStride(SecondStoreEv);
717 if (FirstStride != SecondStride)
718 continue;
720 Value *SecondStoredVal = SL[k]->getValueOperand();
721 Value *SecondSplatValue = nullptr;
722 Constant *SecondPatternValue = nullptr;
724 if (For == ForMemset::Yes)
725 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
726 else
727 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
729 assert((SecondSplatValue || SecondPatternValue) &&
730 "Expected either splat value or pattern value.");
732 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
733 if (For == ForMemset::Yes) {
734 if (isa<UndefValue>(FirstSplatValue))
735 FirstSplatValue = SecondSplatValue;
736 if (FirstSplatValue != SecondSplatValue)
737 continue;
738 } else {
739 if (isa<UndefValue>(FirstPatternValue))
740 FirstPatternValue = SecondPatternValue;
741 if (FirstPatternValue != SecondPatternValue)
742 continue;
744 Tails.insert(SL[k]);
745 Heads.insert(SL[i]);
746 ConsecutiveChain[SL[i]] = SL[k];
747 break;
752 // We may run into multiple chains that merge into a single chain. We mark the
753 // stores that we transformed so that we don't visit the same store twice.
754 SmallPtrSet<Value *, 16> TransformedStores;
755 bool Changed = false;
757 // For stores that start but don't end a link in the chain:
758 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
759 it != e; ++it) {
760 if (Tails.count(*it))
761 continue;
763 // We found a store instr that starts a chain. Now follow the chain and try
764 // to transform it.
765 SmallPtrSet<Instruction *, 8> AdjacentStores;
766 StoreInst *I = *it;
768 StoreInst *HeadStore = I;
769 unsigned StoreSize = 0;
771 // Collect the chain into a list.
772 while (Tails.count(I) || Heads.count(I)) {
773 if (TransformedStores.count(I))
774 break;
775 AdjacentStores.insert(I);
777 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
778 // Move to the next value in the chain.
779 I = ConsecutiveChain[I];
782 Value *StoredVal = HeadStore->getValueOperand();
783 Value *StorePtr = HeadStore->getPointerOperand();
784 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
785 APInt Stride = getStoreStride(StoreEv);
787 // Check to see if the stride matches the size of the stores. If so, then
788 // we know that every byte is touched in the loop.
789 if (StoreSize != Stride && StoreSize != -Stride)
790 continue;
792 bool NegStride = StoreSize == -Stride;
794 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
795 StoredVal, HeadStore, AdjacentStores, StoreEv,
796 BECount, NegStride)) {
797 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
798 Changed = true;
802 return Changed;
805 /// processLoopMemSet - See if this memset can be promoted to a large memset.
806 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
807 const SCEV *BECount) {
808 // We can only handle non-volatile memsets with a constant size.
809 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
810 return false;
812 // If we're not allowed to hack on memset, we fail.
813 if (!HasMemset)
814 return false;
816 Value *Pointer = MSI->getDest();
818 // See if the pointer expression is an AddRec like {base,+,1} on the current
819 // loop, which indicates a strided store. If we have something else, it's a
820 // random store we can't handle.
821 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
822 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
823 return false;
825 // Reject memsets that are so large that they overflow an unsigned.
826 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
827 if ((SizeInBytes >> 32) != 0)
828 return false;
830 // Check to see if the stride matches the size of the memset. If so, then we
831 // know that every byte is touched in the loop.
832 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
833 if (!ConstStride)
834 return false;
836 APInt Stride = ConstStride->getAPInt();
837 if (SizeInBytes != Stride && SizeInBytes != -Stride)
838 return false;
840 // Verify that the memset value is loop invariant. If not, we can't promote
841 // the memset.
842 Value *SplatValue = MSI->getValue();
843 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
844 return false;
846 SmallPtrSet<Instruction *, 1> MSIs;
847 MSIs.insert(MSI);
848 bool NegStride = SizeInBytes == -Stride;
849 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
850 MSI->getDestAlignment(), SplatValue, MSI, MSIs,
851 Ev, BECount, NegStride, /*IsLoopMemset=*/true);
854 /// mayLoopAccessLocation - Return true if the specified loop might access the
855 /// specified pointer location, which is a loop-strided access. The 'Access'
856 /// argument specifies what the verboten forms of access are (read or write).
857 static bool
858 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
859 const SCEV *BECount, unsigned StoreSize,
860 AliasAnalysis &AA,
861 SmallPtrSetImpl<Instruction *> &IgnoredStores) {
862 // Get the location that may be stored across the loop. Since the access is
863 // strided positively through memory, we say that the modified location starts
864 // at the pointer and has infinite size.
865 LocationSize AccessSize = LocationSize::unknown();
867 // If the loop iterates a fixed number of times, we can refine the access size
868 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
869 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
870 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
871 StoreSize);
873 // TODO: For this to be really effective, we have to dive into the pointer
874 // operand in the store. Store to &A[i] of 100 will always return may alias
875 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
876 // which will then no-alias a store to &A[100].
877 MemoryLocation StoreLoc(Ptr, AccessSize);
879 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
880 ++BI)
881 for (Instruction &I : **BI)
882 if (IgnoredStores.count(&I) == 0 &&
883 isModOrRefSet(
884 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
885 return true;
887 return false;
890 // If we have a negative stride, Start refers to the end of the memory location
891 // we're trying to memset. Therefore, we need to recompute the base pointer,
892 // which is just Start - BECount*Size.
893 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
894 Type *IntPtr, unsigned StoreSize,
895 ScalarEvolution *SE) {
896 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
897 if (StoreSize != 1)
898 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
899 SCEV::FlagNUW);
900 return SE->getMinusSCEV(Start, Index);
903 /// Compute the number of bytes as a SCEV from the backedge taken count.
905 /// This also maps the SCEV into the provided type and tries to handle the
906 /// computation in a way that will fold cleanly.
907 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
908 unsigned StoreSize, Loop *CurLoop,
909 const DataLayout *DL, ScalarEvolution *SE) {
910 const SCEV *NumBytesS;
911 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
912 // pointer size if it isn't already.
914 // If we're going to need to zero extend the BE count, check if we can add
915 // one to it prior to zero extending without overflow. Provided this is safe,
916 // it allows better simplification of the +1.
917 if (DL->getTypeSizeInBits(BECount->getType()) <
918 DL->getTypeSizeInBits(IntPtr) &&
919 SE->isLoopEntryGuardedByCond(
920 CurLoop, ICmpInst::ICMP_NE, BECount,
921 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
922 NumBytesS = SE->getZeroExtendExpr(
923 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
924 IntPtr);
925 } else {
926 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
927 SE->getOne(IntPtr), SCEV::FlagNUW);
930 // And scale it based on the store size.
931 if (StoreSize != 1) {
932 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
933 SCEV::FlagNUW);
935 return NumBytesS;
938 /// processLoopStridedStore - We see a strided store of some value. If we can
939 /// transform this into a memset or memset_pattern in the loop preheader, do so.
940 bool LoopIdiomRecognize::processLoopStridedStore(
941 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
942 Value *StoredVal, Instruction *TheStore,
943 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
944 const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
945 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
946 Constant *PatternValue = nullptr;
948 if (!SplatValue)
949 PatternValue = getMemSetPatternValue(StoredVal, DL);
951 assert((SplatValue || PatternValue) &&
952 "Expected either splat value or pattern value.");
954 // The trip count of the loop and the base pointer of the addrec SCEV is
955 // guaranteed to be loop invariant, which means that it should dominate the
956 // header. This allows us to insert code for it in the preheader.
957 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
958 BasicBlock *Preheader = CurLoop->getLoopPreheader();
959 IRBuilder<> Builder(Preheader->getTerminator());
960 SCEVExpander Expander(*SE, *DL, "loop-idiom");
962 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
963 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
965 const SCEV *Start = Ev->getStart();
966 // Handle negative strided loops.
967 if (NegStride)
968 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
970 // TODO: ideally we should still be able to generate memset if SCEV expander
971 // is taught to generate the dependencies at the latest point.
972 if (!isSafeToExpand(Start, *SE))
973 return false;
975 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
976 // this into a memset in the loop preheader now if we want. However, this
977 // would be unsafe to do if there is anything else in the loop that may read
978 // or write to the aliased location. Check for any overlap by generating the
979 // base pointer and checking the region.
980 Value *BasePtr =
981 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
982 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
983 StoreSize, *AA, Stores)) {
984 Expander.clear();
985 // If we generated new code for the base pointer, clean up.
986 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
987 return false;
990 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
991 return false;
993 // Okay, everything looks good, insert the memset.
995 const SCEV *NumBytesS =
996 getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
998 // TODO: ideally we should still be able to generate memset if SCEV expander
999 // is taught to generate the dependencies at the latest point.
1000 if (!isSafeToExpand(NumBytesS, *SE))
1001 return false;
1003 Value *NumBytes =
1004 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1006 CallInst *NewCall;
1007 if (SplatValue) {
1008 NewCall =
1009 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
1010 } else {
1011 // Everything is emitted in default address space
1012 Type *Int8PtrTy = DestInt8PtrTy;
1014 Module *M = TheStore->getModule();
1015 StringRef FuncName = "memset_pattern16";
1016 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1017 Int8PtrTy, Int8PtrTy, IntPtr);
1018 inferLibFuncAttributes(M, FuncName, *TLI);
1020 // Otherwise we should form a memset_pattern16. PatternValue is known to be
1021 // an constant array of 16-bytes. Plop the value into a mergable global.
