[x86] fix assert with horizontal math + broadcast of vector (PR43402)
[llvm-core.git] / lib / CodeGen / GlobalISel / LegalizerInfo.cpp
blobebe3b7c640cf14288c1858f4ab4bbf74974914aa
1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
12 // Issues to be resolved:
13 // + Make it fast.
14 // + Support weird types like i3, <7 x i3>, ...
15 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
17 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
35 using namespace llvm;
36 using namespace LegalizeActions;
38 #define DEBUG_TYPE "legalizer-info"
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41 "disable-gisel-legality-check",
42 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43 cl::Hidden);
45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46 switch (Action) {
47 case Legal:
48 OS << "Legal";
49 break;
50 case NarrowScalar:
51 OS << "NarrowScalar";
52 break;
53 case WidenScalar:
54 OS << "WidenScalar";
55 break;
56 case FewerElements:
57 OS << "FewerElements";
58 break;
59 case MoreElements:
60 OS << "MoreElements";
61 break;
62 case Lower:
63 OS << "Lower";
64 break;
65 case Libcall:
66 OS << "Libcall";
67 break;
68 case Custom:
69 OS << "Custom";
70 break;
71 case Unsupported:
72 OS << "Unsupported";
73 break;
74 case NotFound:
75 OS << "NotFound";
76 break;
77 case UseLegacyRules:
78 OS << "UseLegacyRules";
79 break;
81 return OS;
84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85 OS << Opcode << ", Tys={";
86 for (const auto &Type : Types) {
87 OS << Type << ", ";
89 OS << "}, Opcode=";
91 OS << Opcode << ", MMOs={";
92 for (const auto &MMODescr : MMODescrs) {
93 OS << MMODescr.SizeInBits << ", ";
95 OS << "}";
97 return OS;
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103 const std::pair<unsigned, LLT> &Mutation) {
104 switch (Rule.getAction()) {
105 case Custom:
106 case Lower:
107 case MoreElements:
108 case FewerElements:
109 break;
110 default:
111 return Q.Types[Mutation.first] != Mutation.second;
113 return true;
116 // Make sure the returned mutation makes sense for the match type.
117 static bool mutationIsSane(const LegalizeRule &Rule,
118 const LegalityQuery &Q,
119 std::pair<unsigned, LLT> Mutation) {
120 // If the user wants a custom mutation, then we can't really say much about
121 // it. Return true, and trust that they're doing the right thing.
122 if (Rule.getAction() == Custom)
123 return true;
125 const unsigned TypeIdx = Mutation.first;
126 const LLT OldTy = Q.Types[TypeIdx];
127 const LLT NewTy = Mutation.second;
129 switch (Rule.getAction()) {
130 case FewerElements:
131 case MoreElements: {
132 if (!OldTy.isVector())
133 return false;
135 if (NewTy.isVector()) {
136 if (Rule.getAction() == FewerElements) {
137 // Make sure the element count really decreased.
138 if (NewTy.getNumElements() >= OldTy.getNumElements())
139 return false;
140 } else {
141 // Make sure the element count really increased.
142 if (NewTy.getNumElements() <= OldTy.getNumElements())
143 return false;
147 // Make sure the element type didn't change.
148 return NewTy.getScalarType() == OldTy.getElementType();
150 case NarrowScalar:
151 case WidenScalar: {
152 if (OldTy.isVector()) {
153 // Number of elements should not change.
154 if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
155 return false;
156 } else {
157 // Both types must be vectors
158 if (NewTy.isVector())
159 return false;
162 if (Rule.getAction() == NarrowScalar) {
163 // Make sure the size really decreased.
164 if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
165 return false;
166 } else {
167 // Make sure the size really increased.
