1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/CodeGen/GlobalISel/Combiner.h"
10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
12 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
13 #include "llvm/CodeGen/GlobalISel/Utils.h"
14 #include "llvm/CodeGen/MachineDominators.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/Target/TargetMachine.h"
22 #define DEBUG_TYPE "gi-combiner"
26 // Option to allow testing of the combiner while no targets know about indexed
29 ForceLegalIndexing("force-legal-indexing", cl::Hidden
, cl::init(false),
30 cl::desc("Force all indexed operations to be "
31 "legal for the GlobalISel combiner"));
34 CombinerHelper::CombinerHelper(GISelChangeObserver
&Observer
,
35 MachineIRBuilder
&B
, GISelKnownBits
*KB
,
36 MachineDominatorTree
*MDT
)
37 : Builder(B
), MRI(Builder
.getMF().getRegInfo()), Observer(Observer
),
42 void CombinerHelper::replaceRegWith(MachineRegisterInfo
&MRI
, Register FromReg
,
43 Register ToReg
) const {
44 Observer
.changingAllUsesOfReg(MRI
, FromReg
);
46 if (MRI
.constrainRegAttrs(ToReg
, FromReg
))
47 MRI
.replaceRegWith(FromReg
, ToReg
);
49 Builder
.buildCopy(ToReg
, FromReg
);
51 Observer
.finishedChangingAllUsesOfReg();
54 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo
&MRI
,
55 MachineOperand
&FromRegOp
,
56 Register ToReg
) const {
57 assert(FromRegOp
.getParent() && "Expected an operand in an MI");
58 Observer
.changingInstr(*FromRegOp
.getParent());
60 FromRegOp
.setReg(ToReg
);
62 Observer
.changedInstr(*FromRegOp
.getParent());
65 bool CombinerHelper::tryCombineCopy(MachineInstr
&MI
) {
66 if (matchCombineCopy(MI
)) {
72 bool CombinerHelper::matchCombineCopy(MachineInstr
&MI
) {
73 if (MI
.getOpcode() != TargetOpcode::COPY
)
75 Register DstReg
= MI
.getOperand(0).getReg();
76 Register SrcReg
= MI
.getOperand(1).getReg();
77 LLT DstTy
= MRI
.getType(DstReg
);
78 LLT SrcTy
= MRI
.getType(SrcReg
);
79 // Simple Copy Propagation.
80 // a(sx) = COPY b(sx) -> Replace all uses of a with b.
81 if (DstTy
.isValid() && SrcTy
.isValid() && DstTy
== SrcTy
)
85 void CombinerHelper::applyCombineCopy(MachineInstr
&MI
) {
86 Register DstReg
= MI
.getOperand(0).getReg();
87 Register SrcReg
= MI
.getOperand(1).getReg();
89 replaceRegWith(MRI
, DstReg
, SrcReg
);
94 /// Select a preference between two uses. CurrentUse is the current preference
95 /// while *ForCandidate is attributes of the candidate under consideration.
96 PreferredTuple
ChoosePreferredUse(PreferredTuple
&CurrentUse
,
97 const LLT
&TyForCandidate
,
98 unsigned OpcodeForCandidate
,
99 MachineInstr
*MIForCandidate
) {
100 if (!CurrentUse
.Ty
.isValid()) {
101 if (CurrentUse
.ExtendOpcode
== OpcodeForCandidate
||
102 CurrentUse
.ExtendOpcode
== TargetOpcode::G_ANYEXT
)
103 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
107 // We permit the extend to hoist through basic blocks but this is only
108 // sensible if the target has extending loads. If you end up lowering back
109 // into a load and extend during the legalizer then the end result is
110 // hoisting the extend up to the load.
112 // Prefer defined extensions to undefined extensions as these are more
113 // likely to reduce the number of instructions.
114 if (OpcodeForCandidate
== TargetOpcode::G_ANYEXT
&&
115 CurrentUse
.ExtendOpcode
!= TargetOpcode::G_ANYEXT
)
117 else if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_ANYEXT
&&
118 OpcodeForCandidate
!= TargetOpcode::G_ANYEXT
)
119 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
121 // Prefer sign extensions to zero extensions as sign-extensions tend to be
123 if (CurrentUse
.Ty
== TyForCandidate
) {
124 if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_SEXT
&&
125 OpcodeForCandidate
== TargetOpcode::G_ZEXT
)
127 else if (CurrentUse
.ExtendOpcode
== TargetOpcode::G_ZEXT
&&
128 OpcodeForCandidate
== TargetOpcode::G_SEXT
)
129 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
132 // This is potentially target specific. We've chosen the largest type
133 // because G_TRUNC is usually free. One potential catch with this is that
134 // some targets have a reduced number of larger registers than smaller
135 // registers and this choice potentially increases the live-range for the
137 if (TyForCandidate
.getSizeInBits() > CurrentUse
.Ty
.getSizeInBits()) {
138 return {TyForCandidate
, OpcodeForCandidate
, MIForCandidate
};
143 /// Find a suitable place to insert some instructions and insert them. This
144 /// function accounts for special cases like inserting before a PHI node.
145 /// The current strategy for inserting before PHI's is to duplicate the
146 /// instructions for each predecessor. However, while that's ok for G_TRUNC
147 /// on most targets since it generally requires no code, other targets/cases may
148 /// want to try harder to find a dominating block.