1022 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1023 GlobalValue::PrivateLinkage,
1024 PatternValue, ".memset_pattern");
1025 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1026 GV->setAlignment(Align(16));
1027 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1028 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1031 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1032 << " from store to: " << *Ev << " at: " << *TheStore
1033 << "\n");
1034 NewCall->setDebugLoc(TheStore->getDebugLoc());
1036 ORE.emit([&]() {
1037 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1038 NewCall->getDebugLoc(), Preheader)
1039 << "Transformed loop-strided store into a call to "
1040 << ore::NV("NewFunction", NewCall->getCalledFunction())
1041 << "() function";
1044 // Okay, the memset has been formed. Zap the original store and anything that
1045 // feeds into it.
1046 for (auto *I : Stores)
1047 deleteDeadInstruction(I);
1048 ++NumMemSet;
1049 return true;
1052 /// If the stored value is a strided load in the same loop with the same stride
1053 /// this may be transformable into a memcpy. This kicks in for stuff like
1054 /// for (i) A[i] = B[i];
1055 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1056 const SCEV *BECount) {
1057 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1059 Value *StorePtr = SI->getPointerOperand();
1060 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1061 APInt Stride = getStoreStride(StoreEv);
1062 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1063 bool NegStride = StoreSize == -Stride;
1065 // The store must be feeding a non-volatile load.
1066 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1067 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1069 // See if the pointer expression is an AddRec like {base,+,1} on the current
1070 // loop, which indicates a strided load. If we have something else, it's a
1071 // random load we can't handle.
1072 const SCEVAddRecExpr *LoadEv =
1073 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1075 // The trip count of the loop and the base pointer of the addrec SCEV is
1076 // guaranteed to be loop invariant, which means that it should dominate the
1077 // header. This allows us to insert code for it in the preheader.
1078 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1079 IRBuilder<> Builder(Preheader->getTerminator());
1080 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1082 const SCEV *StrStart = StoreEv->getStart();
1083 unsigned StrAS = SI->getPointerAddressSpace();
1084 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
1086 // Handle negative strided loops.
1087 if (NegStride)
1088 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
1090 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1091 // this into a memcpy in the loop preheader now if we want. However, this
1092 // would be unsafe to do if there is anything else in the loop that may read
1093 // or write the memory region we're storing to. This includes the load that
1094 // feeds the stores. Check for an alias by generating the base address and
1095 // checking everything.
1096 Value *StoreBasePtr = Expander.expandCodeFor(
1097 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1099 SmallPtrSet<Instruction *, 1> Stores;
1100 Stores.insert(SI);
1101 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1102 StoreSize, *AA, Stores)) {
1103 Expander.clear();
1104 // If we generated new code for the base pointer, clean up.
1105 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1106 return false;
1109 const SCEV *LdStart = LoadEv->getStart();
1110 unsigned LdAS = LI->getPointerAddressSpace();
1112 // Handle negative strided loops.
1113 if (NegStride)
1114 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
1116 // For a memcpy, we have to make sure that the input array is not being
1117 // mutated by the loop.
1118 Value *LoadBasePtr = Expander.expandCodeFor(
1119 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1121 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1122 StoreSize, *AA, Stores)) {
1123 Expander.clear();
1124 // If we generated new code for the base pointer, clean up.
1125 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1126 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1127 return false;
1130 if (avoidLIRForMultiBlockLoop())
1131 return false;
1133 // Okay, everything is safe, we can transform this!
1135 const SCEV *NumBytesS =
1136 getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
1138 Value *NumBytes =
1139 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1141 CallInst *NewCall = nullptr;
1142 // Check whether to generate an unordered atomic memcpy:
1143 // If the load or store are atomic, then they must necessarily be unordered
1144 // by previous checks.
1145 if (!SI->isAtomic() && !LI->isAtomic())
1146 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
1147 LoadBasePtr, LI->getAlignment(), NumBytes);
1148 else {
1149 // We cannot allow unaligned ops for unordered load/store, so reject
1150 // anything where the alignment isn't at least the element size.
1151 unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1152 if (Align < StoreSize)
1153 return false;
1155 // If the element.atomic memcpy is not lowered into explicit
1156 // loads/stores later, then it will be lowered into an element-size
1157 // specific lib call. If the lib call doesn't exist for our store size, then
1158 // we shouldn't generate the memcpy.
1159 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1160 return false;
1162 // Create the call.
1163 // Note that unordered atomic loads/stores are *required* by the spec to
1164 // have an alignment but non-atomic loads/stores may not.
1165 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1166 StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1167 NumBytes, StoreSize);
1169 NewCall->setDebugLoc(SI->getDebugLoc());
1171 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
1172 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1173 << " from store ptr=" << *StoreEv << " at: " << *SI
1174 << "\n");
1176 ORE.emit([&]() {
1177 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1178 NewCall->getDebugLoc(), Preheader)
1179 << "Formed a call to "
1180 << ore::NV("NewFunction", NewCall->getCalledFunction())
1181 << "() function";
1184 // Okay, the memcpy has been formed. Zap the original store and anything that
1185 // feeds into it.
1186 deleteDeadInstruction(SI);
1187 ++NumMemCpy;
1188 return true;
1191 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1192 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1194 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1195 bool IsLoopMemset) {
1196 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1197 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1198 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
1199 << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1200 << " avoided: multi-block top-level loop\n");
1201 return true;
1205 return false;
1208 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1209 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1210 << CurLoop->getHeader()->getParent()->getName()
1211 << "] Noncountable Loop %"
1212 << CurLoop->getHeader()->getName() << "\n");
1214 return recognizeBCmp() || recognizePopcount() || recognizeAndInsertFFS();
1217 /// Check if the given conditional branch is based on the comparison between
1218 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1219 /// true), the control yields to the loop entry. If the branch matches the
1220 /// behavior, the variable involved in the comparison is returned. This function
1221 /// will be called to see if the precondition and postcondition of the loop are
1222 /// in desirable form.
1223 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1224 bool JmpOnZero = false) {
1225 if (!BI || !BI->isConditional())
1226 return nullptr;
1228 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1229 if (!Cond)
1230 return nullptr;
1232 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1233 if (!CmpZero || !CmpZero->isZero())
1234 return nullptr;
1236 BasicBlock *TrueSucc = BI->getSuccessor(0);
1237 BasicBlock *FalseSucc = BI->getSuccessor(1);
1238 if (JmpOnZero)
1239 std::swap(TrueSucc, FalseSucc);
1241 ICmpInst::Predicate Pred = Cond->getPredicate();
1242 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1243 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1244 return Cond->getOperand(0);
1246 return nullptr;
1249 // Check if the recurrence variable `VarX` is in the right form to create
1250 // the idiom. Returns the value coerced to a PHINode if so.
1251 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1252 BasicBlock *LoopEntry) {
1253 auto *PhiX = dyn_cast<PHINode>(VarX);
1254 if (PhiX && PhiX->getParent() == LoopEntry &&
1255 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1256 return PhiX;
1257 return nullptr;
1260 /// Return true iff the idiom is detected in the loop.
1262 /// Additionally:
1263 /// 1) \p CntInst is set to the instruction counting the population bit.
1264 /// 2) \p CntPhi is set to the corresponding phi node.
1265 /// 3) \p Var is set to the value whose population bits are being counted.
1267 /// The core idiom we are trying to detect is:
1268 /// \code
1269 /// if (x0 != 0)
1270 /// goto loop-exit // the precondition of the loop
1271 /// cnt0 = init-val;
1272 /// do {
1273 /// x1 = phi (x0, x2);
1274 /// cnt1 = phi(cnt0, cnt2);
1276 /// cnt2 = cnt1 + 1;
1277 /// ...
1278 /// x2 = x1 & (x1 - 1);
1279 /// ...
1280 /// } while(x != 0);
1282 /// loop-exit:
1283 /// \endcode
1284 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1285 Instruction *&CntInst, PHINode *&CntPhi,
1286 Value *&Var) {
1287 // step 1: Check to see if the look-back branch match this pattern:
1288 // "if (a!=0) goto loop-entry".
1289 BasicBlock *LoopEntry;
1290 Instruction *DefX2, *CountInst;
1291 Value *VarX1, *VarX0;
1292 PHINode *PhiX, *CountPhi;
1294 DefX2 = CountInst = nullptr;
1295 VarX1 = VarX0 = nullptr;
1296 PhiX = CountPhi = nullptr;
1297 LoopEntry = *(CurLoop->block_begin());
1299 // step 1: Check if the loop-back branch is in desirable form.
1301 if (Value *T = matchCondition(
1302 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1303 DefX2 = dyn_cast<Instruction>(T);
1304 else
1305 return false;
1308 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1310 if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1311 return false;
1313 BinaryOperator *SubOneOp;
1315 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1316 VarX1 = DefX2->getOperand(1);
1317 else {
1318 VarX1 = DefX2->getOperand(0);
1319 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1321 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1322 return false;
1324 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1325 if (!Dec ||
1326 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1327 (SubOneOp->getOpcode() == Instruction::Add &&
1328 Dec->isMinusOne()))) {
1329 return false;
1333 // step 3: Check the recurrence of variable X
1334 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1335 if (!PhiX)
1336 return false;
1338 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1340 CountInst = nullptr;
1341 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1342 IterE = LoopEntry->end();
1343 Iter != IterE; Iter++) {
1344 Instruction *Inst = &*Iter;
1345 if (Inst->getOpcode() != Instruction::Add)
1346 continue;
1348 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1349 if (!Inc || !Inc->isOne())
1350 continue;
1352 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1353 if (!Phi)
1354 continue;
1356 // Check if the result of the instruction is live of the loop.