168 if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
169 return false;
172 return true;
174 default:
175 return true;
178 #endif
180 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
181 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
182 dbgs() << "\n");
183 if (Rules.empty()) {
184 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
185 return {LegalizeAction::UseLegacyRules, 0, LLT{}};
187 for (const LegalizeRule &Rule : Rules) {
188 if (Rule.match(Query)) {
189 LLVM_DEBUG(dbgs() << ".. match\n");
190 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
191 LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
192 << Mutation.first << ", " << Mutation.second << "\n");
193 assert(mutationIsSane(Rule, Query, Mutation) &&
194 "legality mutation invalid for match");
195 assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
196 return {Rule.getAction(), Mutation.first, Mutation.second};
197 } else
198 LLVM_DEBUG(dbgs() << ".. no match\n");
200 LLVM_DEBUG(dbgs() << ".. unsupported\n");
201 return {LegalizeAction::Unsupported, 0, LLT{}};
204 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
205 #ifndef NDEBUG
206 if (Rules.empty()) {
207 LLVM_DEBUG(
208 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
209 return true;
211 const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
212 if (FirstUncovered < 0) {
213 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
214 " user-defined predicate detected\n");
215 return true;
217 const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
218 if (NumTypeIdxs > 0)
219 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
220 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
221 return AllCovered;
222 #else
223 return true;
224 #endif
227 bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
228 #ifndef NDEBUG
229 if (Rules.empty()) {
230 LLVM_DEBUG(
231 dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
232 return true;
234 const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
235 if (FirstUncovered < 0) {
236 LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
237 " user-defined predicate detected\n");
238 return true;
240 const bool AllCovered = (FirstUncovered >= NumImmIdxs);
241 LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
242 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
243 return AllCovered;
244 #else
245 return true;
246 #endif
249 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
250 // Set defaults.
251 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
252 // fundamental load/store Jakob proposed. Once loads & stores are supported.
253 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
254 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
255 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
256 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
257 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
259 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
260 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
262 setLegalizeScalarToDifferentSizeStrategy(
263 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
264 setLegalizeScalarToDifferentSizeStrategy(
265 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
266 setLegalizeScalarToDifferentSizeStrategy(
267 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
268 setLegalizeScalarToDifferentSizeStrategy(
269 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
270 setLegalizeScalarToDifferentSizeStrategy(
271 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
273 setLegalizeScalarToDifferentSizeStrategy(
274 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
275 setLegalizeScalarToDifferentSizeStrategy(
276 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
277 setLegalizeScalarToDifferentSizeStrategy(
278 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
279 setLegalizeScalarToDifferentSizeStrategy(
280 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
281 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
284 void LegalizerInfo::computeTables() {
285 assert(TablesInitialized == false);
287 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
288 const unsigned Opcode = FirstOp + OpcodeIdx;
289 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
290 ++TypeIdx) {
291 // 0. Collect information specified through the setAction API, i.e.
292 // for specific bit sizes.
293 // For scalar types:
294 SizeAndActionsVec ScalarSpecifiedActions;
295 // For pointer types:
296 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
297 // For vector types:
298 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
299 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
300 const LLT Type = LLT2Action.first;
301 const LegalizeAction Action = LLT2Action.second;
303 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
304 if (Type.isPointer())
305 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
306 SizeAction);
307 else if (Type.isVector())
308 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
309 .push_back(SizeAction);
310 else
311 ScalarSpecifiedActions.push_back(SizeAction);
314 // 1. Handle scalar types
316 // Decide how to handle bit sizes for which no explicit specification
317 // was given.
318 SizeChangeStrategy S = &unsupportedForDifferentSizes;
319 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
320 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
321 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
322 llvm::sort(ScalarSpecifiedActions);
323 checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
324 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
327 // 2. Handle pointer types
328 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
329 llvm::sort(PointerSpecifiedActions.second);
330 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
331 // For pointer types, we assume that there isn't a meaningfull way
332 // to change the number of bits used in the pointer.
333 setPointerAction(
334 Opcode, TypeIdx, PointerSpecifiedActions.first,
335 unsupportedForDifferentSizes(PointerSpecifiedActions.second));
338 // 3. Handle vector types
339 SizeAndActionsVec ElementSizesSeen;
340 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
341 llvm::sort(VectorSpecifiedActions.second);
342 const uint16_t ElementSize = VectorSpecifiedActions.first;
343 ElementSizesSeen.push_back({ElementSize, Legal});
344 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
345 // For vector types, we assume that the best way to adapt the number
346 // of elements is to the next larger number of elements type for which
347 // the vector type is legal, unless there is no such type. In that case,
348 // legalize towards a vector type with a smaller number of elements.