149 static void InsertInsnsWithoutSideEffectsBeforeUse(
150 MachineIRBuilder
&Builder
, MachineInstr
&DefMI
, MachineOperand
&UseMO
,
151 std::function
<void(MachineBasicBlock
*, MachineBasicBlock::iterator
,
152 MachineOperand
&UseMO
)>
154 MachineInstr
&UseMI
= *UseMO
.getParent();
156 MachineBasicBlock
*InsertBB
= UseMI
.getParent();
158 // If the use is a PHI then we want the predecessor block instead.
160 MachineOperand
*PredBB
= std::next(&UseMO
);
161 InsertBB
= PredBB
->getMBB();
164 // If the block is the same block as the def then we want to insert just after
165 // the def instead of at the start of the block.
166 if (InsertBB
== DefMI
.getParent()) {
167 MachineBasicBlock::iterator InsertPt
= &DefMI
;
168 Inserter(InsertBB
, std::next(InsertPt
), UseMO
);
172 // Otherwise we want the start of the BB
173 Inserter(InsertBB
, InsertBB
->getFirstNonPHI(), UseMO
);
175 } // end anonymous namespace
177 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr
&MI
) {
178 PreferredTuple Preferred
;
179 if (matchCombineExtendingLoads(MI
, Preferred
)) {
180 applyCombineExtendingLoads(MI
, Preferred
);
186 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr
&MI
,
187 PreferredTuple
&Preferred
) {
188 // We match the loads and follow the uses to the extend instead of matching
189 // the extends and following the def to the load. This is because the load
190 // must remain in the same position for correctness (unless we also add code
191 // to find a safe place to sink it) whereas the extend is freely movable.
192 // It also prevents us from duplicating the load for the volatile case or just
195 if (MI
.getOpcode() != TargetOpcode::G_LOAD
&&
196 MI
.getOpcode() != TargetOpcode::G_SEXTLOAD
&&
197 MI
.getOpcode() != TargetOpcode::G_ZEXTLOAD
)
200 auto &LoadValue
= MI
.getOperand(0);
201 assert(LoadValue
.isReg() && "Result wasn't a register?");
203 LLT LoadValueTy
= MRI
.getType(LoadValue
.getReg());
204 if (!LoadValueTy
.isScalar())
207 // Most architectures are going to legalize <s8 loads into at least a 1 byte
208 // load, and the MMOs can only describe memory accesses in multiples of bytes.
209 // If we try to perform extload combining on those, we can end up with
210 // %a(s8) = extload %ptr (load 1 byte from %ptr)
211 // ... which is an illegal extload instruction.
212 if (LoadValueTy
.getSizeInBits() < 8)
215 // For non power-of-2 types, they will very likely be legalized into multiple
216 // loads. Don't bother trying to match them into extending loads.
217 if (!isPowerOf2_32(LoadValueTy
.getSizeInBits()))
220 // Find the preferred type aside from the any-extends (unless it's the only
221 // one) and non-extending ops. We'll emit an extending load to that type and
222 // and emit a variant of (extend (trunc X)) for the others according to the
223 // relative type sizes. At the same time, pick an extend to use based on the
224 // extend involved in the chosen type.
225 unsigned PreferredOpcode
= MI
.getOpcode() == TargetOpcode::G_LOAD
226 ? TargetOpcode::G_ANYEXT
227 : MI
.getOpcode() == TargetOpcode::G_SEXTLOAD
228 ? TargetOpcode::G_SEXT
229 : TargetOpcode::G_ZEXT
;
230 Preferred
= {LLT(), PreferredOpcode
, nullptr};
231 for (auto &UseMI
: MRI
.use_instructions(LoadValue
.getReg())) {
232 if (UseMI
.getOpcode() == TargetOpcode::G_SEXT
||
233 UseMI
.getOpcode() == TargetOpcode::G_ZEXT
||
234 UseMI
.getOpcode() == TargetOpcode::G_ANYEXT
) {
235 Preferred
= ChoosePreferredUse(Preferred
,
236 MRI
.getType(UseMI
.getOperand(0).getReg()),
237 UseMI
.getOpcode(), &UseMI
);
241 // There were no extends
244 // It should be impossible to chose an extend without selecting a different
245 // type since by definition the result of an extend is larger.
246 assert(Preferred
.Ty
!= LoadValueTy
&& "Extending to same type?");
248 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred
.MI
);
252 void CombinerHelper::applyCombineExtendingLoads(MachineInstr
&MI
,
253 PreferredTuple
&Preferred
) {
254 // Rewrite the load to the chosen extending load.
255 Register ChosenDstReg
= Preferred
.MI
->getOperand(0).getReg();
257 // Inserter to insert a truncate back to the original type at a given point
258 // with some basic CSE to limit truncate duplication to one per BB.
259 DenseMap
<MachineBasicBlock
*, MachineInstr
*> EmittedInsns
;
260 auto InsertTruncAt
= [&](MachineBasicBlock
*InsertIntoBB
,
261 MachineBasicBlock::iterator InsertBefore
,
262 MachineOperand
&UseMO
) {
263 MachineInstr
*PreviouslyEmitted
= EmittedInsns
.lookup(InsertIntoBB
);
264 if (PreviouslyEmitted
) {
265 Observer
.changingInstr(*UseMO
.getParent());
266 UseMO
.setReg(PreviouslyEmitted
->getOperand(0).getReg());
267 Observer
.changedInstr(*UseMO
.getParent());
271 Builder
.setInsertPt(*InsertIntoBB
, InsertBefore
);
272 Register NewDstReg
= MRI
.cloneVirtualRegister(MI
.getOperand(0).getReg());
273 MachineInstr
*NewMI
= Builder
.buildTrunc(NewDstReg
, ChosenDstReg
);
274 EmittedInsns
[InsertIntoBB
] = NewMI
;
275 replaceRegOpWith(MRI
, UseMO
, NewDstReg
);
278 Observer
.changingInstr(MI
);
280 Builder
.getTII().get(Preferred
.ExtendOpcode
== TargetOpcode::G_SEXT
281 ? TargetOpcode::G_SEXTLOAD
282 : Preferred
.ExtendOpcode
== TargetOpcode::G_ZEXT
283 ? TargetOpcode::G_ZEXTLOAD
284 : TargetOpcode::G_LOAD
));
286 // Rewrite all the uses to fix up the types.