1357 bool LiveOutLoop = false;
1358 for (User *U : Inst->users()) {
1359 if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1360 LiveOutLoop = true;
1361 break;
1365 if (LiveOutLoop) {
1366 CountInst = Inst;
1367 CountPhi = Phi;
1368 break;
1372 if (!CountInst)
1373 return false;
1376 // step 5: check if the precondition is in this form:
1377 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1379 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1380 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1381 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1382 return false;
1384 CntInst = CountInst;
1385 CntPhi = CountPhi;
1386 Var = T;
1389 return true;
1392 /// Return true if the idiom is detected in the loop.
1394 /// Additionally:
1395 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1396 /// or nullptr if there is no such.
1397 /// 2) \p CntPhi is set to the corresponding phi node
1398 /// or nullptr if there is no such.
1399 /// 3) \p Var is set to the value whose CTLZ could be used.
1400 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1402 /// The core idiom we are trying to detect is:
1403 /// \code
1404 /// if (x0 == 0)
1405 /// goto loop-exit // the precondition of the loop
1406 /// cnt0 = init-val;
1407 /// do {
1408 /// x = phi (x0, x.next); //PhiX
1409 /// cnt = phi(cnt0, cnt.next);
1411 /// cnt.next = cnt + 1;
1412 /// ...
1413 /// x.next = x >> 1; // DefX
1414 /// ...
1415 /// } while(x.next != 0);
1417 /// loop-exit:
1418 /// \endcode
1419 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1420 Intrinsic::ID &IntrinID, Value *&InitX,
1421 Instruction *&CntInst, PHINode *&CntPhi,
1422 Instruction *&DefX) {
1423 BasicBlock *LoopEntry;
1424 Value *VarX = nullptr;
1426 DefX = nullptr;
1427 CntInst = nullptr;
1428 CntPhi = nullptr;
1429 LoopEntry = *(CurLoop->block_begin());
1431 // step 1: Check if the loop-back branch is in desirable form.
1432 if (Value *T = matchCondition(
1433 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1434 DefX = dyn_cast<Instruction>(T);
1435 else
1436 return false;
1438 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1439 if (!DefX || !DefX->isShift())
1440 return false;
1441 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1442 Intrinsic::ctlz;
1443 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1444 if (!Shft || !Shft->isOne())
1445 return false;
1446 VarX = DefX->getOperand(0);
1448 // step 3: Check the recurrence of variable X
1449 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1450 if (!PhiX)
1451 return false;
1453 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1455 // Make sure the initial value can't be negative otherwise the ashr in the
1456 // loop might never reach zero which would make the loop infinite.
1457 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1458 return false;
1460 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1461 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1462 // then all uses of "cnt.next" could be optimized to the trip count
1463 // plus "cnt0". Currently it is not optimized.
1464 // This step could be used to detect POPCNT instruction:
1465 // cnt.next = cnt + (x.next & 1)
1466 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1467 IterE = LoopEntry->end();
1468 Iter != IterE; Iter++) {
1469 Instruction *Inst = &*Iter;
1470 if (Inst->getOpcode() != Instruction::Add)
1471 continue;
1473 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1474 if (!Inc || !Inc->isOne())
1475 continue;
1477 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1478 if (!Phi)
1479 continue;
1481 CntInst = Inst;
1482 CntPhi = Phi;
1483 break;
1485 if (!CntInst)
1486 return false;
1488 return true;
1491 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1492 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1493 /// trip count returns true; otherwise, returns false.
1494 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1495 // Give up if the loop has multiple blocks or multiple backedges.
1496 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1497 return false;
1499 Intrinsic::ID IntrinID;
1500 Value *InitX;
1501 Instruction *DefX = nullptr;
1502 PHINode *CntPhi = nullptr;
1503 Instruction *CntInst = nullptr;
1504 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1505 // this is always 6.
1506 size_t IdiomCanonicalSize = 6;
1508 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1509 CntInst, CntPhi, DefX))
1510 return false;
1512 bool IsCntPhiUsedOutsideLoop = false;
1513 for (User *U : CntPhi->users())
1514 if (!CurLoop->contains(cast<Instruction>(U))) {
1515 IsCntPhiUsedOutsideLoop = true;
1516 break;
1518 bool IsCntInstUsedOutsideLoop = false;
1519 for (User *U : CntInst->users())
1520 if (!CurLoop->contains(cast<Instruction>(U))) {
1521 IsCntInstUsedOutsideLoop = true;
1522 break;
1524 // If both CntInst and CntPhi are used outside the loop the profitability
1525 // is questionable.
1526 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1527 return false;
1529 // For some CPUs result of CTLZ(X) intrinsic is undefined
1530 // when X is 0. If we can not guarantee X != 0, we need to check this
1531 // when expand.
1532 bool ZeroCheck = false;
1533 // It is safe to assume Preheader exist as it was checked in
1534 // parent function RunOnLoop.
1535 BasicBlock *PH = CurLoop->getLoopPreheader();
1537 // If we are using the count instruction outside the loop, make sure we
1538 // have a zero check as a precondition. Without the check the loop would run
1539 // one iteration for before any check of the input value. This means 0 and 1
1540 // would have identical behavior in the original loop and thus
1541 if (!IsCntPhiUsedOutsideLoop) {
1542 auto *PreCondBB = PH->getSinglePredecessor();
1543 if (!PreCondBB)
1544 return false;
1545 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1546 if (!PreCondBI)
1547 return false;
1548 if (matchCondition(PreCondBI, PH) != InitX)
1549 return false;
1550 ZeroCheck = true;
1553 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1554 // profitable if we delete the loop.
1556 // the loop has only 6 instructions:
1557 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1558 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1559 // %shr = ashr %n.addr.0, 1
1560 // %tobool = icmp eq %shr, 0
1561 // %inc = add nsw %i.0, 1
1562 // br i1 %tobool
1564 const Value *Args[] =
1565 {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1566 : ConstantInt::getFalse(InitX->getContext())};
1568 // @llvm.dbg doesn't count as they have no semantic effect.
1569 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1570 uint32_t HeaderSize =
1571 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1573 if (HeaderSize != IdiomCanonicalSize &&
1574 TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1575 TargetTransformInfo::TCC_Basic)
1576 return false;
1578 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1579 DefX->getDebugLoc(), ZeroCheck,
1580 IsCntPhiUsedOutsideLoop);
1581 return true;
1584 /// Recognizes a population count idiom in a non-countable loop.
1586 /// If detected, transforms the relevant code to issue the popcount intrinsic
1587 /// function call, and returns true; otherwise, returns false.
1588 bool LoopIdiomRecognize::recognizePopcount() {
1589 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1590 return false;
1592 // Counting population are usually conducted by few arithmetic instructions.
1593 // Such instructions can be easily "absorbed" by vacant slots in a
1594 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1595 // in a compact loop.
1597 // Give up if the loop has multiple blocks or multiple backedges.
1598 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1599 return false;
1601 BasicBlock *LoopBody = *(CurLoop->block_begin());
1602 if (LoopBody->size() >= 20) {
1603 // The loop is too big, bail out.
1604 return false;
1607 // It should have a preheader containing nothing but an unconditional branch.
1608 BasicBlock *PH = CurLoop->getLoopPreheader();
1609 if (!PH || &PH->front() != PH->getTerminator())
1610 return false;
1611 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1612 if (!EntryBI || EntryBI->isConditional())
1613 return false;
1615 // It should have a precondition block where the generated popcount intrinsic
1616 // function can be inserted.
1617 auto *PreCondBB = PH->getSinglePredecessor();
1618 if (!PreCondBB)
1619 return false;
1620 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1621 if (!PreCondBI || PreCondBI->isUnconditional())
1622 return false;
1624 Instruction *CntInst;
1625 PHINode *CntPhi;
1626 Value *Val;
1627 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1628 return false;
1630 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1631 return true;
1634 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1635 const DebugLoc &DL) {
1636 Value *Ops[] = {Val};
1637 Type *Tys[] = {Val->getType()};
1639 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1640 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1641 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1642 CI->setDebugLoc(DL);
1644 return CI;
1647 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1648 const DebugLoc &DL, bool ZeroCheck,
1649 Intrinsic::ID IID) {
1650 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1651 Type *Tys[] = {Val->getType()};
1653 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1654 Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1655 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1656 CI->setDebugLoc(DL);
1658 return CI;
1661 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1662 /// loop:
1663 /// CntPhi = PHI [Cnt0, CntInst]
1664 /// PhiX = PHI [InitX, DefX]
1665 /// CntInst = CntPhi + 1
1666 /// DefX = PhiX >> 1
1667 /// LOOP_BODY
1668 /// Br: loop if (DefX != 0)
1669 /// Use(CntPhi) or Use(CntInst)
1671 /// Into:
1672 /// If CntPhi used outside the loop:
1673 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1674 /// Count = CountPrev + 1
1675 /// else
1676 /// Count = BitWidth(InitX) - CTLZ(InitX)
1677 /// loop:
1678 /// CntPhi = PHI [Cnt0, CntInst]
1679 /// PhiX = PHI [InitX, DefX]
1680 /// PhiCount = PHI [Count, Dec]
1681 /// CntInst = CntPhi + 1
1682 /// DefX = PhiX >> 1
1683 /// Dec = PhiCount - 1
1684 /// LOOP_BODY
1685 /// Br: loop if (Dec != 0)
1686 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1687 /// or
1688 /// Use(Count + Cnt0) // Use(CntInst)
1690 /// If LOOP_BODY is empty the loop will be deleted.