349 SizeAndActionsVec NumElementsActions;
350 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
351 assert(BitsizeAndAction.first % ElementSize == 0);
352 const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
353 NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
355 setVectorNumElementAction(
356 Opcode, TypeIdx, ElementSize,
357 moreToWiderTypesAndLessToWidest(NumElementsActions));
359 llvm::sort(ElementSizesSeen);
360 SizeChangeStrategy VectorElementSizeChangeStrategy =
361 &unsupportedForDifferentSizes;
362 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
363 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
364 VectorElementSizeChangeStrategy =
365 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
366 setScalarInVectorAction(
367 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
371 TablesInitialized = true;
374 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
375 // probably going to need specialized lookup structures for various types before
376 // we have any hope of doing well with something like <13 x i3>. Even the common
377 // cases should do better than what we have now.
378 std::pair<LegalizeAction, LLT>
379 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
380 assert(TablesInitialized && "backend forgot to call computeTables");
381 // These *have* to be implemented for now, they're the fundamental basis of
382 // how everything else is transformed.
383 if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
384 return findScalarLegalAction(Aspect);
385 assert(Aspect.Type.isVector());
386 return findVectorLegalAction(Aspect);
389 /// Helper function to get LLT for the given type index.
390 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
391 const MachineRegisterInfo &MRI, unsigned OpIdx,
392 unsigned TypeIdx) {
393 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
394 // G_UNMERGE_VALUES has variable number of operands, but there is only
395 // one source type and one destination type as all destinations must be the
396 // same type. So, get the last operand if TypeIdx == 1.
397 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
398 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
399 return MRI.getType(MI.getOperand(OpIdx).getReg());
402 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
403 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
404 return Opcode - FirstOp;
407 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
408 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
409 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
410 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
411 << "\n");
412 OpcodeIdx = getOpcodeIdxForOpcode(Alias);
413 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
416 return OpcodeIdx;
419 const LegalizeRuleSet &
420 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
421 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
422 return RulesForOpcode[OpcodeIdx];
425 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
426 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
427 auto &Result = RulesForOpcode[OpcodeIdx];
428 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
429 return Result;
432 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
433 std::initializer_list<unsigned> Opcodes) {
434 unsigned Representative = *Opcodes.begin();
436 assert(!empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
437 "Initializer list must have at least two opcodes");
439 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
440 aliasActionDefinitions(Representative, *I);
442 auto &Return = getActionDefinitionsBuilder(Representative);
443 Return.setIsAliasedByAnother();
444 return Return;
447 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
448 unsigned OpcodeFrom) {
449 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
450 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
451 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
452 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
455 LegalizeActionStep
456 LegalizerInfo::getAction(const LegalityQuery &Query) const {
457 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
458 if (Step.Action != LegalizeAction::UseLegacyRules) {
459 return Step;
462 for (unsigned i = 0; i < Query.Types.size(); ++i) {
463 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
464 if (Action.first != Legal) {
465 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
466 << Action.first << ", " << Action.second << "\n");
467 return {Action.first, i, Action.second};
468 } else
469 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
471 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
472 return {Legal, 0, LLT{}};
475 LegalizeActionStep
476 LegalizerInfo::getAction(const MachineInstr &MI,
477 const MachineRegisterInfo &MRI) const {
478 SmallVector<LLT, 2> Types;
479 SmallBitVector SeenTypes(8);
480 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
481 // FIXME: probably we'll need to cache the results here somehow?
482 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
483 if (!OpInfo[i].isGenericType())
484 continue;
486 // We must only record actions once for each TypeIdx; otherwise we'd
487 // try to legalize operands multiple times down the line.