287 auto &LoadValue
= MI
.getOperand(0);
288 SmallVector
<MachineOperand
*, 4> Uses
;
289 for (auto &UseMO
: MRI
.use_operands(LoadValue
.getReg()))
290 Uses
.push_back(&UseMO
);
292 for (auto *UseMO
: Uses
) {
293 MachineInstr
*UseMI
= UseMO
->getParent();
295 // If the extend is compatible with the preferred extend then we should fix
296 // up the type and extend so that it uses the preferred use.
297 if (UseMI
->getOpcode() == Preferred
.ExtendOpcode
||
298 UseMI
->getOpcode() == TargetOpcode::G_ANYEXT
) {
299 Register UseDstReg
= UseMI
->getOperand(0).getReg();
300 MachineOperand
&UseSrcMO
= UseMI
->getOperand(1);
301 const LLT
&UseDstTy
= MRI
.getType(UseDstReg
);
302 if (UseDstReg
!= ChosenDstReg
) {
303 if (Preferred
.Ty
== UseDstTy
) {
304 // If the use has the same type as the preferred use, then merge
305 // the vregs and erase the extend. For example:
306 // %1:_(s8) = G_LOAD ...
307 // %2:_(s32) = G_SEXT %1(s8)
308 // %3:_(s32) = G_ANYEXT %1(s8)
311 // %2:_(s32) = G_SEXTLOAD ...
313 replaceRegWith(MRI
, UseDstReg
, ChosenDstReg
);
314 Observer
.erasingInstr(*UseMO
->getParent());
315 UseMO
->getParent()->eraseFromParent();
316 } else if (Preferred
.Ty
.getSizeInBits() < UseDstTy
.getSizeInBits()) {
317 // If the preferred size is smaller, then keep the extend but extend
318 // from the result of the extending load. For example:
319 // %1:_(s8) = G_LOAD ...
320 // %2:_(s32) = G_SEXT %1(s8)
321 // %3:_(s64) = G_ANYEXT %1(s8)
324 // %2:_(s32) = G_SEXTLOAD ...
325 // %3:_(s64) = G_ANYEXT %2:_(s32)
327 replaceRegOpWith(MRI
, UseSrcMO
, ChosenDstReg
);
329 // If the preferred size is large, then insert a truncate. For
331 // %1:_(s8) = G_LOAD ...
332 // %2:_(s64) = G_SEXT %1(s8)
333 // %3:_(s32) = G_ZEXT %1(s8)
336 // %2:_(s64) = G_SEXTLOAD ...
337 // %4:_(s8) = G_TRUNC %2:_(s32)
338 // %3:_(s64) = G_ZEXT %2:_(s8)
340 InsertInsnsWithoutSideEffectsBeforeUse(Builder
, MI
, *UseMO
,
345 // The use is (one of) the uses of the preferred use we chose earlier.
346 // We're going to update the load to def this value later so just erase
348 Observer
.erasingInstr(*UseMO
->getParent());
349 UseMO
->getParent()->eraseFromParent();
353 // The use isn't an extend. Truncate back to the type we originally loaded.
354 // This is free on many targets.
355 InsertInsnsWithoutSideEffectsBeforeUse(Builder
, MI
, *UseMO
, InsertTruncAt
);
358 MI
.getOperand(0).setReg(ChosenDstReg
);
359 Observer
.changedInstr(MI
);
362 bool CombinerHelper::isPredecessor(MachineInstr
&DefMI
, MachineInstr
&UseMI
) {
363 assert(DefMI
.getParent() == UseMI
.getParent());
364 if (&DefMI
== &UseMI
)
367 // Loop through the basic block until we find one of the instructions.
368 MachineBasicBlock::const_iterator I
= DefMI
.getParent()->begin();
369 for (; &*I
!= &DefMI
&& &*I
!= &UseMI
; ++I
)
370 return &*I
== &DefMI
;
372 llvm_unreachable("Block must contain instructions");
375 bool CombinerHelper::dominates(MachineInstr
&DefMI
, MachineInstr
&UseMI
) {
377 return MDT
->dominates(&DefMI
, &UseMI
);
378 else if (DefMI
.getParent() != UseMI
.getParent())
381 return isPredecessor(DefMI
, UseMI
);
384 bool CombinerHelper::findPostIndexCandidate(MachineInstr
&MI
, Register
&Addr
,
385 Register
&Base
, Register
&Offset
) {
386 auto &MF
= *MI
.getParent()->getParent();
387 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
390 unsigned Opcode
= MI
.getOpcode();
391 assert(Opcode
== TargetOpcode::G_LOAD
|| Opcode
== TargetOpcode::G_SEXTLOAD
||
392 Opcode
== TargetOpcode::G_ZEXTLOAD
|| Opcode
== TargetOpcode::G_STORE
);
395 Base
= MI
.getOperand(1).getReg();
396 MachineInstr
*BaseDef
= MRI
.getUniqueVRegDef(Base
);
397 if (BaseDef
&& BaseDef
->getOpcode() == TargetOpcode::G_FRAME_INDEX
)
400 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI
);
402 for (auto &Use
: MRI
.use_instructions(Base
)) {
403 if (Use
.getOpcode() != TargetOpcode::G_GEP
)
406 Offset
= Use
.getOperand(2).getReg();
407 if (!ForceLegalIndexing
&&
408 !TLI
.isIndexingLegal(MI
, Base
, Offset
, /*IsPre*/ false, MRI
)) {
409 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
414 // Make sure the offset calculation is before the potentially indexed op.