1691 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1692 void LoopIdiomRecognize::transformLoopToCountable(
1693 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1694 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1695 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1696 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1698 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1699 IRBuilder<> Builder(PreheaderBr);
1700 Builder.SetCurrentDebugLocation(DL);
1701 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1703 // Count = BitWidth - CTLZ(InitX);
1704 // If there are uses of CntPhi create:
1705 // CountPrev = BitWidth - CTLZ(InitX >> 1);
1706 if (IsCntPhiUsedOutsideLoop) {
1707 if (DefX->getOpcode() == Instruction::AShr)
1708 InitXNext =
1709 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1710 else if (DefX->getOpcode() == Instruction::LShr)
1711 InitXNext =
1712 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1713 else if (DefX->getOpcode() == Instruction::Shl) // cttz
1714 InitXNext =
1715 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1716 else
1717 llvm_unreachable("Unexpected opcode!");
1718 } else
1719 InitXNext = InitX;
1720 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1721 Count = Builder.CreateSub(
1722 ConstantInt::get(FFS->getType(),
1723 FFS->getType()->getIntegerBitWidth()),
1724 FFS);
1725 if (IsCntPhiUsedOutsideLoop) {
1726 CountPrev = Count;
1727 Count = Builder.CreateAdd(
1728 CountPrev,
1729 ConstantInt::get(CountPrev->getType(), 1));
1732 NewCount = Builder.CreateZExtOrTrunc(
1733 IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1734 cast<IntegerType>(CntInst->getType()));
1736 // If the counter's initial value is not zero, insert Add Inst.
1737 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1738 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1739 if (!InitConst || !InitConst->isZero())
1740 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1742 // Step 2: Insert new IV and loop condition:
1743 // loop:
1744 // ...
1745 // PhiCount = PHI [Count, Dec]
1746 // ...
1747 // Dec = PhiCount - 1
1748 // ...
1749 // Br: loop if (Dec != 0)
1750 BasicBlock *Body = *(CurLoop->block_begin());
1751 auto *LbBr = cast<BranchInst>(Body->getTerminator());
1752 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1753 Type *Ty = Count->getType();
1755 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1757 Builder.SetInsertPoint(LbCond);
1758 Instruction *TcDec = cast<Instruction>(
1759 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1760 "tcdec", false, true));
1762 TcPhi->addIncoming(Count, Preheader);
1763 TcPhi->addIncoming(TcDec, Body);
1765 CmpInst::Predicate Pred =
1766 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1767 LbCond->setPredicate(Pred);
1768 LbCond->setOperand(0, TcDec);
1769 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1771 // Step 3: All the references to the original counter outside
1772 // the loop are replaced with the NewCount
1773 if (IsCntPhiUsedOutsideLoop)
1774 CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1775 else
1776 CntInst->replaceUsesOutsideBlock(NewCount, Body);
1778 // step 4: Forget the "non-computable" trip-count SCEV associated with the
1779 // loop. The loop would otherwise not be deleted even if it becomes empty.
1780 SE->forgetLoop(CurLoop);
1783 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1784 Instruction *CntInst,
1785 PHINode *CntPhi, Value *Var) {
1786 BasicBlock *PreHead = CurLoop->getLoopPreheader();
1787 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1788 const DebugLoc &DL = CntInst->getDebugLoc();
1790 // Assuming before transformation, the loop is following:
1791 // if (x) // the precondition
1792 // do { cnt++; x &= x - 1; } while(x);
1794 // Step 1: Insert the ctpop instruction at the end of the precondition block
1795 IRBuilder<> Builder(PreCondBr);
1796 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1798 PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1799 NewCount = PopCntZext =
1800 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1802 if (NewCount != PopCnt)
1803 (cast<Instruction>(NewCount))->setDebugLoc(DL);
1805 // TripCnt is exactly the number of iterations the loop has
1806 TripCnt = NewCount;
1808 // If the population counter's initial value is not zero, insert Add Inst.
1809 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1810 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1811 if (!InitConst || !InitConst->isZero()) {
1812 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1813 (cast<Instruction>(NewCount))->setDebugLoc(DL);
1817 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1818 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1819 // function would be partial dead code, and downstream passes will drag
1820 // it back from the precondition block to the preheader.
1822 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1824 Value *Opnd0 = PopCntZext;
1825 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1826 if (PreCond->getOperand(0) != Var)
1827 std::swap(Opnd0, Opnd1);
1829 ICmpInst *NewPreCond = cast<ICmpInst>(
1830 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1831 PreCondBr->setCondition(NewPreCond);
1833 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1836 // Step 3: Note that the population count is exactly the trip count of the
1837 // loop in question, which enable us to convert the loop from noncountable
1838 // loop into a countable one. The benefit is twofold:
1840 // - If the loop only counts population, the entire loop becomes dead after
1841 // the transformation. It is a lot easier to prove a countable loop dead
1842 // than to prove a noncountable one. (In some C dialects, an infinite loop
1843 // isn't dead even if it computes nothing useful. In general, DCE needs
1844 // to prove a noncountable loop finite before safely delete it.)
1846 // - If the loop also performs something else, it remains alive.
1847 // Since it is transformed to countable form, it can be aggressively
1848 // optimized by some optimizations which are in general not applicable
1849 // to a noncountable loop.
1851 // After this step, this loop (conceptually) would look like following:
1852 // newcnt = __builtin_ctpop(x);
1853 // t = newcnt;
1854 // if (x)
1855 // do { cnt++; x &= x-1; t--) } while (t > 0);
1856 BasicBlock *Body = *(CurLoop->block_begin());
1858 auto *LbBr = cast<BranchInst>(Body->getTerminator());
1859 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1860 Type *Ty = TripCnt->getType();
1862 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1864 Builder.SetInsertPoint(LbCond);
1865 Instruction *TcDec = cast<Instruction>(
1866 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1867 "tcdec", false, true));
1869 TcPhi->addIncoming(TripCnt, PreHead);
1870 TcPhi->addIncoming(TcDec, Body);
1872 CmpInst::Predicate Pred =
1873 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1874 LbCond->setPredicate(Pred);
1875 LbCond->setOperand(0, TcDec);
1876 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1879 // Step 4: All the references to the original population counter outside
1880 // the loop are replaced with the NewCount -- the value returned from
1881 // __builtin_ctpop().
1882 CntInst->replaceUsesOutsideBlock(NewCount, Body);
1884 // step 5: Forget the "non-computable" trip-count SCEV associated with the
1885 // loop. The loop would otherwise not be deleted even if it becomes empty.
1886 SE->forgetLoop(CurLoop);
1889 bool LoopIdiomRecognize::matchBCmpLoopStructure(
1890 CmpLoopStructure &CmpLoop) const {
1891 ICmpInst::Predicate BCmpPred;
1893 // We are looking for the following basic layout:
1894 // PreheaderBB: <preheader> ; preds = ???
1895 // <...>
1896 // br label %LoopHeaderBB
1897 // LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB
1898 // <...>
1899 // %BCmpValue = icmp <...>
1900 // br i1 %BCmpValue, label %LoopLatchBB, label %Successor0
1901 // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
1902 // <...>
1903 // %LatchCmpValue = <are we done, or do next iteration?>
1904 // br i1 %LatchCmpValue, label %Successor1, label %LoopHeaderBB
1905 // Successor0: <exit> ; preds = %LoopHeaderBB
1906 // <...>
1907 // Successor1: <exit> ; preds = %LoopLatchBB
1908 // <...>
1910 // Successor0 and Successor1 may or may not be the same basic block.
1912 // Match basic frame-work of this supposedly-comparison loop.
1913 using namespace PatternMatch;
1914 if (!match(CurLoop->getHeader()->getTerminator(),
1915 m_Br(m_CombineAnd(m_ICmp(BCmpPred, m_Value(), m_Value()),
1916 m_Value(CmpLoop.BCmpValue)),
1917 CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB)) ||
1918 !match(CurLoop->getLoopLatch()->getTerminator(),
1919 m_Br(m_CombineAnd(m_Cmp(), m_Value(CmpLoop.LatchCmpValue)),
1920 CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB))) {
1921 LLVM_DEBUG(dbgs() << "Basic control-flow layout unrecognized.\n");
1922 return false;
1924 LLVM_DEBUG(dbgs() << "Recognized basic control-flow layout.\n");
1925 return true;
1928 bool LoopIdiomRecognize::matchBCmpOfLoads(Value *BCmpValue,
1929 CmpOfLoads &CmpOfLoads) const {
1930 using namespace PatternMatch;
1931 LLVM_DEBUG(dbgs() << "Analyzing header icmp " << *BCmpValue
1932 << " as bcmp pattern.\n");
1934 // Match bcmp-style loop header cmp. It must be an eq-icmp of loads. Example:
1935 // %v0 = load <...>, <...>* %LoadSrcA
1936 // %v1 = load <...>, <...>* %LoadSrcB
1937 // %CmpLoop.BCmpValue = icmp eq <...> %v0, %v1
1938 // There won't be any no-op bitcasts between load and icmp,
1939 // they would have been transformed into a load of bitcast.
1940 // FIXME: {b,mem}cmp() calls have the same semantics as icmp. Match them too.
1941 if (!match(BCmpValue,
1942 m_ICmp(CmpOfLoads.BCmpPred,
1943 m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcA)),
1944 m_Value(CmpOfLoads.LoadA)),
1945 m_CombineAnd(m_Load(m_Value(CmpOfLoads.LoadSrcB)),
1946 m_Value(CmpOfLoads.LoadB)))) ||
1947 !ICmpInst::isEquality(CmpOfLoads.BCmpPred)) {
1948 LLVM_DEBUG(dbgs() << "Loop header icmp did not match bcmp pattern.\n");
1949 return false;
1951 LLVM_DEBUG(dbgs() << "Recognized header icmp as bcmp pattern with loads:\n\t"
1952 << *CmpOfLoads.LoadA << "\n\t" << *CmpOfLoads.LoadB
1953 << "\n");
1954 // FIXME: handle memcmp pattern?