488 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
489 if (SeenTypes[TypeIdx])
490 continue;
492 SeenTypes.set(TypeIdx);
494 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
495 Types.push_back(Ty);
498 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
499 for (const auto &MMO : MI.memoperands())
500 MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
501 8 * MMO->getAlignment(),
502 MMO->getOrdering()});
504 return getAction({MI.getOpcode(), Types, MemDescrs});
507 bool LegalizerInfo::isLegal(const MachineInstr &MI,
508 const MachineRegisterInfo &MRI) const {
509 return getAction(MI, MRI).Action == Legal;
512 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
513 const MachineRegisterInfo &MRI) const {
514 auto Action = getAction(MI, MRI).Action;
515 // If the action is custom, it may not necessarily modify the instruction,
516 // so we have to assume it's legal.
517 return Action == Legal || Action == Custom;
520 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
521 MachineIRBuilder &MIRBuilder,
522 GISelChangeObserver &Observer) const {
523 return false;
526 LegalizerInfo::SizeAndActionsVec
527 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
528 const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
529 LegalizeAction DecreaseAction) {
530 SizeAndActionsVec result;
531 unsigned LargestSizeSoFar = 0;
532 if (v.size() >= 1 && v[0].first != 1)
533 result.push_back({1, IncreaseAction});
534 for (size_t i = 0; i < v.size(); ++i) {
535 result.push_back(v[i]);
536 LargestSizeSoFar = v[i].first;
537 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
538 result.push_back({LargestSizeSoFar + 1, IncreaseAction});
539 LargestSizeSoFar = v[i].first + 1;
542 result.push_back({LargestSizeSoFar + 1, DecreaseAction});
543 return result;
546 LegalizerInfo::SizeAndActionsVec
547 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
548 const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
549 LegalizeAction IncreaseAction) {
550 SizeAndActionsVec result;
551 if (v.size() == 0 || v[0].first != 1)
552 result.push_back({1, IncreaseAction});
553 for (size_t i = 0; i < v.size(); ++i) {
554 result.push_back(v[i]);
555 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
556 result.push_back({v[i].first + 1, DecreaseAction});
559 return result;
562 LegalizerInfo::SizeAndAction
563 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
564 assert(Size >= 1);
565 // Find the last element in Vec that has a bitsize equal to or smaller than
566 // the requested bit size.
567 // That is the element just before the first element that is bigger than Size.
568 auto It = partition_point(
569 Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
570 assert(It != Vec.begin() && "Does Vec not start with size 1?");
571 int VecIdx = It - Vec.begin() - 1;
573 LegalizeAction Action = Vec[VecIdx].second;
574 switch (Action) {
575 case Legal:
576 case Lower:
577 case Libcall:
578 case Custom:
579 return {Size, Action};
580 case FewerElements:
581 // FIXME: is this special case still needed and correct?
582 // Special case for scalarization:
583 if (Vec == SizeAndActionsVec({{1, FewerElements}}))
584 return {1, FewerElements};
585 LLVM_FALLTHROUGH;
586 case NarrowScalar: {
587 // The following needs to be a loop, as for now, we do allow needing to
588 // go over "Unsupported" bit sizes before finding a legalizable bit size.
589 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
590 // we need to iterate over s9, and then to s32 to return (s32, Legal).
591 // If we want to get rid of the below loop, we should have stronger asserts
592 // when building the SizeAndActionsVecs, probably not allowing
593 // "Unsupported" unless at the ends of the vector.
594 for (int i = VecIdx - 1; i >= 0; --i)
595 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
596 Vec[i].second != Unsupported)
597 return {Vec[i].first, Action};
598 llvm_unreachable("");
600 case WidenScalar:
601 case MoreElements: {
602 // See above, the following needs to be a loop, at least for now.
603 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
604 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
605 Vec[i].second != Unsupported)
606 return {Vec[i].first, Action};
607 llvm_unreachable("");
609 case Unsupported:
610 return {Size, Unsupported};
611 case NotFound:
612 case UseLegacyRules:
613 llvm_unreachable("NotFound");
615 llvm_unreachable("Action has an unknown enum value");
618 std::pair<LegalizeAction, LLT>
619 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
620 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
621 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
622 return {NotFound, LLT()};
623 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
624 if (Aspect.Type.isPointer() &&
625 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
626 AddrSpace2PointerActions[OpcodeIdx].end()) {
627 return {NotFound, LLT()};
629 const SmallVector<SizeAndActionsVec, 1> &Actions =
630 Aspect.Type.isPointer()
631 ? AddrSpace2PointerActions[OpcodeIdx]
632 .find(Aspect.Type.getAddressSpace())
633 ->second
634 : ScalarActions[OpcodeIdx];
635 if (Aspect.Idx >= Actions.size())
636 return {NotFound, LLT()};
637 const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
638 // FIXME: speed up this search, e.g. by using a results cache for repeated
639 // queries?