415 // FIXME: we really care about dependency here. The offset calculation might
417 MachineInstr
*OffsetDef
= MRI
.getUniqueVRegDef(Offset
);
418 if (!OffsetDef
|| !dominates(*OffsetDef
, MI
)) {
419 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
424 // FIXME: check whether all uses of Base are load/store with foldable
425 // addressing modes. If so, using the normal addr-modes is better than
426 // forming an indexed one.
428 bool MemOpDominatesAddrUses
= true;
429 for (auto &GEPUse
: MRI
.use_instructions(Use
.getOperand(0).getReg())) {
430 if (!dominates(MI
, GEPUse
)) {
431 MemOpDominatesAddrUses
= false;
436 if (!MemOpDominatesAddrUses
) {
438 dbgs() << " Ignoring candidate as memop does not dominate uses: "
443 LLVM_DEBUG(dbgs() << " Found match: " << Use
);
444 Addr
= Use
.getOperand(0).getReg();
451 bool CombinerHelper::findPreIndexCandidate(MachineInstr
&MI
, Register
&Addr
,
452 Register
&Base
, Register
&Offset
) {
453 auto &MF
= *MI
.getParent()->getParent();
454 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
457 unsigned Opcode
= MI
.getOpcode();
458 assert(Opcode
== TargetOpcode::G_LOAD
|| Opcode
== TargetOpcode::G_SEXTLOAD
||
459 Opcode
== TargetOpcode::G_ZEXTLOAD
|| Opcode
== TargetOpcode::G_STORE
);
462 Addr
= MI
.getOperand(1).getReg();
463 MachineInstr
*AddrDef
= getOpcodeDef(TargetOpcode::G_GEP
, Addr
, MRI
);
464 if (!AddrDef
|| MRI
.hasOneUse(Addr
))
467 Base
= AddrDef
->getOperand(1).getReg();
468 Offset
= AddrDef
->getOperand(2).getReg();
470 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI
);
472 if (!ForceLegalIndexing
&&
473 !TLI
.isIndexingLegal(MI
, Base
, Offset
, /*IsPre*/ true, MRI
)) {
474 LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
478 MachineInstr
*BaseDef
= getDefIgnoringCopies(Base
, MRI
);
479 if (BaseDef
->getOpcode() == TargetOpcode::G_FRAME_INDEX
) {
480 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
484 if (MI
.getOpcode() == TargetOpcode::G_STORE
) {
485 // Would require a copy.
486 if (Base
== MI
.getOperand(0).getReg()) {
487 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
491 // We're expecting one use of Addr in MI, but it could also be the
492 // value stored, which isn't actually dominated by the instruction.
493 if (MI
.getOperand(0).getReg() == Addr
) {
494 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
499 // FIXME: check whether all uses of the base pointer are constant GEPs. That
500 // might allow us to end base's liveness here by adjusting the constant.
502 for (auto &UseMI
: MRI
.use_instructions(Addr
)) {
503 if (!dominates(MI
, UseMI
)) {
504 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
512 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr
&MI
) {
513 unsigned Opcode
= MI
.getOpcode();
514 if (Opcode
!= TargetOpcode::G_LOAD
&& Opcode
!= TargetOpcode::G_SEXTLOAD
&&
515 Opcode
!= TargetOpcode::G_ZEXTLOAD
&& Opcode
!= TargetOpcode::G_STORE
)
518 bool IsStore
= Opcode
== TargetOpcode::G_STORE
;
519 Register Addr
, Base
, Offset
;
520 bool IsPre
= findPreIndexCandidate(MI
, Addr
, Base
, Offset
);
521 if (!IsPre
&& !findPostIndexCandidate(MI
, Addr
, Base
, Offset
))
527 case TargetOpcode::G_LOAD
:
528 NewOpcode
= TargetOpcode::G_INDEXED_LOAD
;
530 case TargetOpcode::G_SEXTLOAD
:
531 NewOpcode
= TargetOpcode::G_INDEXED_SEXTLOAD
;
533 case TargetOpcode::G_ZEXTLOAD
:
534 NewOpcode
= TargetOpcode::G_INDEXED_ZEXTLOAD
;
536 case TargetOpcode::G_STORE
:
537 NewOpcode
= TargetOpcode::G_INDEXED_STORE
;
540 llvm_unreachable("Unknown load/store opcode");
543 MachineInstr
&AddrDef
= *MRI
.getUniqueVRegDef(Addr
);
544 MachineIRBuilder
MIRBuilder(MI
);
545 auto MIB
= MIRBuilder
.buildInstr(NewOpcode
);
548 MIB
.addUse(MI
.getOperand(0).getReg());
550 MIB
.addDef(MI
.getOperand(0).getReg());
557 MI
.eraseFromParent();
558 AddrDef
.eraseFromParent();
560 LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
564 bool CombinerHelper::matchCombineBr(MachineInstr
&MI
) {
565 assert(MI
.getOpcode() == TargetOpcode::G_BR
&& "Expected a G_BR");
566 // Try to match the following:
568 // %c(s32) = G_ICMP pred, %a, %b
569 // %c1(s1) = G_TRUNC %c(s32)
570 // G_BRCOND %c1, %bb2
576 // The above pattern does not have a fall through to the successor bb2, always
577 // resulting in a branch no matter which path is taken. Here we try to find
578 // and replace that pattern with conditional branch to bb3 and otherwise
579 // fallthrough to bb2.