1955 return true;
1958 bool LoopIdiomRecognize::recognizeBCmpLoopControlFlow(
1959 const CmpOfLoads &CmpOfLoads, CmpLoopStructure &CmpLoop) const {
1960 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
1961 BasicBlock *LoopLatchBB = CurLoop->getLoopLatch();
1963 // Be wary, comparisons can be inverted, canonicalize order.
1964 // If this 'element' comparison passed, we expect to proceed to the next elt.
1965 if (CmpOfLoads.BCmpPred != ICmpInst::Predicate::ICMP_EQ)
1966 std::swap(CmpLoop.HeaderBrEqualBB, CmpLoop.HeaderBrUnequalBB);
1967 // The predicate on loop latch does not matter, just canonicalize some order.
1968 if (CmpLoop.LatchBrContinueBB != LoopHeaderBB)
1969 std::swap(CmpLoop.LatchBrFinishBB, CmpLoop.LatchBrContinueBB);
1971 // Check that control-flow between blocks is as expected.
1972 if (CmpLoop.HeaderBrEqualBB != LoopLatchBB ||
1973 CmpLoop.LatchBrContinueBB != LoopHeaderBB) {
1974 LLVM_DEBUG(dbgs() << "Loop control-flow not recognized.\n");
1975 return false;
1978 SmallVector<BasicBlock *, 2> ExitBlocks;
1979 CurLoop->getUniqueExitBlocks(ExitBlocks);
1980 assert(ExitBlocks.size() <= 2U && "Can't have more than two exit blocks.");
1982 assert(!is_contained(ExitBlocks, CmpLoop.HeaderBrEqualBB) &&
1983 is_contained(ExitBlocks, CmpLoop.HeaderBrUnequalBB) &&
1984 !is_contained(ExitBlocks, CmpLoop.LatchBrContinueBB) &&
1985 is_contained(ExitBlocks, CmpLoop.LatchBrFinishBB) &&
1986 "Unexpected exit edges.");
1988 LLVM_DEBUG(dbgs() << "Recognized loop control-flow.\n");
1990 LLVM_DEBUG(dbgs() << "Performing side-effect analysis on the loop.\n");
1991 assert(CurLoop->isLCSSAForm(*DT) && "Should only get LCSSA-form loops here.");
1992 // No loop instructions must be used outside of the loop. Since we are in
1993 // LCSSA form, we only need to check successor block's PHI nodes's incoming
1994 // values for incoming blocks that are the loop basic blocks.
1995 for (const BasicBlock *ExitBB : ExitBlocks) {
1996 for (const PHINode &PHI : ExitBB->phis()) {
1997 for (const BasicBlock *LoopBB :
1998 make_filter_range(PHI.blocks(), [this](BasicBlock *PredecessorBB) {
1999 return CurLoop->contains(PredecessorBB);
2000 })) {
2001 const auto *I =
2002 dyn_cast<Instruction>(PHI.getIncomingValueForBlock(LoopBB));
2003 if (I && CurLoop->contains(I)) {
2004 LLVM_DEBUG(dbgs()
2005 << "Loop contains instruction " << *I
2006 << " which is used outside of the loop in basic block "
2007 << ExitBB->getName() << " in phi node " << PHI << "\n");
2008 return false;
2013 // Similarly, the loop should not have any other observable side-effects
2014 // other than the final comparison result.
2015 for (BasicBlock *LoopBB : CurLoop->blocks()) {
2016 for (Instruction &I : *LoopBB) {
2017 if (isa<DbgInfoIntrinsic>(I)) // Ignore dbginfo.
2018 continue; // FIXME: anything else? lifetime info?
2019 if ((I.mayHaveSideEffects() || I.isAtomic() || I.isFenceLike()) &&
2020 &I != CmpOfLoads.LoadA && &I != CmpOfLoads.LoadB) {
2021 LLVM_DEBUG(
2022 dbgs() << "Loop contains instruction with potential side-effects: "
2023 << I << "\n");
2024 return false;
2028 LLVM_DEBUG(dbgs() << "No loop instructions deemed to have side-effects.\n");
2029 return true;
2032 bool LoopIdiomRecognize::recognizeBCmpLoopSCEV(uint64_t BCmpTyBytes,
2033 CmpOfLoads &CmpOfLoads,
2034 const SCEV *&SrcA,
2035 const SCEV *&SrcB,
2036 const SCEV *&Iterations) const {
2037 // Try to compute SCEV of the loads, for this loop's scope.
2038 const auto *ScevForSrcA = dyn_cast<SCEVAddRecExpr>(
2039 SE->getSCEVAtScope(CmpOfLoads.LoadSrcA, CurLoop));
2040 const auto *ScevForSrcB = dyn_cast<SCEVAddRecExpr>(
2041 SE->getSCEVAtScope(CmpOfLoads.LoadSrcB, CurLoop));
2042 if (!ScevForSrcA || !ScevForSrcB) {
2043 LLVM_DEBUG(dbgs() << "Failed to get SCEV expressions for load sources.\n");
2044 return false;
2047 LLVM_DEBUG(dbgs() << "Got SCEV expressions (at loop scope) for loads:\n\t"
2048 << *ScevForSrcA << "\n\t" << *ScevForSrcB << "\n");
2050 // Loads must have folloving SCEV exprs: {%ptr,+,BCmpTyBytes}<%LoopHeaderBB>
2051 const SCEV *RecStepForA = ScevForSrcA->getStepRecurrence(*SE);
2052 const SCEV *RecStepForB = ScevForSrcB->getStepRecurrence(*SE);
2053 if (!ScevForSrcA->isAffine() || !ScevForSrcB->isAffine() ||
2054 ScevForSrcA->getLoop() != CurLoop || ScevForSrcB->getLoop() != CurLoop ||
2055 RecStepForA != RecStepForB || !isa<SCEVConstant>(RecStepForA) ||
2056 cast<SCEVConstant>(RecStepForA)->getAPInt() != BCmpTyBytes) {
2057 LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads. Only support "
2058 "affine SCEV expressions originating in the loop we "
2059 "are analysing with identical constant positive step, "
2060 "equal to the count of bytes compared. Got:\n\t"
2061 << *RecStepForA << "\n\t" << *RecStepForB << "\n");
2062 return false;
2063 // FIXME: can support BCmpTyBytes > Step.
2064 // But will need to account for the extra bytes compared at the end.
2067 SrcA = ScevForSrcA->getStart();
2068 SrcB = ScevForSrcB->getStart();
2069 LLVM_DEBUG(dbgs() << "Got SCEV expressions for load sources:\n\t" << *SrcA
2070 << "\n\t" << *SrcB << "\n");
2072 // The load sources must be loop-invants that dominate the loop header.
2073 if (SrcA == SE->getCouldNotCompute() || SrcB == SE->getCouldNotCompute() ||
2074 !SE->isAvailableAtLoopEntry(SrcA, CurLoop) ||
2075 !SE->isAvailableAtLoopEntry(SrcB, CurLoop)) {
2076 LLVM_DEBUG(dbgs() << "Unsupported SCEV expressions for loads, unavaliable "
2077 "prior to loop header.\n");
2078 return false;
2081 LLVM_DEBUG(dbgs() << "SCEV expressions for loads are acceptable.\n");
2083 // bcmp / memcmp take length argument as size_t, so let's conservatively
2084 // assume that the iteration count should be not wider than that.
2085 Type *CmpFuncSizeTy = DL->getIntPtrType(SE->getContext());
2087 // For how many iterations is loop guaranteed not to exit via LoopLatch?
2088 // This is one less than the maximal number of comparisons,and is: n + -1
2089 const SCEV *LoopExitCount =
2090 SE->getExitCount(CurLoop, CurLoop->getLoopLatch());
2091 LLVM_DEBUG(dbgs() << "Got SCEV expression for loop latch exit count: "
2092 << *LoopExitCount << "\n");
2093 // Exit count, similarly, must be loop-invant that dominates the loop header.
2094 if (LoopExitCount == SE->getCouldNotCompute() ||
2095 !LoopExitCount->getType()->isIntOrPtrTy() ||
2096 LoopExitCount->getType()->getScalarSizeInBits() >
2097 CmpFuncSizeTy->getScalarSizeInBits() ||
2098 !SE->isAvailableAtLoopEntry(LoopExitCount, CurLoop)) {
2099 LLVM_DEBUG(dbgs() << "Unsupported SCEV expression for loop latch exit.\n");
2100 return false;
2103 // LoopExitCount is always one less than the actual count of iterations.
2104 // Do this before cast, else we will be stuck with 1 + zext(-1 + n)
2105 Iterations = SE->getAddExpr(
2106 LoopExitCount, SE->getOne(LoopExitCount->getType()), SCEV::FlagNUW);
2107 assert(Iterations != SE->getCouldNotCompute() &&
2108 "Shouldn't fail to increment by one.");
2110 LLVM_DEBUG(dbgs() << "Computed iteration count: " << *Iterations << "\n");
2111 return true;
2114 /// Return true iff the bcmp idiom is detected in the loop.
2116 /// Additionally:
2117 /// 1) \p BCmpInst is set to the root byte-comparison instruction.
2118 /// 2) \p LatchCmpInst is set to the comparison that controls the latch.
2119 /// 3) \p LoadA is set to the first LoadInst.
2120 /// 4) \p LoadB is set to the second LoadInst.
2121 /// 5) \p SrcA is set to the first source location that is being compared.
2122 /// 6) \p SrcB is set to the second source location that is being compared.
2123 /// 7) \p NBytes is set to the number of bytes to compare.
2124 bool LoopIdiomRecognize::detectBCmpIdiom(ICmpInst *&BCmpInst,
2125 CmpInst *&LatchCmpInst,
2126 LoadInst *&LoadA, LoadInst *&LoadB,
2127 const SCEV *&SrcA, const SCEV *&SrcB,
2128 const SCEV *&NBytes) const {
2129 LLVM_DEBUG(dbgs() << "Recognizing bcmp idiom\n");
2131 // Give up if the loop is not in normal form, or has more than 2 blocks.