640 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
641 return {SizeAndAction.second,
642 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
643 : LLT::pointer(Aspect.Type.getAddressSpace(),
644 SizeAndAction.first)};
647 std::pair<LegalizeAction, LLT>
648 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
649 assert(Aspect.Type.isVector());
650 // First legalize the vector element size, then legalize the number of
651 // lanes in the vector.
652 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
653 return {NotFound, Aspect.Type};
654 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
655 const unsigned TypeIdx = Aspect.Idx;
656 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
657 return {NotFound, Aspect.Type};
658 const SizeAndActionsVec &ElemSizeVec =
659 ScalarInVectorActions[OpcodeIdx][TypeIdx];
661 LLT IntermediateType;
662 auto ElementSizeAndAction =
663 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
664 IntermediateType =
665 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
666 if (ElementSizeAndAction.second != Legal)
667 return {ElementSizeAndAction.second, IntermediateType};
669 auto i = NumElements2Actions[OpcodeIdx].find(
670 IntermediateType.getScalarSizeInBits());
671 if (i == NumElements2Actions[OpcodeIdx].end()) {
672 return {NotFound, IntermediateType};
674 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
675 auto NumElementsAndAction =
676 findAction(NumElementsVec, IntermediateType.getNumElements());
677 return {NumElementsAndAction.second,
678 LLT::vector(NumElementsAndAction.first,
679 IntermediateType.getScalarSizeInBits())};
682 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
683 MachineRegisterInfo &MRI,
684 MachineIRBuilder &MIRBuilder) const {
685 return true;
688 /// \pre Type indices of every opcode form a dense set starting from 0.
689 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
690 #ifndef NDEBUG
691 std::vector<unsigned> FailedOpcodes;
692 for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
693 const MCInstrDesc &MCID = MII.get(Opcode);
694 const unsigned NumTypeIdxs = std::accumulate(
695 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
696 [](unsigned Acc, const MCOperandInfo &OpInfo) {
697 return OpInfo.isGenericType()
698 ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
699 : Acc;
701 const unsigned NumImmIdxs = std::accumulate(
702 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
703 [](unsigned Acc, const MCOperandInfo &OpInfo) {
704 return OpInfo.isGenericImm()
705 ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
706 : Acc;
708 LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
709 << "): " << NumTypeIdxs << " type ind"
710 << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
711 << NumImmIdxs << " imm ind"
712 << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
713 const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
714 if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
715 FailedOpcodes.push_back(Opcode);
716 else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
717 FailedOpcodes.push_back(Opcode);
719 if (!FailedOpcodes.empty()) {
720 errs() << "The following opcodes have ill-defined legalization rules:";
721 for (unsigned Opcode : FailedOpcodes)
722 errs() << " " << MII.getName(Opcode);
723 errs() << "\n";
725 report_fatal_error("ill-defined LegalizerInfo"
726 ", try -debug-only=legalizer-info for details");
728 #endif
731 #ifndef NDEBUG
732 // FIXME: This should be in the MachineVerifier, but it can't use the
733 // LegalizerInfo as it's currently in the separate GlobalISel library.
734 // Note that RegBankSelected property already checked in the verifier
735 // has the same layering problem, but we only use inline methods so
736 // end up not needing to link against the GlobalISel library.
737 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
738 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
739 const MachineRegisterInfo &MRI = MF.getRegInfo();
740 for (const MachineBasicBlock &MBB : MF)
741 for (const MachineInstr &MI : MBB)
742 if (isPreISelGenericOpcode(MI.getOpcode()) &&
743 !MLI->isLegalOrCustom(MI, MRI))
744 return &MI;
746 return nullptr;
748 #endif