581 MachineBasicBlock
*MBB
= MI
.getParent();
582 MachineBasicBlock::iterator
BrIt(MI
);
583 if (BrIt
== MBB
->begin())
585 assert(std::next(BrIt
) == MBB
->end() && "expected G_BR to be a terminator");
587 MachineInstr
*BrCond
= &*std::prev(BrIt
);
588 if (BrCond
->getOpcode() != TargetOpcode::G_BRCOND
)
591 // Check that the next block is the conditional branch target.
592 if (!MBB
->isLayoutSuccessor(BrCond
->getOperand(1).getMBB()))
595 MachineInstr
*CmpMI
= MRI
.getVRegDef(BrCond
->getOperand(0).getReg());
596 if (!CmpMI
|| CmpMI
->getOpcode() != TargetOpcode::G_ICMP
||
597 !MRI
.hasOneUse(CmpMI
->getOperand(0).getReg()))
602 bool CombinerHelper::tryCombineBr(MachineInstr
&MI
) {
603 if (!matchCombineBr(MI
))
605 MachineBasicBlock
*BrTarget
= MI
.getOperand(0).getMBB();
606 MachineBasicBlock::iterator
BrIt(MI
);
607 MachineInstr
*BrCond
= &*std::prev(BrIt
);
608 MachineInstr
*CmpMI
= MRI
.getVRegDef(BrCond
->getOperand(0).getReg());
610 CmpInst::Predicate InversePred
= CmpInst::getInversePredicate(
611 (CmpInst::Predicate
)CmpMI
->getOperand(1).getPredicate());
613 // Invert the G_ICMP condition.
614 Observer
.changingInstr(*CmpMI
);
615 CmpMI
->getOperand(1).setPredicate(InversePred
);
616 Observer
.changedInstr(*CmpMI
);
618 // Change the conditional branch target.
619 Observer
.changingInstr(*BrCond
);
620 BrCond
->getOperand(1).setMBB(BrTarget
);
621 Observer
.changedInstr(*BrCond
);
622 MI
.eraseFromParent();
626 static bool shouldLowerMemFuncForSize(const MachineFunction
&MF
) {
627 // On Darwin, -Os means optimize for size without hurting performance, so
628 // only really optimize for size when -Oz (MinSize) is used.
629 if (MF
.getTarget().getTargetTriple().isOSDarwin())
630 return MF
.getFunction().hasMinSize();
631 return MF
.getFunction().hasOptSize();
634 // Returns a list of types to use for memory op lowering in MemOps. A partial
635 // port of findOptimalMemOpLowering in TargetLowering.
636 static bool findGISelOptimalMemOpLowering(
637 std::vector
<LLT
> &MemOps
, unsigned Limit
, uint64_t Size
, unsigned DstAlign
,
638 unsigned SrcAlign
, bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
639 bool AllowOverlap
, unsigned DstAS
, unsigned SrcAS
,
640 const AttributeList
&FuncAttributes
, const TargetLowering
&TLI
) {
641 // If 'SrcAlign' is zero, that means the memory operation does not need to
642 // load the value, i.e. memset or memcpy from constant string. Otherwise,
643 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
644 // is the specified alignment of the memory operation. If it is zero, that
645 // means it's possible to change the alignment of the destination.
646 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
647 // not need to be loaded.
648 if (SrcAlign
!= 0 && SrcAlign
< DstAlign
)
651 LLT Ty
= TLI
.getOptimalMemOpLLT(Size
, DstAlign
, SrcAlign
, IsMemset
,
652 ZeroMemset
, MemcpyStrSrc
, FuncAttributes
);
655 // Use the largest scalar type whose alignment constraints are satisfied.
656 // We only need to check DstAlign here as SrcAlign is always greater or
657 // equal to DstAlign (or zero).
658 Ty
= LLT::scalar(64);
659 while (DstAlign
&& DstAlign
< Ty
.getSizeInBytes() &&
660 !TLI
.allowsMisalignedMemoryAccesses(Ty
, DstAS
, DstAlign
))
661 Ty
= LLT::scalar(Ty
.getSizeInBytes());
662 assert(Ty
.getSizeInBits() > 0 && "Could not find valid type");
663 // FIXME: check for the largest legal type we can load/store to.
666 unsigned NumMemOps
= 0;
668 unsigned TySize
= Ty
.getSizeInBytes();
669 while (TySize
> Size
) {
670 // For now, only use non-vector load / store's for the left-over pieces.
672 // FIXME: check for mem op safety and legality of the types. Not all of
673 // SDAGisms map cleanly to GISel concepts.
674 if (NewTy
.isVector())
675 NewTy
= NewTy
.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
676 NewTy
= LLT::scalar(PowerOf2Floor(NewTy
.getSizeInBits() - 1));
677 unsigned NewTySize
= NewTy
.getSizeInBytes();
678 assert(NewTySize
> 0 && "Could not find appropriate type");
680 // If the new LLT cannot cover all of the remaining bits, then consider
681 // issuing a (or a pair of) unaligned and overlapping load / store.