2132 if (!CurLoop->isLoopSimplifyForm() || CurLoop->getNumBlocks() > 2) {
2133 LLVM_DEBUG(dbgs() << "Basic loop structure unrecognized.\n");
2134 return false;
2136 LLVM_DEBUG(dbgs() << "Recognized basic loop structure.\n");
2138 CmpLoopStructure CmpLoop;
2139 if (!matchBCmpLoopStructure(CmpLoop))
2140 return false;
2142 CmpOfLoads CmpOfLoads;
2143 if (!matchBCmpOfLoads(CmpLoop.BCmpValue, CmpOfLoads))
2144 return false;
2146 if (!recognizeBCmpLoopControlFlow(CmpOfLoads, CmpLoop))
2147 return false;
2149 BCmpInst = cast<ICmpInst>(CmpLoop.BCmpValue); // FIXME: is there no
2150 LatchCmpInst = cast<CmpInst>(CmpLoop.LatchCmpValue); // way to combine
2151 LoadA = cast<LoadInst>(CmpOfLoads.LoadA); // these cast with
2152 LoadB = cast<LoadInst>(CmpOfLoads.LoadB); // m_Value() matcher?
2154 Type *BCmpValTy = BCmpInst->getOperand(0)->getType();
2155 LLVMContext &Context = BCmpValTy->getContext();
2156 uint64_t BCmpTyBits = DL->getTypeSizeInBits(BCmpValTy);
2157 static constexpr uint64_t ByteTyBits = 8;
2159 LLVM_DEBUG(dbgs() << "Got comparison between values of type " << *BCmpValTy
2160 << " of size " << BCmpTyBits
2161 << " bits (while byte = " << ByteTyBits << " bits).\n");
2162 // bcmp()/memcmp() minimal unit of work is a byte. Therefore we must check
2163 // that we are dealing with a multiple of a byte here.
2164 if (BCmpTyBits % ByteTyBits != 0) {
2165 LLVM_DEBUG(dbgs() << "Value size is not a multiple of byte.\n");
2166 return false;
2167 // FIXME: could still be done under a run-time check that the total bit
2168 // count is a multiple of a byte i guess? Or handle remainder separately?
2171 // Each comparison is done on this many bytes.
2172 uint64_t BCmpTyBytes = BCmpTyBits / ByteTyBits;
2173 LLVM_DEBUG(dbgs() << "Size is exactly " << BCmpTyBytes
2174 << " bytes, eligible for bcmp conversion.\n");
2176 const SCEV *Iterations;
2177 if (!recognizeBCmpLoopSCEV(BCmpTyBytes, CmpOfLoads, SrcA, SrcB, Iterations))
2178 return false;
2180 // bcmp / memcmp take length argument as size_t, do promotion now.
2181 Type *CmpFuncSizeTy = DL->getIntPtrType(Context);
2182 Iterations = SE->getNoopOrZeroExtend(Iterations, CmpFuncSizeTy);
2183 assert(Iterations != SE->getCouldNotCompute() && "Promotion failed.");
2184 // Note that it didn't do ptrtoint cast, we will need to do it manually.
2186 // We will be comparing *bytes*, not BCmpTy, we need to recalculate size.
2187 // It's a multiplication, and it *could* overflow. But for it to overflow
2188 // we'd want to compare more bytes than could be represented by size_t, But
2189 // allocation functions also take size_t. So how'd you produce such buffer?
2190 // FIXME: we likely need to actually check that we know this won't overflow,
2191 // via llvm::computeOverflowForUnsignedMul().
2192 NBytes = SE->getMulExpr(
2193 Iterations, SE->getConstant(CmpFuncSizeTy, BCmpTyBytes), SCEV::FlagNUW);
2194 assert(NBytes != SE->getCouldNotCompute() &&
2195 "Shouldn't fail to increment by one.");
2197 LLVM_DEBUG(dbgs() << "Computed total byte count: " << *NBytes << "\n");
2199 if (LoadA->getPointerAddressSpace() != LoadB->getPointerAddressSpace() ||
2200 LoadA->getPointerAddressSpace() != 0 || !LoadA->isSimple() ||
2201 !LoadB->isSimple()) {
2202 StringLiteral L("Unsupported loads in idiom - only support identical, "
2203 "simple loads from address space 0.\n");
2204 LLVM_DEBUG(dbgs() << L);
2205 ORE.emit([&]() {
2206 return OptimizationRemarkMissed(DEBUG_TYPE, "BCmpIdiomUnsupportedLoads",
2207 BCmpInst->getDebugLoc(),
2208 CurLoop->getHeader())
2209 << L;
2211 return false; // FIXME: support non-simple loads.
2214 LLVM_DEBUG(dbgs() << "Recognized bcmp idiom\n");
2215 ORE.emit([&]() {
2216 return OptimizationRemarkAnalysis(DEBUG_TYPE, "RecognizedBCmpIdiom",
2217 CurLoop->getStartLoc(),
2218 CurLoop->getHeader())
2219 << "Loop recognized as a bcmp idiom";
2222 return true;
2225 BasicBlock *
2226 LoopIdiomRecognize::transformBCmpControlFlow(ICmpInst *ComparedEqual) {
2227 LLVM_DEBUG(dbgs() << "Transforming control-flow.\n");
2228 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
2230 BasicBlock *PreheaderBB = CurLoop->getLoopPreheader();
2231 BasicBlock *HeaderBB = CurLoop->getHeader();
2232 BasicBlock *LoopLatchBB = CurLoop->getLoopLatch();
2233 SmallString<32> LoopName = CurLoop->getName();
2234 Function *Func = PreheaderBB->getParent();
2235 LLVMContext &Context = Func->getContext();
2237 // Before doing anything, drop SCEV info.
2238 SE->forgetLoop(CurLoop);
2240 // Here we start with: (0/6)
2241 // PreheaderBB: <preheader> ; preds = ???
2242 // <...>
2243 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2244 // %ComparedEqual = icmp eq <...> %memcmp, 0
2245 // br label %LoopHeaderBB
2246 // LoopHeaderBB: <header,exiting> ; preds = %PreheaderBB,%LoopLatchBB
2247 // <...>
2248 // br i1 %<...>, label %LoopLatchBB, label %Successor0BB
2249 // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
2250 // <...>
2251 // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB
2252 // Successor0BB: <exit> ; preds = %LoopHeaderBB
2253 // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ]
2254 // <...>
2255 // Successor1BB: <exit> ; preds = %LoopLatchBB
2256 // %S1PHI = phi <...> [ <...>, %LoopLatchBB ]
2257 // <...>
2259 // Successor0 and Successor1 may or may not be the same basic block.
2261 // Decouple the edge between loop preheader basic block and loop header basic
2262 // block. Thus the loop has become unreachable.
2263 assert(cast<BranchInst>(PreheaderBB->getTerminator())->isUnconditional() &&
2264 PreheaderBB->getTerminator()->getSuccessor(0) == HeaderBB &&
2265 "Preheader bb must end with an unconditional branch to header bb.");
2266 PreheaderBB->getTerminator()->eraseFromParent();
2267 DTUpdates.push_back({DominatorTree::Delete, PreheaderBB, HeaderBB});
2269 // Create a new preheader basic block before loop header basic block.
2270 auto *PhonyPreheaderBB = BasicBlock::Create(
2271 Context, LoopName + ".phonypreheaderbb", Func, HeaderBB);
2272 // And insert an unconditional branch from phony preheader basic block to
2273 // loop header basic block.
2274 IRBuilder<>(PhonyPreheaderBB).CreateBr(HeaderBB);
2275 DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB});
2277 // Create a *single* new empty block that we will substitute as a
2278 // successor basic block for the loop's exits. This one is temporary.
2279 // Much like phony preheader basic block, it is not connected.
2280 auto *PhonySuccessorBB =
2281 BasicBlock::Create(Context, LoopName + ".phonysuccessorbb", Func,
2282 LoopLatchBB->getNextNode());
2283 // That block must have *some* non-PHI instruction, or else deleteDeadLoop()
2284 // will mess up cleanup of dbginfo, and verifier will complain.
2285 IRBuilder<>(PhonySuccessorBB).CreateUnreachable();
2287 // Create two new empty blocks that we will use to preserve the original
2288 // loop exit control-flow, and preserve the incoming values in the PHI nodes
2289 // in loop's successor exit blocks. These will live one.
2290 auto *ComparedUnequalBB =
2291 BasicBlock::Create(Context, ComparedEqual->getName() + ".unequalbb", Func,
2292 PhonySuccessorBB->getNextNode());
2293 auto *ComparedEqualBB =
2294 BasicBlock::Create(Context, ComparedEqual->getName() + ".equalbb", Func,
2295 PhonySuccessorBB->getNextNode());
2297 // By now we have: (1/6)
2298 // PreheaderBB: ; preds = ???
2299 // <...>
2300 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2301 // %ComparedEqual = icmp eq <...> %memcmp, 0
2302 // [no terminator instruction!]
2303 // PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE!
2304 // br label %LoopHeaderBB
2305 // LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB
2306 // <...>
2307 // br i1 %<...>, label %LoopLatchBB, label %Successor0BB
2308 // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
2309 // <...>
2310 // br i1 %<...>, label %Successor1BB, label %LoopHeaderBB
2311 // PhonySuccessorBB: ; No preds, UNREACHABLE!
2312 // unreachable
2313 // EqualBB: ; No preds, UNREACHABLE!
2314 // [no terminator instruction!]
2315 // UnequalBB: ; No preds, UNREACHABLE!
2316 // [no terminator instruction!]
2317 // Successor0BB: <exit> ; preds = %LoopHeaderBB
2318 // %S0PHI = phi <...> [ <...>, %LoopHeaderBB ]
2319 // <...>
2320 // Successor1BB: <exit> ; preds = %LoopLatchBB
2321 // %S1PHI = phi <...> [ <...>, %LoopLatchBB ]
2322 // <...>
2324 // What is the mapping/replacement basic block for exiting out of the loop
2325 // from either of old's loop basic blocks?
2326 auto GetReplacementBB = [this, ComparedEqualBB,
2327 ComparedUnequalBB](const BasicBlock *OldBB) {
2328 assert(CurLoop->contains(OldBB) && "Only for loop's basic blocks.");
2329 if (OldBB == CurLoop->getLoopLatch()) // "all elements compared equal".
2330 return ComparedEqualBB;
2331 if (OldBB == CurLoop->getHeader()) // "element compared unequal".
2332 return ComparedUnequalBB;
2333 llvm_unreachable("Only had two basic blocks in loop.");
2336 // What are the exits out of this loop?
2337 SmallVector<Loop::Edge, 2> LoopExitEdges;
2338 CurLoop->getExitEdges(LoopExitEdges);
2339 assert(LoopExitEdges.size() == 2 && "Should have only to two exit edges.");
2341 // Populate new basic blocks, update the exiting control-flow, PHI nodes.
2342 for (const Loop::Edge &Edge : LoopExitEdges) {
2343 auto *OldLoopBB = const_cast<BasicBlock *>(Edge.first);
2344 auto *SuccessorBB = const_cast<BasicBlock *>(Edge.second);
2345 assert(CurLoop->contains(OldLoopBB) && !CurLoop->contains(SuccessorBB) &&
2346 "Unexpected edge.");
2348 // If we would exit the loop from this loop's basic block,
2349 // what semantically would that mean? Did comparison succeed or fail?
2350 BasicBlock *NewBB = GetReplacementBB(OldLoopBB);
2351 assert(NewBB->empty() && "Should not get same new basic block here twice.");
2352 IRBuilder<> Builder(NewBB);
2353 Builder.SetCurrentDebugLocation(OldLoopBB->getTerminator()->getDebugLoc());
2354 Builder.CreateBr(SuccessorBB);
2355 DTUpdates.push_back({DominatorTree::Insert, NewBB, SuccessorBB});
2356 // Also, be *REALLY* careful with PHI nodes in successor basic block,
2357 // update them to recieve the same input value, but not from current loop's
2358 // basic block, but from new basic block instead.
2359 SuccessorBB->replacePhiUsesWith(OldLoopBB, NewBB);
2360 // Also, change loop control-flow. This loop's basic block shall no longer
2361 // exit from the loop to it's original successor basic block, but to our new
2362 // phony successor basic block. Note that new successor will be unique exit.
2363 OldLoopBB->getTerminator()->replaceSuccessorWith(SuccessorBB,
2364 PhonySuccessorBB);
2365 DTUpdates.push_back({DominatorTree::Delete, OldLoopBB, SuccessorBB});
2366 DTUpdates.push_back({DominatorTree::Insert, OldLoopBB, PhonySuccessorBB});
2369 // Inform DomTree about edge changes. Note that LoopInfo is still out-of-date.
2370 assert(DTUpdates.size() == 8 && "Update count prediction failed.");
2371 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2372 DTU.applyUpdates(DTUpdates);
2373 DTUpdates.clear();
2375 // By now we have: (2/6)
2376 // PreheaderBB: ; preds = ???
2377 // <...>
2378 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2379 // %ComparedEqual = icmp eq <...> %memcmp, 0
2380 // [no terminator instruction!]
2381 // PhonyPreheaderBB: <preheader> ; No preds, UNREACHABLE!
2382 // br label %LoopHeaderBB
2383 // LoopHeaderBB: <header,exiting> ; preds = %PhonyPreheaderBB, %LoopLatchBB
2384 // <...>
2385 // br i1 %<...>, label %LoopLatchBB, label %PhonySuccessorBB
2386 // LoopLatchBB: <latch,exiting> ; preds = %LoopHeaderBB
2387 // <...>
2388 // br i1 %<...>, label %PhonySuccessorBB, label %LoopHeaderBB
2389 // PhonySuccessorBB: <uniq. exit> ; preds = %LoopHeaderBB, %LoopLatchBB
2390 // unreachable
2391 // EqualBB: ; No preds, UNREACHABLE!
2392 // br label %Successor1BB
2393 // UnequalBB: ; No preds, UNREACHABLE!
2394 // br label %Successor0BB
2395 // Successor0BB: ; preds = %UnequalBB
2396 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2397 // <...>
2398 // Successor1BB: ; preds = %EqualBB
2399 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2400 // <...>
2402 // *Finally*, zap the original loop. Record it's parent loop though.
2403 Loop *ParentLoop = CurLoop->getParentLoop();
2404 LLVM_DEBUG(dbgs() << "Deleting old loop.\n");
2405 LoopDeleter.markLoopAsDeleted(CurLoop); // Mark as deleted *BEFORE* deleting!
2406 deleteDeadLoop(CurLoop, DT, SE, LI); // And actually delete the loop.
2407 CurLoop = nullptr;
2409 // By now we have: (3/6)
2410 // PreheaderBB: ; preds = ???
2411 // <...>
2412 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2413 // %ComparedEqual = icmp eq <...> %memcmp, 0
2414 // [no terminator instruction!]
2415 // PhonyPreheaderBB: ; No preds, UNREACHABLE!
2416 // br label %PhonySuccessorBB
2417 // PhonySuccessorBB: ; preds = %PhonyPreheaderBB
2418 // unreachable
2419 // EqualBB: ; No preds, UNREACHABLE!
2420 // br label %Successor1BB
2421 // UnequalBB: ; No preds, UNREACHABLE!
2422 // br label %Successor0BB
2423 // Successor0BB: ; preds = %UnequalBB
2424 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2425 // <...>
2426 // Successor1BB: ; preds = %EqualBB
2427 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2428 // <...>
2430 // Now, actually restore the CFG.
2432 // Insert an unconditional branch from an actual preheader basic block to
2433 // phony preheader basic block.
2434 IRBuilder<>(PreheaderBB).CreateBr(PhonyPreheaderBB);
2435 DTUpdates.push_back({DominatorTree::Insert, PhonyPreheaderBB, HeaderBB});
2436 // Insert proper conditional branch from phony successor basic block to the
2437 // "dispatch" basic blocks, which were used to preserve incoming values in
2438 // original loop's successor basic blocks.
2439 assert(isa<UnreachableInst>(PhonySuccessorBB->getTerminator()) &&
2440 "Yep, that's the one we created to keep deleteDeadLoop() happy.");
2441 PhonySuccessorBB->getTerminator()->eraseFromParent();
2443 IRBuilder<> Builder(PhonySuccessorBB);
2444 Builder.SetCurrentDebugLocation(ComparedEqual->getDebugLoc());
2445 Builder.CreateCondBr(ComparedEqual, ComparedEqualBB, ComparedUnequalBB);
2447 DTUpdates.push_back(
2448 {DominatorTree::Insert, PhonySuccessorBB, ComparedEqualBB});
2449 DTUpdates.push_back(
2450 {DominatorTree::Insert, PhonySuccessorBB, ComparedUnequalBB});
2452 BasicBlock *DispatchBB = PhonySuccessorBB;
2453 DispatchBB->setName(LoopName + ".bcmpdispatchbb");
2455 assert(DTUpdates.size() == 3 && "Update count prediction failed.");
2456 DTU.applyUpdates(DTUpdates);
2457 DTUpdates.clear();
2459 // By now we have: (4/6)
2460 // PreheaderBB: ; preds = ???
2461 // <...>
2462 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2463 // %ComparedEqual = icmp eq <...> %memcmp, 0
2464 // br label %PhonyPreheaderBB
2465 // PhonyPreheaderBB: ; preds = %PreheaderBB
2466 // br label %DispatchBB
2467 // DispatchBB: ; preds = %PhonyPreheaderBB
2468 // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
2469 // EqualBB: ; preds = %DispatchBB
2470 // br label %Successor1BB
2471 // UnequalBB: ; preds = %DispatchBB
2472 // br label %Successor0BB
2473 // Successor0BB: ; preds = %UnequalBB
2474 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2475 // <...>
2476 // Successor1BB: ; preds = %EqualBB
2477 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2478 // <...>
2480 // The basic CFG has been restored! Now let's merge redundant basic blocks.
2482 // Merge phony successor basic block into it's only predecessor,
2483 // phony preheader basic block. It is fully pointlessly redundant.
2484 MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU);
2486 // By now we have: (5/6)
2487 // PreheaderBB: ; preds = ???
2488 // <...>
2489 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2490 // %ComparedEqual = icmp eq <...> %memcmp, 0
2491 // br label %DispatchBB
2492 // DispatchBB: ; preds = %PreheaderBB
2493 // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
2494 // EqualBB: ; preds = %DispatchBB
2495 // br label %Successor1BB
2496 // UnequalBB: ; preds = %DispatchBB
2497 // br label %Successor0BB
2498 // Successor0BB: ; preds = %UnequalBB
2499 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2500 // <...>
2501 // Successor1BB: ; preds = %EqualBB
2502 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2503 // <...>
2505 // Was this loop nested?
2506 if (!ParentLoop) {
2507 // If the loop was *NOT* nested, then let's also merge phony successor
2508 // basic block into it's only predecessor, preheader basic block.
2509 // Also, here we need to update LoopInfo.