683 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
684 MVT VT
= getMVTForLLT(Ty
);
685 if (NumMemOps
&& AllowOverlap
&& NewTySize
< Size
&&
686 TLI
.allowsMisalignedMemoryAccesses(
687 VT
, DstAS
, DstAlign
, MachineMemOperand::MONone
, &Fast
) &&
696 if (++NumMemOps
> Limit
)
699 MemOps
.push_back(Ty
);
706 static Type
*getTypeForLLT(LLT Ty
, LLVMContext
&C
) {
708 return VectorType::get(IntegerType::get(C
, Ty
.getScalarSizeInBits()),
709 Ty
.getNumElements());
710 return IntegerType::get(C
, Ty
.getSizeInBits());
713 // Get a vectorized representation of the memset value operand, GISel edition.
714 static Register
getMemsetValue(Register Val
, LLT Ty
, MachineIRBuilder
&MIB
) {
715 MachineRegisterInfo
&MRI
= *MIB
.getMRI();
716 unsigned NumBits
= Ty
.getScalarSizeInBits();
717 auto ValVRegAndVal
= getConstantVRegValWithLookThrough(Val
, MRI
);
718 if (!Ty
.isVector() && ValVRegAndVal
) {
719 unsigned KnownVal
= ValVRegAndVal
->Value
;
720 APInt Scalar
= APInt(8, KnownVal
);
721 APInt SplatVal
= APInt::getSplat(NumBits
, Scalar
);
722 return MIB
.buildConstant(Ty
, SplatVal
).getReg(0);
724 // FIXME: for vector types create a G_BUILD_VECTOR.
728 // Extend the byte value to the larger type, and then multiply by a magic
729 // value 0x010101... in order to replicate it across every byte.
730 LLT ExtType
= Ty
.getScalarType();
731 auto ZExt
= MIB
.buildZExtOrTrunc(ExtType
, Val
);
733 APInt Magic
= APInt::getSplat(NumBits
, APInt(8, 0x01));
734 auto MagicMI
= MIB
.buildConstant(ExtType
, Magic
);
735 Val
= MIB
.buildMul(ExtType
, ZExt
, MagicMI
).getReg(0);
738 assert(ExtType
== Ty
&& "Vector memset value type not supported yet");
742 bool CombinerHelper::optimizeMemset(MachineInstr
&MI
, Register Dst
, Register Val
,
743 unsigned KnownLen
, unsigned Align
,
745 auto &MF
= *MI
.getParent()->getParent();
746 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
747 auto &DL
= MF
.getDataLayout();
748 LLVMContext
&C
= MF
.getFunction().getContext();
750 assert(KnownLen
!= 0 && "Have a zero length memset length!");
752 bool DstAlignCanChange
= false;
753 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
754 bool OptSize
= shouldLowerMemFuncForSize(MF
);
756 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
757 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
758 DstAlignCanChange
= true;
760 unsigned Limit
= TLI
.getMaxStoresPerMemset(OptSize
);
761 std::vector
<LLT
> MemOps
;
763 const auto &DstMMO
= **MI
.memoperands_begin();
764 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
766 auto ValVRegAndVal
= getConstantVRegValWithLookThrough(Val
, MRI
);
767 bool IsZeroVal
= ValVRegAndVal
&& ValVRegAndVal
->Value
== 0;
769 if (!findGISelOptimalMemOpLowering(
770 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), 0,
772 /*ZeroMemset=*/IsZeroVal
, /*MemcpyStrSrc=*/false,
773 /*AllowOverlap=*/!IsVolatile
, DstPtrInfo
.getAddrSpace(), ~0u,
774 MF
.getFunction().getAttributes(), TLI
))
777 if (DstAlignCanChange
) {
778 // Get an estimate of the type from the LLT.
779 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
780 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
781 if (NewAlign
> Align
) {
782 unsigned FI
= FIDef
->getOperand(1).getIndex();
783 // Give the stack frame object a larger alignment if needed.
784 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
785 MFI
.setObjectAlignment(FI
, NewAlign
);
790 MachineIRBuilder
MIB(MI
);
791 // Find the largest store and generate the bit pattern for it.
792 LLT LargestTy
= MemOps
[0];
793 for (unsigned i
= 1; i
< MemOps
.size(); i
++)
794 if (MemOps
[i
].getSizeInBits() > LargestTy
.getSizeInBits())
795 LargestTy
= MemOps
[i
];
797 // The memset stored value is always defined as an s8, so in order to make it
798 // work with larger store types we need to repeat the bit pattern across the
800 Register MemSetValue
= getMemsetValue(Val
, LargestTy
, MIB
);
805 // Generate the stores. For each store type in the list, we generate the
806 // matching store of that type to the destination address.
807 LLT PtrTy
= MRI
.getType(Dst
);
809 unsigned Size
= KnownLen
;
810 for (unsigned I
= 0; I
< MemOps
.size(); I
++) {
812 unsigned TySize
= Ty
.getSizeInBytes();
814 // Issuing an unaligned load / store pair that overlaps with the previous
815 // pair. Adjust the offset accordingly.
816 assert(I
== MemOps
.size() - 1 && I
!= 0);
817 DstOff
-= TySize
- Size
;
820 // If this store is smaller than the largest store see whether we can get
821 // the smaller value for free with a truncate.
822 Register Value
= MemSetValue
;
823 if (Ty
.getSizeInBits() < LargestTy
.getSizeInBits()) {
824 MVT VT
= getMVTForLLT(Ty
);
825 MVT LargestVT
= getMVTForLLT(LargestTy
);
826 if (!LargestTy
.isVector() && !Ty
.isVector() &&
827 TLI
.isTruncateFree(LargestVT
, VT
))
828 Value
= MIB
.buildTrunc(Ty
, MemSetValue
).getReg(0);
830 Value
= getMemsetValue(Val
, Ty
, MIB
);
836 MF
.getMachineMemOperand(&DstMMO
, DstOff
, Ty
.getSizeInBytes());
841 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), DstOff
);
842 Ptr
= MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
845 MIB
.buildStore(Value
, Ptr
, *StoreMMO
);
846 DstOff
+= Ty
.getSizeInBytes();
850 MI
.eraseFromParent();
855 bool CombinerHelper::optimizeMemcpy(MachineInstr
&MI
, Register Dst
,
856 Register Src
, unsigned KnownLen
,
857 unsigned DstAlign
, unsigned SrcAlign
,
859 auto &MF
= *MI
.getParent()->getParent();
860 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
861 auto &DL
= MF
.getDataLayout();
862 LLVMContext
&C
= MF
.getFunction().getContext();
864 assert(KnownLen
!= 0 && "Have a zero length memcpy length!");
866 bool DstAlignCanChange
= false;
867 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
868 bool OptSize
= shouldLowerMemFuncForSize(MF
);
869 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
871 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
872 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
873 DstAlignCanChange
= true;
875 // FIXME: infer better src pointer alignment like SelectionDAG does here.
876 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
877 // if the memcpy is in a tail call position.
879 unsigned Limit
= TLI
.getMaxStoresPerMemcpy(OptSize
);
880 std::vector
<LLT
> MemOps
;
882 const auto &DstMMO
= **MI
.memoperands_begin();
883 const auto &SrcMMO
= **std::next(MI
.memoperands_begin());
884 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
885 MachinePointerInfo SrcPtrInfo
= SrcMMO
.getPointerInfo();
887 if (!findGISelOptimalMemOpLowering(
888 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), SrcAlign
,
890 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
891 /*AllowOverlap=*/!IsVolatile
, DstPtrInfo
.getAddrSpace(),
892 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes(), TLI
))
895 if (DstAlignCanChange
) {
896 // Get an estimate of the type from the LLT.
897 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
898 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
900 // Don't promote to an alignment that would require dynamic stack
902 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
903 if (!TRI
->needsStackRealignment(MF
))
904 while (NewAlign
> Align
&&
905 DL
.exceedsNaturalStackAlignment(llvm::Align(NewAlign
)))
908 if (NewAlign
> Align
) {
909 unsigned FI
= FIDef
->getOperand(1).getIndex();
910 // Give the stack frame object a larger alignment if needed.
911 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
912 MFI
.setObjectAlignment(FI
, NewAlign
);
917 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI
<< " into loads & stores\n");
919 MachineIRBuilder
MIB(MI
);
920 // Now we need to emit a pair of load and stores for each of the types we've
921 // collected. I.e. for each type, generate a load from the source pointer of
922 // that type width, and then generate a corresponding store to the dest buffer
923 // of that value loaded. This can result in a sequence of loads and stores
924 // mixed types, depending on what the target specifies as good types to use.
925 unsigned CurrOffset
= 0;
926 LLT PtrTy
= MRI
.getType(Src
);
927 unsigned Size
= KnownLen
;
928 for (auto CopyTy
: MemOps
) {
929 // Issuing an unaligned load / store pair that overlaps with the previous
930 // pair. Adjust the offset accordingly.
931 if (CopyTy
.getSizeInBytes() > Size
)
932 CurrOffset
-= CopyTy
.getSizeInBytes() - Size
;
934 // Construct MMOs for the accesses.
936 MF
.getMachineMemOperand(&SrcMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
938 MF
.getMachineMemOperand(&DstMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
941 Register LoadPtr
= Src
;
943 if (CurrOffset
!= 0) {
944 Offset
= MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
)
946 LoadPtr
= MIB
.buildGEP(PtrTy
, Src
, Offset
).getReg(0);
948 auto LdVal
= MIB
.buildLoad(CopyTy
, LoadPtr
, *LoadMMO
);
952 CurrOffset
== 0 ? Dst
: MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
953 MIB
.buildStore(LdVal
, StorePtr
, *StoreMMO
);
954 CurrOffset
+= CopyTy
.getSizeInBytes();
955 Size
-= CopyTy
.getSizeInBytes();
958 MI
.eraseFromParent();
962 bool CombinerHelper::optimizeMemmove(MachineInstr
&MI
, Register Dst
,
963 Register Src
, unsigned KnownLen
,
964 unsigned DstAlign
, unsigned SrcAlign
,
966 auto &MF
= *MI
.getParent()->getParent();
967 const auto &TLI
= *MF
.getSubtarget().getTargetLowering();
968 auto &DL
= MF
.getDataLayout();
969 LLVMContext
&C
= MF
.getFunction().getContext();
971 assert(KnownLen
!= 0 && "Have a zero length memmove length!");
973 bool DstAlignCanChange
= false;
974 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
975 bool OptSize
= shouldLowerMemFuncForSize(MF
);
976 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
978 MachineInstr
*FIDef
= getOpcodeDef(TargetOpcode::G_FRAME_INDEX
, Dst
, MRI
);
979 if (FIDef
&& !MFI
.isFixedObjectIndex(FIDef
->getOperand(1).getIndex()))
980 DstAlignCanChange
= true;
982 unsigned Limit
= TLI
.getMaxStoresPerMemmove(OptSize
);
983 std::vector
<LLT
> MemOps
;
985 const auto &DstMMO
= **MI
.memoperands_begin();
986 const auto &SrcMMO
= **std::next(MI
.memoperands_begin());
987 MachinePointerInfo DstPtrInfo
= DstMMO
.getPointerInfo();
988 MachinePointerInfo SrcPtrInfo
= SrcMMO
.getPointerInfo();
990 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
991 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
993 if (!findGISelOptimalMemOpLowering(
994 MemOps
, Limit
, KnownLen
, (DstAlignCanChange
? 0 : Align
), SrcAlign
,
996 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
997 /*AllowOverlap=*/false, DstPtrInfo
.getAddrSpace(),
998 SrcPtrInfo
.getAddrSpace(), MF
.getFunction().getAttributes(), TLI
))
1001 if (DstAlignCanChange
) {
1002 // Get an estimate of the type from the LLT.