2510 LI->removeBlock(PreheaderBB);
2511 MergeBasicBlockIntoOnlyPred(DispatchBB, &DTU);
2513 // By now we have: (6/6)
2514 // DispatchBB: ; preds = ???
2515 // <...>
2516 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2517 // %ComparedEqual = icmp eq <...> %memcmp, 0
2518 // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
2519 // EqualBB: ; preds = %DispatchBB
2520 // br label %Successor1BB
2521 // UnequalBB: ; preds = %DispatchBB
2522 // br label %Successor0BB
2523 // Successor0BB: ; preds = %UnequalBB
2524 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2525 // <...>
2526 // Successor1BB: ; preds = %EqualBB
2527 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2528 // <...>
2530 return DispatchBB;
2533 // Otherwise, we need to "preserve" the LoopSimplify form of the deleted loop.
2534 // To achieve that, we shall keep the preheader basic block (mainly so that
2535 // the loop header block will be guaranteed to have a predecessor outside of
2536 // the loop), and create a phony loop with all these new three basic blocks.
2537 Loop *PhonyLoop = LI->AllocateLoop();
2538 ParentLoop->addChildLoop(PhonyLoop);
2539 PhonyLoop->addBasicBlockToLoop(DispatchBB, *LI);
2540 PhonyLoop->addBasicBlockToLoop(ComparedEqualBB, *LI);
2541 PhonyLoop->addBasicBlockToLoop(ComparedUnequalBB, *LI);
2543 // But we only have a preheader basic block, a header basic block block and
2544 // two exiting basic blocks. For a proper loop we also need a backedge from
2545 // non-header basic block to header bb.
2546 // Let's just add a never-taken branch from both of the exiting basic blocks.
2547 for (BasicBlock *BB : {ComparedEqualBB, ComparedUnequalBB}) {
2548 BranchInst *OldTerminator = cast<BranchInst>(BB->getTerminator());
2549 assert(OldTerminator->isUnconditional() && "That's the one we created.");
2550 BasicBlock *SuccessorBB = OldTerminator->getSuccessor(0);
2552 IRBuilder<> Builder(OldTerminator);
2553 Builder.SetCurrentDebugLocation(OldTerminator->getDebugLoc());
2554 Builder.CreateCondBr(ConstantInt::getTrue(Context), SuccessorBB,
2555 DispatchBB);
2556 OldTerminator->eraseFromParent();
2557 // Yes, the backedge will never be taken. The control-flow is redundant.
2558 // If it can be simplified further, other passes will take care.
2559 DTUpdates.push_back({DominatorTree::Delete, BB, SuccessorBB});
2560 DTUpdates.push_back({DominatorTree::Insert, BB, SuccessorBB});
2561 DTUpdates.push_back({DominatorTree::Insert, BB, DispatchBB});
2563 assert(DTUpdates.size() == 6 && "Update count prediction failed.");
2564 DTU.applyUpdates(DTUpdates);
2565 DTUpdates.clear();
2567 // By now we have: (6/6)
2568 // PreheaderBB: <preheader> ; preds = ???
2569 // <...>
2570 // %memcmp = call i32 @memcmp(i8* %LoadSrcA, i8* %LoadSrcB, i64 %Nbytes)
2571 // %ComparedEqual = icmp eq <...> %memcmp, 0
2572 // br label %BCmpDispatchBB
2573 // BCmpDispatchBB: <header> ; preds = %PreheaderBB
2574 // br i1 %ComparedEqual, label %EqualBB, label %UnequalBB
2575 // EqualBB: <latch,exiting> ; preds = %BCmpDispatchBB
2576 // br i1 %true, label %Successor1BB, label %BCmpDispatchBB
2577 // UnequalBB: <latch,exiting> ; preds = %BCmpDispatchBB
2578 // br i1 %true, label %Successor0BB, label %BCmpDispatchBB
2579 // Successor0BB: ; preds = %UnequalBB
2580 // %S0PHI = phi <...> [ <...>, %UnequalBB ]
2581 // <...>
2582 // Successor1BB: ; preds = %EqualBB
2583 // %S0PHI = phi <...> [ <...>, %EqualBB ]
2584 // <...>
2586 // Finally fully DONE!
2587 return DispatchBB;
2590 void LoopIdiomRecognize::transformLoopToBCmp(ICmpInst *BCmpInst,
2591 CmpInst *LatchCmpInst,
2592 LoadInst *LoadA, LoadInst *LoadB,
2593 const SCEV *SrcA, const SCEV *SrcB,
2594 const SCEV *NBytes) {
2595 // We will be inserting before the terminator instruction of preheader block.
2596 IRBuilder<> Builder(CurLoop->getLoopPreheader()->getTerminator());
2598 LLVM_DEBUG(dbgs() << "Transforming bcmp loop idiom into a call.\n");
2599 LLVM_DEBUG(dbgs() << "Emitting new instructions.\n");
2601 // Expand the SCEV expressions for both sources to compare, and produce value
2602 // for the byte len (beware of Iterations potentially being a pointer, and
2603 // account for element size being BCmpTyBytes bytes, which may be not 1 byte)
2604 Value *PtrA, *PtrB, *Len;
2606 SCEVExpander SExp(*SE, *DL, "LoopToBCmp");
2607 SExp.setInsertPoint(&*Builder.GetInsertPoint());
2609 auto HandlePtr = [&SExp](LoadInst *Load, const SCEV *Src) {
2610 SExp.SetCurrentDebugLocation(DebugLoc());
2611 // If the pointer operand of original load had dbgloc - use it.
2612 if (const auto *I = dyn_cast<Instruction>(Load->getPointerOperand()))
2613 SExp.SetCurrentDebugLocation(I->getDebugLoc());
2614 return SExp.expandCodeFor(Src);
2616 PtrA = HandlePtr(LoadA, SrcA);
2617 PtrB = HandlePtr(LoadB, SrcB);
2619 // For len calculation let's use dbgloc for the loop's latch condition.
2620 Builder.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc());
2621 SExp.SetCurrentDebugLocation(LatchCmpInst->getDebugLoc());
2622 Len = SExp.expandCodeFor(NBytes);
2624 Type *CmpFuncSizeTy = DL->getIntPtrType(Builder.getContext());
2625 assert(SE->getTypeSizeInBits(Len->getType()) ==
2626 DL->getTypeSizeInBits(CmpFuncSizeTy) &&
2627 "Len should already have the correct size.");
2629 // Make sure that iteration count is a number, insert ptrtoint cast if not.
2630 if (Len->getType()->isPointerTy())
2631 Len = Builder.CreatePtrToInt(Len, CmpFuncSizeTy);
2632 assert(Len->getType() == CmpFuncSizeTy && "Should have correct type now.");
2634 Len->setName(Len->getName() + ".bytecount");
2636 // There is no legality check needed. We want to compare that the memory
2637 // regions [PtrA, PtrA+Len) and [PtrB, PtrB+Len) are fully identical, equal.
2638 // For them to be fully equal, they must match bit-by-bit. And likewise,
2639 // for them to *NOT* be fully equal, they have to differ just by one bit.
2640 // The step of comparison (bits compared at once) simply does not matter.
2643 // For the rest of new instructions, dbgloc should point at the value cmp.
2644 Builder.SetCurrentDebugLocation(BCmpInst->getDebugLoc());
2646 // Emit the comparison itself.
2647 auto *CmpCall =
2648 cast<CallInst>(HasBCmp ? emitBCmp(PtrA, PtrB, Len, Builder, *DL, TLI)
2649 : emitMemCmp(PtrA, PtrB, Len, Builder, *DL, TLI));
2650 // FIXME: add {B,Mem}CmpInst with MemoryCompareInst
2651 // (based on MemIntrinsicBase) as base?
2652 // FIXME: propagate metadata from loads? (alignments, AS, TBAA, ...)
2654 // {b,mem}cmp returned 0 if they were equal, or non-zero if not equal.
2655 auto *ComparedEqual = cast<ICmpInst>(Builder.CreateICmpEQ(
2656 CmpCall, ConstantInt::get(CmpCall->getType(), 0),
2657 PtrA->getName() + ".vs." + PtrB->getName() + ".eqcmp"));
2659 BasicBlock *BB = transformBCmpControlFlow(ComparedEqual);
2660 Builder.ClearInsertionPoint();
2662 // We're done.
2663 LLVM_DEBUG(dbgs() << "Transformed loop bcmp idiom into a call.\n");
2664 ORE.emit([&]() {
2665 return OptimizationRemark(DEBUG_TYPE, "TransformedBCmpIdiomToCall",
2666 CmpCall->getDebugLoc(), BB)
2667 << "Transformed bcmp idiom into a call to "
2668 << ore::NV("NewFunction", CmpCall->getCalledFunction())
2669 << "() function";
2671 ++NumBCmp;
2674 /// Recognizes a bcmp idiom in a non-countable loop.
2676 /// If detected, transforms the relevant code to issue the bcmp (or memcmp)
2677 /// intrinsic function call, and returns true; otherwise, returns false.
2678 bool LoopIdiomRecognize::recognizeBCmp() {
2679 if (!HasMemCmp && !HasBCmp)
2680 return false;
2682 ICmpInst *BCmpInst;
2683 CmpInst *LatchCmpInst;
2684 LoadInst *LoadA, *LoadB;
2685 const SCEV *SrcA, *SrcB, *NBytes;
2686 if (!detectBCmpIdiom(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB,
2687 NBytes)) {
2688 LLVM_DEBUG(dbgs() << "bcmp idiom recognition failed.\n");
2689 return false;
2692 transformLoopToBCmp(BCmpInst, LatchCmpInst, LoadA, LoadB, SrcA, SrcB, NBytes);
2693 return true;