1003 Type
*IRTy
= getTypeForLLT(MemOps
[0], C
);
1004 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(IRTy
);
1006 // Don't promote to an alignment that would require dynamic stack
1008 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1009 if (!TRI
->needsStackRealignment(MF
))
1010 while (NewAlign
> Align
&&
1011 DL
.exceedsNaturalStackAlignment(llvm::Align(NewAlign
)))
1014 if (NewAlign
> Align
) {
1015 unsigned FI
= FIDef
->getOperand(1).getIndex();
1016 // Give the stack frame object a larger alignment if needed.
1017 if (MFI
.getObjectAlignment(FI
) < NewAlign
)
1018 MFI
.setObjectAlignment(FI
, NewAlign
);
1023 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI
<< " into loads & stores\n");
1025 MachineIRBuilder
MIB(MI
);
1026 // Memmove requires that we perform the loads first before issuing the stores.
1027 // Apart from that, this loop is pretty much doing the same thing as the
1028 // memcpy codegen function.
1029 unsigned CurrOffset
= 0;
1030 LLT PtrTy
= MRI
.getType(Src
);
1031 SmallVector
<Register
, 16> LoadVals
;
1032 for (auto CopyTy
: MemOps
) {
1033 // Construct MMO for the load.
1035 MF
.getMachineMemOperand(&SrcMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
1038 Register LoadPtr
= Src
;
1039 if (CurrOffset
!= 0) {
1041 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
);
1042 LoadPtr
= MIB
.buildGEP(PtrTy
, Src
, Offset
).getReg(0);
1044 LoadVals
.push_back(MIB
.buildLoad(CopyTy
, LoadPtr
, *LoadMMO
).getReg(0));
1045 CurrOffset
+= CopyTy
.getSizeInBytes();
1049 for (unsigned I
= 0; I
< MemOps
.size(); ++I
) {
1050 LLT CopyTy
= MemOps
[I
];
1051 // Now store the values loaded.
1053 MF
.getMachineMemOperand(&DstMMO
, CurrOffset
, CopyTy
.getSizeInBytes());
1055 Register StorePtr
= Dst
;
1056 if (CurrOffset
!= 0) {
1058 MIB
.buildConstant(LLT::scalar(PtrTy
.getSizeInBits()), CurrOffset
);
1059 StorePtr
= MIB
.buildGEP(PtrTy
, Dst
, Offset
).getReg(0);
1061 MIB
.buildStore(LoadVals
[I
], StorePtr
, *StoreMMO
);
1062 CurrOffset
+= CopyTy
.getSizeInBytes();
1064 MI
.eraseFromParent();
1068 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr
&MI
, unsigned MaxLen
) {
1069 // This combine is fairly complex so it's not written with a separate
1070 // matcher function.
1071 assert(MI
.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
);
1072 Intrinsic::ID ID
= (Intrinsic::ID
)MI
.getIntrinsicID();
1073 assert((ID
== Intrinsic::memcpy
|| ID
== Intrinsic::memmove
||
1074 ID
== Intrinsic::memset
) &&
1075 "Expected a memcpy like intrinsic");
1077 auto MMOIt
= MI
.memoperands_begin();
1078 const MachineMemOperand
*MemOp
= *MMOIt
;
1079 bool IsVolatile
= MemOp
->isVolatile();
1080 // Don't try to optimize volatile.
1084 unsigned DstAlign
= MemOp
->getBaseAlignment();
1085 unsigned SrcAlign
= 0;
1086 Register Dst
= MI
.getOperand(1).getReg();
1087 Register Src
= MI
.getOperand(2).getReg();
1088 Register Len
= MI
.getOperand(3).getReg();
1090 if (ID
!= Intrinsic::memset
) {
1091 assert(MMOIt
!= MI
.memoperands_end() && "Expected a second MMO on MI");
1093 SrcAlign
= MemOp
->getBaseAlignment();
1096 // See if this is a constant length copy
1097 auto LenVRegAndVal
= getConstantVRegValWithLookThrough(Len
, MRI
);
1099 return false; // Leave it to the legalizer to lower it to a libcall.
1100 unsigned KnownLen
= LenVRegAndVal
->Value
;
1102 if (KnownLen
== 0) {
1103 MI
.eraseFromParent();
1107 if (MaxLen
&& KnownLen
> MaxLen
)
1110 if (ID
== Intrinsic::memcpy
)
1111 return optimizeMemcpy(MI
, Dst
, Src
, KnownLen
, DstAlign
, SrcAlign
, IsVolatile
);
1112 if (ID
== Intrinsic::memmove
)
1113 return optimizeMemmove(MI
, Dst
, Src
, KnownLen
, DstAlign
, SrcAlign
, IsVolatile
);
1114 if (ID
== Intrinsic::memset
)
1115 return optimizeMemset(MI
, Dst
, Src
, KnownLen
, DstAlign
, IsVolatile
);
1119 bool CombinerHelper::tryCombine(MachineInstr
&MI
) {
1120 if (tryCombineCopy(MI
))
1122 if (tryCombineExtendingLoads(MI
))
1124 if (tryCombineIndexedLoadStore(MI
))